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ABSTRACT

Semi-supervised learning (SSL) is effectively used for numerous

classification problems, thanks to its ability to make use of abundant

unlabeled data. The main assumption of various SSL algorithms is

that the nearby points on the data manifold are likely to share a

label. Graph-based SSL constructs a graph from point-cloud data

as an approximation to the underlying manifold, followed by label

inference. It is no surprise that the quality of the constructed graph

in capturing the essential structure of the data is critical to the

accuracy of the subsequent inference step [6].

How should one construct a graph from the input point-cloud

data for graph-based SSL? In this work we introduce a new, par-

allel graph learning framework (called PG-learn) for the graph

construction step of SSL. Our solution has two main ingredients:

(1) a gradient-based optimization of the edge weights (more specifi-

cally, different kernel bandwidths in each dimension) based on a

validation loss function, and (2) a parallel hyperparameter search al-

gorithm with an adaptive resource allocation scheme. In essence, (1)

allows us to search around a (random) initial hyperparameter config-

uration for a better one with lower validation loss. Since the search

space of hyperparameters is huge for high-dimensional problems,

(2) empowers our gradient-based search to go through as many

different initial configurations as possible, where runs for relatively

unpromising starting configurations are terminated early to allo-

cate the time for others. As such, PG-learn is a carefully-designed

hybrid of random and adaptive search. Through experiments on

multi-class classification problems, we show that PG-learn sig-

nificantly outperforms a variety of existing graph construction

schemes in accuracy (per fixed time budget for hyperparameter

tuning), and scales more effectively to high dimensional problems.
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1 INTRODUCTION

Graph-based semi-supervised learning (SSL) algorithms, based on

graph min-cuts [2], local and global consistency [26], and harmonic

energy minimization [27], have been used widely for classification

and regression problems. These employ the manifold assumption

to take advantage of the unlabeled data, which dictates the label

(or value) function to change smoothly on the data manifold.

The data manifold is modeled by a graph structure. In some

cases, this graph is explicit; for example, explicit social network

connections between individuals have been used in predicting their

political orientation [4], age [19], income [9], etc. In others (e.g.,

image classification), the data is in (feature) vector form, where

a graph is to be constructed from point-cloud data. In this graph,

nodes correspond to labeled and unlabeled data points and edge

weights encode pairwise similarities. Often, some graph sparsifi-

cation scheme is also used to ensure that the SSL algorithm runs

efficiently. Then, labeling is done in such a way that instances

connected by large weights are assigned similar labels.

In essence, graph-based SSL for non-graph data consists of two

steps: (1) graph construction, and (2) label inference. It is well-

understood in areas such as clustering and outlier detection that

the choice of the similarity measure has considerable effect on the

outcomes. Specifically,Maier et al. demonstrate the critical influence

of graph construction on graph-based clustering [18]. Graph-based

SSL is no exception. A similar study by de Sousa et al. find that

“SSL algorithms are strongly affected by the graph sparsification

parameter value and the choice of the adjacency graph construction

and weighted matrix generation methods” [6].

Interestingly, however, the (1)st step—graph construction for

SSL—is notably under-emphasized in the literature as compared

to the (2)nd step—label inference algorithms. Most practitioners

default to using a similarity measure such as radial basis function

(RBF), coupled with sparsification by ϵ-neighborhood (where node

pairs only within distance ϵ are connected) or kNN (where each

node is connected to its k nearest neighbors). Hyper-parameters,

such as RBF bandwidth σ and ϵ (or k), are then selected by grid

search based on cross-validation error.

There exist some work on graph construction for SSL beyond ϵ-
and kNN-graphs, which we review in §2. Roughly, related work can

be split into unsupervised and supervised techniques. All of them

suffer from one or more drawbacks in terms of efficient search, scal-

ability, and graph quality for the given SSL task. More specifically,

unsupervised methods do not leverage the available labeled data

for learning the graph. On the supervised side, most methods are

not task-driven, that is, they do not take into account the given SSL

task to evaluate graph quality and guide the graph construction,

or do not effectively scale to high dimensional data in terms of
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both runtime and memory. Most importantly, the graph learning

problem is typically non-convex and comes with a prohibitively

large search space that should be explored strategically, which is

not addressed by existing work.

In this work, we address the problem of graph (structure) learn-

ing for SSL, suitable and scalable to high dimensional problems. We

set out to perform the graph construction and label inference steps

of semi-supervised learning simultaneously. To this end, we learn

different RBF bandwidths σ
1:d for each dimension, by adaptively

minimizing a function of validation loss using (iterative) gradient

descent. In essence, these different bandwidths become model hy-

perparameters that provide a more general edge weighting function,

which in turn can more flexibly capture the underlying data mani-

fold. Moreover, it is a form of feature selection/importance learning

that becomes essential in high dimensions with noisy features. On

the other hand, this introduces a scale problem for high-dimensional

datasets as we discussed earlier, that is, a large search space with

numerous hyperparameters to tune.

Our solution to the scale problem is a Parallel Graph Learning

algorithm, called PG-learn, which is a hybrid of random search and

adaptive search. It is motivated by the successive halving strategy

[15], which has been recently proposed for efficient hyperparameter

optimization for iterative machine learning algorithms.

Our main contributions are summarized as follows.

• Graph learning for SSL:We propose an efficient and effec-

tive gradient-based graph (structure) learning algorithm, called

PG-learn (for Parallel Graph Learning), which jointly opti-

mizes both steps of graph-based SSL: graph construction and

label inference.

• Parallel graph search with adaptive strategy: In high di-

mensions, it becomes critical to effectively explore the (large)

search space. To this end, we couple our (1) iterative/sequential
gradient-based local searchwith (2) a parallel, resource-adaptive,
random search scheme. In this hybrid, the gradient search runs

in parallel with different random initializations, the relatively

unpromising fraction of which is terminated early to allocate

the time for other initializations in the search space. In effect,

(2) empowers (1) to explore the search space more efficiently.

• Efficiency and scalability:Weuse tensor-form gradient (which

is more compact and efficient), andmake full use of the sparsity

of kNN graph to reduce runtime and memory requirements.

Overall, PG-learn scales linearly in dimensionality d and

log-linearly in number of samples n computationally, while

memory complexity is linear in both d and n.

Experiments on multi-class classification tasks show that the

proposed PG-learn significantly outperforms a variety of existing

graph construction schemes in terms of test accuracy per fixed

time budget for hyperparameter search, and further tackles high

dimensional, noisy problems more effectively. Reproducibility:

The source code can be found at project page https://pg-learn.github.

io/. All datasets used in experiments are publicly available (See §5.1).

2 RELATEDWORK

Among existing work, a group of graph construction methods are

unsupervised, which do not leverage any information from the la-

beled data. The most typical ones include similarity-based methods

such as ϵ-neighborhood graphs, k nearest neighbor (kNN) graphs
andmutual variants. Jebara et al. introduced the b-matchingmethod

[13] toward a balanced graph in which all nodes have the same

degree. There are also self-representation based approaches, like

locally linear embedding (LLE) [21], low-rank representation (LRR)

[17], and variants [3, 5, 25], which model each instance to be a

weighted linear combination of other instances where nodes with

non-zero coefficients are connected. Karasuyama and Mamitsuka

[14] extend the LLE idea by restricting the regression coefficients

(i.e., edge weights) to be derived from Gaussian kernels that forces

the weights to be positive and greatly reduces the number of free

parameters. Zhu et al. [27] proposed to learn different σd hyperpa-

rameters per dimension for the Gaussian kernel by minimizing the

entropy of the solution on unlabeled instances via gradient descent.

Wang et al. [22] focused on the scalability of graph construction by

improving Anchor Graph Regularization algorithms, which trans-

form the similarity among samples into similarity between samples

and anchor points.

A second group of graph construction methods are supervised

and make use the of labeled data in their optimization. Dhillon

et al. [8] proposed a distance metric learning approach within a

self-learning scheme to learn the similarity function. However, met-

ric learning uses expensive SDP solvers that do not scale to very

large dimensions. Rohban and Rabiee [20] proposed a supervised

graph construction approach, showing that under certain manifold

sampling rates, the optimal neighborhood graph is a subgraph of

the kNN graph family. Similar to [27], Zhang and Lee [23] also

tune σd ’s for different dimensions using a gradient based method,

where they minimize the leave-one-out prediction error on labeled

data points. Their loss function, however, is specific to the binary

classification problems. Li et al. [16] proposed a semi-supervised

SVM formulation to derive a robust and non-deteriorated SSL by

combining multiple graphs together, and it can be used to judge the

quality of graphs. Zhuang et al. [28] incorporated labeling infor-

mation to graph construction period for self-representation based

approach by explicitly enforcing sample can only be represented

by samples from the same class.

The above approaches to graph construction have a variety of

drawbacks; and typically lack one or more of efficiency, scalability,

and graph quality for the given SSL task. Specifically, Zhu et al.’s

MinEnt [27] only maximizes confidence over unlabeled samples

without using any label information; b-matching method [13] only

creates a balanced sparse graph which is not a graph learning algo-

rithm; self-representation based methods [3, 14, 17, 21, 25] assume

each instance to be a weighted linear combination of other data

points and connect those with non-zero coefficients, however such

a graph is not necessarily suitable nor optimized specifically for

the given SSL task; Anchor Graph Regularization [22] only stresses

on scalability without considering the graph learning aspect; and

several other graph learning algorithms connected with the SSL

task [7, 23] are not scalable in both runtime and memory.

Our work differs from all existing graph construction algorithms

in the following aspects: (1) PG-learn is a gradient-based task-

driven graph learning method, which aims to find an optimized

graph (evaluated over validation set) for a specific graph-based SSL

task; (2) PG-learn achieves scalability over both dimensionality d
and sample size n in terms of runtime and memory. Specifically, it
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has O (nd ) memory complexity and O (nd + n logn) computational

complexity for each gradient update. (3) Graph learning problem

typically has a very large search space with a non-convex optimiza-

tion objective, where initialization becomes extremely important.

To this end, we design an efficient adaptive search framework out-

side the core of graph learning. This is not explicitly addressed by

those prior work, whereas it is one of the key issues we focus on

through the ideas of relative performance and early-termination.

3 PRELIMINARIES AND BACKGROUND

3.1 Notation

Consider D := {(x1,y1), . . . , (x l ,yl ),x l+1, . . . ,x l+u }, a data sam-

ple in which the first l examples are labeled, i.e., x i ∈ Rd has label

yi ∈ Nc where c is the number of classes and Nc := {p ∈ N∗ |1 ≤
p ≤ c}. Let u := n − l be the number of unlabeled examples and

Y ∈ Bn×c be a binary label matrix in which Y i j = 1 if and only if

x i has label yi = j.
The semi-supervised learning task is to assign labels

{yl+1 . . . ,yl+u } to the unlabeled instances.

3.2 Graph Construction

A preliminary step to graph-based semi-supervised learning is

the construction of a graph from the point-cloud data. The graph

construction process generates a graph G from D in which each

x i is a node of G. To generate a weighted matrixW ∈ Rn×n from

G, one uses a similarity functionK : Rd ×Rd → R to compute the

weightsW i j = K (x i ,x j ).
A widely used similarity function is the RBF (or Gaussian) kernel,

K (x i ,x j ) = exp(−∥x i −x j ∥/(2σ 2)), in which σ ∈ R∗+ is the kernel
bandwidth parameter.

To sparsify the graph, two techniques are used most often. In ϵ-
neighborhood (ϵN) graphs, there exists an undirected edge between

x i and x j if and only if K (x i ,x j ) ≥ ϵ , where ϵ ∈ R∗+ is a free

parameter. ϵ thresholding is prone to generating disconnected or

almost-complete graphs for an improper value of ϵ . On the other

hand, in the k nearest neighbors (kNN) approach, there exists an
undirected edge between x i and x j if either x i or x j is one of the
k closest examples to the other. kNN approach has the advantage

of being robust to choosing an inappropriate fixed threshold.

In this work, we use a general kernel function that enables a

more flexible graph family, in particular

K (x i ,x j ) = exp

(
−

d∑
m=1

(x im − x jm )2

σ 2

m

)
, (1)

where x im is themth
component of x i . We denoteW i j = exp

(
−

(x i − x j )TA (x i − x j )
)
, where A := diaд(a) is a diagonal matrix

with Amm = am = 1/σ 2

m , that corresponds to a metric in which

different dimensions/features are given different “weights”, which

allows a form of feature selection.
1
In addition, we employ kNN

graph construction for sparsity.

1
Setting A equal to (i) the identity, (ii) the (diagonal) variance, or (iii) the covari-

ance matrix would compute similarity based on Euclidean, normalized Euclidean, or

Mahalanobis distance, respectively.

Our goal is to learn both k as well as all the am ’s, by means of

which we aim to construct a graph that is suitable for the semi-

supervised learning task at hand.

3.3 Graph based Semi-Supervised Learning

Given the constructed graph G, a graph-based SSL algorithm uses

W and the label matrix Y to generate output matrix F by label

diffusion in the weighted graph. Note that this paper focuses on

the multi-class classification problem, hence F ∈ Rn×c .
There exist a number of SSL algorithms with various objec-

tives. Perhaps the most widely used ones include the Gaussian

Random Fields algorithm by Zhu et al. [27], Laplacian Support Vec-

tor Machine algorithm by Belkin et al. [1], and Local and Global

Consistency (LGC) algorithm by Zhou et al. [26].

The topic of this paper is how to effectively learn the hyper-

parameters of graph construction. Therefore, we focus on how

the performance of a given recognized SSL algorithm can be im-

proved by means of learning the graph, rather than comparing the

performance of different semi-supervised or supervised learning

algorithms. To this end, we use the LGC algorithm [26] which we

briefly review here. It is easy to follow the same way to generalize

the graph learning ideas introduced in this paper for other popular

SSL algorithms, such as Zhu et al.’s [27] and Belkin et al.’s [1] that

have similar objectives to LGC, which we do not pursue further.

The LGC algorithm solves the optimization problem

arg min

F ∈Rn×c
tr ((F −Y )T (F −Y ) + αFT LF ) , (2)

where tr () denotes matrix trace, L := In − P is the normalized

graph Laplacian, such that In is the n-by-n identity matrix, P =
D−1/2WD−1/2, D := diaд(W 1n ) and 1n is the n-dimensional all-

1’s vector. Taking the derivative w.r.t. F and reorganizing the terms,

we would get the closed-form solution F = (In + αL)−1Y .
The solution can also be found without explicitly taking any

matrix inverse and instead using the power method [11], as

(I + αL)F = Y ⇒F + αF = αPF +Y ⇒ F =
α

1 + α
PF +

1

1 + α
Y

⇒ F (t+1) ← µPF (t ) + (1 − µ )Y . (3)

3.4 Problem Statement

We address the problem of graph (structure) learning for SSL. Our

goal is to estimate, for a given task, suitable hyperparameters within

a flexible graph family. In particular, we aim to infer

• A, containing the bandwidths (or weights) am ’s for different

dimensions in Eq. (1), as well as

• k , for sparse kNN graph construction;

so as to better align the graph structure with the underlying (hidden)

data manifold and the given SSL task.

4 PROPOSED METHOD: PG-LEARN

In this section, we present the formulation and efficient computa-

tion of our graph learning algorithm PG-learn, for Parallel Graph

Learning for SSL.

In essence, the feature weights am ’s and k are the model param-

eters that govern how the algorithm’s performance generalizes to

unlabeled data. Typical model selection approaches include random



search or grid search to find a configuration of the hyperparameters

that yield the best cross-validation performance.

Unfortunately, the search space becomes prohibitively large for

high-dimensional datasets that could render such methods futile.

In such cases, one could instead carefully select the configurations

in an adaptive manner. The general idea is to impose a smooth loss

function д(·) on the validation set over which A can be estimated

using a gradient based method.

We present the main steps of our algorithm for adaptive hyper-

parameter search in Algorithm 1.

Algorithm 1 Gradient (for Adaptive Hyperparameter Search)

1: Initialize k and a (vector containing am ’s); t := 0

2: repeat

3: Compute F (t )
using kNN graph on current am ’s by (3)

4: Compute gradient
∂д
∂am

based on F (t )
by (5) for each am

5: Update am ’s by a(t+1) := a(t ) − γ
dд
da ; t := t + 1

6: until am ’s have converged

The initialization in step 1 can be done using some heuristics,

although the most prevalent and easiest approach is a random guess.

Given a fixed initial (random) configuration, we essentially perform

an adaptive search that strives to find a better configuration around

it, guided by the validation loss д(·). In Section 4.1, we introduce the
specific function д(·) that we use and how to compute its gradient.

While the gradient based optimization is likely to find a better

configuration than where it started, the final performance of the

SSL algorithm depends considerably on the initialization. Provided

that the search space is quite large for high dimensional datasets, it

is of paramount importance to try different random initializations

in step 1, in other words, to run Algorithm 1 several times. As such,

the Gradient algorithm can be seen as an adaptive local search,
where we start at a random configuration and adaptively search in

the vicinity for a better one.

As we discuss in Section 4.1, the gradient based updates are com-

putationally demanding. This makes naïvely running Algorithm

1 several times expensive. There are however two properties that

we can take considerable advantage of: (1) both the SSL algorithm

(using the power method) as well as the gradient optimization are

iterative, any-time algorithms (i.e., they can return an answer at

any time that they are probed), and (2) different initializations can

be run independently in parallel.
In particular, our search strategy is inspired by a general frame-

work of parallel hyperparameter search designed for iterative ma-

chine learning algorithms that has been recently proposed by

Jamieson and Talwalkar [12] and a follow-up by Li et al. [15]. This

framework perfectly suits our SSL setting for the reasons (1) and

(2) above. The idea is to start multiple (random) configurations in

parallel threads, run them for a bounded amount of time, probe

for their solutions, throw out the worst half (or some other pre-

specified fraction), and repeat until one configurations remains. By

this strategy of early termination, that is by quitting poor initial-

izations early without running them to completion, the compute

resources are effectively allocated to promising hyperparameter

configurations. Beyond what has been proposed in [12], we start

new initializations on the idle threads whose jobs have been termi-

nated in order to fully utilize the parallel threads. We describe the

details of our parallel search in Section 4.2.

4.1 Validation Loss д(·) & Gradient Updates

We base the learning of the hyperparameters of our kernel function

(am ’s in Eq. (1)) on minimizing some loss criterion on validation

data. Let L ⊂ D denote the set of l labeled examples, andV ⊂ L

a subset of the labeled examples designated as validation samples.

A simple choice for the validation loss would be the labeling error,

written as дA (V ) =
∑
v ∈V (1 − Fvcv ), where cv denotes the true

class index for a validation instance v . Other possible choices for

each v include − log Fvcv , (1 − Fvcv )
x
, x−F vcv , with x > 1.

In semi-supervised learning the labeled set is often small. This

means the number of validation examples is also limited. To squeeze

the most out of the validation set, we propose to use a pairwise
learning-to-rank objective:

дA (V ) =
c∑

c ′=1

∑
(v,v′): v∈Vc′ ,
v′∈V\Vc′

− logσ (Fvc ′ − Fv ′c ′ ) (4)

where Vc ′ denotes the validation nodes whose true class index

is c ′ and σ (x ) =
exp(x )

1+exp(x ) is the sigmoid function. The larger the

difference (Fvc ′ − Fv ′c ′ ), or intuitively the more confidently the

solution F ranks validation examples of class c ′ above other valida-
tion examples not in class c ′, the better it is; since then σ (·) would
approach 1 and the loss to zero.

In short, we aim to find the hyperparameters A that minimize

the total negative log likelihood of ordered validation pairs. The

optimization is conducted by gradient descent. The gradient is

computed as

∂д

∂am
=

∂

( ∑c
c ′=1

∑
(v,v ′):v ∈Vc′,v ′∈V\Vc′

−Fvv ′ + log(1 + exp (Fvv ′ ))

)
∂am

=

c∑
c ′=1

∑
(v,v ′):v ∈Vc′,v ′∈V\Vc′

(ovv ′ − 1)
( ∂Fvc ′
∂am

−
∂Fv ′c ′

∂am

)
(5)

where we denote by Fvv ′ = (Fvc ′ − Fv ′c ′ ) and ovv ′ = σ (Fvv ′ ).

The values
∂F vc′
∂am

and
∂F v′c′
∂am

for each class c ′ and v,v ′ ∈ V

can be read off of matrix
∂F
∂am

, which is given as

∂F

∂am
= −(In + αL)

−1 ∂(In + αL)

∂am
F = α (In + αL)

−1 ∂P

∂am
F , (6)

using the equivalence dX−1 = −X−1 (dX )X−1. Recall that P =

D−1/2WD−1/2 with P i j =
W i j√
didj

; di being node i’s degree in G.

We can then write the following:



∂P i j

∂am
=
∂W i j

∂am

1√
didj

−
W i j

2

(didj )
−3/2 ∂didj

∂am
(7)

=
∂W i j

∂am

P i j

W i j
−
W i j

2

(
P i j

W i j
)3 (dj

∂di
∂am

+ di
∂dj

∂am
) (8)

=
∂W i j

∂am

P i j

W i j
−
W i j

2

(
P i j

W i j
)3

(∑
n
W in ·

∑
n

∂W jn

∂am
+

∑
n
W jn ·

∑
n

∂W in
∂am

)
(9)

4.1.1 Matrix-form gradient. We can rewrite all element-wise gra-

dients into a combined matrix-form gradient. The matrix-form is

compact and can be computed more efficiently on platforms opti-

mized for matrix operations (e.g., Matlab).

The matrix-form uses 3-d matrix (or tensor) representation. In

the following, we use ⊙ to denote element-wise multiplication, ⊘

element-wise division, and ⊗ for element-wise power. In addition, ·

denotes regular matrix dot product. For multiplication and division,

a 3-d matrix should be viewed as a 2-d matrix with vector elements.

First we extend the derivative w.r.t. am in Eq. (9) into derivative

w.r.t. a:
∂P i j

∂a
=
∂W i j

∂a

P i j

W i j
−
W i j

2

(
P i j

W i j
)3

(
∑
n
W in ·

∑
n

∂W jn

∂a
+

∑
n
W jn ·

∑
n

∂W in
∂a

) (10)

To write this equation concisely, let tensor Ω be
∂W
∂a , a 2d-matrix

with vector elements Ωi j =
∂W i j
∂a , and let tensor ∆X be the one

with vector elements ∆X i j = (x i − x j )2.
Then we can rewrite some equations using the above notation:∑

n
W in = (W · 1n )i (11)

∑
n

∂W jn

∂a
= (Ω · 1n )j (12)

∑
n
W in ·

∑
n

∂W jn

∂a
= (W · 1n · (Ω · 1n )T )i j (13)

Now we can rewrite element-wise gradients in (10) into one matrix-

form gradient:

dP

da
= Ω ⊙ (P ⊘W ) −

1

2

P ⊗3 ⊘W ⊗2

⊙ (W · 1n · (Ω · 1n )
T + (W · 1n · (Ω · 1n )

T )T ) (14)

The only thing left is the computation of Ω = ∂W
∂a . Notice that

∂W i j

∂am
=
∂ exp(−

∑d
m=1 am (x id − x jd )

2)

∂am
= −W i j (x id − x jd )

2

=⇒
∂W i j

∂a
= −W i j (x i − x j )

2 = −W i j∆X i j

=⇒
dW

da
= −W ⊙ ∆X = Ω (15)

All in all, we transform the element-wise gradients

∂P i j
∂am

as given

in Eq. (9) to compact tensor-form updates
dP
da as in Eq. (14). The

tensor-form gradient updates not only provide speed up, but also

can be expanded to make full use of the kNN graph sparsity. In

particular,W is akNN-sparse matrix withO (kn) non-zero elements.

First, Eq. (15) for Ω shows that we do not need to compute full ∆X
but only the elements in ∆X corresponding to non-zero elements

of W . Similarly, in Eq. (14), matrix P does not need to be fully

computed, and the whole Eq. (14) can be computed sparsely.

4.1.2 Complexity analysis. We first analyze computational com-

plexity in terms of two main components: constructing the kNN

graph and computing F in line 3, and computing the gradient
dд
da

in line 4 of Algorithm 1 as outlined in this subsection.

Let us denote the number of non-zeros inW , i.e. the number of

edges in the kNN graph, by e = nnz (W ). We assume kn ≤ e ≤ 2kn
remains near-constant as a changes over the Gradient iterations.

In line 4, we first construct tensor Ω as in Eq. (15) in O (ed ).

Computing
dP
da as in Eq. (14) also takes O (ed ). Next, obtaining

matrix
∂F
∂am

in Eq. (6) seemingly requires inverting (In + αL)−1.

However, we ï£ĳcan rewrite Eq. (6) as

(In+αIn−αP )
∂F

∂am
= α
∂P

∂am
F ⇒

∂F

∂am
= α (P−In )

∂F

∂am
+α
∂P

∂am
F

which can be solved via the power method that takes t iterations

in O (ect ). Computing
∂F
∂am

and plugging in Eq. (5) to get д(·)’s

gradient for all am ’s then takes O (ectd ), or equivalently O (knctd ).
In line 3, updated am ’s are used for weighted node similarities

to compute kNNs for each instance. Nearest neighbor computation

for all instances is inherently quadratic, which however can be

sped up by approximation algorithms and data structures such as

locality-sensitive hashing (LSH) [10]. To this end, we use a fast kNN
graph construction algorithm that takes advantage of LSH and has

O (n[dk2 + logn]) complexity [24]; only quadratic in the (small) k
but log-linear in n. Given the kNN graph, F can then be computed

via (3) in O (ect ′) for t ′ iterations of the power method.

Overall, one iteration of Algo. 1 takes O (n[kctd + dk2 + logn]).
Furthermore, if we consider k, c, t as constants, then the computa-

tional complexity can be written as O (n[d + logn]).
In addition, memory requirement for each gradient update is

O (knd ). The bottleneck is the construction of tensors Ω and ∆X
with size-d vector elements. As discussed earlier those are con-

structed sparsely, i.e., only the elements corresponding to non-zero

entries ofW , which is O (kn), are stored.

4.2 Parallel Hyperparameter Search with

Adaptive Resource Allocation

For high-dimensional datasets, the search space of hyperparameter

configurations is huge. In essence, Algorithm 1 is an adaptive search

around a single initial point in this space. As with many gradient-

based optimization of high-dimensional non-convex functions with

unknown smoothness, its performance depends on the initialization.

Therefore, trying different initializations of Algorithm 1 is beneficial

to improving performance.

An illustrative example over a 2-d search space is shown in

Figure 1 (best in color). In this space most configurations yield

poor validation accuracy, as would be the likely case in even higher

dimensions. In the figure, eight random configurations are shown

(with stars). The sequence of arrows from a configuration can be

seen analogous to the iterations of a single run of Algorithm 1.



Figure 1: (best in color) The heatmap shows the validation

error over an example 2-d search space with red correspond-

ing to areas with lower error. Our approach is an inter-mix

of random and adaptive search. We start at various random

configurations (stars 1–8) and adaptively improve them (ar-

rows depicting gradient updates), while strategically termi-

nating unpromising ones (like 6, 7, and 8) early.

While it is beneficial to try as many random initializations as

possible, especially in high dimensions, adaptive search is slow.

A single gradient update by Algorithm 1 takes time in O (ectd )
followed by reconstruction of the kNN graph. Therefore, it would

be good to quit the algorithm early if the ongoing progress is not

promising (e.g., poor initializations 6–8 in Figure 1) and simply try

a new initialization. This would allow using the time efficiently for

going through a larger number of configurations.

One way to realize such a scheme is called successive halving

[12], which relies on an early-stopping strategy for iterative ma-

chine learning algorithms. The idea is quite simple and follows di-

rectly from its name: try out a set of hyperparameter configurations

for some fixed amount of time (say in parallel threads), evaluate

the performance of all configurations, keep the best half (terminate

the worst half of the threads), and repeat until one configuration

remains while allocating exponentially increasing amount of time

after each round to not-yet-terminated, promising configurations

(i.e., threads). Our proposed method is a parallel implementation

of their general framework adapted to our problem, and further

utilizes the idle threads that have been terminated.

Algorithm 2 gives the steps of our proposed method PG-learn,

which calls the Gradient subroutine in Algorithm 1. Besides the

input dataset D, PG-learn requires three inputs: (1) budget B; the
maximum number of time units

2
that can be allocated to one thread

(i.e., one initial hyperparameter configuration), (2) downsampling

rate r ; an integer that controls the fraction of threads terminated

(or equally, configurations discarded) in each round of PG-learn,

and finally (3) T ; the number of parallel threads.

Concretely, PG-learn performs R = ⌊logr B⌋ rounds of elimi-

nation. At each round, the best 1/r fraction of configurations are

retained. Eliminations are done in exponentially increasing time

intervals, that is, first round occurs at time B/rR , second round at

B/rR−1, and so on.

2
We assume time is represented in units, where a unit is the minimum amount of

time one would run the models before comparing against each other.

Algorithm 2 PG-learn (for Parallel Hyperparameter Search)

Input: Dataset D, budget B time units, downsampling rate r (= 2

by default), number of parallel threads T
Output: Hyperparameter configuration (k,a)
1: R = ⌊logr B⌋, d1 = Br−R

2: C := get_hyperparameter_configuration(T )
3: L := {run_Gradient_then_return_val_loss(c,d1) : c ∈ C}
4: for i ∈ {1, . . . ,R} do
5: Ctop := get_top(C,L, ⌊T /r⌋)
6: Cnew := get_hyperparameter_configuration(T −⌊T /r⌋)
7: di = B (r−(R−i ) − r−(R−i+1) )
8: Ltop := {resume_Gradient_then_return_val_loss(c,di )

for c ∈ Ctop }
9: Lnew := {run_Gradient_then_return_val_loss(c,di )

for c ∈ Cnew }
10: C := Ctop ∪ Cnew , L := Ltop ∪ Lnew
11: end for

12: return ctop := get_top(C,L, 1)

After setting the number of elimination rounds R and the du-

ration of the first round, denoted d1 (line 1), PG-learn starts by

obtaining T initial hyperparameter configurations (line 2). Note

that a configuration is a (k,a
1:d ) pair. Our implementation

3
of

PG-learn is parallel. As such, each thread draws their own con-

figuration; uniformly at random. Then, each thread runs the Gra-

dient (Algorithm 1) with their corresponding configuration for

duration d1 and returns the validation loss (line 3).

At that point, PG-learn enters the rounds of elimination (line

4). L validation loss values across threads are gathered at the mas-

ter node, which identifies the top ⌊T /r⌋ configurations Ctop (or

threads) with the lowest loss (line 5). The master then terminates

the runs on the remaining threads and restarts them afresh with

new configurations Cnew (line 6). The second round is to run until

B/rR−1, or for B/rR−1 −B/rR in duration. After the ith elimination,

in general, we run the threads for duration di as given in line 7—

notice that exponentially increasing amount of time is provided to

“surviving” configurations over time. In particular, the threads with

the promising configurations in Ctop are resumed their runs from
where they are left off with the Gradient iterations (line 8). The

remaining threads start with the Gradient iterations using their

new initialization (line 9). Together, this ensures full utilization of

the threads at all times. Eliminations continue for R rounds, follow-

ing the same procedure of resuming best threads and restarting

from the rest of the threads (lines 4–11). After round R, all threads
run until time budget B at which point the (single) configuration

with the lowest validation error is returned (line 12).

The underlying principle of PG-learn exploits the insight that

a hyperparameter configuration which is destined to yield good

performance ultimately is more likely than not to perform in the top

fraction of configurations even after a small number of iterations.

In essence, even if the performance of a configuration after a small

number of iterations of the Gradient (Algorithm 1) may not be

representative of its ultimate performance after a large number of

iterations in absolute terms, its relative performance in comparison

to the alternatives is roughly maintained. We note that different

3
We release all source code at https://github.com/LingxiaoShawn/PG-Learn

https://github.com/LingxiaoShawn/PG-Learn


configurations get to run different amounts of time before being

tested against others for the first time (depending on the round

they get introduced). This diversity offers some robustness against

variable convergence rates of the д(·) function at different random

starting points.

Example: In Figure 2 we provide a simple example to illustrate

PG-learn’s execution, using T = 8 parallel threads, downsam-

pling rate r = 2 (equiv. to halving), and B = 16 time units of

processing budget. There are ⌊log
2
16⌋ = 4 rounds of elimination

at t = 1, 2, 4, 8 respectively, with the final selection being made

at t = B. It starts with 8 different initial configurations (depicted

with circles) in parallel threads. At each round, bottom half (=4)

of the threads with highest validation loss are terminated with

their iterations of Algorithm 1 and restart running Algorithm 1

with a new initialization (depicted with a crossed-circle). Overall,

T + (1 − 1/r )T ⌊logr B⌋ = 8 + 4⌊log
2
16⌋ = 24 configurations are

examined—a larger number as compared to the initial 8, thanks to

the early-stopping and adaptive resource allocation strategy.
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Figure 2: Example execution of PG-learn with T = 8 par-

allel threads, downsampling rate r = 2, and budget B = 16

time units. At each “check point” in time (dashed vertical

lines), (worst) half of the runs are discarded and correspond-

ing threads restart Algorithm 1 with new random configu-

rations of (k , a
1:d ). At the end, hyperparameters that yield

the lowest д(·) function value (i.e. validation loss) across all

threads are returned (those by thread 4 in this example).

Next in Figure 3 we show example runs on two different real-

world datasets, depicting the progression of validation (blue) and

test (red) accuracy over time, using T = 32, r = 2,B = 64; ≈15 sec.

unit-time. Thin curves depict those for individual threads. Notice

the new initializations starting at different rounds, which progres-

sively improve their validation accuracy over gradient updates (test

acc. closely follows). Bold curves depict the overall-best validation

accuracy (and corresponding test acc.) across all threads over time.

Setting T , B, and r : Before we conclude the description of our

proposed method, we briefly discuss the choices for its inputs. Num-

ber of threads T is a resource-driven input. Depending on the plat-

form being utilized—single machine or a parallel architecture like

Hadoop or Spark—PG-learn can be executed with as many parallel

threads as physically available to the practitioner. Time units B
should be chosen based on the upper bound of practically available

time. For example, if one has time to run hyperparameter tuning for

at most 3 hours and the minimum amount of time that is meaning-

ful to execute gradient search of configurations before comparing

them (i.e., unit time) is 5 minutes, then B becomes 180/5 = 36 units.

Finally, r can be seen as a knob for greediness. A larger value of
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Figure 3: PG-learn’s val. (blue) and corresponding test (red)

acc. vs. time on COIL (left) and MNIST (right) (see Table 1).

r corresponds to more aggressive elimination with fewer rounds;

specifically, each round terminates T (r − 1)/r configurations for a
total of ⌊logr B⌋ rounds. All in all,T and B are set based on practical

resource constraints, physical and temporal, respectively. On the

other hand, r can be set to a small integer, like 2 or 3, without results

being very sensitive to the choice.

5 EVALUATION

5.1 Datasets and Baselines

Datasets:We use the publicly available multi-class classification

datasets listed in Table 1. COIL
4
(Columbia Object Image Library)

contains images of different objects taken from various angles.

Features are shuffled and downsampled pixel values from the red

channel. USPS
5
is a standard dataset for handwritten digit recog-

nition, with numeric pixel values scanned from the handwritten

digits on envelopes from the U.S. Postal Service. MNIST
6
is another

popular handwritten digit dataset, containing size-normalized and

centered digit images. UMIST
7
face database is made up of images

of 20 individuals with mixed race, gender, and appearance. Each in-

dividual takes a range of poses, from profile to frontal views. Yale
8

is a subset of the extended Yale Face Database B, which consists of

frontal images under different illuminations from 5 individuals.

Baselines: We compare the accuracy of PG-learn against five

baselines that use a variety of schemes, including the strawmen grid

search and random guessing strategies, the seminal unsupervised

gradient-based graph learning by Zhu et al., a self-representation

based graph construction, and a metric learning based scheme.

Specifically,

(1) Grid search (GS): k-NN graph with RBF kernel where k and

bandwidth σ are chosen via grid search,

(2) Randd search (RS):k-NNwith RBF kernel wherek and different
bandwidths a

1:d are randomly chosen,

(3) MinEnt: Minimum Entropy based tuning of a
1:d ’s as proposed

by Zhu et al. [27] (generalized to multi-class),

(4) AEW: Adaptive Edge Weighting by Karasuyama et al. [14] that

estimates a
1:d ’s through local linear reconstruction, and

(5) IDML: Iterative self-learning scheme combined with distance

metric learning by Dhillon et al. [8].

4
http://olivier.chapelle.cc/ssl-book/index.html, see ‘benchmark datasets’

5
http://www.cs.huji.ac.il/~shais/datasets/ClassificationDatasets.html

6
http://yann.lecun.com/exdb/mnist/

7
https://www.sheffield.ac.uk/eee/research/iel/research/face

8
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

http://olivier.chapelle.cc/ssl-book/index.html
http://www.cs.huji.ac.il/~shais/datasets/ClassificationDatasets.html
http://yann.lecun.com/exdb/mnist/
https://www.sheffield.ac.uk/eee/research/iel/research/face
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html


Table 1: Summary of (multi-class) datasets used in thiswork.

Name #pts n #dim d #cls c description

COIL 1500 241 6 objects with various shapes

USPS 1000 256 10 handwritten digits

MNIST 1000 784 10 handwritten digits

UMIST 575 644 20 faces (diff. race/gender/etc.)

Yale 320 1024 5 faces (diff. illuminations)

Note that Grid and Randd are standard techniques employed

by practitioners most typically. MinEnt is perhaps the first graph-
learning strategy for SSL which was proposed as part of the Gauss-

ian Random Fields SSL algorithm. It estimates hyperparameters by

minimizing the entropy of the solution on unlabeled instances via

gradient updates. IDML uses and iteratively enlarges the labeled

data (via self-learning) to estimate the metricA; which we restrict to
a diagonal matrix, as our datasets are high dimensional and metric

learning is prohibitively expensive for a full matrix. We generalized

these baselines to multi-class and implemented them ourselves. We

open-source (1)–(4) along with our PG-learn implementation.
3

Finally, AEW is one of the most recent techniques on graph learn-

ing, which extends the LLE [21] idea by restricting the regression

coefficients (i.e., edge weights) to be derived from Gaussian kernels.

We use their publicly-available implementation.
9

5.2 Empirical Results

5.2.1 Single-thread Experiments. We first evaluate the proposed

PG-learn against the baselines on a fair ground using a single

thread, since the baselines do not leverage any parallelism. Single-

thread PG-learn is simply the Gradient as given in Algo. 1.

Setup: For each dataset, we sample 10% of the points at random

as the labeled set L, under the constraint that all classes must be

present in L and treat the remaining unlabeled data as the test

set. For each dataset, 10 versions with randomly drawn labeled

sets are created and the average test accuracy across 10 runs is

reported. Each run starts with a different random configuration of

hyperparameters. For PG-learn, Grid, and Randd , we choose (a
small) k ∈ [5, 20]. σ for Grid and MinEnt10, and am ’s for PG-learn,

Randd , and AEW are chosen from [0.1 ¯d, 10 ¯d], where ¯d is the mean

Euclidean distance across all pairs. Other hyperparameters of the

baselines, like ϵ for MinEnt and γ and ρ for IDML, are chosen as in

their respective papers. Graph learning is performed for 15 minutes,

around which all gradient-based methods have converged.

Results: Table 2 gives the average test accuracy of the methods

on each dataset, avg’ed over 10 runs with random labeled sets.

PG-learn outperforms its competition significantly, according to

the paired Wilcoxon signed rank test on a vast majority of the

cases—only on the two handwritten digit recognition tasks there

is no significant difference between PG-learn and MinEnt. Not
only PG-learn is significantly superior to existing methods, its

performance is desirably high in absolute terms. It achieves 93%

prediction accuracy on the 20-class UMIST, and 82% on the 2
10
-

dimensional Yale dataset.

9
http://www.bic.kyoto-u.ac.jp/pathway/krsym/software/MSALP/MSALP.zip

10MinEnt initializes a uniformly, i.e., all am ’s are set to the same σ initially [27].

Table 2: Test accuracy with 10% labeled data, avg’ed across

10 random samples; 15 mins of hyperparameter tuning on

single thread. Symbols ▲ (p<0.005) and △ (p<0.01) denote the
cases where PG-learn is significantly better than the base-

line w.r.t. the paired Wilcoxon signed rank test.

Dataset PG-Lrn MinEnt IDML AEW Grid Randd
COIL 0.9232 0.9116

▲
0.7508

▲
0.9100

▲
0.8929

▲
0.8764

▲

USPS 0.9066 0.9088 0.8565
▲

0.8951
▲

0.8732
▲

0.8169
▲

MNIST 0.8241 0.8163 0.7801
△

0.7828
▲

0.7550
▲

0.7324
▲

UMIST 0.9321 0.8954
▲

0.8973
△

0.8975
▲

0.8859
▲

0.8704
▲

Yale 0.8234 0.7648
△

0.7331
▲

0.7386
▲

0.6576
▲

0.6797
▲
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Figure 4: Test error (avg’ed across 3 random samples) as la-

beled data percentage is increased up to 50%. PG-learn per-

forms the best in many cases, and consistently ranks in top

two among competitors on each dataset and each labeling %.

Next we investigate how the prediction performance of the com-

petingmethods changes by varying labeling percentage. To this end,

we repeat the experiments using up to 50% labeled data. As shown

in Figure 4, test error tends to drop with increasing amount of labels

as expected. PG-learn achieves the lowest error in many cases

across datasets and labeling ratios.MinEnt is the closest competition

on USPS and MNIST, which however ranks lower on UMIST and

Yale. Similarly, IDML is close competition on UMIST and Yale,

which however performs poorly on COIL and USPS. In contrast,

PG-learn consistently performs near the top.

We quantify the above more concretely, and provide the test

accuracy for each labeling % in Table 3, averaged across random

samples from all datasets, along with results of significance tests.

We also give the average rank per method, as ranked by test error

(hence, lower is better).

PG-learn significantly outperforms all competing methods in

accuracy at all labeling ratios w.r.t. the pairedWilcoxon signed rank

test at p = 0.01, as well as achieves the lowest rank w.r.t. test error.

On average, MinEnt is the closest competition, followed by AEW.

Despite being supervised, IDML does not perform on par. This may

be due to labeled data not being sufficient to learn a proper metric in

high dimensions, and/or the labels introduced during self-learning

being noisy. We also find Grid and Randd to rank at the bottom,

suggesting that learning the graph structure provides advantage

over these standard techniques.

http://www.bic.kyoto-u.ac.jp/pathway/krsym/software/MSALP/MSALP.zip


Table 3: Average test accuracy and rank (w.r.t. test error) of

methods across datasets for varying labeling %. ▲ (p<0.005)
and △ (p<0.01) denote the cases where PG-learn is signifi-

cantly better w.r.t. the paired Wilcoxon signed rank test.

Labeled PG-L MinEnt IDML AEW Grid Randd
10% acc. 0.8819 0.8594

▲
0.8036

▲
0.8448

▲
0.8129

▲
0.7952

▲

rank 1.20 2.20 4.40 2.80 4.80 5.60

20% acc. 0.8900 0.8504
▲

0.8118
▲

0.8462
▲

0.8099
▲

0.8088
▲

rank 1.42 2.83 4.17 2.92 4.83 4.83

30% acc. 0.9085 0.8636
▲

0.8551
▲

0.8613
▲

0.8454
▲

0.8386
▲

rank 1.33 3.67 3.83 3.17 4.00 5.00

40% acc. 0.9153 0.8617
▲

0.8323
▲

0.8552
▲

0.8381
▲

0.8303
▲

rank 1.67 3.67 3.50 3.67 4.00 4.50

50% acc. 0.9251 0.8700
△

0.8647
▲

0.8635
▲

0.8556
▲

0.8459
▲

rank 1.50 3.17 3.83 3.67 4.00 4.83

5.2.2 Parallel Experiments with Noisy Features. Next we fully eval-

uate PG-learn in the parallel setting as proposed in Algo. 2. Graph

learning is especially beneficial for SSL in noisy scenarios, where

there exist irrelevant or noisy features that would cause simple

graph construction methods like kNN and Grid go astray. To the

effect of making the classification tasks more challenging, we dou-
ble the feature space for each dataset, by adding 100% new noise

features with values drawn randomly from standard Normal (0, 1).
Moreover, this provides a ground truth on the importance of fea-

tures, based on which we are able to quantify how well our PG-

learn recovers the necessary underlying relations by learning the

appropriate feature weights.

Setup:We report results comparing PG-learn only withMinEnt,
Grid, and Randd—in this setup, IDML failed to learn a metric in

several cases due to degeneracy and the authors’ implementation
9

of AEW gave out-of-memory errors in many cases. This however

does not take awaymuch, sinceMinEnt proved to be the second-best
after PG-learn in the previous section (see Table 3) and Grid and
Randd are the typical methods used often in practice.

Given a budget B units of time and T parallel threads for our

PG-learn, each competing method is executed for a total of BT
units, i.e. all methods receive the same amount of processing time.

11

Specifically, MinEnt is started in T threads, each with a random

initial configuration that runs until time is up (i.e., to completion,

no early-terminations). Grid picks (k,σ ) from the 2-d grid that

we refine recursively, that is, split into finer resolution containing

more cells as more allocated time remains, while Randd continues

picking random combinations of (k,a
1:d ). When the time is over,

each method reports the hyperparameters that yield the highest

validation accuracy, using which the test accuracy is computed.

Results: Table 4 presents the average test accuracy over 10 ran-

dom samples from each dataset, using T = 32. We find that despite

32× more time, the baselines are crippled by the irrelevant features

and increased dimensionality. In contrast, PG-learn maintains no-

tably high accuracy that is significantly better than all the baselines

on all datasets at p = 0.01.

11
All experiments executed on a Linux server equipped with 96 Intel Xeon CPUs at

2.1 GHz and a total of 1 TB RAM, using Matlab R2015b Distributed Computing Server.

Table 4: Test accuracy on datasets with 100% added noise fea-

tures, avg’ed across 10 samples; 15 mins of hyperparameter

tuning onT = 32 threads. Symbols ▲ (p<0.005) and △ (p<0.01)
denote the cases where PG-learn is significantly better than

the baseline w.r.t. the paired Wilcoxon signed rank test.

Dataset PG-Lrn MinEnt Grid Randd
COIL 0.9044 0.8197

▲
0.6311

▲
0.6954

▲

USPS 0.9154 0.8779
△

0.8746
▲

0.7619
▲

MNIST 0.8634 0.8006
▲

0.7932
▲

0.6668
▲

UMIST 0.8789 0.7756
▲

0.7124
▲

0.6405
▲

Yale 0.6859 0.5671
▲

0.5925
▲

0.5298
▲

Figure 5 (a) shows how the test error changes by time for all

methods on average, and (b) depicts the validation and the cor-

responding test accuracies for PG-learn on an example run. We

see that PG-learn gradually improves validation accuracy across

threads over time, and test accuracy follows closely. As such, test

error drops in time. Grid search has a near-flat curve as it uses the

same kernel bandwidth on all dimensions, therefore, more time does

not help in handling noise. Randd error seems to drop slightly but

stabilizes at a high value, demonstrating its limited ability to guess

parameters in high dimensions with noise. Overall, PG-learn out-

performs competition significantly in this high dimensional noisy

setting as well. Its performance is particularly noteworthy on Yale,

which has small n = 320 but large 2d > 2K half of which are noise.

Finally, Figure 6 shows PG-learn’s estimated hyperparameters,

a
1:d and a(d+1):2d (avg’ed over 10 samples), demonstrating that the

noisy features (d + 1) : 2d receive notably lower weights.

6 CONCLUSION

In this work we addressed the graph structure estimation prob-

lem as part of relational semi-supervised inference. It is now well-

understood that graph construction from point-cloud data has crit-

ical impact on learning algorithms [6, 18]. To this end, we first

proposed a learning-to-rank based objective parameterized by dif-

ferent weights per dimension and derived its gradient-based learn-

ing (§4.1). We then showed how to integrate this type of adap-

tive local search within a parallel framework that early-terminates

searches based on relative performance, in order to dynamically

allocate resources (time and processors) to those with promising

configurations (§4.2). Put together, our solution PG-learn is a hy-

brid that strategically navigates the hyperparameter search space.

What is more, PG-learn is scalable in dimensionality and num-

ber of samples both in terms of runtime and memory require-

ments. Finally, all source code and data can be publicly accessed at

https://pg-learn.github.io/.

As future work we plan to deploy PG-learn on a distributed

platform like Apache Spark, and generalize the ideas to other graph-

based learning problems such as graph-regularized regression.
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Figure 5: (a) Test error vs. time (avg’ed across 10 runs w/ ran-

dom samples) comparing PG-learn with baselines on noisy

datasets; (b) PG-learn’s validation and corresponding test ac-

curacy over time as it executes Algo. 2 on 32 threads (1 run).
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