ADAMM: Anomaly Detection of Attributed Multi-graphs with
Metadata: A Unified Neural Network Approach

Konstantinos Sotiropoulos®
Heinz College

Lingxiao Zhao*
Heinz College

Carnegie Mellon University ~ Carnegie Mellon University Carnegie Mellon University

ksotirop@andrew.cmu.edu lingxial @andrew.cmu.edu

Abstract—Given a complex graph database of node- and edge-
attributed multi-graphs as well as associated metadata for each
graph, how can we spot the anomalous instances? Many real-
world problems can be cast as graph inference tasks where the
graph representation could capture complex relational phenom-
ena (e.g., transactions among financial accounts in a journal
entry), along with metadata reflecting tabular features (e.g.
approver, effective date, etc.). While numerous anomaly detectors
based on Graph Neural Networks (GNNs) have been proposed,
none are capable of directly handling directed graphs with multi-
edges and self-loops. Furthermore, the simultaneous handling of
relational and tabular features remains an unexplored area. In
this work we propose ADAMM, a novel graph neural network
model that handles directed multi-graphs, providing a unified
end-to-end architecture that fuses metadata and graph-level rep-
resentation learning through an unsupervised anomaly detection
objective. Experiments on datasets from two different domains,
namely, general-ledger journal entries from different firms (ac-
counting) as well as human GPS trajectories from thousands
of individuals (urban mobility), validate ADAMM’s generality
and detection effectiveness of expert-guided and ground-truth
anomalies. Notably, ADAMM outperforms existing baselines that
handle the two data modalities (graph and metadata) separately
with post hoc synthesis efforts.

Index Terms—anomaly detection, complex graphs, graph neu-
ral networks, multi-edges, node and edge attributes, metadata

I. INTRODUCTION

Anomaly detection finds numerous practical applications in
finance, manufacturing, monitoring, etc. as anomalies are typ-
ically indicators of faults, inefficiencies, malicious behavior,
etc. in various real-world systems. One of the key challenges in
real world settings is the complexity of the data, which exhibit
multiple different modalities and heterogeneity—requiring
new data representations and novel modeling designs.

This work is motivated by anomaly detection problems in
two different real-world domains. The first is from business

*Equal contribution. Research supported by the Advanced Research
Projects Activity (IARPA) via Department of Interior/Interior Business Center
(DOI/IBC) contract number 140D0423C0033 and the PwC Digital Transfor-
mation and Innovation Center at Carnegie Mellon University Intelligence.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation thereon.
Disclaimer: The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of IARPA, DOI/IBC,
the U.S. Government, or the other funding parties.

978-1-5386-5541-2/18/$31.00 ©2018 IEEE

Pierre Jinghong Liang
Tepper School of Business

Leman Akoglu
Heinz College
Carnegie Mellon University

liangj @andrew.cmu.edu lakoglu@andrew.cmu.edu

[$57,..]

Equity Liabilities

[$20,..]

Savings
.o

>

Q
&

[Approver [Entry [Effective . [Division | Day |
[John [02/01 | o1/01 [_sales | Monday |
Fig. 1. Modeling complex data. (left) E.g. from accounting: a journal entry’s

attributed multi-graph (multiple transactions between two accounts), with edge
directions (credit/debit), edge features (e.g. $ amount), and node features
(account type; e.g. equity, savings, etc.) plus aux. meta-features (approver,
entry date, etc.); (right) E.g. from communication networks: a daily activity
multi-graph (multiple e-mails between two company employees), with edge
directions (to/from), edge features (e.g. text embedding) and node features
(role in the company.) plus aux. meta-features (division, day, etc.).

management and particularly accounting/auditing, where the
goal is to identify abnormalities (errors or fraud) among
annual general-ledger journal entries from a given firm. Each
entry consists of a series of line items of credit or debit
transactions of various amounts between accounts with the
total debited dollar amount equal to the total credited amount,
following the double-entry bookkeeping rules. Accordingly,
debits and credits within an entry create directed and weighted
links between accounts, and multiple transactions may occur
between the same pair of accounts or even within a single
general-ledger account. Besides the relational information,
each journal entry is also associated with meta-features, such
as the approver, entry and effective dates, etc. This poses a
multi-modal (relational and tabular) data problem setting. A
second example arises from communication networks, where
the problem is detecting significant events within a company
based on e-mails exchanged between different entities.

Our goal is to design a novel solution that not only unifies
the data modalities under a single, flexible model capable of
managing complex relations based on directed multi-graphs,
but also offers broad applicability across the domains men-
tioned earlier and potentially beyond. To this end, we represent
the relational information with a node- and edge-attributed
directed multi-graph, and the auxiliary or metadata as tab-
ular meta-features. (See Figure 1.) Our proposed solution,
ADAMM (for Anomaly Detection of Attributed Multi-graphs
with Metadata), is a unified neural network framework that
learns an expressive graph-level representation for directed and

attributed multi-graphs and then fuses it with the meta-features
within a shared embedding space before feeding the joint
embedding to an unsupervised anomaly detection objective.
Notably, our objective is crafted to handle data heterogeneity;
where for example, the journal entries may form multiple
clusters (e.g. purchases vs. interest gains), and individual
behaviors can reflect socio-demographic groups (e.g. single
vs. married-with-children). Specifically, we replace the classic
SVDD objective that aims to learn embeddings tightly centered
around a single centroid [1], and instead employ an unsuper-
vised loss to accommodate multiple centroids.

The literature is abound with anomaly detection techniques
[2]-[7], where a vast body focuses on uni-modal data. Numer-
ous prior work address outliers in tabular data [2], [3], possible
due to its wide presence in industry and its efficient storage
in databases. However, molding real world anomaly detection
problems to tabular outlier detection requires ‘“flattening”
data from all modalities into manually-extracted features via
laborious and often costly domain-expertise [8].

On the other hand, graph anomaly detection has been
studied mainly on a single graph for detecting node/edge-level
anomalies, with much less emphasis on graph-level anomalies
[6], [7]. Few existing traditional approaches to attributed multi-
graph anomalies [9], [10] that are not neural network based are
not learnable, restricted to handling single-value edge features,
not scalable for larger graphs, and do not take auxiliary meta-
data into account. Similarly, the more recent neural network
based models [11]-[14] are not designed to accommodate
directed multi-graphs or graphs with metadata as in this work.
(See related work in V for details.) Finally, we argue that
a straightforward two-stage approach is naive and nontrivial;
the reasons are first, treating data modalities/sources sepa-
rately misses the opportunity to capture inter-dependencies
and second, the problem of how to combine multiple anomaly
rankings/scores open many possibilities without a principled
way to choose in the absence of any labels.

We summarize our main contributions as follows.

« Anomaly Detection in Real-World Settings with Com-
plex Data: We formulate anomaly detection under data
complexity/variety, exhibiting relational as well as auxil-
iary information, in an elegant framework that can jointly
handle complex graphs with node/edge attributes, edge
multiplicities, directions and self-loops, meta-features, as
well as data heterogeneity. The formulation is driven
by anomaly detection problems from two different real-
world domains, namely accounting and human mobility,
yet is general to apply to possibly other domains.

o A Unified Detection Model: We introduce ADAMM,
a novel neural network architecture that can digest the
aforementioned multi-modal data toward anomaly detec-
tion in a unified fashion. It tackles edge multiplicities
through set representation learning, employs expressive
graph-level embedding that is fused with meta-features in
a learned shared embedding space, and finally, optimizes
an unsupervised anomaly loss that can accommodate het-
erogeneous data with multiple latent underlying clusters.

« Generality and Applications: ADAMM offers a general
framework, where the architecture can be extended to
several other domains with data variety, using the idea
of learning joint/shared-space embeddings and end-to-end
anomaly loss optimization. Besides addressing the data
variety challenge of big data, our ADAMM also targets
business and societal value, as it is applied to two high-
stakes domains; accounting (finance) and human mobility
(urban). Through extensive experiments, we show that
two-stage solutions are blind-sided and that ADAMM
outperforms those as well as other existing baselines sig-
nificantly on accounting data from three different firms,
as well as human GPS trajectory simulations.

Reproducibility. To foster future work on anomaly detec-

tion on complex multi-graphs with metadata as well as for
practical applications, we open-source the code for ADAMM
at https://github.com/konsotirop/ADAMM.

II. PRELIMINARIES

We consider anomaly detection on a large database G =
{(G1,My),...,(Gp, M,)} of n pairs of directed, node/edge
attributed, multi-graphs (multiple edges may exist between two
endpoints), and their associated metadata-level features.

Definition 1: (Directed, attributed, multi-graph). A graph
G; = (V;,E;,7) is a directed, attributed, multi-graph, en-
dowed with a function 7 : V; — R? that assigns a real-valued
feature vector to every node in G;. Moreover, F; is a multi-set,
where an element e; = (u,v,f;) is a directed edge between
nodes u and v associated with an edge-feature vector f; € R”.

Definition 2: (Metadata). Each graph G, is associated with
a vector Zyg, € R reflecting tabular features.

Usually, we operate on sets (or multi-sets) of variable
lengths, where there is no specific order of the elements. In
such cases, we need functions that are permutation invariant.

Definition 3: (Set-function). A function f acting on sets
is called a set function if it is permutation invariant to the
order of objects in the set. That is, for any permutation 7 :
f({xla cee axn}) = f({zﬂ(1)7 CER ':ETF(TI/)}'

Neural network architectures, like DEEPSET [15], can im-
plement arbitrary set functions, while the work of Xu et al.
[16] extends such functions for multi-sets.

Graph Neural Network (GNN) model: We use the prov-
ably expressive GIN model of [16], where the embedding of
a node v is updated during the {*" layer/iteration using the
following aggregation function:

x() = MLPO((1+4¢)-x{™V+ >~ ReLU(xy +£,u); 1)
ueN (v)

(D
where M L P is a multi-layer perceptron, € a learnable parame-
ter, A/ (v) the neighborhood of node v, £, is the feature vector
of edge (u,v) and 6; a vector of trainable parameters.

To obtain a graph-level representation Zg for the whole
graph GG we can use a permutation-invariant function READ-
OUT that aggregates node embeddings after the final layer/it-
eration L, i.e.,

Zo = READOUT({x\P|v e V}))

Our problem can be defined (informally) as follows:

Problem 1: (Anomaly Detection of Attributed Multi-
graphs with Metadata (ADAMM).) Given a database
G = {(Gi, M;)}_, of n node- and edge-attributed
multi-graphs and their associated metadata; the goal is
to identify the abnormal (graph, metadata) pairs that
differ significantly from the majority in the database.

III. ADAMM FOR MULTI-MODAL ANOMALY DETECTION
OF (MULTI-)GRAPHS WITH METADATA

A. Data Representation

The input to ADAMM is a database comprising of pairs of
graphs and their associated metadata vectors. In what follows,
we describe the capabilities of it in representing complex
graph data, the fusion of them with metadata vectors, as well
as two concrete examples from the accounting and human
mobility domains where this unified representation can be used
to model real-world scenarios.

Graph representation. ADAMM is designed to handle
complex graph data of virtually any type. Specific design
choices allow the model to be able to represent:

1) Node attributes (or Node labels): Nodes can have at-
tributes that are updated after each graph convolution
step. When nodes do not have attribute vectors but
categorical labels, we can learn representations for these
node labels using an embedding layer.

2) Edge features: Edges can have features containing im-
portant information about the link between two nodes in
the graph. Thus, node representations are updated taking
into account not only the embeddings of the neighboring
nodes, but also those of incident edges (see also Eq. (1)).

3) Edge direction: In various domains as with transactions
(accounting) and trips (mobility), edge direction is seman-
tically important. Thus, we enhance edge features with
an encoding of the direction of the edge. Specifically, for
each multi-edge (u,v,f;), between nodes u and v, we
encode it using label “1” if the edge is present in the
graph, i.e. (u,v,f;, “17), and in the meanwhile, augment
another reversed edge (v, u, f;, “2”) with label “2” into
the graph. Also, we reserve label “0” for self-loop edges,
i.e. (u,u, f;) becomes (u, u, f;, “0”). These edge direction
labels are then applied as input to an embedding layer
that produces the edge direction representation vector dy.
The final representation vector f/ for the edge e; is then
obtained as the sum of the edge features vector f; and of
the edge direction vector, that is, f; = f; + d;.

4) Multiple edges: Currently, GNNs are not able to handle
multi-edges. Instead, they assume there exists a unique
edge between two nodes, as in Eq. (1) for GIN convo-
lution. Multi-edges, however, model the multiple interac-
tions that can occur between two nodes in a network and
each has its own feature vector. ADAMM is designed to
handle multi-edges by learning a single edge representa-
tion from the multi-set of edges. More precisely, we treat

the edge features of the multi-edges F' = {f{,...,f}}
as a multi-set and we use a permutation-invariant multi-
set function f : F + R% to learn an edge-level d,-
dimensional representation vector.

The versatility of ADAMM in handling complex graph-data
allows it to be used in a wide variety of domains. We present
two exemplar ones as follows.

(i) Bookkeeping Graphs [17]: Each graph is a representation

of a journal entry: a detailed transaction record. Every ac-
count present in the entry is associated with a node, with
its label being the account type (e.g. equity, revenue, etc.).
A directed edge represents monetary flow from a credited
account to a debited account and the feature of an edge
is the monetary value associated with this transaction.
Directed multi-edges capture multiple credit/debit flows
that can take place between two accounts.
Human Mobility (or Activity) Graphs [18]: These repre-
sent the mobility or activity behavior of an agent within
a time-frame (e.g., a day of the week). Nodes represent
visited locations, while node labels represent the Points
Of Interest (POI) type in that location (school, restaurant,
etc.). Directed multi-edges stand for the trips between
those locations and their features capture information
about the trip (duration, distance, etc.).

Metadata representation. ADAMM is able to fuse the
graph-level representation with associated metadata vectors
that contain auxiliary information. We give examples of such
information in the two aforementioned domains below.

(ii)

(i) Metadata for Bookkeeping Graphs: The metadata vector
contains information regarding the ID of the user that
created the specific journal entry, the approver of this
entry, total credit amount, a binary indicator of whether
it is a reversal, the date transactions took effect, or the
date transactions were recorded in the journal, etc.

Metadata for Human Mobility Graphs: For activity graphs
the metadata vector could contain information about the
day of the week this activity took place (e.g., Tuesday), a
vector representation of the agent it describes (or simply
a unique ID), or other information that could contain GPS
related information, like speed-limit violations, etc.

(i)

B. A Unified Neural Network Architecture

ADAMM provides a unified architecture for anomaly detec-
tion in a database of graphs and their associated metadata
features. Figure 2 presents an overview of our model and
the steps it involves. The input is two-pronged: a directed,
node/edge attributed multi-graph and its associated metadata
vector. Following the set representation learning of the multi-
edges, a GNN is employed to learn a graph-level embedding,
which is then fused with the metadata vector to obtain the final
joint embedding. A parameter estimation network decides on
the (soft) membership of the final embeddings to one of K
clusters. ADAMM is trained in an end-to-end fashion, i.e. all of
its parameters are optimized jointly with respect to a suitable
objective function that minimizes the weighted distance of

Node- & Edge-Attributed
Multi-graph

INPUT

e.g. Entry day «——

e.g.Approver +——

Multi-edge
Rep. Learn.

I
fé =
=€)

Loss: Total weighted dist_to_centroids
Reg: ¢ Diversity (spread_out_centroids)

@ MeanPool
+ MLP
= ..
¢ Entropy (near_hard memberships)

Concat + MLP

Final Joint
Treeell Embedding

MEN

(L[11

12 K

Centroid
Memberships

O,
®

e

All ADAMM parameters (D-(5) estimated end-to-end via unsupervised multi-centroid loss.

Fig. 2. A workflow overview of the ADAMM architecture. Given two-pronged input (in blue), i.e. attributed multi-graph and metadata, ADAMM first processes
the former by () learning a multi-set representation of the multi-edges, and (@) flattening the resulting graph via GNN into node representations that are
pooled into a graph-level embedding. Then, 3) graph-level embed. and meta-features are projected, @ followed with a joint embedding learning. Finally, 3)
the output layer employs an unsupervised regularized multi-centroid anomaly loss where soft assignments are learned via a membership estimation network
(MEN). It is notable that ADAMM provides a unified multi-modal framework where parameters of all the modules (in green) are estimated end-to-end.

embeddings to the K centroids of the clusters. Additional
regularization terms are introduced to spread-out the centroids
as well as to nudge the estimation network toward more
confident assignments of cluster memberships. We describe
each of these steps in greater detail next.

1) Graph-level Embedding: We learn a graph-level embed-

ding in two steps:

o Multi-edge Representation Learning: As noted, GNNs
(including GIN) can not readily handle multi-edges. For
this reason, we “flatten” all directed multi-edges between
two nodes to a single undirected edge and its associated
feature vector by learning a permutation-invariant multi-
set function based on a DeepSet [15] architecture. This
procedure is depicted in Figure 2 (see step (1)), where
the input attributed multi-graph is transformed using a
learnable multi-set function to an attributed graph with
single edges among its pairs of nodes.

o Node Embeddings: The transformed graph, where all
multi-edges have been replaced by an attributed single
edge, is used as input to a GNN model (step @ in
Figure 2). In ADAMM we opt to use GIN [16] as a
provably expressive GNN. GIN learns node embeddings
by performing the graph convolution of Eq. (1), also
incorporating the edge features.

To obtain a graph-level embedding we use a READOUT
function on the node embeddings (see Eq. 2). We implement
this function by performing mean pooling over the node
embeddings followed by a multi-layer perceptron (MLP) to
learn the final graph-level embedding as

1
> xi6e | 3)

Zc=MLP | —
|V| veV

2) A Unifying Embedding Space for Graph and Metadata:
After having obtained a graph-level embedding, we learn a
joint representation of the graph and its metadata in a unifying
embedding space. We are motivated by the CLIP-style latents
[19] that learn a shared embedding space for images and their
associated text captions, analogous to our graph and metadata
pairs. More precisely, we first linearly project the graph-level
embedding vector Z¢ as well as the metadata vector Zj,; by
learning two projection functions (with separate parameters)
Po(Zg; 0c) : R — R and Py(Zag; 0pr) - R4 s RIP
to obtain two new vectors Zg, and Z; of the same length
dp as they share the same space. We normalize both vectors
to have unit /; norm and then concatenate them. Finally, we
employ an MLP to obtain the final joint embedding, denoted
Z € RY (see steps Q) - @ in Figure 2) as

Z = MLP (CONCAT(Z.,,Z),);6.) . (4)

C. Anomaly Detection Loss

Objective functions used in anomaly detection, like One-
Class DeepSVDD [20], make the somewhat strong assump-
tion that all of the normal instances come from the same
distribution. Hence, their objective is to use a deep neural
network to map all normal instances as close to the center
of a single hypersphere, with anomalous instances identified
as those mapped farther from this centroid. However, this
objective does not take into account the multiple modalities
or heterogeneities that may exist in real world data. For
this reason, we introduce a new objective function that ac-
commodates multiple clusters of the input samples. ADAMM
estimates the (soft) cluster membership of each sample using
a membership estimation network and tries to minimize the

total average weighted distance from the K centroids, where
hyperparameter K is carefully tuned (as discussed later in
III-D). Contrary to One-Class DeepSVDD, where the center
of the hypersphere is fixed during the training process, the
K centroids in our case are inferred from the membership
estimation network and the final embedding vectors.

Membership Estimation Network (MEN). The MEN is
an MLP with a softmax activation function (step 3 of Fig. 2)
that gives the membership predictions for the final embedding
vectors Z in Eq. (4). That is,

7 = softmax(MLP(Z; 0yrEn)) 4)

where 4 is a K-dimensional vector depicting the soft mem-
bership probability predictions of Z.

In what follows, and for a batch of N pairs of (graph, meta-
data) samples, where Z; is the embedding of the ith sample,
we denote by I' the NV x K matrix of cluster membership
estimations from Eq. (5) and by 7, each entry of this matrix.

Then, the cluster centroids ¢, € R? can be calculated
using the cluster membership estimations from Eq. (5) and
embedding vectors Z;, for i = 1,..., N, by

Yo ik
N -
Dim1 Vik
Loss Function and Anomaly Score. Having estimated
the embedding vectors and cluster membership estimations,
the anomaly score of a sample T; = (G;, M;) is then defined

as the weighted sum of the Euclidean distance between the
final embedding vector Z; and the cluster centroids ¢4’s, i.e.

(6)

¢, =

K
score(T};) = Z Vil Zi — €l (7
k=1

which also serves as the anomaly score of a sample T; (the
higher, the farther and the more anomalous).

ADAMM is then trained in an end-to-end fashion to optimize
the following unsupervised objective.

N K
Yikl|Zi — € |> + A1 - HT) + A2 - D(C) (8)
i=1 k=1
where @ depicts all ADAMM parameters collectively and
A1, A2 are hyperparameters that aim to strike a balance be-
tween the distance-to-centroids anomaly loss (first term) and
two regularization terms, respectively, Entropy and Diversity,
which we describe as follows.

e The first is an entropy regularization that forces the
network to be more confident on the cluster to which
it estimates an input sample to belong. More specifically,
we aim_to minimize the average entropy over the rows
of the I' membership estimation matrix as

N 1 N K R R
HI) =+ >3 Ainlog(Aik) - ©)

i=1 i=1
o The second is a diversity term that promotes separation
between the cluster centroids to avoid the undesired

mode-collapse solutions where the network collapses all
centroids to the same point. Letting C depict the K x d
matrix containing the cluster centroids ¢j’s as its rows;

(10)

D(C) = —log(det(Cov(C)) ,

where det(Cov(C)) is the determinant of the covariance
matrix of C. In effect, the larger the determinant of the
covariance matrix, the more the centroids are dispersed,
promoting separation between and diversity among the
cluster centroids. A similar term has also been used in
[21] for selecting diverse features in regression settings.

D. Model Selection

ADAMM, as with other deep neural networks based models,
is configured with a set of hyperparameters (HPs), such as the
number of layers, weight decay and learning rates, number of
training epochs, among others. In addition, our multi-centroid
anomaly objective incurs the number of centroids K, and the
A1 and Ao terms from Eq. (8). Each different configuration
of these results in a different model, with potentially drastic
differences in anomaly detection effectiveness. The challenge
is that anomaly detection is an unsupervised task, where we
usually lack ground-truth labels of whether a sample is an
anomaly. As a result, we do not have a labeled validation
set for hyperparameter tuning. For this reason, we devise
an unsupervised validation score, without using any labels,
toward selecting an effective model that performs better in
anomaly detection than what we would have obtained by
picking at random (in absence of any other guidance).

Given a family of models, M, we opt to choose the model
m that minimizes the sum of the weighted distances of the [NV
samples in the training set from the K centroids as our model
selection criterion, specifically,

N K
SO Aulz - el

i=1 k=1

(1)

This rule favors the model that succeeds into learning a
tight representation of the training instances into each of the
K clusters by better extracting their shared patterns, which
in effect helps reveal the anomalies that deviate from these
patterns. In experiments, we compare the effectiveness of our
model selection criterion against random picking (i.e. aver-
age/expected performance over possible HP configurations).

IV. EXPERIMENTS
A. Experimental Setup

Datasets. For evaluation we use four datasets from two
different domains, each containing a large database of graphs
and their associated metadata. Those include annual general-
ledger journal entries from three different firms, in collabora-
tion with PwC. The fourth dataset involves simulated human
GPS trajectories. Summary of datasets is given in Table 1.

o Accounting Datasets: Three datasets from accounting

consist of all annual journal entries from different firms
anonymized as SH, HW, and KD. Each dataset contains

TABLE I
DATASET SUMMARY STATISTICS

Name | Graphs | Nodes | Multi-edges | Node-attr. | Edge-attr. | Meta-feat.
SH 39,011 [1,15] [1,338] 11 1 11
KD 152,105 [1,91] [1,774] 10 1 9
HW 90,274 [1,25] [1,897] 11 1 7
MobiNet | 140,000 [1,22] [1,59] 41 4 9

tens of thousands of bookkeeping graphs [17] capturing
itemized transactions between impacted accounts along
with dollar amounts, and metadata entries capturing aux-
iliary journal information including entry and effective
date, requester, approver, reversal indicator, and so on.

o Human Mobility Dataset: The fourth dataset, referred to
as MobiNet, contains the trajectories of 10, 000 simulated
agents over a period of two weeks. We use these trajecto-
ries to extract daily activity graphs [18] of the places (i.e.
POI) visited by each agent and the trips between them,
as described in Section III-A. The metadata contains
information about individual trips and are transformed
to a single vector using a DEEPSET architecture during
the end-to-end training of ADAMM.

Baselines. For comparison, we use as baselines existing
graph-level anomaly detectors and tabular data outlier detec-
tors. Unlike ADAMM, existing graph-level anomaly detectors
can not handle multi-edges. Therefore, we collapse all multi-
edges to a single edge and use the average representation of
their feature vectors. To the best of our knowledge, there is
also no prior work that fuses graphs and metadata and provides
a single anomaly score. For this reason, we employ two-
stage baselines: First, we create a ranking of the samples with
respect to their anomaly score as obtained by a graph-level
anomaly detector. Then, we create a second ranking by using
a tabular data outlier detector. We combine these two rankings
to obtain a single graph&metadata anomaly ranking using two
well-established aggregation methods detailed as follows.

(a) Graph-level Anomaly Detectors: We first aim to detect
graph-level anomalies using the following baselines:

(1) Weisfeiler-Lehman (WL) graph kernel [22], followed
by the OCSVM outlier detector [23] that can admit a
kernel matrix as input.

(2) graph2vec [24], for graph-level embedding, followed
by the OCSVM detector.

(3) DOMINANT [25], a GNN-based node anomaly de-
tector, from which we average the scores to obtain a
graph-level anomaly score.

(b) Tabular Data Outlier Detectors: We use the tree-
ensemble based Isolation Forest algorithm [26] to score
outlierness on the meta-features, which is the state-of-
the-art tabular data outlier detector [27].

After having obtained a ranking from (a) the graph-level
anomaly detectors and (b) the tabular data anomaly detectors,
we create a unique ranking for pairs of graphs and metadata,
by using: (¢) a BFS-style aggregation that first sorts the results
of each stage in descending order of their anomaly score, and
then selects the next object that has the highest anomaly score

by visiting the lists in a BFS fashion [28]; and (i¢) the Inverse
Rank (IR) aggregation method, in which we score each sample
by % + %, where 7, is the rank by the graph-level anomaly
detector and 7, by the tabular data outlier detector.

Overall we construct 6 baselines based on (1)—(3) x (7)—(¢%).

Labeled Anomalies. Our datasets do not come with any
ground truth anomalies, therefore, we use the guidance of
experts in the fields of accounting and human mobility to
simulate anomalies that are typically present in these datasets
and of interest in detecting them. We create two types of graph-
level anomalies, as well two types of metadata-level anomalies.

1) Graph anomalies involve small perturbations in nodes
and edges as follows.

o Label change (GA1): We change the label of a node to a
randomly chosen new label. This injection corresponds to
entry-error in an accounting dataset, or an unusual visit
to a new POI in human mobility behavior.

e Path injection (GA2): We delete an edge between nodes
u and v and rewire through an intermediary, creating a
path u-z-v. This injection mimics money-laundering in
finance, where funds are passed through an intermediate
account instead of being transferred directly. For human
mobility, this corresponds to an unusual stop.

2) Metadata anomalies perturb feature values and reflect
different semantics in both domains.

For Accounting Datasets:

o Unusual back-dating (MA1): We pick a subset of entries
with effective date close to the entry date (up to 3 days
before), and change the entry date randomly to one of
{7,14,21} days after the effective date. This corresponds
to an unusual late entry date. We lack information about
entry date in HW, hence our experiments do not use this
type of anomaly for this dataset.

o Combination of unrelated transactions (MA2): We merge
two unrelated transactions by creating a new one with
a unique Journal ID. We set the metadata entries to a
randomly chosen value from the two initial transactions.
Note that this injection also modifies the graph structure
into the representation of the merged journals.

For Human Mobility Dataset:

o Unusual start time (MA3): We change the start time of
a trip to a very early (or late one). This corresponds to a
trip occurring in an unusual time.

o Unusual trip duration (MA4): We change the duration of
a trip to an unusually long one.

3) Potpourri anomalies involve a combination of graph and
metadata level anomaly injections, where we pick one graph
level anomaly and one metadata level anomaly from above
and inject both to a sample.

We inject anomalies on 5% of the samples in each dataset,
where we use half of the original dataset for training, and
the remaining half with the injected anomalies for testing.
Note that the labeled anomalies are used only for evaluation
purposes and not during model training or model selection.

Model Selection. Anomaly detection is typically a fully
unsupervised task, where we lack ground truth labels of which

TABLE 11
ANOMALY DETECTION RESULTS FOR ALL METHODS ACROSS ALL DATASETS BASED ON AUROC. FOR BASELINE METHODS WE RUN THE EXPERIMENTS
OVER A GRID OF HYPERPARAMETERS AND REPORT THE AVERAGE PERFORMANCE, ALONG WITH THE STD. DEV. ADAMM EMPLOYS A MODEL SELECTION
CRITERION AND OUTPUTS A UNIQUE RANKING. LAST ROW REPORTS SIGNIFICANCE TEST RESULTS, WHERE (**) AND (***) DENOTE THAT ADAMM 1s
SIGNIFICANTLY BETTER THAN BASELINES W.R.T. THE WILCOXON SIGNED RANK TEST AT p = 0.05 AND p = 0.01, RESPECTIVELY.

Dataset | Anomaly Type || ADAMM || WL+BFS | WL+IR | G2V+BFS | G2V+IR | DOM.+BFS | DOM.+IR

GAl 0.992 0.925 4+ 0.01 [0.922 + 0.01 | 0.839 £ 0.09 | 0.833 4 0.09 | 0.824 + 0.01 | 0.821 £ 0.01

GA2 0.968 0.827 4+ 0.02 [0.829 + 0.02 | 0.854 £ 0.02 | 0.854 4+ 0.02 | 0.834 + 0.01 | 0.837 £ 0.01

SH MAL1 0.846 0.591 4+ 0.02 [0.610 + 0.03 | 0.586 £ 0.01 | 0.592 4+ 0.01 [0.602 + 0.02 | 0.613 £ 0.02

MA2 0.918 0.638 4 0.02 | 0.642+ 0.02 | 0.614 £ 0.01 | 0.618 4 0.01 | 0.615 + 0.01 | 0.618 £ 0.01

GAIl + MA1 0.955 0.899 4+ 0.01 [0.897 + 0.02 | 0.807 £ 0.01 | 0.800+ 0.01 [0.811 &+ 0.01 | 0.807 £ 0.02

GA2 + MAI 0.977 0.841 4+ 0.03 [0.840 + 0.01 | 0.871 £ 0.01 | 0.86940.02 |0.836 + 0.02 | 0.838 £ 0.01

GAl 0.928 0.885 4+ 0.01 [0.880 + 0.01 | 0.835 £ 0.04 | 0.828 4+ 0.04 | 0.462 + 0.01 | 0.450 £ 0.01

GA2 0.939 0.825 4+ 0.03 [0.828 + 0.04 | 0.820 £ 0.01 | 0.824 4+ 0.01 | 0.543 + 0.01 | 0.528 £ 0.01

KD MAL1 0.841 0.727 £ 0.01 [0.716 + 0.03 | 0.729 £ 0.01 | 0.718 4+ 0.01 | 0.610 &+ 0.01 | 0.588 £ 0.01

MA2 0.854 0.738 £+ 0.02 [0.743 £ 0.02 | 0.736 £ 0.02 | 0.741 £+ 0.02 | 0.518 £ 0.01 | 0.505 £ 0.01

GAl + MAIL 0.933 0.901 4 0.01 [0.895 &+ 0.01 | 0.814 £ 0.07 | 0.805 4 0.01 [0.458 + 0.01 | 0.448 £ 0.01

GA2 + MA1 0.916 0.849 4+ 0.03 | 0.849 +0.04 | 0.818 £ 0.01 | 0.805 4 0.07 | 0.537 + 0.01 | 0.522 £ 0.01

GAl 0.973 0.922 + 0.01 [0.916 + 0.01 | 0.922 £0.03 | 0.920 4+ 0.03 [0.713 + 0.21 [0.710 £ 0.21

HW GA2 0.994 0.895 4+ 0.01 [0.888 + 0.01 | 0.666 £ 0.05 | 0.660 4+ 0.05 | 0.400 + 0.07 | 0.406 £ 0.07

MA2 0.967 0.691 4 0.02 [0.661 + 0.02 | 0.706 £ 0.02 | 0.694 4+ 0.01 [0.535 + 0.01 | 0.527 £ 0.01

GAl 0.526 0.676 &+ 0.01 [0.678 + 0.02 | 0.466 £ 0.07 | 0.467 4 0.05 [0.320 £ 0.01 | 0.323 £ 0.01

GA2 0.491 0.487 4+ 0.02 [0.482 + 0.03 | 0.499 £ 0.05| 0.505 4+ 0.04 | 0.341+ 0.01 | 0.346 £ 0.01

MA3 0.441 0.558 4+ 0.01 [0.563 + 0.01 | 0.556 £ 0.02 | 0.574 4+ 0.03 | 0.411+ 0.01 | 0.415 £ 0.01

MobiNet MA4 0.450 0.492 4+ 0.01 [0.490 + 0.01 | 0.517 £ 0.02 | 0.524 4+ 0.01 | 0.349+ 0.01 | 0.353 + 0.0

GAIl + MA3 0.563 0.750 4+ 0.01 [0.754 + 0.02 | 0.451 £ 0.01 | 0.454 4+ 0.02 | 0.326 + 0.01 | 0.329 £ 0.03

GAl + MA4 0.678 0.743 £+ 0.02 [0.747 + 0.01 | 0.457 £ 0.02 | 0.460 £ 0.01 | 0.350+ 0.01 | 0.353 £ 0.02

GA2 + MA3 0.470 0.483 4+ 0.01 [0.480 + 0.02 | 0.505 £ 0.01 | 0.510 4+ 0.02 | 0.329 + 0.04 | 0.332 £ 0.01

GA2 + MA4 0.477 0.494 £+ 0.02 | 0.489 + 0.01 | 0.520 £ 0.01 | 0.526 + 0.03 | 0.332 + 0.01 | 0.336 £ 0.01
Average AUROC || 0787 || 0730 | 0728 | 0678 | 0677 | 0524 | 052
Average Rank || 203 || 308 (¥%) | 278 (*%) | 400 (%) | 374 (+re) | 617 (%) |6 (veH)

samples are anomalous. As a result, we do not have a valida-
tion set for hyperparameter tuning. For this reason, for each of
the baseline methods, we consider a set of hyperparamater con-
figurations, across which we report the average performance.
This corresponds to the expected performance of each method
if one were to select a configuration at random. For ADAMM
we show that our proposed model selection criterion presented
in III-D can consistently yield better results than what we
would expect when picking hyperparameters at random (in
the absence of any other guidance). Hyperparameter (HP)
Configurations: Detailed HP configurations can be found in
the full version of the paper: https://arxiv.org/abs/2311.07355.

B. Detection Results

In evaluating proposed ADAMM, we conducted a series of
experiments to answer the following questions:

Q1) Effectiveness: How effective is ADAMM in detecting
graph- and metadata-level anomalies, as compared to the
two-stage baseline approaches?

Q2) Model Selection: Can our proposed unsupervised model
selection criterion for ADAMM select a model (i.e. hy-
perparameter configuration) that is better than random
picking (i.e. avg. performance across config.s)?

Q3) Ablation: How important are key components of
ADAMM in the detection results?

Al: To answer the first question, we conduct extensive
experiments using all four datasets and graph, metadata as
well as potpourri anomalies. The results are presented for
each method across all datasets and injection types in Table II

based on the Area Under the Receiver Operator Characteristic
Curve (AUROC), and in Table III based on the Area Under
Precision-Recall Curve (AUPRC). We observe that ADAMM
succeeds in detecting both graph-level and metadata-level
anomalies effectively. It outperforms the baseline methods
in 3 out of 4 datasets and across all injection types, where
the baselines do not show consistent performance. ADAMM
performs consistently well for all types of anomalies, whether
they are graph, metadata-level, or even of mixed type. The
only exception is the MobiNet dataset, where the nature of
metadata information (multiple vectors for a single graph that
have to be aggregated) poses significant challenges'

The superior performance of ADAMM over baselines is also
validated using the Wilcoxon signed rank test. ADAMM not
only has the lowest average rank among the competitors, but
is also significantly better at p-value p = 0.05.

A2: The problem of model selection is an important one
in unsupervised anomaly detection. The lack of labels and of
a validation set makes it challenging to choose an effective
model. For ADAMM we provide a validation criterion tightly
connected to its loss function (recall Eq. (11)). In Figure 3 we
see that the model ADAMM chooses based on its unsupervised
criterion achieves consistently better performance than random
picking that corresponds to the average performance across
all configurations. This makes ADAMM not only able to spot

!For baseline methods, we score all vectors separately and assign the
maximum score as the anomaly score of the sample. This gives better results
than taking the average as the latter dilutes the signal among multiple vectors.

TABLE III
ANOMALY DETECTION RESULTS FOR ALL METHODS ACROSS ALL DATASETS BASED ON AUPRC (AREA UNDER PRECISION-RECALL CURVE). FOR
BASELINES, AVERAGE PERFORMANCE ACROSS HYPERPARAMETERS ALONG WITH THE STD. DEV. IS REPORTED. ADAMM OUTPUTS A UNIQUE RANKING
BASED ON A MODEL SELECTION CRITERION. LAST ROW REPORTS SIGNIFICANCE TEST RESULTS, WHERE (**) AND (***) DENOTE THAT ADAMM 1s
SIGNIFICANTLY BETTER THAN BASELINES W.R.T. THE WILCOXON SIGNED RANK TEST AT p = 0.05 AND p = 0.01, RESPECTIVELY.

Dataset | Anomaly Type || ADAMM || WL4+BFS | WL+IR | G2V+BFS | G2V+IR | DOM.+BFS | DOM.+IR
GAl 0.939 0.470 £ 0.01 |0.461 £ 0.01 | 0.270 £ 0.01 | 0.327 £ 0.01 | 0.327 4 0.02 | 0.320 %+ 0.01
GA2 0.708 0.214 £ 0.02 | 0.217 £ 0.02 | 0.269 £ 0.04 | 0.252 £ 0.01 | 0.252 4 0.01 | 0.256 + 0.01
SH MA1 0.280 0.125 £ 0.01 |0.126 £ 0.01 | 0.118 £ 0.01 | 0.125 £ 0.01 | 0.125 4 0.01 | 0.126 + 0.01
MA2 0.599 0.125 £ 0.01 |0.125 £ 0.01 | 0.120 £ 0.01 | 0.121 £ 0.01 | 0.121 4 0.01 | 0.122 %+ 0.01
GAl + MA1 0.877 0.4584+ 0.01 |0.450 & 0.01 | 0.255 £ 0.09 | 0.246 4 0.09 | 0.080 + 0.01 | 0.077 £ 0.01
GA2 + MAI 0.836 0.224 £+ 0.02 | 0.225 £ 0.04 | 0.286 £+ 0.03 | 0.241 £ 0.01 | 0.0974 0.01 | 0.093 + 0.01
GAl 0.553 0.363 £ 0.02 |0.347 + 0.01 | 0.255 + 0.09 | 0.246 £ 0.09 | 0.08 £ 0.01 | 0.080=+ 0.01
GA2 0.430 0.284 £ 0.04 | 0.283 £ 0.04 | 0.2344+ 0.014 | 0.240 £ 0.01 | 0.102 £ 0.01 | 0.098 + 0.01
KD MALI 0.141 0.142 £ 0.01 |0.136 £ 0.01 | 0.148 4+ 0.002 | 0.144 £ 0.01 | 0.106 4 0.01 | 0.101 + 0.01
MA2 0.342 0.117 4+ 0.001 | 0.104 £ 0.01 | 0.162 £ 0.01 | 0.164 £ 0.01 | 0.089 £ 0.01 | 0.086 + 0.01
GAl + MALI 0.677 0.443 £ 0.01 | 0.424 £ 0.01 | 0.256 £ 0.12 | 0.247 £ 0.12| 0.080 4 0.01 | 0.077 &+ 0.01
GA2 + MAI 0.351 0.261 £ 0.04 | 0.261 £ 0.04 | 0.237 £ 0.01 |0.240 £ 0.01 | 0.097 4 0.01 | 0.094 + 0.01
GAl 0.866 0.446 £+ 0.03 | 0.438 £ 0.03 | 0.455 £ 0.10 [0.451 £ 0.01|0.314 4+ 0.21 | 0.310 + 0.21
HW GA2 0.941 0.292 £+ 0.01 |0.280 £ 0.02 | 0.146 £ 0.03 | 0.144 £ 0.03 | 0.106 4 0.04 | 0.105 + 0.04
MA2 0.815 0.165 £ 0.01 |0.151 £ 0.01 | 0.175 £ 0.01 |0.168 £ 0.01 | 0.114 4+ 0.01 | 0.110 % 0.01
GAl 0.050 0.100 £ 0.01 |0.102 £ 0.01 | 0.046 £ 0.01 |[0.046 £ 0.01 | 0.0664 0.01 | 0.065 + 0.01
GA2 0.043 0.047 £ 0.01 | 0.047 £ 0.03 | 0.054 £ 0.01 | 0.054 £ 0.01 | 0.069 £+ 0.01 | 0.069 + 0.01
MA3 0.040 0.054 £+ 0.01 |0.055 £ 0.01 | 0.055 £ 0.01 | 0.057 £ 0.01 | 0.076 &+ 0.01 | 0.076 0.01
MobiNet MA4 0.040 0.047 £ 0.01 |0.047 £ 0.01 | 0.051 £ 0.01 |0.051 £ 0.01|0.069 & 0.01 | 0.067 + 0.01
GAl + MA3 0.052 0.165 £+ 0.01 |0.166 £+ 0.01 | 0.043 £ 0.01 | 0.044 £ 0.01 | 0.067 4 0.01 | 0.067 %+ 0.01
GAl + MA4 0.074 0.157 £ 0.01 |0.158 £ 0.01 | 0.046 £ 0.01 | 0.046 £ 0.01 | 0.069 & 0.01 | 0.068 + 0.01
GA2 + MA3 0.052 0.0444 0.01 |0.044 £+ 0.01 | 0.054 & 0.01 | 0.053 £ 0.01 | 0.066 + 0.01 | 0.065 £ 0.01
GA2 + MA4 0.041 0.046 £ 0.01 | 0.046 £ 0.01 | 0.055 £ 0.01 | 0.056 £ 0.01 | 0.066 + 0.01 | 0.066 + 0.01
Average AUPRC || 0443 || 0208 | 0204 | 0165 | 0163 | 0131 | 0130
Average Rank || 203 || 391 (¥%%) | 426 (%) | 473 () | 305 () | 452 (4r%) | 448 (RrE)

graph and metadata level anomalies, but also robust against
different hyperparameter choices.

SH
1.01 . ‘
°
P [}
! oo
0.8 . s H o
°
4 H) ° °
g . ¢ .
=z 0.6 ®
6] °]
o ° ° °
& °
° ® °
0.4) © ° °
‘ $
[]
024 ¢ Selected Model :
— Average over all Models
“Z z “Z 2 “Z
0?‘ o @?‘ Q\?‘ X@V‘ x%\v

Injection type

Fig. 3. Model selection for ADAMM over all models with different hyper-
parameter configurations. The model selected consistently performs better than
random picking, i.e. average/expected performance over all models.

A3: ADAMM exhibits three key building blocks; multi-edge
representation learning, graph-metadata fusion, and a suitable
anomaly detection loss. Accordingly, we perform an ablation
study and design threevariants of ADAMM, each excluding the
respective design component to demonstrate its added benefit.

V1. ADAMM without Metadata Fusion: Here we remove
the metadata fusion component and instead we input

only the graph-level embeddings Zs to the membership
estimation network. Our goal is to explore if the metadata
component interferes with the graph-level component
by having a negative influence on graph-level anomaly
detection when only such anomalies are present.

V2. ADAMM without DeepSet: In this version, we remove
the DeepSet component that aims to learn a single repre-
sentation of the attributed multi-edges. Instead, we simply

average the attributes over each multi-edge.

V3. ADAMM with One-Class DeepSVDD loss: Finally, we
compare ADAMM and its loss function in Eq. (8) with a
varint where we replace it with the loss introduced by
the One-Class DeepSVDD [20] method which, as we
described in III-C, maps all normal instances to a single

hypersphere centered around a fixed centroid.

Results of the ablation study are given in Table IV for SH
(as a representative of the transaction datasets) as well as the
MobiNet dataset. We see that ADAMM outperforms all of its
variants on the SH dataset, demonstrating the importance of
the various components in anomaly detection. The improve-
ment is particularly noticeable for the MA?2 type anomalies
(merge of unrelated transactions), which is of mixed type (both
metadata and graph). We note that ADAMM without metadata
also performs well for graph-only anomalies of type GAl
and GA2. In fact, excluding metadata lifts the interference
on MobiNet, leading to better detection.

TABLE IV
ABLATION STUDY RESULTS - COMPARING ADAMM AGAINST ITS THREE VARIANTS: (1) ADAMM WITHOUT METADATA FUSION, (1) ADAMM WITHOUT
DEEPSET & (111) ADAMM wiTH ONE-CLASS DEEPSVDD L0OSS (OCDL)

Dataset | A Iv T ADAMM ADAMM w/o Metadata | ADAMM w/o DeepSet | ADAMM with OCDL
ataset | Anomaly LYP€ FATROC [AUPRC [[AUROC| AUPRC [|AUROC| AUPRC || AUROC| AUPRC
GAl 0.992 0.938 0.989 0.920 0.988 0.920 0.986 0.894
SH GA2 0.968 0.708 0.961 0.622 0.965 0.758 0.930 0.489
MA2 0.918 0.598 0.898 0.580 0.816 0.427 0.868 0.467
MobiNet GAl 0.526 0.049 0.779 0.179 0.588 0.060 0.577 0.061
GA2 0.491 0.043 0.678 0.079 0.475 0.042 0.472 0.045
C. Case Studies
. . . . 14 x
Through quantitative experiments in IV-B we showed that .
ADAMM can successfully spot expert-guided injected anoma- to . $1.5M 38
lies. To further validate the effectiveness of our method, we g 08 .
consider the original SH dataset that contains no injected fos 1
anomalies. That is, we use the whole dataset of 39,011 graphs o
with metadata for training and inspect their anomaly scores o
. . . 0.0
obtained by Eq. (7). As presented in Figure 4 (left), we see that A B

ADAMM is able to highlight a small fraction of the samples
as standing out from the majority.

As ADAMM is unique in handling complex directed graphs
with attributes and multi-edges, we take a closer look at two
example graphs as shown in Figure 4 (right). Self-loops are
the common feature of these graphs: the first has one self-
loop with a large dollar amount ($1.5M), while the second
contains 38 self-loops in one graph. From an accounting do-
main perspective, self-loops represent transactions recorded by
moving dollars within the same general ledger (GL) account.
From a bookkeeping standpoint, these within-GL movements
indicate the presence of misidentification of the correct sub-
ledger account in the recording of a prior transaction. The self-
loop in the current journal entry is then designed to correct
such a misidentification at a later date. In the first graph A,
a total of $1.5M was recorded in a sub-ledger incorrectly,
necessitating the current self-loop transaction to correct the
cumulative mistakes made earlier. The second graph B (with
38 self-loops) is even more pronounced in terms of the number
of corrections involved as well as the presence of errors
beyond the simple one illustrated in the first example.

Based on this transaction-level bookkeeping analysis, these
two spotted transactions are indeed unusual and worthy of the
auditor’s attention to examine further. ADAMM’s ability to
spot these anomalies involving edge-attributes and multi-edges
can be of assistance to the accounting/auditing practitioners.

V. RELATED WORK

Anomaly detection (AD) has an extensive literature mainly
considering outliers in tabular or vector data [29], [30],
including the recently emerging deep neural network based
approaches (see surveys [3], [31], [32]). However, these do
not apply to AD for graphs with relational structure.

The majority of work on graph anomaly detection [6],
including the recent graph NN (GNN) based techniques [33]-
[36] focus on node, edge, or subgraph anomalies within a
single graph, rather than graph-level anomalies in a database.

Fig. 4. Analyzing detected accounting anomalies. (Left) Anomaly scores
(vs journal ID) of all 39,011 entries in the SH dataset. (Right) Two example
graphs, A and B, that are identified as anomalous by ADAMM in SH.

Different from these earlier work, we consider graph-level
AD among a set of graphs within a database. There exist tra-
ditional encoding or compression-based techniques [9], [10],
[37], [38] that aim to identify frequent structural motifs or
graphlets that compress a graph database efficiently, and then
flag those graphs with long encoding length as anomalous.
Most recent work have shifted attention to employing deep
learning and GNNs toward graph-based AD (for a recent
survey, see [7]). The idea is to flatten each graph by leveraging
their representation or embedding learning capability, and
train the GNN parameters end-to-end through various AD
objectives such as one-class [11], [12], mutual information-
based [14], distributional distance [13], contrastive [39] as well
as distillation losses [40]. While these have made progress
in graph-level anomaly detection, they do not handle multi-
graphs, nor are they designed to admit multi-modal input such
as graphs with meta-features as in our case.

Examples of prior work on multi-graphs address sum-
marization [41], partitioning [42]-[44], as well as anomaly
detection [10], [45], however without considering additional
meta-features. An earlier work on node-level (fake reviewers)
AD in a single (reviewer-to-product) graph has attempted
to bridge node-level meta-features with graph data—by first
using the meta-features to estimate node outlierness scores
and then propagating those over the graph to capture guilt-by-
association [46]. Their method, however, does not generalize
to graph database anomalies with graph-level meta-features.

In summary our proposed ADAMM, to our knowledge,
is the first method for graph-level anomaly detection for
directed node/edge-attributed multi-graphs with meta-features.
It leverages (i) end-to-end multi-graph embedding, (i7) joint
multi-modal representation learning and (ii¢) a multi-centroid
AD loss to effectively capture complexities in the input data.

VI. CONCLUSION

In this work we addressed an anomaly detection problem
that relates to one of the key challenges of big data min-
ing, that is, data complexity. In particular, we considered a
graph database consisting of node- and edge-attributed directed
multi-graphs with associated metadata, and proposed a new
multi-modal anomaly detection approach called ADAMM. In a
unified neural network framework, ADAMM first captures a set
representation of the multi-edges, learns a graph-level embed-
ding, fuses the graph and metadata in a joint embedding space,
on which it finally employs an unsupervised anomaly loss
based on a multi-centered data distribution. To our knowledge,
ADAMM is the first unified method that can tackle anomaly
detection on complex data of this nature in an end-to-end
fashion. Through extensive experiments on datasets from two
real-world domains, namely accounting and urban mobility,
we showed that ADAMM significantly outperforms all two-
stage baselines that handle graphs and metadata separately.
We open-source ADAMM’s code for future research as well
as practical use on possibly other real-world domains.

REFERENCES

[1] D. M. Tax and R. P. Duin, “Support vector data description,” Machine
learning, vol. 54, pp. 45-66, 2004.

[2] C. C. Aggarwal and C. C. Aggarwal, An introduction to outlier analysis.
Springer, 2017.

[3] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for
anomaly detection: A review,” ACM computing surveys (CSUR), vol. 54,
no. 2, pp. 1-38, 2021.

[4] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier detection for
temporal data: A survey,” IEEE Transactions on Knowledge and data
Engineering, vol. 26, no. 9, pp. 2250-2267, 2013.

[5] K. Choi, J. Yi, C. Park, and S. Yoon, “Deep learning for anomaly
detection in time-series data: review, analysis, and guidelines,” IEEE
Access, vol. 9, pp. 120043-120 065, 2021.

[6] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and
description: a survey,” Data mining and knowledge discovery, vol. 29,
pp. 626-688, 2015.

[71 X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and

L. Akoglu, “A comprehensive survey on graph anomaly detection with

deep learning,” IEEE Trans. on Knowledge and Data Engineering, 2021.

L. Akoglu, “Anomaly mining: Past, present and future,” in International

Conference on Information & Knowledge Management, 2021, pp. 1-2.

[9] M.-C. Lee, H. T. Nguyen, D. Berberidis, V. S. Tseng, and L. Akoglu,

“Gawd: graph anomaly detection in weighted directed graph databases,”

in IEEE/ACM ASONAM, 2021, pp. 143-150.

H. T. Nguyen, P. J. Liang, and L. Akoglu, “Detecting anomalous graphs

in labeled multi-graph databases,” ACM Transactions on Knowledge

Discovery from Data, vol. 17, no. 2, pp. 1-25, 2023.

L. Zhao and L. Akoglu, “On using classification datasets to evaluate

graph outlier detection: Peculiar observations and new insights,” Big

Data, vol. 11, no. 3, pp. 151-180, 2023.

C. Qiu, M. Kloft, S. Mandt, and M. Rudolph, “Raising the bar in graph-

level anomaly detection,” arXiv preprint arXiv:2205.13845, 2022.

L. Zhao, S. Sawlani, A. Srinivasan, and L. Akoglu, “Graph anomaly

detection with unsupervised GNNs,” Preprint arXiv:2210.09535, 2022.

G. Zhang, Z. Yang, J. Wu, J. Yang, S. Xue, H. Peng, J. Su, C. Zhou,

Q. Z. Sheng, L. Akoglu et al., “Dual-discriminative graph neural network

for imbalanced graph-level anomaly detection,” Advances in Neural

Information Processing Systems, vol. 35, pp. 24 144-24 157, 2022.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,

and A. J. Smola, “Deep sets,” in NeurIPS, 2017.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph

neural networks?” in /CLR, 2019.

P. J. Liang, “Bookkeeping graphs: Computational theory and applica-

tions,” Foundations and Trends® in Accounting, vol. 17, no. 2, pp. 77—

172, 2023.

[8

—

[10]

[11]

[12]
[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]
(31]

(32]

[33]

[34]

[35]
[36]
(371
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

C. M. Schneider, V. Belik, T. Couronné, Z. Smoreda, and M. C.
Gonzdlez, “Unravelling daily human mobility motifs,” Journal of The
Royal Society Interface, vol. 10, no. 84, p. 20130246, 2013.

A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical
text-conditional image generation with clip latents,” arXiv preprint
arXiv:2204.06125, 2022.

L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui,
A. Binder, E. Miiller, and M. Kloft, “Deep one-class classification,”
in ICML, 2018, pp. 4393-4402.

A. Das, A. Dasgupta, and R. Kumar, “Selecting diverse features via
spectral regularization,” NeurIPS, vol. 25, 2012.

N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels.” Journal of
Machine Learning Research, vol. 12, no. 9, 2011.

J. S. Taylor and N. Cristianini, “Support vector machines and other
kernel-based learning methods,” Cambridge University, 2000.

A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and
S. Jaiswal, “graph2vec: Learning distributed representations of graphs,”
arXiv preprint arXiv:1707.05005, 2017.

K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep anomaly detection
on attributed networks,” in Proceedings of the 2019 SIAM International
Conference on Data Mining. SIAM, 2019, pp. 594-602.

F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in /CDM.
IEEE, 2008, pp. 413-422.

A. Emmott, S. Das, T. Dietterich, A. Fern, and W.-K. Wong, “A
meta-analysis of the anomaly detection problem,” arXiv preprint
arXiv:1503.01158, 2015.

A. Lazarevic and V. Kumar, “Feature bagging for outlier detection,” in
ACM SIGKDD, 2005, pp. 157-166.

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1-58, 2009.

C. C. Aggarwal, “Outlier analysis,” in Data mining. Springer, 2015,
pp. 237-263.

R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A
survey,” arXiv preprint arXiv:1901.03407, 2019.

L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek,
M. Kloft, T. G. Dietterich, and K.-R. Miiller, “A unifying review of deep
and shallow anomaly detection.” arXiv:2009.11732, 2020.

R. Yu, X. He, and Y. Liu, “Glad: group anomaly detection in social
media analysis,” TKDD, vol. 10, no. 2, pp. 1-22, 2015.

W. Yu, W. Cheng, C. C. Aggarwal, K. Zhang, H. Chen, and W. Wang,
“Netwalk: A flexible deep embedding approach for anomaly detection
in dynamic networks,” in KDD. ACM, 2018, pp. 2672-2681.

K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep anomaly detection on
attributed networks,” in SDM. SIAM, 2019, pp. 594-602.

X. Wang, Y. Du, P. Cui, and Y. Yang, “OCGNN: one-class classification
with graph neural networks,” CoRR, vol. abs/2002.09594, 2020.

C. C. Noble and D. J. Cook, “Graph-based anomaly detection.” in KDD.
ACM, 2003, pp. 631-636.

W. Eberle, L. Holder, and D. Cook, “Identifying threats using graph-
based anomaly detection,” in Mach. Learn. in Cyber Trust, 2009.

X. Luo, J. Wu, J. Yang, S. Xue, H. Peng, C. Zhou, H. Chen, Z. Li,
and Q. Z. Sheng, “Deep graph level anomaly detection with contrastive
learning,” Scientific Reports, vol. 12, no. 1, p. 19867, 2022.

R. Ma, G. Pang, L. Chen, and A. van den Hengel, “Deep graph-level
anomaly detection by glocal knowledge distillation,” in WSDM. ACM,
2022, pp. 704-714.

D. Berberidis, P. J. Liang, and L. Akoglu, “Summarizing labeled
multi-graphs,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2022, pp. 53-68.

W. Tang, Z. Lu, and L. S. Dhillon, “Clustering with multiple graphs,” in
ICDM. IEEE, 2009, pp. 1016-1021.

E. Papalexakis, L. Akoglu, and D. Ience, “Do more views of a graph
help? community detection and clustering in multi-graphs,” in Interna-
tional Conference on Information Fusion. 1EEE, 2013, pp. 899-905.
Z. Kang, G. Shi, S. Huang, W. Chen, X. Pu, J. T. Zhou, and Z. Xu,
“Multi-graph fusion for multi-view spectral clustering,” Knowledge-
Based Systems, vol. 189, p. 105102, 2020.

K. Maruhashi, F. Guo, and C. Faloutsos, “Multiaspectforensics: Pattern
mining on large-scale heterogeneous networks with tensor analysis,” in
ASONAM. IEEE/ACM, 2011, pp. 203-210.

S. Rayana and L. Akoglu, “Collective opinion spam detection: Bridging
review networks and metadata,” in SIGKDD, 2015, pp. 985-994.

