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Abstract
Entity ranking by importance or authority through relational
information is an important problem in network science. A
large body of existing work addresses the problem for homo-
geneous networks. With the emergence of richer networks,
containing various types of entities and meta-data (e.g., at-
tributes) in which edges carry rich semantic information, it
becomes essential to build models that can leverage all avail-
able data in a meaningful way. In this work, we consider
the ranking problem in heterogeneous information networks
(HIN) with side information. Specifically, we introduce a
new model called HINSIDE that has two key properties: (i)
it explicitly represents the interactions (i.e., authority trans-
fer rates or ATR) between different types of nodes, and (ii)
it carefully incorporates the geo-location information of the
entities to account for the distance and the competition be-
tween them. Besides an intuitive local formula, our model
has a matrix form for which we derive a closed-form solu-
tion. Thanks to its closed form, HINSIDE lends itself to be
used within various learning-to-rank objectives, for the es-
timation of its parameters (the ATR) provided training data.
We formulate two kinds of objective functions for param-
eter learning with efficient estimation procedures. We vali-
date the effectiveness of our proposed model and the learning
procedures on samples from two real-world graphs, where
we show the advantages of HINSIDE over popular existing
models, including Pagerank and degree centrality.

1 Introduction
Given a network of entities with directed edges (e.g., a
network of physicians with patient-referral relations), how
can we quantify the “importance” or “authority” of the
individual entities (e.g., to find the best cardiologists)? How
about if the network is heterogeneous, consisting of various
types of entities (e.g., physicians with different expertises)?
What if we also have access to side information about the
entities, such as their location (e.g., physical address)? How
would all these different pieces of information (i.e., the
network, entity types, locations) factor into the ranking of
the entities by authority?

Ranking is an important problem in network analysis,

and has been studied widely. Perhaps the most popular
ranking methods include Pagerank [2] and HITS [8], which
date back to nearly two decades. Roughly speaking, they
model the importance of a node recursively, as a function of
the importance of its neighbors. (See Appendix A) Those
and many other centrality measures [17] mainly address the
problem for homogeneous networks.

The ranking problem for heterogeneous networks dif-
fers, mainly for the different types of nodes in the network
influence the importance of their neighbors differently. In
the example of a network in which physicians refer patients
to one another, a cardiologist referring to another cardiol-
ogist is intuitively a stronger indicator of the authority of
the latter than say, a dietician referring to the same cardi-
ologist. As such, what is called the “authority transfer rates”
(ATR) between different types of entities should be carefully
accounted for for a meaningful ranking. Among ranking
models for heterogeneous networks, ObjectRank assumes
the ATR to be known [1], while PopRank employs a slow
suboptimal search procedure for estimating those from train-
ing data [9]. There are also other kinds of models for ranking
in heterogeneous networks, such as RankClus [14] and Net-
Clus [15] that perform simultaneous clustering and ranking
(within clusters). (See Appendix B)

In this work, we consider the ranking problem for het-
erogeneous networks with side information. Specifically, we
leverage the location of the entities to carefully account for
(a) the distance as well as (b) the competition between them
in ranking these entities. Simply put, the notion of distance
between two connected entities becomes important in quan-
tifying importance, especially in settings where distance in-
curs a ‘cost’ on the relation. For instance, in the physician
referral network, patients travel the distance from the refer-
rer to the referee. In a collaboration network, maintaining a
working relation with distant colleagues speaks more to their
importance. The notion of location also induces competi-
tion between the entities, as nearby entities can be thought
to compete for drawing inlinks. This is evident for the pyh-
sician referrals scenario, where a referral to a specific physi-
cian can be thought as a ‘preference’ over the other (compet-
ing) physicians of the same expertise in their vicinity.



With the emergence of rich networks, such as hetero-
geneous information networks with meta-data (e.g., geo-
coordinates), it becomes essential to build models that can
use all available information in a meaningful way. Provided
an appropriate formulation, one can do better in ranking (for
example in aforementioned scenarios) than solely relying on
the network structure. To the best of our knowledge, ours
is the first work to leverage location/distance and to model
the factor of competition between the entities for the ranking
problem in HINs—hence is the first step toward ranking with
side information. Our contributions are as follows:
• Model formulation: We propose HINSIDE, a new

ranking model for heterogeneous networks in which en-
tities exhibit location information. It carefully incorpo-
rates five elements for quantifying node authority: re-
lation strength, distance, neighbor authority, authority
transfer rates, and competition. (Sec. 3)

• Closed-form solution: Our model yields an intuitive
local formula to compute the authority of an individual
node. We also show how to write it in closed form,
where the solution for all nodes corresponds to the left
singular vector of a non-negative matrix. (Sec. 3.5)

• Model estimation: HINSIDE contains as parameters
the authority transfer rates between the different entity
types. We show how to estimate these parameters
from training data, where our model lends itself to
two different kinds of learning-to-rank objectives and
efficient estimation procedures. (Sec. 4)
We evaluate our model and parameter estimation tech-

niques on samples from two real-world heterogeneous net-
works, and show its advantages over various baselines in-
cluding in-weight centrality, Pagerank, and a homogeneous
model that ignores authority transfer rates. (Sec. 5)

Reproducibility: Source code of HINSIDE, parameter
estimation algorithms, and the datasets used in this work are
openly shared at https://github.com/abhimm/HINSIDE.

2 Motivation & The Problem
In this work we focus on the problem of entity ranking,
where (1) besides the relationships among the entities, (2) the
types of the entities as well as (3) external or side information
such as (3a) the distance in-between the entities and (3b)
their competition matter. We motivate this problem setting
with the following example scenario.

Example. In the medical domain, consider a graph in
which nodes represent medical providers or physicians, the
type of a node depicts its expertise (e.g., cardiologist, phys-
iologist, psychiatrist, etc.), and (directed) edges between the
physicians capture “referral” relations, where one physician
refers patients to another. The goal is to rank the physicians
of a certain kind, called the target type, by their authority,
e.g., to answer questions like identifying the best (highest
authority) cardiologists in the database.

In this scenario, different types of physicians referring
patients to the target type, say cardiologist, would play
different roles. Specifically, a dietician vs. a cardiologist
referring their patients to a certain other cardiologist C
would depict different information regarding the authority of
C (intuitively, the latter is a stronger signal of C’s authority).
Moreover, the physical distance between the physicians is an
important factor. Intuitively, a long-distance referral would
indicate a stronger signal than a shorter one, as it implies
that patients travel a long way to see a physician. Finally,
the competition aspects should be modeled properly, as the
choice of referring to a particular physician over another is
an indication of their relative authorities.

DEFINITION 1. (HIN WITH SIDE INFORMATION) A het-
erogeneous information network (HIN) is a (directed) graph
G = (V, E ,W), containing |V| = n entities of the same
category (e.g., physician, company, etc.), wherew(i, j) ∈ W
depicts the weight of edge e(i, j) ∈ E . A mapping function
t : V → T maps each entity i ∈ V to one particular type
ti ∈ T . |T | = m denotes the number of entity types. In
addition, each entity i ∈ V is associated with a location li,
where the symmetric function d(li, lj) ∈ R≥0 returns the
distance between nodes i and j.

Given a HIN as described above, we address the en-
tity ranking problem. Our goal is to rank the entities of
the same kind (e.g., ranking of cardiologists in a medical
referral network)—comparing entities of different types is
not only meaningless (apples-to-oranges) but also not useful.
Moreover, we aim to do a global ranking of entities, unlike
proximity-based ranking.1 Our goal is to identify the highly
visible entities in the network, rather than entities similar or
close-by to a given entity or set of entities.

DEFINITION 2. (ENTITY RANKING PROBLEM) Given a
HIN G with side information (in which each node v is
associated with a type tv and location lv), and a target type
t∗ ∈ T ; Find authority scores rv’s for all the nodes v ∈ V
of the target type, where tv = t∗.

As an example, consider a physician i of type ti in
location li referring a patient to a physician j of type tj in
location lj . To quantify the significance and contribution of
a link (referral) from i to (target physician) j’s authority, we
utilize five main factors in our ranking problem.

1. Relation Strength: The weight of the edge between
two entities (in the example, number of referrals from i
to j) is related to the magnitude of authority transfer.

2. Relation Distance: The larger the distance between i
and j, the more authority j would receive. Intuitively,

1Well-known proximity-based ranking methods include Person-
alized PageRank [7] and SimRank [6] on homogeneous networks,
and PathSim [13] on heterogeneous networks.

https://github.com/abhimm/HINSIDE


distance traveled (in this case by i’s patients to visit j)
speaks to the quality of (physician) j.

3. (In-)Neighbor Authority: The more authority the
source (physician) i has, the more authority the target
(physician) j obtains through a link (referral) from i to
j. Similar to Pagerank [2], authority of a node is a func-
tion of the authority of its (in-)neighbors.

4. Authority Transfer Rates: The authority the target
(physician) j obtains through a link (referral) from i
also depends on i’s type along with j’s type itself. In the
example case, while an optometrist referring a patient
to an ophthalmologist may be ordinary in case the
patient needs a surgery, an ophthalmologist referring
their patient to another ophthalmologist may imply a
significant (rate of) authority transfer.

5. Competition: The number and the authorities of the
entities (physicians) of type tj that are in close physical
distance to i is another important factor. The more
and the higher-rated entities of type tj around i exist,
the larger the authority score of j would get by a link
(referral) from i—as such a link implies i’s preference
of j over other entities of type tj in its vicinity.

Figure 1 gives an illustrative example. The network
contains 6 nodes of 2 types (gray and white circles), from
two different geo-regions (boxes). The transfer rates are set
to 0.7 for within same-type edges and 0.3 for across the
types. HINSIDE ranks node 3 highest, as it has many in-
links, particularly (1, 3) and (2, 3) from distant and same-
type nodes. In comparison, Pagerank ranks node 1 with
the largest total relation strength the highest. Node 2 is
ranked second by Pagerank, whereas HINSIDE ranks node
1 at second position, above 2. This is mainly due to link
(4, 1) that ‘prefers’ node 1 over the competing node 2 of the
same type. Among type-white nodes, node 6 has highest
Pagerank. HINSIDE in contrast ranks node 5 above 6, due
to the link from the highest ranked node 3 that makes node 5
more competent than 6. Both models rank node 4 the lowest.

3 Proposed HINSIDE Model
We describe our ranking model by incrementally incorporat-
ing the five main elements as listed in the previous section.

3.1 Relation Strength and Distance Let W denote the
n×n log-weighted adjacency matrix ofG, whereW (i, j) =
log(w(i, j) + 1). Similarly, we define the n × n distance
matrix D such that D(i, j) = log(d(li, lj) + 1).

To account for the relation distance, we combine the
adjacency matrix W with the distance matrix D, in order
to increase the value of the edges that connect nodes with
longer distance and subsequently decrease the value of those
edges that connect nodes with less distance. That is,

(3.1) M = W � D

Figure 1: Example network with two node types (colors).
Edges annotated by weight/distance.

where � is the Hadamard or element-wise product.

3.2 (In-)Neighbor Authority To compute the authority
of each node, we take the weighted sum of the authorities
of its (in-)neighbors in (directed) G. The (in-)edges are
weighted by relation strength (i.e., edge weight) and distance
as described above.

(3.2) ri =
∑
j∈V

M(j, i) rj

where ri denotes the authority score of node i. Thus far,
our model is similar to PageRank. The key difference is
in modifying the adjacency matrix by accounting for the
distance between the connected pairs.

3.3 Authority Transfer Rates In this work we consider
a typed, i.e. heterogeneous network. As motivated in the
previous section, the neighbors of different types of a node
should count differently and have different impact on the
authority of the node. As such, we incorporate what is called
“authority transfer rates [1]” (ATR) Γ(a, b) ≥ 0 between
type T (a) and type T (b), ∀a, b = {1, . . . ,m}. These rates
represent the impact or importance of links between nodes
of various types.

The authority score of a node i then becomes

(3.3) ri =
∑
j∈V

Γ(tj , ti) M(j, i) rj .

The m×m ATR matrix Γ contains vital parameters for
our ranking model since a meaningful ranking can only be
achieved by using the appropriate transfer rates.

3.4 Competition Finally we consider what we call the
concept of “competition in the vicinity of the source”. Con-
sider the edge e(j, i) from a type tj node to a type ti node.
Intuitively, when j links to i, it “prefers” i over other nodes
of type ti that are in close proximity to j (see Figure 1). Re-
calling our earlier examples, if a dietician j refers a patient to
a cardiologist i while there exist other cardiologists close-by
to j, then i has supposedly higher authority than those oth-
ers. Similarly, if an energy company j trades goods with a
transportation company i while there exist other transport in-



dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type ti in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

{
g(d(lu, lv)) u, v ∈ V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e−z .
Then, we transfer a weighted sum of the authority scores

of type ti nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) ri =
∑
j

Γ(tj , ti)M(j, i) ( rj+
∑

v:tv=ti

N(v, j) rv ) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n × m boolean type matrix with
T (i, c) = 1 if ti = T (c) and 0 otherwise, ∀i ∈ V and
c = {1, . . . ,m}. Based on this, we defineL = M�(T Γ T ′)
where ′ denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

{
1 if tu = tv
0 otherwise

In matrix form, E = TT ′. We then rewrite (3.4) as

ri =
∑
j

L(j, i) rj +
∑
j

∑
v

L(j, i)N(v, j) rv E(i, v)

ri =
∑
j

L(j, i) rj +
∑
v

rv E(i, v)
[∑

j

N(v, j)L(j, i)
]

r = L′r + ( E � (NL)′ )r

As such, we obtain

r =
[
L′ + (L′N ′ � E)

]
r = H r(3.5)

where r ∈ Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT ′ and L = M � (T Γ T ′) in which
T and M are also known. As such, the ATR matrix Γ is the
only unknown of our model.

We can solve for r using the power method [16]. As Γ,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r(0) ∈ Rn, we form the vector
sequence {r(p)}∞p=0. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r(p+1) ← H r(p)

||H r(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H ∈ Rn×n be
arranged such that |σ1| > |σ2| ≥ . . . ≥ |σn|. Let u1 and v1

be the left and right singular vectors of H corresponding to
σ1 respectively. Then, the vector sequence generated by (3.6)
converges to u1, where ||r(p)|| converges to |σ1| for large p,
provided that v′1r0 6= 0 and |σ1| 6= |σ2|.

For a HIN with m types, Γ contains m2 parameters.
Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in Γ,
depend on the problem domain and may be hard to assign by
humans. To estimate Γ, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating Γ; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent ri in the form of a linear function
of a feature vector xi and a weight vector w, such that
ri = f(xi) =< w,xi >. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

ri =
∑
t

Γ(t, ti)
∑
j:tj=t

[
M(j, i)(rj +

∑
v:tv=ti

N(v, j) rv)
]

Let us define a m× n matrix X where

(4.7) X(t, i) =
∑
j:tj=t

M(j, i) ( rj +
∑

v:tv=ti

N(v, j) rv )

using which we can write

(4.8) ri =
∑
t

Γ(t, ti)X(t, i) = Γ′(ti, :) ·X(:, i) = Γ′ti ·xi

where xi is the ith column of X and Γti is the tthi column of
Γ. As such, we can compute ri by the vector-vector product

(4.9) ri = f(xi) =< Γti ,xi > .

In this formulation, Γti is a length m vector of unknown
parameters and xi is considered as the “feature vector” of
node i. Now in order to estimate Γ we need access to xi’s,
and to construct the xi’s we need to know the authority
scores r (Eq. 4.7), which in turn requires Γ (Eq. 3.4).

That is, Γ
Eq.(3.4)−−−−−→ r

Eq.(4.7)−−−−−→ X
estimate−−−−→ Γ. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating Γ. The sketch



Algorithm 1 Alternating Estimation of Γ

Input: graph G, partial ranked lists L, Tmax, ε
Output: Γ

1: Γ0(a, b) = rand(0, 1), ∀a, b ∈ {1, . . . ,m}, k = 0
2: r← compute authority scores by (3.6) using Γ0

3: repeat
4: Xk ← compute feature vectors by Eq. (4.7) using r
5: Γk+1 ← learn new param.s by RANKSVM(L, Xk)

or GRADIENT(L, Xk,Γk)
6: r← compute authority scores by (3.6) using Γk+1

7: diff ← trAccuracy(L, r)− trAccuracy(L, rbest)
8: if diff > 0 then rbest ← r, Γbest ← Γk+1 end if
9: k = k + 1

10: until ||Γk − Γk−1|| ≤ ε or k > Tmax

11: return Γbest

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best Γ with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list Lt consists of an
ordering of a subset of nodes Vt ⊂ V of the same type, i.e.,
tv = t, ∀v ∈ Vt. Let φv denote the order or position of node
v in Lt, where lower positions correspond to higher ranks or
authority scores, that is ru ≥ rv if and only if φu < φv .

Our estimation algorithms take as input one or more
partial ranked lists L for each type t ∈ T . It first randomly
guesses Γ, and then iteratively and alternatingly computes r
and X , followed by estimating Γ for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((xu,xv), 1) if u is ranked
ahead of v (that is, if φu < φv), and ((xv,xu),−1)
otherwise. As a result, training data D is available in the
form of {((x1

d,x
2
d), yd)}

|D|
d=1, where each instance consists

of two feature vectors that belong to two nodes of the same
type, and a label yd ∈ {−1, 1}.

Having constructed such a training data D, we can use
the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1
d,x

2
d), yd) = max( 0, 1− (Γ′t · (x1

d − x2
d))yd ),

such that tx1
d
, tx2

d
= t

(4.10)

Note that each column of Γ that belongs to each type
t is estimated independent of others, provided the feature
vectors xv’s where tv = t. Since Γ is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate Γ by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: Γ

1: for each type t ∈ T do
2: Γt ← compute column t of Γ by (4.11) using X , L
3: end for
4: return Γ

min
Γt

||Γt||22 + γ
∑
d∈D

εd

s.t. Γ′t(x
1
d − x2

d)yd ≥ 1− εd, ∀d ∈ D and tx1
d
, tx2

d
= t

εd ≥ 0, ∀d ∈ D
Γt(c) ≥ 0, ∀c = 1, . . . ,m

(4.11)

where γ is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of Γ, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((xu,xv), p̄uv) where p̄uv = P (ru > rv).
For example, one can use the sigmoid function σ(ru−rv) =
p̄uv to compute this probability, if the original/ground-truth
authority scores (ru, rv) of the training entities are provided
(note that this is a strict requirement), where σ(x) = ex

1+ex is
the sigmoid function.

Recalling function f : Rm → R given in Eq. (4.9), let

ou = f(xu) =< Γtu ,xu >, and

ouv = f(xu − xv) = f(xuv) =< Γtu=tv ,xuv > .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) cuv = −p̄uv log(puv)− (1− p̄uv) log(1− puv)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) puv =
eouv

1 + eouv
.

Substituting Eq. (4.13) into Eq. (4.12), cuv can equivalently
be written as

(4.14) cuv = −p̄uvouv + log(1 + eouv )



The total cost is then C =
∑

(u,v)∈D cuv and the objective
function becomes
(4.15)
min
Γt

C =
∑

(u,v)∈D

cuv =
∑

(u,v)∈D

−p̄uvouv + log(1 + eouv )

for training instances that belong to type t.
To solve the above objective, which is convex, we can

utilize a gradient-based approach [3]. In particular, taking
the derivative of C with respect to Γt we get

∂C

∂Γt
=

∑
(u,v)∈D

−p̄uv(xu − xv) +
eouv

1 + eouv
(xu − xv)

(4.16)

Using Eq. (4.13) we can write Eq. (4.16) as
∂C

∂Γt
=

∑
(u,v)∈D

−p̄uv(xu − xv) + puv(xu − xv)

=
∑

(u,v)∈D

(puv − p̄uv)(xu − xv)
(4.17)

The parameter vector then can be updated at every step s of
the gradient descent by

(4.18) Γs+1
t ← Γst − η

∂C

∂Γst

where η is the step size3, and where puv in (4.17) at step
s is computed using Γst . The outline of this gradient-based
method for estimating the ATR is given in Algorithm 3.

Algorithm 3 Estimate Γ by GRADIENT

Input: feature vectors X , partial ranked lists L, Γk

Output: Γ
1: for each type t ∈ T do
2: Γ0

t = Γkt , s = 0, η = 1/|D|
3: repeat
4: Γs+1

t ← compute column t of Γ by (4.18),
using L, X , Γst , η, based on (4.17) or (4.21).

5: s = s+ 1, η = 1/(|D|
√
s)

6: until convergence
7: end for
8: return Γ

4.2.2 Learning-to-Rank Objective-II The Objective-I in
(4.15) that we considered in the previous section assumes
that the ground-truth authority scores of entities in the train-
ing data are known, to compute the p̄uv’s. This is also the
case for some point-wise and list-wise learning to rank ap-
proaches such as Subset Ranking [4] and SVM MAP [18].
Unfortunately, this requirement is not realistic to be put
in practice—providing absolute scores is quite impractical
compared to simply providing ranked lists.

3We set η = 1/(|D|
√
s) such that the step size gradually

decreases with increasing number of gradient steps.

Therefore, an alternative objective function we utilize is
by Rendle et al. [10] that aims to minimize the total negative
log likelihood − log puv for ordered training pairs (u, v):

(4.19) min
Γt

C =
∑

(u,v)∈D:φu<φv

− log σ(< Γt,xuv >)

Using the previous notation, we can write (4.19) as

(4.20) min
Γt

C =
∑

(u,v)∈D:φu<φv

−ouv + log (1 + eouv )

This new objective in (4.20) is also convex. Taking its
derivative with respect to Γt we get

∂C

∂Γt
=

∑
(u,v)∈D:φu<φv

−xuv +
eouv

1 + eouv
xuv

=
∑

(u,v)∈D:φu<φv

(puv − 1)(xu − xv)
(4.21)

Comparing Objective-I and Objective-II: Notice that the
gradient in (4.21) is very similar to that in (4.17): the main
difference being (puv − p̄uv) vs. (puv − 1). Intuitively,
the former objective is aiming to obtain a Γt such that the
estimated puv’s are as close to the given p̄uv’s as possible.
On the other hand, the latter is aiming to obtain a large
difference between the estimated authority score of a higher
ranked node and a lower ranked node, i.e., obtain a large
positive Γtxu−Γtxv =< Γt,xuv >= ouv , where φu < φv
as u is ranked higher than v in Lt. The larger the ouv , the
closer the puv = σ(ouv) to 1.

Most importantly, our second objective does not require
p̄ij’s to be given as part of the training data, which is quite
harder to obtain than the partial ranked lists alone.

Projected gradient descent for non-negativity: We pre-
sented our gradient-based approaches without any con-
straints on Γ. As such, we may end up finding a solution
with negative entries. To enforce non-negativity we employ
projected gradient descent, where we split each gardient it-
eration as given in (4.18) into two steps:

(4.22) Γ̂s+1
t ← Γst − η∇(Γst )

(4.23) Γs+1
t ← min

Γt∈R

1

2
‖Γ̂s+1

t − Γt‖22 .

The goal is to find a Γt that is (1) closest to the updated
solution at step s + 1 but (2) one that is within the feasi-
ble/constrained region R.

For non-negativity, solving a constrained minimization
as in (4.23) is relatively easy. Specifically, at every step s of
the gradient descent, we compute the gradient ∇ w.r.t. Γst
as usual (using either (4.17) or (4.21)), update to Γ̂s+1

t as in
(4.22), and then set its negative entries to zero in order to
obtain Γs+1

t , which would be the optimal solution to (4.23).



5 Evaluation
5.1 Experiment Setup Datasets. We perform experi-
ments on samples from two real-world networks (both pub-
licly available). Two sample graphs are obtained through
snowball sampling from a (directed and weighted) real-
world medical-referral network, called the DocGraph.4 It
is a teaming graph in which the edges represent the refer-
rals of patients between medicare providers on the same
cases. Edge weights capture the number of referrals between
two physicians, and the node locations depict the latitude-
longitude of the physicians’ offices.

The first graph DocGI contains the interactions be-
tween m = 3 types (different expertises) of physicians and
consists of n = 446 nodes and 8537 edges. The break-down
of the node counts by type is {279, 103, 64}.

The second graph DocGII is a larger subgraph with
n = 3979 nodes and 93432 edges, containing interac-
tions between m = 7 types of physicians, each with
{1653, 663, 394, 333, 311, 323, 302} nodes respectively.

In addition, we use the DBLP 4Area co-authorship
dataset5, which contains researchers from 4 research ar-
eas: database (DB), data mining (DM), machine learning
(ML) and information retrieval (IR). The break-down of
node counts by area is {2023, 1150, 2432, 1014} respec-
tively. Edges are weighted by the number of co-authored ar-
ticles. Out of 27K authors, we are able to identify and crawl
the institution/geo-coordinates of around 11K. We then in-
duce the 4Area network on these 11K nodes, and use the
largest connected component with 6619 nodes and 26804
edges. The final graph, called AuthGraph, contains re-
searchers from 72 different countries across 6 continents.

There is no agreed-upon measure of authority or impact
in academia, nevertheless we use h-index as a proxy (crawled
from GoogleScholar as of July 2015). Our goal is not to
propose a new measure of authority or reproduce h-index (as
it is based on citations while we use collaborations), but to
study the relation of HINSIDE with external measures, and
to identify those cases (i.e., researchers) which are ranked
differently by HINSIDE than e.g., h-index and Pagerank.
Compared methods. We evaluate the proposed algorithms:

• RSVM-NN: RankSVM formulation in (4.11) with non-
negativity constraint on Γ,

• GD-I-NN: GraDient-based approach with Objective-I in
(4.15) and non-negativity constraint on Γ,

• GD-II-NN: GraDient-based approach with Objective-II
in (4.19) and non-negativity constraint on Γ,

4This data is obtained from Next Level Doctor Social Graph,
Phase 1, a project by Fred Trotter and is a response to a Freedom of
Information Act (FOIA) request (See http://www.medstartr.com/

projects/82-next-level-doctor-social-graph-phase-1). The physician
referral data for years 2009–2015 is publicly available at https:

//questions.cms.gov/faq.php?faqId=7977
5http://web.engr.illinois.edu/∼mingji1/DBLP four area.zip

• RSVM-NC: RankSVM with no constraint,
• GD-I-NC & GD-II-NC: Gradient with no constraint.

We also compare to the following baselines:
• RG: Randomly Guess Γ and run HINSIDE,
• RO: Randomly Order all nodes (no model involved),
• INW: Rank nodes by their total in-weight (centrality),
• PRANKW: Rank by Pagerank (centrality) on the

Weighted directed input graph (α = 0.15).
All methods except PRANKW and INW are random-

ized; our meta-algorithm in Alg. 1 starts with a randomly
initialized Γ, RG guesses Γ randomly, and RO guesses the
final ranking randomly. We run each of these methods 10
times and report Γ that achieves the best training accuracy
based on the input partial ranked lists.

In evaluation, we randomly select 1/3 of the nodes of
each type and use their ground truth ranking to create the
partial ranked lists for training. That is, we provide one
partial ranked list per type as input to parameter estimation.
The remaining 2/3 of the nodes is used as test data.
Metrics. For evaluating ranking performance, we use
two popular measures in IR: NDCG (normalized discounted
cumulative gain) and AP@k (average precision at k).

5.2 Experiment Results We first evaluate our proposed
parameter estimation algorithms in Sec. 4.

Analysis on DocGI and DocGII. For the DocGI network
withm = 3 node types, we manually set the (3×3) Γ matrix
with various non-negative authority transfer rates between
the types. Note that this matrix is not necessarily symmetric.
We perform 15 such experiments, with 15 different ground
truth Γ matrices, and compare the 10 different estimation
methods as listed in the previous section across experiments.

Figure 2 shows the AP@20 ranking accuracy of the
compared methods. The box-plots depict the accuracy (y-
axis) across 15 experiments, with the minimum, maximum,
median, and 25%-75% marked. The first 10 box-plots show
the average accuracies across all 3 types for the individual
methods (x-axis), followed by accuracies for each type.

All the proposed algorithms (RSVM, GD-I, GD-II;
with and without non-negativity constraints) perform well,
where the median AP@20 is well above 0.85 across exper-
iments, for all types. Table 1 (left) lists the mean accuracy
across the experiments. We find that on average the proposed
RSVM-NN, the RankSVM formulation with non-negativity
constraint, performs the best with mean accuracy around
0.95 (across types and experiments). The gradient-based ap-
proach GD-II using Objective-II performs as well as GD-I
that uses Objective-I, despite consuming less information—
recall that GD-I requires original authority scores of enti-
ties in the training data besides their ranking. The proposed
methods with non-negativity constraints performed slightly
better than dropping such constraints, however the differ-

http://www.medstartr.com/projects/82-next-level-doctor-social-graph-phase-1
http://www.medstartr.com/projects/82-next-level-doctor-social-graph-phase-1
https://questions.cms.gov/faq.php?faqId=7977
https://questions.cms.gov/faq.php?faqId=7977
http://web.engr.illinois.edu/~mingji1/DBLP_four_area.zip
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Figure 2: AP@20 accuracy of compared methods on DocGI (m = 3).

Table 1: Mean AP@20 across (left) 15 experiments with different Γ on DocGI with m = 3 types, and (right) 10
experiments with different Γ on DocGII with m = 7 types.

Method Type 1 Type 2 Type 3 Average Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Average
RSVM-NN 0.9435 0.9577 0.9361 0.9458 0.8367 0.9030 0.9401 0.9639 0.9753 0.9568 0.9362 0.9303
RSVM-NC 0.9207 0.9372 0.9140 0.9240 0.8605 0.9361 0.9701 0.9429 0.8829 0.9330 0.9590 0.9263
GD-I-NN 0.9011 0.8641 0.9192 0.8948 0.7193 0.8830 0.9074 0.9357 0.8482 0.8812 0.8906 0.8665
GD-I-NC 0.8852 0.9358 0.9182 0.9131 0.6999 0.8663 0.9030 0.9015 0.9143 0.8838 0.8710 0.8628
GD-II-NN 0.8975 0.9022 0.8851 0.8949 0.8161 0.8978 0.9574 0.9485 0.9441 0.9239 0.9074 0.9136
GD-II-NC 0.8659 0.8628 0.8602 0.8630 0.7617 0.8896 0.9465 0.9599 0.9557 0.9177 0.9024 0.9048
RG 0.6231 0.8278 0.6712 0.7074 0.5358 0.6483 0.6871 0.6653 0.6796 0.6602 0.6240 0.6429
RO 0.0643 0.1520 0.2342 0.1502 0.0029 0.0109 0.0240 0.0494 0.0357 0.0301 0.0326 0.0265
PRANKW 0.2977 0.3890 0.2169 0.3012 0.0180 0.0739 0.0464 0.0852 0.0745 0.0183 0.1818 0.0711
INW 0.2862 0.5942 0.4183 0.4329 0.2143 0.2808 0.3053 0.1326 0.2725 0.3946 0.2555 0.2651

ences are not significant. Analysis showed that those without
the constraints often estimated a non-negative Γ.

We give below three example (3 × 3) ground truth Γ
matrices with small differences inbetween (i.e., swaps in
bold). Corresponding Γ’s estimated by RSVM-NN are also
shown. Interestingly, the ratios of ATR values in this column
match almost identically to those estimated by RSVM-NN.

(a) example (3 × 3) ground truth Γ matrices0.03 0.06 0.12
0.09 0.19 0.42

0.16 0.35 0.90

0.90 0.06 0.12
0.09 0.19 0.42

0.16 0.35 0.03

0.03 0.06 0.12
0.09 0.19 0.42

0.90 0.35 0.16


(b) estimated Γ by RSVM-NN1.13 4.55 2.89

3.39 0.34 0.10

6.02 0.05 0.02

7.02 0.13 2.63
0.68 0.00 0.08

1.17 0.00 0.00

 1.81 0.25 0.10
5.39 0.00 0.00

54.08 0.00 0.00


We repeat our experiments for DocGII with m = 7,

for which we create 10 different (7 × 7) Γ matrices. Table
1 (right) shows corresponding results, from which we can
deduce similar conclusions (also see Figure 5 in Appendix
C). Similarly, all proposed algorithms continue to do equally
well, despite the increased parameter size (49 vs. 9), where
RSVM-NN performs the best with mean accuracy around
0.93 (across types and experiments).

The performances of the baselines on DocGII decrease
even further. For RG, the lower accuracy on average (and
the even higher variance) can be attributed to the larger
parameter size for which “guessing” is no longer as easy. As

for PRANKW and INW, the decline in accuracy is likely due
to their homogeneous nature—both of them ignore neighbor
types, which is more of a concern for a network with 7
different types of nodes.

Similar results are observed when we use the NDCG
measure. Figure 3 shows the average NDCG per experi-
ment (across types) for each method. Again, the proposed
algorithms achieve competitive accuracy, where RSVM pro-
duces slightly better results. The baselines are unable to
capture the ranking by the HINSIDE model, where guessing
the parameters is unavailing for various settings (e.g., exper-
iments 1, 7, 10) (similar plot for DocGI omitted for brevity).
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1 2 3 4 5 6 7 8 9 10 

Test Accuracy - NDCG (Average) 

RSVM-NN GD-I-NN GD-2-NN RSVM-NC GD-I-NC GD-II-NC RG RO INW PRANKW 

Figure 3: NDCG test accuracy per experiment on
DocGII (avg’ed across types).

5.2.1 Analysis on AuthGraph. We do not have ground
truth author ranking in AuthGraph, however, as four areas
(DB, DM, IR, and ML) are similar to each other, we consider
a Γ with equal ATR values to obtain a ranking by HINSIDE.

We first investigate the relation of the HINSIDE scores



Figure 4: HINSIDE score vs. (a) Pagerank score and (b)
h-index of 6619 researchers (dots) in AuthGraph.

with the Pagerank scores on the same graph as well as
with the h-index of the researchers, as shown in Figure
4. Roughly speaking, there exists a positive correlation
between the measures. Average correlation coefficient across
types between HINSIDE and h-index is 0.32, and between
HINSIDE and Pagerank it is 0.56. We expect the models
to differ; Pagerank solely uses relational information while
h-index is based on citation counts (and not collaborations).

We highlight a few example cases in the following table,
for which the models differ significantly. The last three
columns respectively give the h-index, and the rank order
of researchers within their area by Pagerank and HINSIDE.

Name Area Institution h P HIN

Moshe Vardi DB Rice U. 87 165 17
Michael R. Lyu IR CUHK 67 83 1
Andreas Krause ML ETH Zurich 45 291 4

M. Vardi is ranked high by HINSIDE not only because
he has high-rank neighbors such as J. Ullman and R. Fagin
from the same area, but also due to collaborators across
the world, especially several high-rank ones in Italy. The
same hold true for M. R. Lyu in Hong Kong. Interestingly,
A. Krause is ranked quite high by HINSIDE—One reason
is competition: he has high-rank co-authors from CMU,
UW, and UC Berkeley. The other reason is distance: all
his in-links cover over 4000 miles. These links are before
Krause moved from US to Switzerland. While this is a
data temporality issue, it is interesting to see HINSIDE’s
effectiveness in capturing this information.

6 Conclusion
We considered the ranking problem in heterogeneous graph-
sand proposed HINSIDE, a new model that not only accounts
for interactions between different node types, but also uses
geo-location information of nodes in a unique way to incor-
porate (i) the distance of the edges, as well as (ii) the com-
petition induced by location. This formulation is motivated
by and generalizes from its application to medical referral
networks. We derived the matrix form and a closed form so-
lution for the proposed model. HINSIDE is parameterized
by the authority transfer rates between node types. Capi-
talizing on its closed form, we proposed various estimation
algorithms that utilize different objective functions. Exper-
iments on samples of real-world networks demonstrated the

effectiveness of our proposed algorithms, and that our model
captures more than the network structure that existing mod-
els solely rely on.

We share all code and data at https://github.com/

abhimm/HINSIDE, for reproducibility and future research.
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Appendix

A Preliminaries
In this short section, we provide background information on
ranking in homogeneous networks. Specifically, we describe
the essentials of Pagerank [2] as our HINSIDE model carries
similar intuitions.

Let G = (V, E) be a (directed) graph with |V| = n
nodes and adjacency matrix A where A(i, j) = 1 if there is
an edge e(i, j) ∈ E and 0 otherwise. The Pagerank score of
a node i is then given based on its (incoming) neighbors as

pri =
1− α
n

+ α
∑
j∈V

A(j, i)
prj
degj

where α ∈ (0, 1) is a damping factor and degj =
∑
v A(j, v)

is the (out)degree of node j.
The above local formula is written in matrix form as

pr =
1− α
n

1 + αĀ′pr

where Ā is the row-normalized A matrix, i.e., Ā(i, j) =
A(i, j)/

∑
v A(i, v), and 1 is an all-one vector of length n.

The above can be solved iteratively using the power
method [16] starting from a random pr(0), which can be
shown to converge to

pr =
1− α
n

(I − αĀ′)−1 1

under very common conditions [?], where Ā′ needs to be
irreducible (i.e.,G be strongly connected which holds thanks
to the damping factor) and aperiodic (which often holds in
practice for real-world graphs).

B Related Work
Ranking is an important data mining task in network analy-
sis. In homogeneous networks, PageRank [2] computes the
importance of nodes based on a random walk process. HITS
[8] computes both authority and hub scores for each node
in a network. There also exist various centrality measures
based on degree, betweenness, and closeness [17].

For bipartite networks, in which two types of objects co-
exist, co-ranking approaches have been proposed. Deng et
al. propose co-HITS [22] that incorporates a bipartite graph
with content information and constraints of relevance. Zhou
et al. [32] co-rank authors and their publications by coupling
two random walk processes. There also exist methods
that compute the importance of both nodes and relations
in multi-relational networks [24, 26]. These are limited to
homogeneous graphs.

On the other hand, ranking in heterogeneous networks
has been the focus of research in the last decade. ObjectRank
[1] aims to rank objects in a heterogeneous database based
on a keyword query. The database is represented as a

graph with multiple node and edge types. The adjacency
matrix is constructed by weighing the edges according to
“authority transfer rates”, assumed to be known, using which
Personalized PageRank is applied, with restart to objects that
contain the query keywords.

PopRank [9] extends the PageRank model from page-
level to object-level ranking, where relations from both the
objects of the same type and those of other types, as well as
the popularity of Web pages and databases that contain the
object are taken into account. They estimate the authority
transfer rates (named as popularity propagation factors) on
edges between two object types from training data, using a
simulated annealing based search procedure.

Sun et al. developed integrated clustering and ranking
methods called RankClus [14] and NetClus [15], where ob-
jects are first clustered and ranking is done relatively within
each cluster. For instance in the DBLP domain, clusters
would correspond to different research fields, and ranking
researchers or conferences within their field becomes more
meaningful (apples to apples). MedRank [21] extended the
semantics in [14, 15] to the medical domain, to rank the treat-
ments of a disease based on their influence.

Most recently, Li et al. proposed HRank [25], to rank
multiple object types and different meta-paths between them
in a heterogeneous graph, based on a meta-path based ran-
dom walk process. For a detailed reference for ranking in
networks, we refer to [28].

Different from existing work, our proposed HIN-
SIDE introduces the concepts of (i) location/distance and (ii)
competition between the objects, and is the first work to in-
corporate such side information into the ranking problem in
heterogeneous networks. Our model also lends itself to con-
vex formulations for parameter estimation, and consequently
to effective and efficient learning procedures.

C Additional Evaluation
C.1 Performance on DocGII. See Figure 5.

C.2 Random Guessing Γ. Randomly guessing the Γ
produces results with quite large variance across different
experiments. (Note that for DocGI there are only 9 param-
eters to guess, moreover, we run RG 10 times per experi-
ment and pick the result with the best guess on training data.)
This suggests that some ground truth parameter settings were
“easy-to-guess”, but quite the opposite for others. Figure 6
(top) shows the variation of the guesses in terms of test ac-
curacy per experiment, below which we show the same for
RSVM-NN for 10 random initializations (See Alg. 1 line 1).
We see that guessing produces notably noisy results, whereas
RSVM-NN optimization finds accurate results across differ-
ent starting points.

As expected, random ordering produces poor results.
On the other hand, the rankings by Pagerank and in-weight
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Figure 5: AP@20 accuracy on DocGII (m = 7) of compared methods.

Figure 6: Variation of test accuracy per experiment for 10
random runs of RG and RSVM-NN on DocGI.

centralities are not comparable to the ground truth ranking.
These results imply that there is notably more than

the graph structure that the HINSIDE model captures. In
other words, models that use structure alone cannot easily
reproduce our model.
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