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ABSTRACT

There is no shortage of outlier detection (OD) algorithms in the
literature, yet a vast body of them are designed for a single machine.
With the increasing reality of already cloud-resident datasets comes
the need for distributed OD techniques. This area, however, is not
only understudied but also short of public-domain implementations
for practical use. This paper aims to fill this gap: We design SPARx,
a data-parallel OD algorithm suitable for shared-nothing infrastruc-
tures, which we specifically implement in Apache Spark. Through
extensive experiments on three real-world datasets, with several
billions of points and millions of features, we show that existing
open-source solutions fail to scale up; either by large number of
points or high dimensionality, whereas Sparx yields scalable and
effective performance. To facilitate practical use of OD on modern-
scale datasets, we open-source SPARx under the Apache license.!
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1 INTRODUCTION

Motivation. Outlier detection (OD) finds applications in many
domains, such as finance [3], manufacturing [27], surveillance [25]
and environmental monitoring [31], to name a few. OD is typically
used in data cleaning to filter out noise/errors/etc. before fitting a
model that may be sensitive to the presence of outliers in the train-
ing data. In other settings, outliers are rather the “signal”, where
OD is employed to identify adversarial or abnormal occurrences,
such as network attacks or about-to-fail manufacturing parts.
With the advent of technology, it is typical of applications to
generate or collect massive datasets. Often these are already res-
ident in modern distributed infrastructures or cloud services (e.g.
Amazon AWS, Microsoft Azure, Google Cloud, etc.), which renders
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OD algorithms designed for a single machine inapplicable. These
datasets may also be ever-growing, with new data being generated
in a daily fashion or much faster; such as sensors monitoring data
(including social sensors), transactions data, computer network logs
data, among others. This trend puts OD algorithms applicable to
distributed large-scale datasets in great demand, which is likely to
grow further in coming years.

Prior Work. While outlier detection has an extensive litera-
ture [2], distributed OD is a considerably understudied area. To
our knowledge, there exists only a few published work on OD
for cloud-resident data on shared-nothing infrastructures. Among
those, only a handful of them provide public-domain implementa-
tions: DDLOF [32], a distributed implementation of the popular LOF
[8] OD algorithm; SPIF [28] is a Spark-based design of the popular
(ensemble) algorithm Isolation Forest (IF) [16]; and most recently,
DBSCOUT [9] that builds on the ideas from the popular clustering
algorithm DBSCAN [13]. DDLOF is based on Hadoop [6], which is
10-100x slower than the in-memory computing platform Apache
Spark [34]. On the other hand, the Spark-based SPIF only employs
model-parallelism (training each ensemble component on a separate
compute node); and because it does not leverage data-parallelism,
it scales poorly to large datasets with numerous points. DBSCOUT
is also built on Spark, however it scales extremely poorly with in-
creasing dimensionality d, and has been tested on 2- and 3-d data
only. Moreover, it is a distance-based algorithm that may not work
well on data with varying-density support, inherits two sensitive
hyperparameters from DBSCAN, and provides only a binary output
(inlier/outlier) based on a strict outlier definition. (See Sec. 5 for
detailed related work, and Sec. 4 for comparison experiments.)

Besides i) scaling-out to distributed datasets, there are several
other desired characteristics of an OD algorithm for practical usabil-
ity, including;: ii) linear time and space complexity, iii) robustness
to hyperparameter choices (so that practically easy to use in un-
supervised settings), iv) carefully handling high dimensionality,
and v) admitting data with mixed-type features (both categorical
and numerical). Today, no existing OD algorithm in the literature
satisfies all these desired properties.

Present Work. Through this work, we set out to make OD a
greater contributor to the real-world use cases at large, and intro-
duce a new OD algorithm called SpARx, exhibiting all the aforemen-
tioned practical properties i)—v). Specifically, we capitalize on the
XSTREAM algorithm [20] which is originally designed for a single
machine, and transform it to a MapReduce [11] based distributed al-
gorithm. Our implementation is based on the Python API of Apache
Spark (hence the name, SPARx) that is suitable for a shared-nothing
distributed infrastructure.

SpaRrx readily inherits all the desirable properties of XSTREAM,
while also scaling-out to massive datasets on cloud platforms. In
fact, and apart from the extensive experiments in the original paper
[20], XSTREAM has recently been externally validated to outperform
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a long list of (9) baselines at router-level anomaly detection tasks
on 64 different real-world datasets from Huawei Inc. [22]. The algo-
rithms are run using various hyperparameter (HP) configurations,
and compared with respect to both best hyperparametrization (opti-
mistic and unrealistic in unsupervised settings) as well as practical
(just one) hyperparametrization (realistic yet conservative) as only
one HP configuration (as recommended by the original authors) is
used for all datasets. XSTREAM performance is outstanding based on
their extensive evaluation, quoting: “Remarkably, XSTREAM stands
out for being close to the Ideal Ensemble Upper Bound [i.e. best
model among all algorithms and HPs]”, and “xSTREAM [...] able to
provide robust and good performance even in practical settings.”
We summarize the main contributions of this work as follows.
o Distributed OD for Cloud-resident Data: We present SPARX,
a data-parallel outlier detection (OD) algorithm for distributed
data that handles large number of input points as well as
high dimensionality. SPARx is a linear time and space com-
plexity algorithm that can scale-out to datasets that are al-
ready cloud-resident. For wide-spread usability, we provide
a public-domain implementation of SPARx in Apache Spark.!
e List of Desired Properties: Sparx is effectively a distributed
extension of the XSTREAM algorithm which exhibits many de-
sirable properties; including robustness to hyperparameters,
handling high dimensional feature space, admitting mixed-
type data, among others. Arguably, all of those combined
with scalability to cloud-resident datasets makes SPARX one
of the most practically useful, open-source solutions to OD.
o Scalability and Effectiveness: We evaluate SPARX against
the state-of-the-art baselines DBSCOUT [9] (DBSCAN-centered
OD in Spark) and SPIF [28] (Spark-based Isolation Forest).
As we show through extensive experiments on datasets with
number of points and dimensionality up to several billions
and millions, SPARx outperforms SOTA baselines in terms of
detection accuracy, running time and memory usage. SPIF
fails to scale up to large number of points (limited to model-
parallelism), whereas DBSCOUT scales poorly with high
dimensionality (does not scale up beyond 10 dimensions).

2 PRELIMINARIES & BACKGROUND

Consider a distributed point-cloud database, originally containing
n points with d dimensions; £ = {x1,...,Xp}, where x;’s can be
mixed-type, i.e. a subset of features being real-valued and the rest
being categorical with arbitrary domains. Let ¥ denote the set of
original features where || = d.

We consider a general deployment setting where new features
may arise over time; e.g. a new attack-indicator starts being tracked
at time ¢, where 7 (*) depicts the feature space at time ¢. Specifically,
at any time ¢, (1) new points X,4+1, Xp+2, . . . may arrive with dimen-
sionality |?'(t)| > |7"(t_1) |, as well as (2) points seen thus far may
receive value-updates to arbitrary (including new) features; where
< ID,F,$ > denotes an update-triple for point with identifier ID to
feature F € F () of value 8. For a real-valued feature F d€Risa
value-update, whereas § = old_val:new_val is a value-substitution
for a categorical feature (old_val is null if F is a newly-arising
feature). For example, <id,URL,+3> may indicate a social media
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user with identifier id sharing 3 more posts containing a link to a
certain URL. Similarly, <id, loc,NYC:Austin> may depict a customer
with id relocating (substituting loc) from NYC to Austin.

Vast majority of work for deployed OD systems assumes row-
streams where newcoming points (i.e. rows) to be outlier-scored
exhibit fixed dimensionality. To distinguish our deployed setting,
where not only new rows but also new columns (i.e. features) may
arrive, we refer to such incoming data as evolving streams.

2.1 Problem Statement

We aim to tackle the OD problem for very large datasets that are
stored in a distributed fashion on commodity machines. This is
typical of numerous settings where the data is prohibitively large to
be stored on a single server or is already collected in a decentralized
fashion (e.g. distinct customer bases around the globe).

We consider a shared-nothing parallel computing environment
on which the data is to be processed, typical of many modern big
data infrastructures including Apache Hadoop and Spark [6, 34].
Here each compute node (or worker machine) only has access to
partial data, and processes it locally and independently of others(i.e.
is idempotent), where intermediate results/data are then exchanged
between the workers over the network. Computation typically alter-
nates between several iterations of parallel local computation (e.g.
a map phase) and communication (e.g. a reduce phase). Parallelism
and local computation help with fast processing, whereas network
speed is low, hence, network communication costs are often the
bottleneck for distributed computing. Common strategies to reduce
network costs include reducing the number of iterations (e.g. by
computing locally more, and communicating less frequently) and/or
reducing the size of the intermediate results to be communicated.

As we will show in Sec. 3, SPARX is only a two-pass algorithm,
i.e. it requires only two iterations of map and reduce phases. More-
over, the intermediate data objects being passed between worker
machines is of constant size, further reducing the burden (i.e. time-
delay) of network communication.

We build Sparx for massive-scale cloud-resident data, although
by design it can also handle distributed evolving streams. We
present static and streaming problem definitions separately be-
low. In Sec. 3 we describe the distributed algorithms underlying
SPARx in detail, and discuss how to build on this solution to address
streaming input when deployed in Sec. 3.5.

PrROBLEM 1 (DI1STRIBUTED OD FOR STATIC DATA). Given a static
point-cloud database P = {x1, ...,Xp} that is stored in a distributed
file system (very large n); Design a distributed OD algorithm to
compute outlier scores {s1, . ..,sn} on a shared-nothing computing
infrastructure, with linear time and space complexity.

PrOBLEM 2 (OD oN INCOMING DATA STREAMS). Given an in-
coming stream at t = 1,2, ..., where (1) points with new ID may
arrive with |F (1| > |F (1) of mixed-type features, or (2) point-
wise §-updates <ID, F, §> may arrive to existing points with ID and
FeFW; Compute (updated) outlier score for ID, in constant time.

Before we delve into distributed algorithms, we provide a sum-
mary of the single-machine XSTREAM OD algorithm in this section.
2.2 xSTReAM for Single-Machine OD: Summary

XSTREAM [20] is designed for outlier detection in high-dimensional
data streams. In a nutshell, it consists of three main phases. First, to
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tackle high-dimensionality, it creates efficient data sketches, which
can be computed on-the-fly even for newcoming features. Then, it
builds efficient counting data structures for histogram-based den-
sity estimation in random subspaces of the feature space. Finally, it
performs outlier scoring based on the approximated density esti-
mates. We provide details on each of these steps as follows.

2.2.1 Step 1. Data Projection. Let us begin by assuming the
feature space (i.e. dimensionality) is fixed, such that x; € RP where
D > d is the new dimensionality after one-hot-encoding (OHE) the
categorical features. A low-dimensional sketch (or embedding) s;
can be created for each point (while accurately preserving pairwise
distances between the points) by random projections [1, 15]:

s; = (xiTrl, o ,xl-TrK) (1)

where {r1, ..., rg} depict K random Gaussian vectors [15] or sparse
random vectors where with probability 1/3, ri[F] € {+1} and zero
otherwise [1]. The latter choice not only is “database-friendly”,
i.e. more efficient to store and compute, but can be also advanta-
geous for outlier detection by effectively looking at data subspaces,
reducing the masking effect of irrelevant features [35].

Notice that the same r;, € RP’s are used for all points over
a stream, and hence need to be cashed. However, for evolving
streams wherein new features may emerge, D is not fixed and in
fact unknown apriori. Then, the idea is not to cash, but to hash.
Specifically, entries of each ry is to be computed on-the-fly via
hashing, such that Eq. (1) is rewritten as follows.

silkl= > h(F) - xilF] + ) h(Foxi[F]) - 1, k=1...K (2)
FeF, Fe¥.

where Ay (-) is a hash function, F, and ¥ denote the set of real-
valued and categorical features, respectively, x;[F] is point i’s value
of feature F, and @ denotes the string-concatenation operator. Each
hash function takes as input a string and returns +1, —1 or 0 with
respective probabilities 1/6,1/6 and 2/3. (See [20] for implemen-
tation details of such hash families.) For numerical features the
input string is the feature name. For categorical features, it is the
concatenation of the name and the corresponding feature value.
Effectively, the sparse random vector entries are computed for any
feature via hashing, i.e. ri.[F] = hg[F], and multiplied with the cor-
responding feature value. For categorical features, the concatenated
string corresponds to the OHE feature name with value 1.

When triplet updates < ID, F,§ > arrive over the stream, where
d = old_val:new_val for categorical features, the sketch can be
updated by

®)

siplk] = siplk] + hg(F) - 8 if real-valued F,
siplk] — hy (F @ old_val) + hi(F @ new_val) o.w.

fork = 1...K suchthat hy (F®old_val) returns zero when old_val
is null. It is important to notice that Eq. (3) can seamlessly handle
a newly emerging feature F that has never been seen before.

2.2.2 Step 2. Half-space Chains. Anomaly detection relies on
density estimation at multiple scales via a set of so-called Half-
space Chains (HC), a data structure akin to multi-granular subspace
histograms. Each HC has a length L (or L layers), along which the
(projected) feature space ¥ is recursively halved on a randomly
sampled (with replacement) feature, where f; € {1,...,K} denotes
the feature atlevel / = 1, ..., L. As such, a point can reside in one
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of 2 bins at level 1, one of 4 bins at level 2, and in general one of 2!
bins at level I. Given the sketch s of a point, the goal is to efficiently
identify the bin it falls into at each level.

Let A € RX be the vector of initial bin widths, which is equal to
half the range of the projected data along each dimension f € .
Letz; € 7ZX denote the bin identifier of s at level J, initialized to all
zeros. At level 1, the bin-id is updated as z1[f1] = [s[f1]/A[f1]]. In
general, the bin-id at consecutive levels can be computed incremen-
tally, following

s[f1l/ALf;] ifo(f;. 1) =1, and
2z;[f1] ow.;if o(fy, 1) > 1

where o(fy, I) denotes the number of times feature f; = {1,...,K}
has been sampled in the chain until and including level I. We note
that a small uniformly random value ¢; € (0, A[f;]), called shift,
is added to the sketches at each level to remedy issues for nearby
points around fixed bin boundaries. We omit those for brevity and
refer to [20] for details.

Notice that all points with the same unique Z; reside in the same
histogram bin at level I. As such, level-wise (multi-scale) densities
are to be estimated by counting the number of points with the same
bin-id at each level. This can be done by a dictionary (or perfect
hash) data structure. The number of possible bins, however, grows
exponentally with [. Even though data is not necessarily spread
to all bins, number of non-empty bins (and hence the size of the
dictionary) can grow very large for large L. Then, approximate
counts can be obtained via a count-min-sketch [10], the size of
which is user-specified, i.e. constant.

Overall, XSTREAM is an ensemble of M Half-Space Chains, H =
{HC(”’) = (A, £lm) g(m) C(’"))}ﬁ\rf:1 where each HC is associated
with the following list of meta-data; (i) the bin-width per feature
A € RK_ (ii) the sampled feature per level f(™) e ZL (iii) the
random shift value per level €™ e RL, and (iv) the counting data
structure per level C (m) — {C;m)}L

zfil = lalfill st z(fil = { 4)

I1=1"

2.2.3 Step 3. Outlier Scoring. To score a given (updated) sketch
for outlierness, the count of points in the bin that it falls into is
identified at each level I of a HC, denoted C;Hc) [z;]. The count is

extrapolated via multiplying by 2 to estimate the total count if the
data were distributed uniformly. Smallest estimate across levels? is
taken as the outlier score, and then averaged across all HCs as

M
-4 ol olm)
O(s) = i mZ::l min 20"zl . (5)

A lower value indicates a granularity at which the point resides in
a relatively sparse region, and hence higher outlierness.

3 SPARX FOR DISTRIBUTED OD

In this section we introduce SPARx; distributed algorithms corre-
sponding to each of the three main steps (as described in Sec.s
§2.2.1-§2.2.3) of xSTREAM (Sec.s §3.1-§3.3), space and time com-
plexity analysis (§3.4), and OD on incoming data streams (§3.5).
Our implementation uses Apache Spark’s Python APL In Spark,
the data points are stored in a distributed fashion across several com-
pute nodes (or machines), residing in what-is-called a DataFrame
(DF). The underlying distributed infrastructure is a shared-nothing

2Note that the counts can be compared across levels after extrapolation.
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Algorithm 1 Sparx Step 1. Distributed Data Projection

Algorithm 2 Sparx Step 2. Distributed Half-space Chains

Input: inputDF (input data), K (proj. dim.), featureNames
Output: projDF (K-dimensional transformed DF)

1: projector = HashProjn(K, seeds=arange(0, K, 1), density=1/3)
2: projDF = inputDF.map(lambda x: projector.fit_transform(x)

procedure fit_transform(pt)
3 for each F in featureNames:
4 if F is categoric then F := F @ pt[F]
5. R =array([[hash_string(k, str) for k in seeds]
6: for str in featureNames])
7

return proj_pt = R - pt » dot product

architecture, consisting of worker nodes and a driver node, which
can be implemented with a MapReduce programming paradigm.
The computation is broken down to pieces performed indepen-
dently at worker nodes (typically through map operations), which
may also exchange/communicate (over the network) intermediate
data/results (typically through the reduce operation).

3.1 Step 1. Distributed Data Projection

The first step is to transform the input data to a K-dimensional
representation through random projections. The projections are
done based on Eq. (2) using random hash functions, A1 (-), . . ., Ag ().
As projection of each point i can be done independently using Eq.
(2), the workers can perform this step fully locally, i.e. without any
need for communication between workers. The projected data is
stored in a new DF within the same worker nodes.

The pseudocode for Step 1 is given in Algorithm 1. We first
define a projector with K different seeds between (0, 1) and den-
sity 1/3 (Line 1). Note that the same seeds are used across all the
worker nodes to create new points in the same embedding space.
Operationally, projection step involves a single map phase. The map
operator takes as input a function and passes each element of the
DF through it. Namely the fit_transform function of the projector
is fed to map, which transforms an input point by projecting it K
times (Line 2). Steps of fit_transformis summarized in Lines 3-7,
in which the hash_string function hashes the input string str (i.e.
the feature name) based on the input seed, and with probability 1/3
returns {1} and zero otherwise.

3.2 Step 2. Distributed Half-space Chains

After sparse projections we first obtain the feature ranges, specifi-
cally the gap between the minimum and maximum values in each
of K features of the projected DF, and set the bin-widths A € RK
to half of the ranges. The min and max values can be obtain easily
for distributed data, by first finding those within each worker and
then comparing the local min/max values across the workers. Next
we start creating the half-space chains, as shown in Algorithm 2.

3.2.1 Data-parallel training of a single chain. Given A and
chain-length L (Line 1), each chain is instantiated at each level
I =1...L with a randomly picked split-feature f; from {1,...,K}
as well as a random shift amount ¢; € (0, A[f;]). These values
are shared/common across the workers. Then the workers start
binning the points, by computing the unique K-dimensional bin-
id of each point at every level. Our implementation allows for
constructing the histogram density estimation on a subsample of

Input: projDF, L (chain-length), sampleRate, numRows, numCols, num-
Chains, numThreads
Output: CMSketches (counts at all levels [ = 1. .. L per chain)

procedure fit_chain(seed)
C = Chain(A, L)
binIDsDF = projDF.rdd.sample(sampleRate, seed)
.map(lambda x: C.fit(x))
cms = CMS(numRows, numCols)
for [ in range(L):
C.CMSketches[!] = binIDsDF

.flatMap(lambda x: cms.allCols(x[1]))
.reduceByKey(lambda a,b : a+b) .collectAsMap()

0 N U A W N

9: tpool = ThreadPool(numThreads)
10: indxlist = list(range(numChains))
11: tpoolmap(lambda cind: fit_chain(cind), indxlist)

the data (Line 2). As binning of points can be done independently,
we implement this step through a map operation (Line 3), which
passes each point through the fit function that returns the bin-
id per level. The resulting bin-ids are stored in a new DF, called
binIDsDF, in a distributed fashion.

Next we count the number of points that fall into each unique bin
approximately, using a count-min-sketch (CMSketch) consisting of
r (numRows) hash-tables, each with w (numCols) buckets (Line 4).
Each level of a chain is associated with a separate CMSketch (Line
5-6). A CMSketch effectively hashes each input, i.e. a bin-id, into
one of w buckets. Since collisions may occur, the hashing is repeated
r times using different hash functions. The allCols function of
the CMS class in our implementation takes a bin-id as input, and
computes the bucket (i.e. column) index at each hash-table (i.e. row),
returning an array of the form:

[((1, colindx_1),1), ((2, colindx_2),1), ..., ((r, colindx_w),1)] (6)

As each bin-id can be hashed independently, we operationalize
binning through a map, more specifically flatMap, which “flattens”
the array of (key=(row,col), value=1) pairs returned by allCols
into individual elements in a DF (Line 7). To sum up the count
of points that hash into each bucket across workers, we perform
a reduceByKey, which groups all pairs with the same key and
sums their values (Line 8). Finally, collectAsMap gathers the total
counts from across workers into the driver node (also Line 8).
3.22 Model-parallel training of ensemble of chains. As de-
scribed, training of each chain leverages data-parallelism where
we perform binning on partitions of data in parallel across worker
nodes. Only the intermediate results, in this case partial sums/counts
of points per bin are pooled over the network from all workers.
SpARx is an ensemble of such half-space chains, each of which can be
trained independently. In a single-machine implementation, these
chains are built in sequence within a for-loop. To foster further
speed up, we add to our implementation model-parallelism where
the chains are trained by a pool of parallel threads (Lines 9-11).

3.3 Step 3. Distributed Outlier Scoring

Having collected all the partial counts across workers, the final
CMSketches containing approximate bin counts reside in the driver
node. For scoring, those are passed to individual workers which
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Algorithm 3 Sparx Step 3. Distributed Outlier Scoring

Input: projDF, CMSketches (for all chains)
Output: outlier_scores

procedure score_chain(cindex, CMS)
1: C = Chains[cindex]
2:  scoreC=projDF.map(lambda x:C.score(x, CMS.value[cindex]))

CMS = sc.broadcast(CMSketches)

: tpool = ThreadPool(numThreads)

: idx = list(range(numChains))

: outlier_scores = sum(tpool.map(lambda c: score_chain(c), idx))

U W

can then locally compute the outlier score for each data point that
they store. That is, outlier scoring involves a single map operation
as outlined in Algorithm 3.

Being an ensemble, SPARx scores a point against each chain (Line
1). The main computation occurs during map, which passes each
point through the score function of the chain to which we also
feed as input argument the respective CMSketch containing the
(approx.) bin counts at all levels [ = 1...L (Line 2). Notably, we
define CMSketches as a broadcast variable (Line 4), which tells
Spark to pass it to workers only once with each score function call,
since it is a fixed data structure that scoring does not alter.

For brevity, we do not include the steps for score in the pseu-
docode, which we briefly describe here in text. The steps are very
similar to those for fit (ie., identify the bin-id per level) and
allCols (i.e., identify the bucket that bin-id hashes to per hash
table, at each level). Each bucket is associated with a total count
(held in CMSketch of the chain), which is an overestimate for the
count of points with the same bin-id due to collisions. Therefore, the
minimum count across the hash-tables is taken as the most accurate
(i.e., least overestimate)—hence the name, count-min-sketch.

To obtain a point’s outlier score per chain, the min-count at each
level | is extrapolated by 2! and the smallest of the extrapolated
counts is returned as the score from the current chain as in Eq. (5).

Similar to model-parallel fitting of the chains, we also score
each point against the chains via a parallel thread pool (Lines 4-6).
Differently, outlier score from each chain (i.e. thread) is summed
across the pool (Line 6) and then averaged as in Eq. (5).

3.4 Space and Time Complexity

We analyze space and time complexity for each step of Sparx, and
present storage and computation requirements both locally (per
worker) and distributed (collectively across workers).

At the beginning, n d-dimensional data points are stored in a
Spark DataFrame, taking O(nd) distributed-storage. In Step 1, each
feature is hashed K times using different seeds®, where the resulting
matrix R (Algo. 1, Line 5) takes O(Kd) local-storage. Projecting one
point is a dot product, with O(Kd) complexity. Thus, Step 1 takes
O(Kdn) distributed-computation overall.

In Step 2, all M chains of the ensemble are trained in parallel
by a thread pool, thus we multiply the all complexities below by
M. The workers first compute the K-dim. bin-id of each point at
each of L levels, hence the resulting binIDsDF takes O(MKLn)

3Note that it is enough to hash the name of numerical features only once, whereas
categorical feature names are concatenated by the value a point takes (Algo. 1, Line 4)
and hence are (re)hashed per point.
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distributed-storage. A bin-id per level is computed incrementally
using Eq. (4), in O(L) total time per point, and O(MLn) distributed-
computation. Next each point’s bin-id is hashed r times at each
level by the allCols function, for a total of O(KrLMn) distributed-
computation. The output is r pairs as in (6) per point per level,
taking O(MrLn) distributed-storage. The reduceByKey operation
(Algo. 2, Line 8) groups all pairs with the same key=(row,col) in
the same reducer node and sums the values, effectively finding the
total count. This requires O(MrLn) network communication, and
O(MrLn) distributed-computation.

There are at most r(numRows)Xw(numCols) unique (row,col)
keys which is equal to the user-specified CMSketch size. At the end,
collectAsMap gathers these total counts across all layers and all
chains at the driver node, requiring O(rwLM) local-storage.

In Step 3, final CMSketches are passed from the driver to each
worker for scoring, requiring O(rwLM) local-storage. Scoring of a
point has similar computational footprint to fitting where we, per
level: create its bin-id, hash and read the counts from r buckets it
hashes to, take the minimum and extrapolation. Minimum extrapo-
lated count across L layers (i.e. outlier score) is averaged across M
chains. Overall it takes O(KrLMn) distributed-computation.

Remark: Note that SPARx is not only linear in data size (n
and d) but also fully data-parallel—all bigO terms involving n are
distributed. Moreover, all of K, L, r, w, M are user-specified, thus
space and time associated with those can be adjusted on demand.

3.5 OD on Incoming Data Streams

Upon deployment, a single compute node can serve as the front-end
to receive and score newcoming point updates over an evolving
stream. It requires O(rwLM) local-storage to keep all CMSketches
in-memory. For each §-update, the sketch- and then the score-
update takes O(K) and O(KrLM), respectively. As existing points
receive §-update, a size-N LRU cache of IDs is maintained, along
with their sketches for O(NK) space. Note that both space and time
complexity per update are constant, as all terms are user-specified.

4 EXPERIMENTS
4.1 Setup

4.1.1 Datasets. We experiment with three public-domain datasets,
varying largely in number of points n and dimensions d, as well as
in the fraction of outliers. Summary statistics are given in Table 1.

(1) Gisette is a handwritten digits dataset, originally from the
UCI ML repository, which has also been used for outlier detection.*
It has reasonably large number of features d, however its number of
samples n is very small (in fact, smaller than d), at least for testing
distributed algorithms. Following the outlier benchmark creation
procedure by Steinbuss and Bohm [26], we fit a Gaussian Mixture
Model (GMM) to the 3500 inliers it originally contains. Then we
draw n=40,000 samples from the fitted GMM such that around
10% constitutes the outliers—inliers are drawn directly, while for
generating outliers we increase the variance of 10% of the randomly
chosen features by a factor of 5 as recommended in [26]. This
ensures that 90% of the features do not convey any information on
outlierness, making the detection task harder. We use the resulting
dataset as a small-n/large-d testbed.

*https://github.com/cmuxstream/cmuxstream-data
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Table 1: Datasets used in experiments.

Name ‘ n pts. d dim. size (GB) type outl.
Gisette 40,000 4,971 4.69 small-n/large-d 10%
OSM 2,772,233,904 2 51.50 large-n/small-d 0.036%
SpamURL 2,396,130 3,231,962 large-n/large-d 33%

(2) OSM [14] is a 2-d dataset depicting the GPS coordinates (lat-
itude, longitude) collected from OpenStreetMap (OSM) contribu-
tors®. With nearly 3 billion points and 51.5GB total size, it is one of
the largest real-world GPS datasets.® We use OSM as a very large-
n/very small-d dataset. Besides its size, we use this low-dimensional
dataset as it has been used for testing distributed OD algorithms
previously [9, 32]. As we will show, these approaches are limited
to such low-d settings and scale poorly with dimensionality.

The original OSM data does not contain any labeled outliers, and
has been used in prior work [9, 32] as is, only for measuring runtime
and scalability. We aim to study the complete landscape/trade-off
between accuracy-versus-resources used. Therefore, to measure
detection performance we inject into OSM simulated outliers, as
described in detail in Appx. A.1.1. The visualization of the resulting
dataset is shown in Fig. 1.

(3) SpamURL [19] is a large-n/very large-d dataset, which con-
tains malicious and benign URLs along with numerous lexical and
host-based characteristics of each URL as the features. This dataset
makes the detection task challenging not only computationally,
owing to its size, but also statistically as outliers are likely buried
in small subspaces of the high dimensionality.

4.1.2 Baselines. Only a few OD algorithms are designed for
distributed data and also have public-domain implementations. We
compare SPARX to two such SOTA distributed OD methods.

(1) DBSCOUT [9]: This is the most recent distributed OD algo-
rithm, implemented in Spark using the Java API’. It uses ideas that
are largely inspired by the popular DBSCAN clustering algorithm
[13], and constructs a cellular grid structure to parallelize and speed
up the outlier identification process.

Another recent public-domain distributed OD approach, based
on the popular LOF algorithm [8], is DDLOF [32]. We omit it from
our baselines for two reasons; first, DBSCOUT has been shown to
outperform DDLOF significantly on various datasets including our
OSM, and second its implementation is in Hadoop® which is not on
par with the efficiency of Apache Spark.

(2) SPIF [28]: Today, Spark is notably more popular than Hadoop
providing orders of magnitude speed-up. Isolation Forest (IF) [16] is
also one of the most popular OD algorithms owing to its competitive
performance, as confirmed by evaluation studies [12, 29]. Therefore,
we also compare to SPIF [28], a Spark-based design of IF, using a
public-domain implementation.’

In a nutshell, IF subsamples data points to build a forest/ensemble
of extremely randomized trees. In SPIF, each tree is trained in
parallel at a single worker using its respective subsampled data.
The subsample for each tree is gathered at a single worker via a map-
reduce phase, where <tree-ID, point> pairs are generated during

Shttps://blog.openstreetmap.org/2012/04/01/bulk-gps-point-data/

®Data is downloaded from https://planet.osm.org/gps/simple- gps-points-120312.txt.xz
"https://github.com/mattecora/dbscout
8https://github.com/yizhouyan/DDLOFOptimized
“https://github.com/titicaca/spark-iforest
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Figure 1: Visualization of the 2-d OSM dataset: (in black) in-
liers from real-world GPS traces, (in red) injected outliers.

map, and a reduceByKey is performed to shuffle all points needed
to construct a tree to a single reducer/worker (!). As such, tree
fitting is not data-parallel; rather, forest construction is designed to
be model-parallel. For large subsample sizes, this implementation
quickly becomes infeasible as it shuffles too much intermediate
data over the network (which is very slow) prior to model fitting.

4.1.3 Performance metrics. To measure performance, we study
the accuracy-vs-resource requirements landscape of the algorithms
with varying HP configurations, since these typically have a trade-
off relation. For accuracy, we report the outlier ranking quality
using Area Under the ROC (AUROC), and Precision-Recall Curve
(AUPRC), as well as F1 score. In terms of resources, we measure
the running time and peak memory usage.

4.14 System settings. We conduct experiments on the U.S. Na-
tional Science Foundation Pittsburgh Supercomputing Center (PSC),
and set up both a ‘moderate’ (config-mod) as well as a ‘generous’
system configuration (config-gen) with relatively more resources,
as specified in Table 5 in Appx.

Specifically, we vary the number of data (i.e. DF) partitions, avail-

able memory for the driver as well as the worker (executor) ma-
chines, the number of executors and number of cores per executor,
as well as the number of threads available for multi-threading.
config-gen has access to strictly more resources in all these as-
pects, typically doubling or more.
4.1.5 Model settings. We also run experiments with various
hyperparameter (HP) configuration of the methods, as there is no
clear means to setting those in unsupervised tasks. Our proposed
SPARX is similar to SPIF in terms of being an ensemble of chains
and trees, respectively, of certain depth, which can be trained on
subsamples of data. Accordingly we vary the number of ensemble
components M (tree or chain) ({50,100}), the depth or number of
levels L ({10,20}), and subsampling rate ({0.01,0.1,1}) for Sparx and
SPIF. We use a fixed CMS size of r=10xw=100 for SPARx on all
datasets. The number of projections is set to K=50 for Gisette, and
K=100 for SpamURL, while OSM is not transformed, since it is
already very low dimensional.

On the other hand, DBSCOUT has two HPs; eps and minPts.
We vary minPts and identify a corresponding eps via the process
explained in [9], with quadratic (!), complexity: we plot the sorted
distance to the minPts-th neighbor across all points. eps is then
chosen in the uppermost part of the “elbow” zone of the plot.

4.2 Results

4.2.1 DBSCOUT does not scale w.r.t. dimensionality d. We
start with analyzing results on our small-n/large-d Gisette. First,
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https://github.com/mattecora/dbscout
https://github.com/yizhouyan/DDLOFOptimized
https://github.com/titicaca/spark-iforest
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Table 2: DBSCOUT scales poorly with d. On Gisette, running
time grows fast from d=1 to 10, and then times out.

d dim. ‘ Runtime (sec) Peak memory (MB)

2 11.3 1,650
4 13.0 1,630
6 31.1 133,000
8 429.8 254,000
10 3,420.0 350,000
11 TIMEOUT N/A

we show that DBSCOUT scales very poorly with increasing dimen-
sionality using this moderately large dimensional dataset.

As shown in Table 2, when using config-gen, the running time
grows dramatically fast as we run DBSCOUT on Gisette using an
increasing number of randomly sampled 1-10 features. It reaches
around 60-min mark at only d=10, and with 11 features, the process
times-out (after 8 hrs). Peak memory usage responds similarly
growing from 1.6GB to a total of 350GB across the executors.

Poor scalability makes DBSCOUT infeasible for datasets with
more than a handful of features, therefore we only report results
on Gisette for SPARx and SPIF.

4.2.2 Accuracy vs. Resources Landscape. Next we analyze
the trade-off between detection quality and resources required.
Fig. 2 shows AUROC (y-axis) versus total running time (x-axis,
left) and peak driver memory (x-axis, right) under config-gen.
We find that SPIF performance varies between 0.72-0.80 across HP
configurations whereas SPARx reaches 0.80-0.87. On the other hand,
SPARX uses more resources; as compared to SPIF’s typical runtime
1-2 minutes, SPARX can achieve its peak performance in around 14
minutes, using 2-3X more memory. Similar conclusions are drawn
under config-mod, which is in Appx. A.2.1, Fig. 7.

0.88
0.86

m Sparx
@® SPIF
150 200 250 300 350 400
Peak memory (MB)

m Sparx
® SPIF
500 1000 1500 2000 2500
Running time (sec)

Figure 2: Comparing Sparx (red) and SPIF (blue) on Gisette:
(left) Running time (sec) vs. accuracy in AUROC, and (right)
Peak driver memory (MB) vs. AUROC. Symbols depict differ-
ent hyperparameter configurations. DBSCOUT does not run
on Gisette due to dimensionality.

Table 3 presents a more “head-to-head” comparison under com-
parable settings of the HPs for both methods. Increasing (doubling)
the number of ensemble components improves SPARX’s accuracy,
with no effect on SPIF; whereas it is vice versa when increasing
the sampling rate. However, even with all data (sampling rate = 1),
SPIF does not exceed an AUROC of 0.8.

Importantly, notice that when the number of samples per tree
goes up from 4,000 (rate=0.1) to 40,000 (rate=1), SPIF’s running
time notably increases. This is due to its model-parallel yet not
data-parallel nature; where all samples per tree are shuffled (i.e.
copied) over the network to a worker that is designated to construct
the tree. With 100 trees, the total network communication becomes
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Table 3: “Head to head ” comparison of Sparx and SPIF on
Gisette under equivalent hyperparameter configurations.

| AUROC | Time(s) | Mem (MB)
conf. #comp. sampl. depth ‘ Sx DIF ‘ Sx  DIF ‘ Sx  DIF
1 50 0.01 10 | 0.80 0.77 610.5 58.0 | 230.2 99.6
2 100 0.01 10 | 0.85 0.76 836.0  58.0 | 230.7  99.0
3 100 0.1 10 | 0.86 0.79 874.2 61.1 | 2299 102.8
4 100 0.1 20 | 0.87 0.78 | 1455.6 60.1 | 334.5 99.0
5

100 0.85 0.80 | 2312.8 111.0 | 360.8 101.1

=
Y
=}

notable. In fact, SPIF quickly becomes infeasible to run on massive
datasets even with a tiny subsampling rate, exactly due to this data
shuffling problem, as we show in the next section.

4.2.3 SPIF does not scale w.r.t. input size n. As a reminder, a
key design principle in distributed computing on big data is “code
goes to data” and not vice versa. In other words, the goal is to
compute as much as possible locally and not to move around data
between compute nodes (other than data containing intermediate
results). The way SPIF is implemented violates this principle and
suffers on large-scale data. We demonsrate the problem using OSM.
Using config-gen, we input to SPIF!? a gradually increasing
fraction of OSM (for fitting, while all 2.7+ billion points are scored),
starting only with around 1/1000’th of the data, as shown in Table 4.
As we double the input size at every round, total running time and
memory usage increase accordingly. However, when the number
of points per tree reaches around half a million, we get a system
memory error and the program crashes. As we continue to increase
data size, data processing cannot reach the memory error before
the 8-hour SC-budget is exhausted and we get a system time-out.

Table 4: SPIF does not scale up w.r.t. input size n.

Frac. #pts/tree Time (s) Mem (GB) AUPRC AUROC
0.00128 35,471 1396 454 0.19 0.987
0.00256 70,943 1402 455 0.27 0.989
0.00512 141,887 1531 461 0.38 0.991
0.01024 283,774 1834 463 0.42 0.993
0.02048 567,548 MEM ERR - - -

0.04096 1,135,097 MEM ERR - - -
0.08192 2,270,194 TIMEOUT - - -
0.16384 4,540,389 TIMEOUT - - -

As we have done, it is possible to fit SPIF on a small subsample
of a massive dataset — to avoid this error during fitting — and still be
able to score all data points. However, as Table 4 shows this incurs
a sacrifice in detection performance (note esp. the AUPRC).

4.24 Large-n/Small-d. Next we analyze the results on OSM,
containing billions of points but only 2 dimensions. Fig. 3 shows the
landscape of detection performance (F1) vs. resources used for all
three methods, under varying HP configurations. (See Appx. A.2.2,
Tables 7-10 for detailed numbers.) Note that DBSCOUT outputs a
binary label, thus we can only report F1 for comparison.!!

SPIF can be fit using at most 10™#-th of the data, as discussed
earlier, which results in very poor performance (F1<0.2). DBSCOUT
is the fastest on this low-d setting and achieves the most competitive
performance, however, it is quite sensitive to the HP choices and its
performance oscillates widely. SPARx performance is more stable,
with a longer processing time, while using less memory.

10We set model HPs as num_trees=50, max_depth=25, and sample_rate=0.01.
Detailed numbers in Appx. include AUROC and AUPRC for SPIF and SPARx.
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Figure 3: Comparing all methods on OSM under config-gen:
(left) Running time (sec) vs. accuracy in F1, and (right) Total
memory (GB) vs. F1. Symbols depict different HP config.s.

4.25 Large-n/Large-d. Finally, we present a similar analysis on
our very large-d (yet sparse) SpamURL. Problematically, the SPIF
implementation cannot handle sparse RDD input (and it is infeasible
to store SpamURL as a dense RDD). Therefore, we transform it using
our random projections to d=100. (Our Sparx also uses K=100
projections.) DBSCOUT scales very poorly with dimensionality, for
which we also transform SpamURL to d=7 (largest d that DBSCOUT
could handle). as well as d=2 (for ch)mparison),

06
° °
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Figure 4: Comparing methods on SpamURL under config-gen:
(left) Running time (sec) vs. accuracy in F1, and (right) Total
memory (GB) vs. F1. Symbols depict different HP config.s.

As shown in Fig. 4, DBSCOUT with d=2 is quite resource-frugal,
however it has a widely varying performance depending on the
choice of hyperparameters. It achieves more stable performance
with d=7, yet is inferior to SPIF in both time and accuracy. On the
other hand, Sparx performance is robust to different hyperparame-
ter settings, and is on par with the competing baselines.

4.2.6 Speed-up by increasing parallelism. Next we show how
SPARx leverages data-parallelism, Using Gisette, we increase the
number of DataFrame partitions on Spark. Fig. 5 shows that the run-
ning time decreases as partitions increase from 8 to 128, and then
slightly increases for 256. This is expected behavior of distributed
platforms—that speed-up is not monotonic: when the data is parti-
tioned too much to the extent that each worker is under-utilized,
the cost of network communication between workers overtakes
and reduces the gains from parallelism. As compared to the running
time of single-machine XSTREAM, SPARx provides 4-20X speed-up.

4.2.7 SpARx scalability with input size n. Finally, we study the
scalability of our distributed SpArx w.r.t. input size. Recall that
dimensionality d is associated with Step 1. (projection) of the algo-
rithm, where in Sec. 3.4 we have shown that Sparx is linear in d.
We have also shown that across all 3 steps, it is linear in the number
of data points n. Since Spark-like platforms are distributed/data-
parallel in n, we study the running time of Sparx for increasing
sizes of n using OSM.'? As shown in Fig. 6, SPARx scales linearly
w.r.t. n, emprically confirming our complexity analysis in Sec. 3.4.

12We set model HPs as num_chains=10, depth=>5, and sample_rate=1.
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Summary and remarks. To sum up, through extensive ex-
periments we showed that Sparx applies to all large-n and/or
large-d datasets, provides competitive detection accuracy-running
time trade-off, takes advantage of data parallelism effectively, and
scales up with increasing input size. In contrast, among the hand-
ful of public-domain distributed OD algorithms, (1) DBSCOUT
has poor scalability w.r.t. dimensionality d, being applicable
to only small-d (d<10) datasets in practice. On the other hand, (2)
SPIF cannot handle large-n datasets due to its non-data-parallel
implementation, also rendering it a non-practical choice.

5 RELATED WORK

Outlier mining has a large literature owing to its many high-stakes
applications in finance, environmental monitoring, surveillance
and security, to name a few. However, most existing work on point
outlier detection (OD) [2], including those for data streams [20, 21],
are designed for a single machine. Distinctly, we focus our survey
on distributed detection techniques.

Although OD for large-scale data is extremely important in the
big data context, and likely to become more relevant over time,
there are relatively much fewer parallel OD algorithms for truly
distributed environments with thousands of compute nodes, such
as cloud services. A group of parallel algorithms are designed for
shared-memory multi-core computer systems [17, 23] and not for
distributed settings. Other parallel algorithms for distributed archi-
tectures are centralized; requiring a central “communication/sync”
unit. For example, the top-n OD algorithms by Angiulli et al. [4, 5]
assume a “supervisor” node for synchronization. Similarly, Bhaduri
et al. [7] also require a “central” node that maintains and updates
the top-n points. Those are not applicable to modern scale-out (i.e.
distributed) shared-nothing architectures that do not employ such
centralization. Moreover, those work focus on conceptual algorithm
design and do not present practical implementations.

We remark that a related category of work on distributed OD for
wireless sensors [18, 24, 30] is notably different from our work, in
that those often require communication between (nearby) sensors
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and operate under battery/power constraints which do not apply
to shared-nothing settings.

Among distributed OD algorithms for shared-nothing archi-
tectures, Tao et al. proposed SPIF [28], a Spark-based design of
the popular Isolation Forest algorithm [16]. However, SPIF emloys
model-parallelism (as opposed to data-parallelism); specifically it
trains each individual component (i.e. iTree) of the IF ensemble
on a separate compute node. Alarmingly, the data for each iTree
is shuffled to the corresponding node over the network, adding
to the communication cost. Despite radically growing real-world
datasets with billions of points, to the best of our knowledge, there
are only two data-parallel (i.e., horizontally scalable [9]) distributed
OD solutions in the literate thus far.

Yan et al. proposed DDLOF [32], the first distributed LOF algo-
rithm for Hadoop MapReduce [11], and later its extension to top-n
outliers [33]. Besides Hadoop being orders of magnitude slower
than Spark [34], as has been shown recently [9], DDLOF fails to
scale to very large datasets. Their grid-based data partitioning strat-
egy makes it unsuitable for high-dimensional data as the number
of partitions grows exponentially with increasing dimensionality.

Most recently, Corain et al. introduced DBSCOUT [9] with a
public-domain Spark implementation. By design, it does not pro-
vide a ranking of the outliers (i.e. output is binary) and has two
critical hyperparameters (eps and minPts) to set. From a scalabil-
ity perspective, even though it is linear in the number of input
points, it scales extremely poorly with dimensionality d. All of their
experiments are limited to 2- or 3-d datasets.

6 CONCLUSION

We presented SPARX, a new scalable open-source tool for distributed
outlier detection (OD). We described its design principles and the
underlying distributed/data-parallel algorithms for shared-nothing
cloud-computing platforms, and open-sourced its Apache PySpark
implementation at https://tinyurl.com/sparx2022.

OD finds numerous applications, yet there are limited public-
domain resources for distributed OD as the vast majority of the liter-
ature focuses on single-machine algorithmic problems. Through ex-
tensive experiments, we showed that the few existing open-source
tools do not match up with Sparx; they either do not scale well
with dataset size or increasing dimensionality. Distinctly, SPARx is
fully data-parallel, and scales linearly. We believe SPARx sets the
state-of-the-art in terms of detection performance and scalability
for distributed OD tasks. We expect it to increase the usability of OD
on large-scale modern-day datasets that are already cloud-resident,
and to offer significant impact in the applied domain for various
business, engineering and scientific use cases.
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A APPENDIX

A.1 Details on Experiment Setup

A.1.1  Ground-truth outliers in OSM. In previous work [9, 32], the
OpenStreetMap (OSM) dataset was used only for scalability and
running time experiments but not for evaluation detection perfor-
mance, since it does not contained labeled outliers. In this work,
we inject simulated outliers in order to evaluate and compare algo-
rithms in all respects; detection quality, as well as resources (time
and memory) used.

How we define and simulate these ground-truth outliers are as
follows. Originally, the OSM dataset contains 2,771,233,904 points
of GPS coordinates, i.e. tuples of latitude and longitude values,
from real-world users’ travel trajectories. To inject outliers, we first
generate a 2-d histogram of the full dataset. This is done by first
creating a grid with cell size (0.01 X 0.01) that covered the full space
(-180,180) X (-90,90). Then, we count the number of points that
fall into each cell and mark all empty grid cells whose immediate
8 neighbours are also empty. Each outlier was then generated by
randomly picking one of these marked cells and then uniformly
selecting coordinates within the cell. Our final dataset consists of
2,772,433,904 billion points, of which 1,000,000 (0.036%) are outliers.

The visualization of the final dataset is shown in 1, where black
dots depict GPS coordinates visited by real-world users, and red
dots illustrate the injected outliers.

A.1.2 System configuration details. Specified in Table 5.
Table 5: Two different system config.s used in experiments;
‘moderate’ config-mod and more ‘generous’ config-gen.

#partitions  driver exec #execs #exec #threads
memory memory cores
config-mod 64 25GB 4GB 4 4 4
config-gen 128 45GB 8GB 64 8 128

A.2 Additional/Detailed Experiment Results

A.2.1 Results on Gisette under config-mod . In Fig. 7 We show-
case the AUROC performance versus running time (left) and peak
memory (right) on Gisette under the moderate system configuration
config-mod. Results are for Sparx and SPIF only, since DBSCOUT
cannot scale beyond about 10 dimensions.
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Figure 7: Using config-mod: (left) Running time (sec) vs. ac-
curacy in AUROC, and (right) Peak driver memory (MB) vs.
AUROC on Gisette comparing SPARx (red) and SPIF (blue). DB-

SCOUT does not run on Gisette due to dimensionality.

A.2.2 Detailed results on OSM. Tables 6 and 7 (under config-mod
and config-gen, respectively) provide performance and resource
usage details of SPIF on OSM with varying hyperparameter settings.
Notice that we subsample OSM substantially for being able to fit
SPIF, as not being data-parallel, it does not scale well with n.
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Table 6: SPIF performance and resources used on OSM under
config-mod and varying HP configurations. Note that fewer
config.s can be handled under moderate resources as com-
pared to config-gen. Sampling rate is from 1% of the original
data, and thus should be multiplied further by 0.01x.

#comp. depth sampl.‘Time(s) Mem(GB)‘AUROC AUPRC F1

50 10  0.001 | 2284 478 0.978 0.161 0.115
50 10 0.005 | 2562 481 0.980 0.327 0.164
50 20 0.001 | 2530 481 0.986 0.149 0.118
50 20  0.005 | 2908 486 0.991 0.389 0.162
100 10  0.001 | 2920 480 0.979 0.144 0.118
100 20  0.001 | 3475 483 0.986 0.155 0.123

Table 7: SPIF performance and resources used on OSM un-
der config-gen and varying hyperparameter (HP) configu-
rations. Sampling rate is from 1% of the original data, and
thus should be multiplied further by 0.01x.

#comp. depth sampl.‘Time(s) Mem(GB)‘AUROC AUPRC F1

50 10  0.001 | 2292 452 0.978 0.139 0.122
50 10  0.005 | 2662 453 0.980 0.311 0.165
50 10 0.010 | 2474 457 0.978 0.346 0.119
50 20 0.001 | 2463 454 0.986 0.150  0.107
50 20 0.005 | 2627 458 0.991 0.367 0.177
50 20 0.010 | 2975 464 0.992 0.439 0.180
100 10  0.001 | 2844 454 0.978 0.166 0.131
100 10  0.005 | 3076 450 0.979 0.324 0.150
100 20  0.001 | 2913 461 0.986 0.159 0.124
100 20  0.005 | 3555 462 0.991 0.387 0.174

Tables 8 and 9 (under config-gen and config-mod, respectively)
provide performance and resource usage details of DBSCOUT on
OSM with varying hyperparameter settings. DBSCOUT excels on
this very low dimensional dataset, as it is designed accordingly.

Table 8: DBSCOUT performance and resources used on OSM
under config-gen and varying HP configurations. Note that
DBSCOUT output is binary and thus only F1 is reported.

minPts eps. ‘ Time(s) Mem(GB) ‘ F1
100 250000 957 446 0.283
100 500000 775 443 0.478
100 1000000 799 437 0.637
100 2000000 938 442 0.765
200 250000 1209 449 0.148
200 500000 918 444 0.339
200 1000000 884 442 0.531
200 2000000 1030 441 0.667

Table 9: DBSCOUT performance and resources used on OSM
under config-mod and varying hyperparameter configura-
tions. Note that DBSCOUT output is binary and thus only F1
is reported. DBSCOUT scales well to this large-n/small-d (2-d)
dataset, w/ comparable results to those under config-gen.

minPts eps. ‘ Time(s) Mem(GB) ‘ F1
100 250000 1279 474 0.283
100 500000 911 469 0.478
100 1000000 855 468 0.637
100 2000000 1167 466 0.764
200 250000 1615 478 0.148
200 500000 1031 468 0.339
200 1000000 930 466 0.531
200 2000000 1257 468 0.667




SpARx: Distributed Outlier Detection at Scale

Table 10: SPArx performance and resources used on OSM un-
der config-gen and varying hyperparameter configurations
(sampling rate is set to 0.01).

#comp. depth‘Time(s) Mem(GB)‘AUROC AUPRC F1
10 5 144041 182.36 0.959 0.271 0.316

10 10 | 254243  172.89 0.973 0.400 0.437
20 10 | 509014 170.72 0.974 0.443 0.451
10 20 | 492506 172.85 0.975 0.446 0.480

A.2.3 Detailed results on SpamURL . Table 11 provides perfor-
mance and resource usage details of SPIF on SpamURL with varying
hyperparameter settings under config-mod.

Note that SpamURL is very high dimensional yet sparse, however
the SPIF implementation cannot handle sparse RDD input (and it
is infeasible to store SpamURL as a dense RDD). Therefore, we
transform it using our random projections to d=100. (Our SPARX
also uses K=100 projections.)

Table 11: SPIF performance and resources used on SpamURL
(d=100) under config-mod and varying hyperparameter con-
figurations. The best (in bold) and the worst F1 performance
highlighted (only measure DBSCOUT can be compared to).

#comp. depth sampl.|Time(s) Mem(GB) AUROC AUPRC F1

50 10 0.01 61.8 206 0.656 0.479 0.463
50 10 0.1 136.0 279| 0.703 0.524 0.526
50 20 0.01 63.0 201| 0.684 0.502 0.488
50 20 0.1 128.8 285| 0.677 0.491 0.468
100 10  0.01 80.6 202| 0.689 0.503 0.498
100 10 0.1 150.8 318| 0.676 0.484 0475
100 20 0.01 83.0 204| 0.639 0.457 0.434
100 20 0.1 159.5 328| 0.659 0475 0.451
50 10 1 938.8 451 0.675 0.492 0.481
50 20 1| 11925 440| 0.637 0.461 0.439
100 10 1| 2520.1 440| 0.637 0.461 0.439

Tables 12 and 13 (under d=7 and d=2, respectively) provide per-
formance and resource usage details of DBSCOUT on SpamURL
with varying hyperparameter settings under config-mod. (As a
simple heuristic, we set minPts to 2Xd and then carefully choose
eps via the elbow-method as explained in [9].)

As a reminder, DBSCOUT scales very poorly with dimension-
ality and cannot handle the original SpamURL dataset. Therefore,
as with SPIF, we reduce dimensionality via random projections.
The largest d that DBSCOUT was able to handle is d=7, and we
also report results with d=2 for comparison. Resources (time and
memory) reduce for the latter, however at the expense of detection
performance.

Table 14 provides performance and resource usage details of
Sparx on SpamURL with varying hyperparameter settings under
config-mod. Note that its performance is quite stable/robust to
varying hyperparameter choices.
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Table 12: DBSCOUT performance and resources used on Spa-
mURL (d=7) under config-mod and varying hyperparame-
ter configurations. The best (in bold) and the worst perfor-
mance highlighted.

minPts eps. ‘ Time(s) Mem(GB) ‘ F1

14 0.6 9589 233 | 0.418
14 0.7 8860 276 | 0.426
14 0.8 7739 385 | 0.386
14 0.9 12424 419 | 0.371
14 095 5697 430 | 0.330
14 1 15616 438 | 0.306
28 0.6 10272 235 | 0.437
28 0.7 8591 284 | 0.441
28 0.8 9269 382 | 0.406
28 0.9 12000 421 | 0.405
28 1 8221 432 | 0.356

Table 13: DBSCOUT performance and resources used on Spa-
mURL (d=2) under config-mod and varying hyperparame-
ter configurations. The best (in bold) and the worst perfor-
mance highlighted. Notice that with only d=2, DBSCOUT per-
forms notably worse than that for d=7, while in turn, corre-
spondingly lower resources are required.

minPts eps. ‘ Time(s) Mem(GB) ‘ F1
4 0.0001 476 116 | 0.410
4 0.0005 429 130 | 0.370
4 0.001 559 2.2 | 0352
4 0.005 1139 1.83 | 0.256
4 0.01 1158 1.97 | 0.141
4 005 538 137 | 0.013
8 0.0001 854 126 | 0.431
8 0.0005 544 118 | 0.403
8 0.001 1139 129 | 0.386
8 0.005 1129 129 | 0.318
8 0.01 817 1.27 | 0.213
8 0.05 201 1.7 | 0.023

Table 14: Sparx performance and resources used on SpamURL
(K=100) under config-mod and varying hyperparameter con-
figurations. The best (in bold) and the worst F1 performance
highlighted (only measure DBSCOUT can be compared to).

#comp. depth sampl.‘Time(s) Mem(GB)‘AUROC AUPRC F1

50 10 0.01 980.5 241| 0.602 0.419 0.420
50 10 0.1) 1150.1 243| 0.590 0.407 0.410
50 20 0.01] 2160.2 267| 0.620 0.43 0.433
50 20 0.1] 2523.0 277| 0.595 0.409 0.406
100 10 0.01] 2324.1 271| 0.613 0.424 0.423
100 10 0.1] 2584.8 290| 0.617 0.429 0.430
100 20 0.01] 5089.6 372| 0.600 0.419 0416
100 20 0.1/ 6036.6 379| 0.614 0.428 0.426
50 10 1| 22235 247| 0.609 0.421 0.424
50 20 1| 59654 288| 0.577 0.403 0.399
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