
A Domain-Agnostic Approach to Spam-URL
Detection via Redirects

Heeyoung Kwon Mirza Basim Baig Leman Akoglu*

Stony Brook University, Computer Science, {heekwon,mbaig}@cs.stonybrook.edu
*Carnegie Mellon University, H. John Heinz III College, lakoglu@cs.cmu.edu

Abstract. Web services like social networks, video streaming sites, etc.
draw numerous viewers daily. This popularity makes them attractive
targets for spammers to distribute hyperlinks to malicious content. In
this work we propose a new approach for detecting spam URLs on the
Web. Our key idea is to leverage the properties of URL redirections
widely deployed by spammers. We combine the redirect chains into a
redirection graph that reveals the underlying infrastructure in which the
spammers operate, and design our method to build on key characteristics
closely associated with the modus operandi of the spammers. Different
from previous work, our approach exhibits three key characteristics; (1)
domain-independence, which enables it to generalize across different Web
services, (2) adversarial robustness, which incurs difficulty, risk, or cost
on spammers to evade as it is tightly coupled with their operational
behavior, and (3) semi-supervised detection, which uses only a few labeled
examples to produce competitive results thanks to its effective usage of
the redundancy in spammers’ operations. Evaluation on large Twitter
datasets shows that we achieve above 0.96 recall and 0.70 precision with
false positive rate below 0.07 with only 1% of labeled data.

1 Introduction

Web services are ubiquitous: social networks (e.g. Facebook, Twitter), review
sites (e.g., Yelp, Amazon), video streaming sites (e.g. YouTube, Hulu), blogs,
forums, etc. draw billions of viewers daily. The widespread adoption of these ser-
vices makes them attractive for spammers to distribute harmful content (scam,
phishing, malware, etc.) through links they post on these sites to such content.
As a result, detecting and filtering malicious content effectively becomes crucial
for the quality and trustiness of the Web.

IP blacklisting—a popular solution for social network operators and URL
shortening services—has been found to provide false positive rates ranging be-
tween 0.5 to 26.9%, and false negative rates between 40.2 to 98.1% [16, 17], which
is quite inaccurate. Blacklisting is also quite slow to keep up with the speed and
scale that Web services are being consumed today. Alternative solutions focus on
identifying suspicious accounts operated by spammers that behave in automated
or fraudulent ways [2, 8, 18]. These, however, have limited ability to detect spam
disributed through compromised accounts. In fact, 97% of accounts participat-
ing in spam campaigns on Facebook [4] and 86% on Twitter [5] have been found

2 Heeyoung Kwon Mirza Basim Baig Leman Akoglu*

to involve compromised accounts. Moreover, they incur detection delays as they
require a history of mis-activity committed by an account. Thus, it is essential
to build solutions that can make fine-grained, i.e., URL-level decisions, which
could enable services to filter individual posts rather than shutting down user
accounts. It is also desirable to have solutions that are generalizable to differ-
ent kinds of Web services, i.e. that spot spam URLs regardless of the context,
platform, or domain in which they appear.

We propose a general and robust solution for detecting malicious URLs.
Our key realization is the widespread usage of redirect chains by spammers to
distribute spam on the Web [6, 21]. Our main contributions are as follows.
– We develop a new graph-based approach for spotting malicious URLs that

appear on the Web. Our method leverages the underlying redirection network
used by the spammers. In particular, we build a graph, called the Redirect
Chain Graph (RCG), based on the redirect paths of the URLs and use its
structural properties to design and extract indicative features of spam.

– Our features fall under three main groups (resource sharing, heterogeneity,
and flexibility) and capture the very nature of spammers’ operational behav-
iors. These are hard to alter by the spammers without incurring monetary or
management cost. As such, our features have higher adversarially robustness.

– Our approach relies solely on the redirection infrastructure and does not use
any domain-specific information, which makes it context/content-agnostic.
As such, it can detect spam URLs in various domains, including URLs shared
on any online site, URLs returned as online search results, and so on.

– In a fully supervised setting, our approach performs extremely well.When
compared to context-aware supervised detection that uses user account and
post content features, our context-free features perform equally well, despite
ignoring all domain-specific information.

– Finally, we propose a semi-supervised method, designed for more realistic
scenarios where labeled data is scarce. By carefully exploiting the redun-
dancy present in spammers’ infrastructures, our proposed method requires
only a few labeled examples to achieve desirably high performance to be
applicable in the real-world.

In contrast, numerous existing methods, such as [9, 11, 12, 19, 20], either (i)
utilize easy-to-evade information (low robustness), (ii) rely on context-dependent
information (low generality), and/or (iii) require large collections of labeled data
for training (low applicability in practice).

2 Redirection Infrastructure

Many studies have shown the pervasive use of redirects by spammers [6, 21, 1,
9, 11]. In this section, we introduce the interconnected architecture of redirect
chains, which provides the main motivation for our graph-based approach.

Definition 1 (Redirect Chain). A redirect chain C consists of an ordered set
of URLs, C = {U1, U2, . . . , Ul}, starting with an initial URL U1, followed by
URLs automatically and conditionally redirected in a sequence, and landing on
a final URL Ul. l = |C| denotes the length of the chain.

A Domain-Agnostic Approach to Spam-URL Detection via Redirects 3

Fig. 1. 3 example redirect chains and their RCG. Chains may contain the same URL(s)
(e.g., A4 & B2, B3 & C5, B4 & C6), yielding the interconnected network RCG.

Initial URL (often shortened by e.g. bit.ly) is the one displayed to users on
a site, whereas landing page is where the user ends up after clicking the initial
URL (cf. Figure 1).

As data preprocessing, we group the domain names of the URLs that appear
on the same IP. For example, if http://123.com/hi.html, http://xyz.com/hi.html,
and http://xyz.com/ hello.html are all co-located at the same-IP address, then
we replace the first two URLs with http://[123.com,xyz.com]/hi.html and the
third with http://[123.com,xyz.com]/hello.html. This grouping helps us unify
malicious URLs that use several domain names so as to bypass blacklisting.
Moreover, a (grouped) URL may be located at multiple different IPs, a list of
which we also store. As such, each URL is associated with a list of domain names
as well as a list of IPs.

Our key motivation for a graph-based solution is due to the following obser-
vation: (malicious) redirect chains deployed by spam campaigns contain several
URLs in common, i.e. shared across chains, creating a network structure as
shown in Figure 1. In other words, the (malicious) redirection infrastructure of
spammers is highly inter-connected.

Provided that the redirect chains are likely to share several URLs, it is bene-
ficial to study them collectively, rather than individually. As such, we merge the
redirect chains of URLs1 to create the Redirect Chain Graph (RCG).

Definition 2 (Redirect Chain Graph (RCG)). Given a set of redirect
chains C = {C1, . . . , Cm}, we decompose each chain Ci = {Ui,1, . . . , Ui,li} into
a set of directed edges between consecutive URLs, Ei = {e(Ui,j , Ui,j+1)

∣∣j ∈
{1, . . . , li − 1}}. The RCG = (V,E) then consists of all the edges across chains,
where E =

⊎
Ei and V =

⋃
Ci for 1 ≤ i ≤ m.

Note that the RCG nodes are the unique set of URLs across all chains,
whereas the edges are allowed to reappear (hence the multiset addition

⊎
). As

such, RCG is a directed and weighted graph, where edge weights depict the

1 Note that what is posted on a Web service are the initial URLs. We run a crawler
to go through the redirects to extract the chains.

4 Heeyoung Kwon Mirza Basim Baig Leman Akoglu*

number of chains that a redirection step appears in. Notice for example the edge
weight 2 in Figure 1.

Finally we introduce the entry-point URLs. Those are the nodes with large
in-weight in the RCG, considered as “directors”—they are central pages that
aggregate user traffic and direct them to one of several malicious pages (sort of
routers). As such, entry-points are critical in functionality but hard to identify
without aggregate graph analysis—the entry point does not serve the actual
spam, as such it is more difficult to spot and shut down. We characterize each
chain by its entry-point URL, as defined below.

Definition 3 (Entry-point URL). Given a redirect chain C =
{U1, U2, . . . , Ul}, let wj denote URL j’s in-weight in the RCG. The entry-point
of C is the URL Uk with the largest in-weight, where wk = max{w1, . . . , wl}.

3 Feature Design using Redirects
There exists a vast body of work that use information derived from the user
account that a URL originated from, the URL itself or its page content [8, 9, 13,
20]. We choose not to use such information for the reasons we discuss below.

Rationale to exclude account and URL&page-content information:
First reason is to ensure a general solution. Such features are derived from meta
data on the specific site the URL appears in (e.g., number of followers). Relying
on contextual information would make it hard to cross Web service boundaries
due to potentially disparate contextual information across sites. Second, context-
aware solutions require personally identifiable information from user accounts,
which may not be desirable due to privacy concerns.

As for content, spammers can use feedback from classifiers to fine-tune their
URLs and page content in an attempt to evade detection by the classifiers, e.g.,
by spoofing sufficient benign features with high weights as studied in adversarial
classification [3, 10]. For example, they can avoid using spam terms, adjust URL
length and character distribution, and modify links and plugins to imitate non-
spam pages and URLs, while remaining sufficiently effective in eliciting response
from the target users.

Our features (Table 1) fall into three main categories, characterizing spammer
operations that reflect (1) shared resources, (2) heterogeneity, and (3) flexibility.

1) Shared resources-driven features. Spammers would ideally deliver
each copy of malicious content through a dedicated independent channel, such
that if a server fails or is shut down, it has minimal effect. Avoiding to reuse
components in their infrastructure (domain names, servers, etc.), however, would
increase their costs and limit profits. As such, spammers often reuse their un-
derlying hosting infrastructure for significant periods [1, 13].

The first type of sharing occurs due to the same URLs being reused across
different redirect chains. As discussed in §2, nodes with large in-weight in the
RCG (e.g., the entry points) are those URLs that are reused to route traffic for
many redirect paths. As such, for each given URL2, we identify the connected

2 Note that the given URLs are the observed ones posted on the Web, also referred to
as the initial URLs in this work.

A Domain-Agnostic Approach to Spam-URL Detection via Redirects 5

component of the RCG it resides in and extract features based on structural
graph properties, e.g., in-weight of its entry point URL, average in-degree and
in-weight of nodes in its chain, density of its RCG component, etc. We also
treat the RCG component as a tree, rooted or “hung” at the entry point URL.
This tree is obtained by a breadth-first search traversal of the RCG component
starting at the entry-URL. Intuitively, a small number of unique entry points
in a large RCG is suspicious; implying a few URLs shared among many chains.
Tree-based features such as level width and horizontal imbalance capture this,
as few entry points cause large fan-out.

A second type of sharing occurs due to the same servers hosting many differ-
ent domain names. To evade and stay ahead of domain blacklisting, spammers
run through many domain names. To reduce operating costs, they host them on
the same server (IP address), all serving the same malicious content. We leverage
this domain co-location property based on domain counts both in landing URLs
of the RCG component as well as in all the URLs in the redirect chain of a URL.

2) Heterogeneity-driven features: The operational infrastructure of
spammers consists of a variety of heterogeneous agents, including various com-
promised servers and bot machines from various geo-locations, besides their own
hosting servers. This kind of heterogeneity arises naturally and is crucial for their
operations. First, it would require high maintenance to ensure all compromised
machines are of a single type or all reside in close geo-locations. Moreover it
would be risky if everything resided on one machine or all machines were at the
same geo-location, as the infrastructure would have a few failure points. Based
on this insight, we design features that quantify infrastructure heterogeneity.

These features mainly leverage geo-spatial and domain name heterogeneity.
For example, given the sequence of URLs in a redirect chain, we quantify the
total distance in km’s traversed. Similarly, we count the number of transfers
between different continents, countries, and IPs. We also count the cross-domain
hops—contrary to a hodgepodge of IPs and domain names in spam redirect
chains, benign sites have the opposite incentive to keep visitors within their own
domain. Compromised IPs or sites would also come from various kinds of top-
level domains (TLDs), such as .edu, .org, .com, etc., therefore we also keep a
count of transfers between different TLDs.

3) Flexibility-driven features: Finally, we derive features from opera-
tional properties that allow spammers flexibility, through which their mainte-
nance overhead or expenses are reduced.

To have the advantage of luring as many users as possible, spammers use
multiple different initial URLs (even though they redirect to the same malicious
content) to make their posts look different. We capture this by keeping count
of the initial URLs in the RCG component of a given URL, as well as the total
number of domain names that they host.

Using multiple landing URLs (serving the same content), on the other hand,
provides redundancy; if a landing page goes down, others can still distribute
malicious content. Another way that spammers achieve redundancy is by having
copies of the same URLs across multiple different IPs, which we capture through
features associated with the number of IP addresses that URLs appear in.

6 Heeyoung Kwon Mirza Basim Baig Leman Akoglu*

Table 1. Features introduced (3 categories). RC: redirect chain, CC: connected com-
ponent of RCG a RC resides in. Tree: BFS-tree of CC, rooted at entry-URL. TLD:
top-level domain. Node degrees & edge weights are based on RCG.

Feature Name Description
Shared resources-driven (17 features)

EntryURLiw In-weight (freq.) of entry-point URL
EntryURLid In-degree of entry-point URL
AvgURLiw Mean in-weight of URLs in RC
AvgURLid Mean in-degree of URLs in RC
ChainWeight Total weight of edges in RC
CCsize Number of nodes in CC
CCdensity Edge density of CC
MaxRCLen Max. length of RCs in CC
MinRCLen Min. length of RCs in CC
TreeHeight Height of Tree (root: entry-URL)
MaxLevelWidth Max. node count at Tree levels
ImbalanceH Horizontal imbalance of Tree
ImbalanceV Vertical imbalance of Tree
MaxLdURLDom Max. domain count of CC landing URLs
AvgLdURLDom Mean domain count of CC landing URLs
MaxURLDom Max domain name count per URL in RC
AvgURLDom Mean domain name count per URL in RC
Heterogeneity-driven (12 features)

GeoDist Total geo-distance (km’s) of hops in RC
MaxGeoDist Max. geo-distance (km’s) across hops in RC
XContinentHops Number of cross-continent hops in RC
CntContinent Number of unique continents in RC
XCountryHops Number of cross-country hops in RC
CntCountry Number of unique countries in RC
XIPHops Number of cross-IP hops in RC
CntIP Number of unique IPs in RC
XDomainHops Number of cross-domain hops in RC
CntDomain Number of unique domains in RC
XTLD Number of cross-TLD hops in RC
CntTLD Number of unique TLDs in RC
Flexibility-driven (10 features)

ChainLen Length (#URLs) of RC
EntryURLDist Distance from initial to entry URL in RC
CntInitURL Number of initial URLs in RCG
CntInitURLDom Total domain name count in initial URLs
CntLdURL Number of final landing URLs in RCG
MaxIPperURL Max. IP count each URL in RC appears in
AvgIPperURL Mean IP count each URL in RC appears in
MaxIPperLdURL Max. IP count landing URLs in CC appear in
AvgIPperLdURL Mean IP count landing URLs in CC appear in
RatioCheapTLD Fraction of non-.com/.mil/etc. URLs in RC

Using long redirect chains helps with dynamicity and selectivity, which is
hard to evade for spammers, if they want to be flexible in how they replace
machines and how they choose who to spam. Specifically, a series of redirects
provides them with the flexibility to modify intermediate steps (plug-in & plug-
out), as well as the flexibility to hide malicious, “bullet-proof” landing URLs
behind layers of redirection. The location of entry point URLs also plays a key
role—since these pages have to conditionally redirect visitors to different landing
URLs, suspicious entry point URLs are often located early in the chains.

Another case of flexibility is related to top-level domain (TLD) names. Spam-
mers tend not to invest on trustworthy but costly TLDs such as .com and .net,
or try to compromise often bullet-proof TLDs such as .mil and .gov—especially
given that most URLs are only for redirection purposes and not for delivering
content. As a result, they resort to acquiring or attacking cheap TLDs.

A Domain-Agnostic Approach to Spam-URL Detection via Redirects 7

4 Spam Detection

After crawling the redirect chains, constructing the RCG, and extracting for each
URL in the dataset the 39 features as listed in Table 1, our next step is spam
detection. In this work, we study both supervised and semi-supervised detection,
with a note that the latter presents a more realistic scenario.

Supervised Detection. When a large body of labeled URLs is available, one
can build classifiers. In this work, we analyze the performance of our feature
categories and characterize the most discriminative ones. In addition, we extract
context-based features from user accounts and keywords appearing alongside the
URLs to build context-aware classifiers, which we compare to our models.

Note that acquiring labels for each URL is quite time consuming, as annota-
tors need to set up virtual sandboxes and analyze the URL, landing page content,
behaviors a click triggers in their system, etc. Moreover, since spam is rare as
compared to normal URL traffic, a reasonably large number of URLs needs to
be labeled to ensure representative amount of spam labels in the training data.

Semi-supervised Detection. Due to the challenges with supervised detection,
we design an approach that utilizes only a small set of labeled examples. Our
method achieves comparable performance to fully supervised methods. As such,
it is both applicable under the most realistic scenarios where labeled data is
scarce as well as desirably effective in detecting spam.

In particular, we leverage the user–URL graph to formulate the problem as a
network-based classification task, which we solve using label propagation based
inference. More formally, we consider the bipartite graph G = (N,E) in which n
user nodes U = {u1, . . . , un} are connected to m URL nodes V = {v1, . . . , vm},
N = U ∪ V , through ‘post’ relations in E. To define a classification task on
this network, we utilize pairwise Markov Random Fields (MRFs) [7]. An MRF
model consists of an undirected graph where each node i is associated with a
random variable Yi that can be in one of a finite number of states (i.e., class
labels). In our case, the domain of labels for URLs is LV = {spam, benign} and
it is LU = {spammer, non-spammer} for users. In pairwise MRFs, the label of
a node is assumed to be dependent only on its neighbors and independent of
other nodes in the graph. As such, the joint probability of labels is written as a
product of individual and pairwise factors, respectively parameterized over the
nodes and the edges;

P (y) =
1

Z

∏
Yi∈N

φi(yi)
∏

(Yi,Yj)∈E

ψij(yi, yj) (1)

where y denotes an assignment of labels to all nodes, and yi refers to node i’s
assigned label. Individual factors φ : L → R+ are called prior potentials, and
represent class probabilities for each node initialized based on prior knowledge.
Pairwise factors ψ : LU × LV → R+ are called compatibility potentials, and
capture the likelihood of a node labeled yi to be connected to a node with yj .

As we consider a semi-supervised setting, only a small set of the URL labels
is available. For the known spam URLs we set the priors as φi(spam) = 1 − ε
and φi(benign) = ε, and vice versa for the known benign URLs. To set the priors

8 Heeyoung Kwon Mirza Basim Baig Leman Akoglu*

for the unknown URLs, we learn a classifier using the available labeled data and
employ it to assign class probabilities, i.e. priors, to the unknown URLs in the
graph. For the users we set unbiased priors, i.e., φi(spammer) = 0.5 and φi(non-
spammer) = 0.5, as we do not want to rely on any context-specific information
(e.g., profile data such as ratio of followers to followees) to estimate such priors.

On the other hand, we instantiate the compatibility potentials so as to enforce
homophily among connected nodes. Homophily captures the insight that URLs
posted by spammers are spam and those shared by regular users are benign,
with high probability, where ψij ’s are set as follows.

ψij URLs
Users spam benign

spammer 1− ε ε
non-spammer ε 1− ε

We note that ε’s in φi’s for URLs with known labels account for the uncer-
tainty in the labels associated with annotator agreement. ε’s in ψij ’s capture the
slight probability that non-spammers unknowingly can post spam URLs (e.g.,
retweet) and that spammers can post benign URLs for camouflage.

Provided the model parameters, the classification task is to infer the best as-
signment y to the nodes such that the joint probability in Eq. (1) is maximized.
This is a combinatorially hard problem that is intractable for large graphs. There-
fore, we use an approximate inference algorithm called Loopy Belief Propagation
(LBP) [22]. LBP is an iterative algorithm where connected nodes exchange mes-
sages. A message mij captures the belief of i about j, specifically the probability
distribution over the labels of j. Intuitively, it is what i ‘believes’ j’s label proba-
bilities are, given the current label distribution and the priors of i. The key idea
is that after certain number of iterations of message passes between the nodes,
the ‘conversations’ likely come to a consensus, which determines the marginal
class probabilities of all the unknown variables. Although convergence is not
theoretically guaranteed, LBP converges quickly in practice [15].

5 Experiments

5.1 Data Description
In this work we detect spam links posted on Twitter. Using the Twitter Stream-
ing API, we collected 15,828,532 Twitter posts by 1,080,466 unique users during
a period from May 2–September 10, 2014 . This interval captures major world
events such as the World Cup and the ongoing search for the Malaysia Airlines
Flight 370. Those serve as attractive means to spread spam, where e.g., users are
lured to click a malicious link that supposedly points to a video that shows the
four goals that Germany scored against Brazil in six minutes during the semi-
finals, but instead triggers a drive-by-download exploit. We identified 3,871,911
(initial) URLs from 3,764,395 (≈24%) of the posts that contained links, i.e., a
small fraction of posts contained multiple URLs.

We built a crawler and extracted the redirection chains for all the URLs.
The chain lengths vary from 1 to 46, with more than 99% being less than 6. We

A Domain-Agnostic Approach to Spam-URL Detection via Redirects 9

combined the redirect chains into RCG, a unified (weighted, directed) graph,
which contains 4,874,256 nodes and 3,839,633 edges.

To construct a labeled URL set, we used a crawler to first identify a set
of suspended Twitter users. In particular, if a user profile page input to our
crawler automatically redirected to http://www.twitter.com/suspended, we
label the account as a malicious one. This provided us with 88,147 suspended
users. After removing these, we sampled another 1,000 users for human labeling.
Five annotators were provided with the links to the profile pages of these users.
Each annotator labeled each user by manually analyzing their tweets, number
of followers/followees, temporal behavior, etc. At the end, a user is labeled by
majority voting, which provided us with 216 spam users and 784 non-spammers.

We labeled URLs using the labeled users, where URLs inherit the majority
label of the users who posted them (labeling URLs through users posting them is
extremely pure: 99.06% have majority fraction 100%, i.e., all spammer or none).
As a result, we obtained 459,822 labeled URLs, out of which 191,726 are spam.

For supervised detection, we built a balanced dataset (50% spam) by con-
sidering the 191,726 chains from the unique spam URLs, and randomly sampled
the same number of URLs from those labeled as benign for a total of 383,452
chains. For semi-supervised detection, where we leverage the user–URL bipartite
graph, we constructed a graph with 784 users from each class and all the URLs
shared by those users for a total of 315,120 ground-truth URLs, with 16% con-
sisting of spam. We experimented with 1% or 5% of this labeled set as input to
our semi-supervised approach. Note that our method not only leverages a much
smaller labeled set, but also works in an imbalanced setting as in practice.

5.2 Detection Results

We use two metrics to compare the detection methods; (1) average precision,
which is the area under the precision–recall (PR) plot, denoted as AP, and (2)
area under the ROC curve (false-positive vs. true-positive rate), denoted as AUC.

Supervised Detection. Our experiments with linear SVM, Logistic Regres-
sion, and Decision Tree (DT) show that non-linear DT significantly outperforms
both. This suggests that the decision boundary of our task is complex. We use
the DT model in the remaining supervised detection experiments.

Feature contribution analysis. To investigate the importance of individual fea-
tures, we quantify their discriminative power. In particular, we use the sum of
information gains weighted by the number of samples split by each feature at
the internal tree nodes [14] based on the DT model trained on the entire dataset.

Figure 2 shows the ranking of features by the aforementioned importance
score. We note that (i) the GeoDist feature is considerably the most informative
one, and that the scores drop quickly. This suggests that in practice only a small
subset of all the features could be enough to build accurate models. We also
notice that (ii) the majority (5/10, 11/20) of the informative ones are from the
shared-resources-driven features (green bars), which are mainly derived based
on the RCG structure. Moreover, (iii) the top features come from a mix of all
three feature categories, suggesting that they carry non-redundant information.

10 Heeyoung Kwon Mirza Basim Baig Leman Akoglu*

Ge
oD

ist

Av
gL

an
dU

RL
Do

main

Av
gU

RL
Do

main
RC

Gd
en

sit
y

Av
gIP

pe
rU

RL

Max
IP

pe
rL

an
dU

RL
XI

PH
op

s
Av

gU
RL

iw

Av
gIP

pe
rL

an
dU

RL
RC

Gs
ize

XD
om

ain
Ho

ps
Max

Ge
oD

ist
En

try
UR

Liw

Ra
tio

Ch
ea

pT
LD

Co
un

tD
om

ain

Max
UR

LD
om

ain

Max
La

nd
UR

LD
om

ain
Av

gU
RL

id
Le

ve
lW

idt
h

Ch
ain

W
eig

ht
En

try
UR

Lid
Im

ba
lan

ce
V

Co
un

tIP
Co

un
tIn

itU
RL

En
try

UR
LD

ist

Max
IP

pe
rU

RL
Le

afH
eig

ht

Co
un

tLa
nd

UR
L

Co
un

tIn
itU

RL
Do

main
Max

RC
Le

n
MinR

CL
en

Ch
ain

Le
n

Co
un

tT
LD

Im
ba

lan
ce

H
XT

LD
Co

un
tC

ou
ntr

y

Co
un

tC
on

tin
en

t

XC
on

tin
en

tH
op

s

XC
ou

ntr
yH

op
s

Fe
at

ur
e

Im
po

rta
nc

e
Sc

or
e

0

0.05

0.1

0.15

0.2

0.25

0.3 Shared Resources
Heterogeneity
Flexibility

Fig. 2. Feature ranking by discriminative role (best in color).

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.25 0.50 0.75 1.00
Recall

P
re

ci
si

on

(AP=0.986) All+Account
(AP=0.954) All(S+H+F)
(AP=0.948) (S)hared_Resources
(AP=0.932) (H)eterogeneity
(AP=0.931) (F)lexibility
(AP=0.959) Account 0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
(AUC=0.980) All+Account
(AUC=0.951) All(S+H+F)
(AUC=0.947) (S)hared_Resources
(AUC=0.930) (H)eterogeneity
(AUC=0.922) (F)lexibility
(AUC=0.932) Account

Fig. 3. Supervised detection. Context-free features achieve competitive performance.

In Figure 3 we demonstrate the performances achieved by individual feature
categories. In agreement with observation (ii) above, (S)hared-resources-driven
features perform slightly better than other categories. In addition, potentially
due to (iii) that different feature groups carry non-redundant signals, using all
the features holistically (from all S+H+F categories) yields the best result.

Context-free vs. Context-aware detection. Next we ask: how do context-driven
features perform? To investigate this question, we build models (a) based solely
on context-based features and (b) integrating them with our original set.

The context-based features are mainly derived from the account that posted
the URL and the post content, including the account’s age, number of hashtags,
number of mentioned other users, the follower–followee ratio, total number of
posts, fraction of posts containing a URL, and the keywords used in the posts
(including hashtags and @mentions).

In Figure 3, we observe that the context-based model (labeled Account) is
slightly better than our model with All features in terms of AP and slightly
worse with respect to AUC. We conclude that our features are equally discrimi-
native, even when no domain-specific or potentially missing, hidden, or private
information is used.

Semi-supervised Detection. Under this setting, we randomly sample 1% or
5% of the URLs and reveal their labels (results are averaged over 10 runs). We
then under-sample the majority class to obtain a balanced dataset, on which we
train a classifier to assign class priors to the unlabeled URLs.

Semi-supervised results are given in Figure 4. First, we investigate the per-
formance of semi-supervised classifiers alone (without the LBP on the user–URL

A Domain-Agnostic Approach to Spam-URL Detection via Redirects 11

Fig. 4. Semi-supervised detection. LBP (with DT) achieves competitive performance.
Red circles depicts values at classification threshold 0.5.

graph), namely linear SVM, polynomial SVM, and the decision tree (DT) clas-
sifiers. As before, both non-linear classifiers outperform linear SVM, where DT
is superior to polynomial SVM.

Next, we employ our semi-supervised method. In particular, we leverage the
user–URL graph in which we initialize the class priors of (1% or 5%) labeled
URLs as (1−ε, ε) for spam URLs, and vice versa for the benign. The class priors
of unlabeled URLs are set to the class probabilities from DT, and of the users
as (0.5, 0.5), i.e. unbiased. As we see in Figure 4, incorporating relational infor-
mation through LBP significantly improves the detection performance. Perhaps
more importantly, the performance is desirably high; at a small false positive
rate of 0.0667, recall and precision are above 0.95 and 0.70, respectively.

6 Conclusion
We considered the problem of detecting spam URLs that appear on the Web
in various contexts. Our main goal has been to build an effective solution that
is at the same time (i) context-free, (ii) adversarially robust, and (iii) semi-
supervised; such that it is generalizable across Web service boundaries, costly to
evade by spammers, and applicable in the face of label scarcity, respectively.

To achieve these goals, we utilize the URL redirect chains and the underlying
network that they form to design three categories of domain-agnostic features.
Our features are closely tied to the operational characteristics of the spammers,
particularly related to their (1) reusing and sharing of resources, (2) heteroge-
neous hosting infrastructure, and (3) flexibility. Intuitively, evading detection by
changing their behavior would incur considerable monetary or management cost
upon the spammers. Evaluations on a large Twitter collection with millions of
URL posts show that our context-free features yield quite similar performance
against context-aware features. Moreover, our semi-supervised detection algo-
rithm produces competitive results, at above 0.96 recall and 0.70 precision with
false positive rate below 0.07, even with very limited supervision.

We publicly share our Twitter URL data collection (including ground truth
labels, redirect chains, and the RCG) as well as our redirect chain crawler at
http://bit.ly/2jvdiFI.

12 Heeyoung Kwon Mirza Basim Baig Leman Akoglu*

Acknowledgments

This research is sponsored by NSF CAREER 1452425 and IIS 1408287, DARPA
Transparent Computing Program under Contract No. FA8650-15-C-7561, and
ARO Young Investigator Program under Contract No. W911NF-14-1-0029. Any
conclusions expressed in this material are of the authors and do not necessarily
reflect the views, expressed or implied, of the funding parties.

References

1. D. S. Anderson, C. Fleizach, S. Savage, and G. M. Voelker. Spamscatter: Charac-
terizing internet scam hosting infrastructure. In Usenix Security, 2007.

2. F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida. Detecting spammers on
Twitter. In CEAS, 2010.

3. N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adversarial classifi-
cation. In KDD, pages 99–108, 2004.

4. H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Y. Zhao. Detecting and charac-
terizing social spam campaigns. In IMC, 2010.

5. C. Grier, K. Thomas, V. Paxson, and C. M. Zhang. @spam: the underground on
140 characters or less. In CCS, pages 27–37, 2010.

6. Z. Gyöngyi and H. Garcia-Molina. Web spam taxonomy. In AIRWeb, 2005.
7. R. Kindermann and J. L. Snell. MRFs and Their Applications. 1980.
8. K. Lee, J. Caverlee, and S. Webb. Uncovering social spammers: social honeypots

+ machine learning. In SIGIR, 2010.
9. S. Lee and J. Kim. WarningBird: Detecting Suspicious URLs in Twitter Stream.

In NDSS, 2012.
10. D. Lowd and C. Meek. Adversarial learning. In KDD, pages 641–647, 2005.
11. L. Lu, R. Perdisci, and W. Lee. SURF: detecting and measuring search poisoning.

In CCS, pages 467–476, 2011.
12. J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyond blacklists: learning to

detect malicious web sites from suspicious urls. In KDD, pages 1245–1254, 2009.
13. J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identifying suspicious urls: an

application of large-scale online learning. In ICML, 2009.
14. P. G. Neville. Decision Trees for Predictive Modeling. SAS Institute Inc., 1999.
15. S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos. Netprobe: a fast and scalable

system for fraud detection in online auction networks. In WWW, 2007.
16. A. Ramachandran, N. Feamster, and S. Vempala. Filtering spam with behavioral

blacklisting. In CCS, 2007.
17. S. Sinha, M. Bailey, and F. Jahanian. Shades of grey: On the effectiveness of

reputation-based blacklists. In Malicious & Unwanted Softw. IEEE, 2008.
18. G. Stringhini, C. Kruegel, and G. Vigna. Detecting spammers on social networks.

In ACSAC, pages 1–9, 2010.
19. G. Stringhini, C. Kruegel, and G. Vigna. Shady paths: leveraging surfing crowds

to detect malicious web pages. In CCS, pages 133–144, 2013.
20. K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design and Evaluation of a

Real-Time URL Spam Filtering Service. In IEEE Symp. on Sec. and Priv., 2011.
21. B. Wu and B. D. D. 0001. Cloaking and redirection: A preliminary study. In

AIRWeb, pages 7–16, 2005.
22. J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief propagation

and its generalizations. In Exploring AI in the new millennium. 2003.

