
Noname manuscript No.
(will be inserted by the editor)

Optimizing Network Robustness by Edge Rewiring:
A General Framework

Hau Chan · Leman Akoglu

Received: date / Accepted: date

Abstract Spectral measures have long been used to quantify the robustness of
real-world graphs. For example, spectral radius (or the principal eigenvalue) is
related to the effective spreading rate of dynamic processes (e.g., rumor, disease,
information propagation) on graphs. Algebraic connectivity (or the Fiedler value),
which is a lower bound on the node and edge connectivity of a graph, captures the
“partitionability” of a graph into disjoint components.

In this work we address the problem of modifying a given graph’s structure un-
der a given budget so as to maximally improve its robustness, as quantified by spec-
tral measures. We focus on modifications based on degree-preserving edge rewiring,
such that the expected load (e.g., airport flight capacity) or physical/hardware re-
quirement (e.g., count of ISP router traffic switches) of nodes remain unchanged.
Different from a vast literature of measure-independent heuristic approaches, we
propose an algorithm, called EdgeRewire, which optimizes a specific measure
of interest directly. Notably, EdgeRewire is general to accommodate six differ-
ent spectral measures. Experiments on real-world datasets from three different
domains (Internet AS-level, P2P, and airport flights graphs) show the effective-
ness of our approach, where EdgeRewire produces graphs with both (i) higher
robustness, and (ii) higher attack-tolerance over several state-of-the-art methods.

Keywords graph robustness · edge rewiring · robustness measures · graph
spectrum · optimization algorithms · attack tolerance

1 Introduction

Robustness (or resilience, anti-vulnerability, attack-tolerance, connectedness) is a
critical property of complex networked systems, such as the Internet, flight net-
works, and the power grid. It defines their ability to continue functioning in the
face of failures or attacks to the parts of the network. As a result, designing and

Hau Chan and Leman Akoglu
Stony Brook University, Department of Computer Science, Stony Brook, NY
Tel.: +1 631-632-9801
E-mail: {hauchan, leman}@cs.stonybrook.edu

2 Hau Chan, Leman Akoglu

maintaining robust networks have been important research areas in physics, engi-
neering, and computer science.

The problem setting we consider in this work is as follows. Given an existing
network and a budget, how can we modify the structure of the network in order to
maximally improve its robustness while meeting the budget constraints? There are
two aspects of this problem that need to be specified: (i) the robustness measure of
interest, and (ii) the modification strategies to be employed. The budget is often
in terms of the maximum number of modifications that can be performed.

There exists a diverse set of robustness measures studied in the literature [13]
(Section 2). Fundamentally, all of these measures try to capture the connectedness
of a network in some way. In this work, we specifically focus on a well-established
and widely used group of measures, called spectral measures, derived from the
adjacency and the Laplacian matrices of a network [12]. We build a general solution
that applies to six different spectral measures with small variations in our proposed
algorithm (Section 3).

As for modification strategies (Section 4), one can either add new edges [4,
8, 36, 37, 39, 41] or swap (i.e., rewire) existing edges to improve network robust-
ness [4, 25, 32, 35, 40, 43]. For rewiring, one can also either try to preserve the
original degrees of the nodes or swap arbitrarily with no such constraint. In this
work, we adopt the former, i.e., degree-preserving rewiring strategy. The reason is
that adding edges, e.g., increasing number of flights between airports would re-
quire increased capacity, which might prove impractical in the short term. In fact,
numerous examples of infrastructure networks present capacity constraints, such
as adding new transmission lines to a power station or new traffic switches to an
Internet Service Provider router. Therefore, a rewiring strategy where links are
only swapped, keeping the nodes’ degrees unchanged, is likely more appropriate;
e.g., we reroute Internet traffic among the routers, without considerably changing
their load or requiring new hardware with increased number of switches.

A vast majority of network manipulation methods in the literature are measure-
independent heuristics. That is, they perform their operations in an intuitive man-
ner (e.g., add edges between two lowest degree nodes), rather than being tied to
a particular measure. In other words, they would perform the same operations no
matter what the robustness measure of interest is. On the other hand, we propose
a solution that aims to directly optimize a specified (spectral) measure.

In summary, we propose a new algorithm to modify a given network by degree-
preserving edge rewiring so as to maximally improve its robustness under a spec-
ified budget (i.e., number of rewirings). We build our solution around a general
framework called EdgeRewire that accommodates six different spectrum-based
measures, and aims to optimize each measure directly. Experiments on real-world
networks from three different domains (Internet AS-level, P2P, and airport flights
graphs) show the effectiveness of EdgeRewire, which yields graphs that exhibit
both higher robustness as well as higher attack-tolerance compared to graphs pro-
duced by several state-of-the-art approaches (Section 5).

2 Measures of Network Robustness

For numerous complex networked systems, such as transportation (e.g., road, air-
line, electric grid), communication (e.g., phone call, email), and computer networks

Optimizing Network Robustness by Edge Rewiring: A General Framework 3

(e.g., the Internet), a critical question is how robust these systems are. Robustness
represents the capability of a network to continue its functioning and support its
services when parts of the network are naturally damaged or attacked. As such,
being able to quantify the robustness of networks becomes important as it allows
to measure their vulnerability, compare two networks, modify existing networks
to improve their robustness, and design robust networks from scratch.

While centered around intuitively compelling goals, robustness is only vaguely
defined: given a graph, quantify how resilient it is to (random or cascading) failures
and (targeted and carefully planned) attacks. As a result of not having a unique
definition and objective, as well as having been studied in many fields including
mathematics, physics, computer science, and biology, various robustness measures
have been proposed in the literature. Such measures fundamentally aim to capture
the connectedness of a network in some way.

For example, mean shortest paths [2, 4, 20] and efficiency [23, 31] quantify
the shortest path distances between pairs of nodes in the network, while Sun
et al. consider the fraction of connected node pairs [34]. Albert et al. use the
relative size of the largest connected component and the average size of the other
components [2]. Matisziw and Murray consider average available flows between
the node pairs [27]. Other measures include the global clustering coefficient, the
diameter, node or edge connectivity, etc. [13].

In addition to the above measures that explicitly leverage the graph topology to
quantify connectivity, there exist another group of measures derived from the ad-
jacency and the Laplacian matrices of a network [12], called the spectrum-based
measures. The graph spectrum has been studied to understand several proper-
ties of varying network topologies as well as real-world networks [1, 17, 18]. The
spectrum-based measures have been shown to be associated with the inherent
interconnectedness, partitionability, and propagation speed and convergence rate
of dynamic processes of networks [7, 15, 18], and thus have been widely used to
quantify the robustness of networks.

In this work, we focus on this second group of measures and develop a general
framework to modify a given network by edge rewiring so as to maximally improve
its robustness under a specified budget (i.e., number of rewirings). Our framework
is general, as it accommodates a list of different spectrum-based measures. We
elaborate on the specific measures after introducing the notation next.

Notation. Let G = (V,E) be an undirected graph with |V | = n nodes and |E| = m
edges. The topology of G can be described by the adjacency matrix A, an n × n
zero-one matrix, where the element aij = 1 if there is an edge between node i and
node j, and aij = 0 otherwise. For an undirected graph G, A is symmetric, all its
eigenvalues are real, and it exhibits a spectral decomposition A = UΛUT , where
U = [u1 u2 . . . un] is an orthogonal matrix such that UTU = UUT = I. The
uk’s (columns of U) are the eigenvectors of A with corresponding eigenvalues λk’s
(diagonal entries of Λ). The adjacency spectrum of G is then the set of eigenvalues
of A, λn ≤ λn−1 ≤ . . . ≤ λ1, where λ1 is the largest eigenvalue.

On the other hand, the Laplacian matrix of G is an n × n symmetric matrix
L = D − A, where D = diag(di) and di is the degree of node i ∈ V . As the
Laplacian is symmetric, positive semidefinite, and the rows sum to 0, its eigenvalues
are real and non-negative, where the smallest one is equal to zero. The Laplacian
spectrum of G is then the set of eigenvalues of L, µ1 = 0 ≤ µ2 ≤ . . . ≤ µn, with
corresponding eigenvectors vk, k = 1 . . . n.

4 Hau Chan, Leman Akoglu

2.1 Measures based on the Graph Adjacency Spectrum

In this work we consider three adjacency-spectrum based robustness measures: (1)
spectral radius, (2) spectral gap, and (3) natural connectivity.

1) Spectral radius. The largest or the principal eigenvalue λ1 of the adjacency
matrix is called the spectral radius. The effective spreading rate τ of dynamic
processes on a network, such as virus, rumor, or information spread, at which
a phase transition occurs, which specifies the onset of the remaining fraction of
infected nodes, is found to be proportional to τ = 1

λ1(A) [7]. As a result, spectral
radius has been used as a measure of graph vulnerability and robustness, e.g., in
[24, 30, 36, 37, 39].

2) Spectral gap. The difference between the largest and the second largest eigen-
values of the adjacency matrix, denoted as λ1 − λ2, is called the spectral gap. It
relates to the expansion properties of the graph [15]. In addition, dynamic pro-
cesses on graphs converge towards their steady-state, in most cases, exponentially
fast in time, with a time-constant that is related to the spectral gap. This measure
has been used as a robustness measure, e.g., in [26].

As such, spectral radius and spectral gap, based on the top eigenvalues of the
adjacency matrix, are powerful characterizers of dynamic processes on graphs.

3) Natural connectivity. This measure is defined [42] as

λ̄(G) = ln (
1

n

n∑
i=1

eλi) (1)

which can be thought of as the “average eigenvalue” of G. It is also related to
the subgraph centralities (SC) in the graph. The SC(i) of a node i is known as
its communicability [16], and is based on the “weighted” sum of the number of
closed walks that it participates in. The total subgraph centrality of a graph is

then S(G) =
∑n
i=1 SC(i) =

∑n
i=1

∑∞
k=0

(Ak)ii
k! , where (Ak)ii is the number of

closed walks of length k of node i. The k! scaling ensures that the weighted sum
does not diverge, and longer walks count less.

Noting that
∑n
i=1(Ak)ii = trace(Ak) =

∑n
i=1 λ

k
i and by Taylor series of the

exponential function we can write

S(G) =
∞∑
k=0

n∑
i=1

(Ak)ii
k!

=

n∑
i=1

∞∑
k=0

λki
k!

=

n∑
i=1

eλi .

As such, natural connectivity can also be thought of as the “average commu-
nicability” in G. It has been used as a measure of robustness, e.g., in [8, 9].

2.2 Measures based on the Graph Laplacian Spectrum

In this work we also consider three Laplacian-spectrum based robustness measures:
(1) algebraic connectivity, (2) effective resistance, and (3) spanning tree count.

Optimizing Network Robustness by Edge Rewiring: A General Framework 5

1) Algebraic connectivity. The second smallest, or the first non-zero, eigenvalue
µ2 of the Laplacian is called the algebraic connectivity [18]. As the multiplicity of
Laplacian eigenvalues equal to zero is related to the number of connected compo-
nents, algebraic connectivity is equal to zero for disconnected graphs.

Intuitively, the larger the algebraic connectivity is, the more difficult it is to
cut a graph into independent components. Another interpretation for algebraic
connectivity comes from node and edge connectivity of the graph κv and κe,
respectively. As it lower-bounds these connectivity metrics, i.e., 0 ≤ µ2 ≤ κv ≤
κe ≤ dmin, the larger the algebraic connectivity, the larger the number of edges
required to disconnect a network and hence, the more robust a network. It has
been studied as a robustness measure of a graph, e.g., in [21, 35, 40].

2) Effective resistance. This measure is the sum of the effective resistances over
all node pairs, which is defined as the electrical resistance seen between the nodes
when the graph is treated as a resistor network [19]. It is also equal to the sum of
the (inverse) non-zero Laplacian eigenvalues [22]. As such,

R =
1

2

n∑
i,j

Rij = n
n∑
i=2

1

µi
(2)

Ellens et al. [14] propose to use effective resistance as a quantifier for graph
robustness; the smaller the effective graph resistance the more robust the network.
The authors make several arguments as to why it qualifies as a robustness measure.
First, similar to natural connectivity in Eq. (1), it takes both the number of paths
between node pairs and their length into account, therefore the number of back-
up paths as well as their quality is considered. Second, effective graph resistance
can be approximated by the algebraic connectivity, which is used as a measure
for network robustness. Moreover, it relates to the distance between the nodes.
As Chandra et al. [10] shows, effective resistance can be written in terms of the
expected commute time between node pairs;

Rij =
1

2m
(E(Tij) + E(Tji))

where Tij denotes the number of transitions (i.e., hitting time) to reach node j
starting in i.

3) Number of spanning trees. Baras and Hovareshti [3] suggest the number of
spanning trees1 as an indicator of network robustness. As a consequence of the
Kirchhoff’s matrix-tree theorem, the number of non-identical spanning trees can
be written as a function of the unweighted Laplacian eigenvalues [6] as

S =
1

n

n∏
i=2

µi (3)

2.3 Discussion on Spectrum-based Measures

The spectrum-based measures we consider in this work are well-established and
widely-used measures [3, 8, 9, 14, 21, 24, 26, 30, 35, 36, 37, 39, 40]. They are good
indicators for the robustness of a given graph, as they relate closely to properties
such as connectivity (a.k.a. path capacity), expansion, propagation dynamics, etc.

1 A spanning tree is a subgraph over all nodes, containing (n-1) edges and no cycles.

6 Hau Chan, Leman Akoglu

The choice of a specific measure is primarily application-dependent. For exam-
ple, trying to reduce propagation of a disease on a network would aim to modify a
graph’s structure to maximally decrease its spectral radius. To reduce the number
of alternative paths in a communication system (e.g., among terrorists), one may
adopt natural connectivity or effective resistance.

While the measure to be used depends on the application, there exist intuitive
criteria one could think of that a reasonable robustness measure should satisfy. For
example, it would be desired that the measure increases when new edges are added
to a given network. In other words, adding more infrastructure that potentially
costs resources (e.g., $) should ideally (strictly) improve the robustness of the
network. It would also be desirable for the measure to be able to quantify the
robustness of different graphs with multiple connected components.

In retrospect, we can show that effective resistance and natural connectivity are
strictly monotonic [14], while algebraic connectivity is only monotonic (monotonic-
ity follows directly from the interlacing theorem [11]). On the other hand, effective
resistance cannot be computed for disconnected graphs, for which it is defined to
be infinity, whereas algebraic connectivity is zero for all disconnected graphs and
hence cannot differentiate the robustness of different graphs with multiple com-
ponents. Natural connectivity, on the other hand, could yield different values for
different disconnected graphs, since the spectrum of a disconnected graph is the
union of the spectra of all of its individual components [5].

The list of desired properties, some examples of which are discussed above,
could be compiled under a set of axioms (e.g., strict monotonicity) and a formal
analysis of which measures satisfy which desired properties (i.e., axioms) can be
carried out. Those could then serve as guidelines for applications into the choice
of a measure. As such, an axiomatic analysis of spectral measures and others is
a very promising research direction. However, providing a formal analysis that
could guide toward the choice of a specific measure is outside the scope of this
work. Our goal is to develop a framework for manipulating the graph structure
by (degree-preserved) edge-rewiring—provided that a spectral measure is already
chosen to quantify the graph robustness.

3 Optimizing Spectrum-based Network Robustness by Edge Rewiring

Given a graph and a robustness measure of interest, how can we rewire a few of the
edges such that its robustness is maximally increased? In this work, we consider
this general question under two specific criteria: (1) we focus on the spectrum based
measures, and (2) we aim for solutions that preserve the node degrees.

The reason we focus on spectrum based measures is that they are extremely
effective in capturing the inherent connectedness of a network, as described in
detail in the previous section. They relate to phase transitions, spreading speed,
and convergence rates of dynamical processes on graphs, capture node centralities,
resistance and distances between node pairs, and partitionability at large. As such,
they have wide applicability as robustness measures in practice.

The rationale for optimizing robustness via degree-preserving edge rewiring
is related to management costs. To improve robustness, one can consider adding
new edges, which would change the degree (i.e., the load) of several nodes in the
network. Most infrastructure networks, however, present a capacity constraint.

Optimizing Network Robustness by Edge Rewiring: A General Framework 7

For example, adding new transmission lines to a power station, new flight routes
to an airport, or new traffic cables to an Internet Service Provider are all ex-
pected to incur additional management and hardware costs compared to rerouting
power, flights, or traffic by swapping a few links, where degrees (i.e., expected load)
are preserved. As such, optimizing robustness based on (degree-preserving) edge
rewiring is often more appropriate and less costly than edge addition in practice.

Overall, the problem statement we consider can be written as follows.

Edge Rewiring Problem:

Given a graph G, a robustness measure r, and an integer budget k;

Find k pairs of edges, the rewirings of which maximally increase r(G).

The rewiring of a pair of edges (i, j) ∈ E and (p, r) ∈ E involves removing
these edges and adding either edges (i, p) /∈ E and (j, r) /∈ E or edges (i, r) /∈ E
and (j, p) /∈ E, whichever yields a higher r. This scheme ensures that the degrees
of the nodes are preserved.

The spectrum based robustness measures use either some or all of the eigenval-
ues of the adjacency or the Laplacian matrix of the graph. When manipulations
are introduced to the graph by edge rewiring, the spectrum of the graph changes.
As such, the measures need to be updated accordingly. Computing the eigenvalues
from scratch for each possible manipulation to be done on the graph, however, is
very costly. Ideally, one would only update the eigenvalues incrementally. In the
following we show that one can compute the changes to eigenvalues (and eigen-
vectors) efficiently using the first order matrix perturbation theory [33].

3.1 Updating the Graph Spectrum by Matrix Perturbation Theory

Let (αj ,xj) be the jth (eigenvalue, eigenvector) pair of a symmetric (n×n) matrix
M. Let ∆M and (∆αj ,∆xj) denote the change in M and (αj ,xj) ∀j, respectively,
when entries of M are modified. Suppose after the modifications M becomes

M̃ = M +∆M

where (α̃j , x̃j) is written as

α̃j = αj +∆αj and x̃j = xj +∆xj

Lemma 1 Given a perturbation ∆M to a matrix M, its eigenvalues can be up-
dated by

∆αj = xj
T∆M xj. (4)

Lemma 2 Given a perturbation ∆M to a matrix M, its eigenvectors can be up-
dated by

∆xj =
n∑

i=1,i6=j

(
xi
T∆M xj

αj − αi
xi

)
. (5)

Proof Proofs of Lemma 1 and Lemma 2 are omitted for brevity. See [33].

8 Hau Chan, Leman Akoglu

3.2 Updating the Spectrum-based Measures under Edge Manipulation

Rewiring the edges of a given graph involves deleting existing edges and intro-
ducing new edges. In order to choose promising edges that will have high positive
impact on a specified robustness measure r, we need to quantify the effect an edge
addition/deletion would have on robustness, i.e. the increase/decrease in r. In the
following, we discuss how robustness changes for edge addition for the six measures
in §2.1 and §2.2. Similar but negated equations follow for edge deletion.

3.2.1 Spectral radius. When an edge (i, j) is added to a graph, the change in its
spectral radius ∆λ1 can be written as

∆λ1 = u1
T∆A u1 = 2u1iu1j (6)

based on Eq. (4) of Lemma 1, where M is replaced with the adjacency matrix A.
That is, ∆A(i, j) = ∆A(j, i) = 1 and 0 elsewhere.

3.2.2 Spectral gap. The change in spectral gap when an edge (i, j) is added can
be denoted as ∆λ1 −∆λ2 and can be written similarly as

∆λ1 −∆λ2 = u1
T∆A u1 − u2

T∆A u2 = 2(u1iu1j − u2iu2j) (7)

3.2.3 Natural connectivity. When an edge (i, j) is added, we can write the change
in natural connectivity N as

∆N = ln (
1

n

n∑
j=1

eλj+∆λj)−N

= ln (eλ1(e∆λ1 + e(λ2−λ1)e∆λ2 + . . .+ e(λn−λ1)e∆λn))− ln n−N

= ln (e2u1iu1j + e(λ2−λ1)e2u2iu2j + . . .+ e(λn−λ1)e2uniunj) + ln
eλ1

n
−N

≈ ln (e2u1iu1j + e(λ2−λ1)e2u2iu2j + . . .+ e(λt−λ1)e2utiutj) + ln
eλ1

n
−N (8)

Notice that the coefficients e(λk−λ1) are getting smaller with increasing k as
the gaps between the largest and the successive eigenvalues get larger. In fact,
real-world graphs have been observed to exhibit a very skewed, power-law-like
spectrum where only the top few eigenvalues have large magnitude, which drops
super-linearly fast for increasing k [17]. Moreover, if the graph is robust it is
expected that (λ2 − λ1), i.e., the spectral gap, is already large. This makes it
possible to approximate the natural connectivity with the top t eigenvalues with
the highest algebraic magnitude for a considerably small t. A rule of thumb is
to set t = 30 as suggested in [38] where the skewed spectrum of real graphs has
been leveraged to approximate local triangle counts. Finally, for edge deletions we
replace the 2utiutj terms with −2utiutj, for k = 2 . . . t.

Optimizing Network Robustness by Edge Rewiring: A General Framework 9

3.2.4 Algebraic connectivity. When an edge (i, j) is added to a graph, the change
in its algebraic connectivity ∆µ2 can be written as

∆µ2 = v2
T∆L v2 = (v2i − v2j)

2 (9)

based on Eq. (4) of Lemma 1, where M is replaced with the Laplacian matrix L,
∆L(i, j) = ∆L(j, i) = −1, ∆L(i, i) = ∆L(j, j) = 1, and 0 elsewhere.

3.2.5 Effective resistance. When an edge (i, j) is added, we can write the change
in effective resistance R as

∆R = n
(1

µ2 +∆µ2
+

1

µ3 +∆µ3
+ . . .+

1

µn +∆µn

)
−R

= n
(1

µ2 + (v2i − v2j)2
+

1

µ3 + (v3i − v3j)2
+ . . .+

1

µn + (vni − vnj)2
)
−R

≈ n
(1

µ2 + (v2i − v2j)2
+ . . .+

1

µt + (vti − vnj)2
)
−R (10)

Similar to natural connectivity, effective resistance requires all the eigenvalues
in the spectrum. However, computing them all would be very expensive, especially
for large graphs with large n. As the eigenvalues of the graph Laplacian are all
non-negative, notice that the denominators (µk +∆µk) are expected to get larger
with increasing k, and hence yield smaller terms. As such, one can approximate
∆R with the bottom t eigenvalues with the smallest magnitude. For edge deletions,
we replace the denominators with (µk − (vki − vkj)

2) for k = 2 . . . t.

3.2.6 Number of spanning trees. When an edge (i, j) is added, we can write the
change in the number of spanning trees S as

∆S =
1

n
(µ2 +∆µ2) (µ3 +∆µ3) . . . (µn +∆µn)− S

=
1

n

(n∏
i=2

µi
) (µ2 +∆µ2)

µ2

(µ3 +∆µ3)

µ3
. . .

(µn +∆µn)

µn
− S

≈ S (
µ2 + (v2i − v2j)

2

µ2

µ3 + (v3i − v3j)
2

µ3
. . .

µt + (vti − vtj)
2

µt
− 1) (11)

Note that this measure also requires the entire spectrum, which is expensive
to compute for large n. Notice that increasing the smaller eigenvalues would yield
larger terms in the multiplication and hence yield higher increase in S, while the
terms involving larger eigenvalues would be close to one. Therefore, one can focus
on the smallest t eigenvalues of the Laplacian for efficiency. Finally, we replace the
numerators with (µk −∆µk) for edge deletions for k = 2 . . . t.

Notice that for the last two measures, we suggest to use the t smallest eigen-
values of the Laplacian for efficient computation. The justification of using the t
smallest Laplacian eigenvalues is because real-world graphs have been observed to
exhibit a very skewed, power-law-like Laplacian spectrum where only the bottom
few eigenvalues have small magnitude (see Figure 1).

10 Hau Chan, Leman Akoglu

10
0

10
1

10
2

10
−2

10
−1

10
0

Rank (lowest to highest)

L
a
p
la

c
ia

n
 E

ig
e
n
v
a
lu

e
s
 (

S
m

a
lle

s
t
3
0
)

Oregon−A

Oregon−B
Oregon−C
Oregon−D

Oregon−E
Oregon−F

Oregon−G
Oregon−H

Oregon−I
P2P−A

P2P−B
P2P−C
Flight

Airport

Student Version of MATLAB

Fig. 1 Bottom t = 30 smallest eigenvalues versus rank (log-log) of the Laplacian matrix of
real-world graphs (See § 5.2 for dataset descriptions).

3.3 Proposed Edge Rewiring Algorithm

In this work, we strive to answer the question of which k edge pairs should be
rewired to increase a given spectral measure of interest the most, while preserving
node degrees. Given a graph G = (V,E) with |E| = m edges, the number of
possibilities to rewire two edges is given by 2

(
m
2

)
. This is quadratic in the number

of edges, and hence is infeasible for large graphs, even for k = 1.

For this reason, we propose a strategy that performs an edge rewiring as a series
of edge additions and edge deletions. In the previous section we showed how the
six robustness measures that we consider change if a single edge were to be added
(or deleted). As such, for the edge addition (deletion) problem, one would simply
choose the edge with the largest (smallest) ∆r. For the general problem of selecting
the optimal set of k edges to add (delete) to maximally increase (decrease) the
robustness of an input graph, however, is often NP-hard. In fact, it has been proven
that adding/deleting a specified number of edges to a graph to maximize/minimize
its algebraic connectivity is NP-hard [28], and so it is for its spectral radius [39].

As the set selection problem poses combinatorial challenges, and given that the
complimentary problem of optimal edge addition/deletion is NP-hard (at least
for several of our measures), we propose a heuristic iterative algorithm, called
EdgeRewire. Our approach is based on searching for the edge pairs one by one
and performs each rewiring incrementally step by step in a best-first search fashion.
Specifically, we rewire one pair of edges in a three step process and repeat this
process k times; (1) add non-existing edge (i, p) that increases robustness the
most, (2) remove edge (i, j) (or (p, r)) that decreases robustness the least, and
(3) add non-existing edge (j, r) and remove edge (p, r) (or remove (i, j)) that
increases robustness the most (or decreases it the least). These steps are illustrated
in Figure 2, and the general outline of EdgeRewire is given in Algorithm 1 which
we describe in more detail as follows.

Optimizing Network Robustness by Edge Rewiring: A General Framework 11

Algorithm 1 EdgeRewire

Input: Graph G = (V,E), robustness measure r, integer budget k

Output: Updated graph G̃ with k pairs of edges rewired (degrees preserved)
1: if r is based on adjacency spectrum then
2: Compute top t (eigenvalue, eigenvector) pairs (λk,uk) of A, 1 ≤ k ≤ t
3: else if r is based on Laplacian spectrum then
4: Compute bottom t (eigenvalue, eigenvector) pairs (µk,vk) of L, 2 ≤ k ≤ t
5: end if
6: for iter = 1 to k do
7: Select edge (i, p) to add, s.t. (i, p) /∈ E, i ∈ V, p ∈ V, i 6= p, that maximizes ∆r1:

Eq. (6) {if r is spectral radius λ1}
Eq. (7) {if r is spectral gap λ1 − λ2}
Eq. (8) {if r is natural connectivity N}
Eq. (9) {if r is algebraic connectivity µ2}
Eq. (10) {if r is effective resistance R}
Eq. (11) {if r is number of spanning trees S}

8: Select edge (i, j) or edge (p, r) to remove, such that j ∈ N (i) and r ∈ N (p), that
maximizes ∆r2 (note that ∆r2 is negative) (suppose edge (i, j) it is)

9: Select node r ∈ N (p) for which removing edge (p, r) and adding edge (j, r) maximizes
total ∆r3 (note that ∆r3 may be positive or negative)

10: Repeat Lines 7-9 with next edge (i, p) with highest ∆r1, until ∆r1 +∆r2 +∆r3 > 0
11: A(i, p)=A(p, i)=1, A(j, r)=A(r, j)=1, A(i, j)=A(j, i)=0, A(p, r)=A(r, p)=0
12: Update t eigenvalues by Eq. (4)
13: Update t eigenvectors by Eq. (5)
14: end for

We emphasize that our proposed algorithm is general and accommodates a
list of six spectrum-based measures. Depending on the matrix (A or L) a given
measure r is based on, we start by computing the related eigen-pairs—top t for the
adjacency based measures in §2.1 (Line 2) and bottom t for the Laplacian based
ones in §2.2 (Line 4). Note that we compute the t eigen-pairs for all measures,
including spectral radius λ1, spectral gap (λ1 − λ2), and effective resistance µ2,
even though they do not use the whole spectrum for reasons we will discuss later
in this section.

Main rewiring steps: We proceed by selecting the edge pairs to be rewired one by
one in an iterative way (Line 6). Within each iteration we first find the best non-
existing edge to add that would increase robustness r the most (Line 7). We denote
this edge by (i, p). As the edge addition increases the degrees of i and p by 1, we
search in the local neighborhood N (i) of i and N (p) of p for an edge, the removal
of which would reduce r the least (Line 8) (note that our spectral measures are all
monotonic). Suppose the selected edge is (i, j). Removal of (i, j) brings degree of
i to its original value, while decreases j’s by 1. Next, we find the neighbor r of p
where the removal of edge (p, r) and addition of edge (j, r) increases r the most or
decreases r the least (i.e., yields largest change) (Line 9). Figure 2 illustrates these
steps. If the total ∆r from steps 7-9 is positive, we commit all the changes (note
that all degrees would be preserved). Otherwise we discard all modifications, and
continue with the next best edge from Line 7.

Updating the eigen-pairs: For all successful iterations, the graph structure changes
(Line 11) and hence the t eigen-pairs as well. Instead of recomputing the eigen-
pairs every time, we update them using Lemma 1 and 2 for efficiency (Lines 13-
14). Notice that computing the update ∆r for each of our measures involves the

12 Hau Chan, Leman Akoglu

i p i p

j

i p

j r

1 2

3

i p

j r

Fig. 2 Illustration of the main rewiring steps (Lines 7, 8, and 9) of Algorithm 1 on a toy
graph. Also shown is the resulting graph after k = 1 degree-preserving rewiring.

corresponding eigenvector(s) (Eq. (6) through Eq. (11)). That is the reason why we
need to also update the eigenvectors when the graph structure changes. According
to Eq. (5) of Lemma 2, updating an eigenvector involves all the other eigen-pairs.
For efficiency, one can use only the top/bottom t depending on the measure. Either
way, we need to compute (and later update) t eigen-pairs at every iteration, even
if the measure of interest involves less eigenvalues like λ1, (λ1− λ2) and µ2, hence
Lines 2 and 4.

Selecting the first non-existing edge: The first main step of EdgeRewire is to
find a disconnected pair of nodes i and p, such that the addition of edge (i, p)
increases the robustness more than any other non-existing edge of the graph. For
each such edge, the increase it would incur on the robustness when added to the
graph is computed, depending on the measure, with respective formulas as listed
in Line 7 of Algorithm 1. The increase ∆r an edge incurs can be thought as its
utility score. We compute ∆r for all non-existing edges of the graph, and sort
them in decreasing order of this score. We perform this step of the algorithm (i.e.,
select a non-existing edge to add), for each rewiring, by selecting the edge at the
top of this ordered list, i.e., the edge that maximizes robustness. We skip an edge
and continue with the next one in the list, when the rewiring does not increase
robustness overall (as in Line 10).

Speeding up the selection: For sparse real world graphs, the number of non-existing
edges is often significantly larger than the number of existing edges. As a result,
computing ∆r for all non-existing edges would be computationally demanding
for large graphs. To speed up the selection, one can build an approximate but
promising ordering by considering only a subset of the non-existing edges.

For example, consider the spectral radius measure, where ∆r(i, p) = 2u1iu1p.
Since we are interested in edges with large ∆r, we can first sort the entries, i.e.
nodes, of u1 in decreasing order, select the top l nodes, and consider all pairings

Optimizing Network Robustness by Edge Rewiring: A General Framework 13

of these nodes. This would yield approximately l2 candidate edges with largest
∆r, excluding already-existing edges. The value l can be chosen depending on the
desired candidate edge set size, however, often a small value would be enough as
the number of candidate edges produced is quadratic in l. As another example,
consider the algebraic connectivity, where ∆r(i, p) = (v2i − v2p)2. In this case,
one can sort the nodes by v2 and build a set of candidate edges by pairing the top
few nodes having the largest values with the bottom few nodes having the smallest
values. Similar approximations can be done for other measures in order to build a
significantly smaller, nevertheless promising set of candidate non-existing edges.

In our implementation, we reconstruct a ranked list of candidate edges for
every rewiring in Line 7—as eigenvectors are updated, the ordering of nodes could
change. To speed up selection further, one can perform this step only once globally,
i.e., outside the loop before Line 6. Assuming the rewirings do not change the
eigenvectors much, and especially the ordering of nodes, a global ranking would
be quite close to the individual rankings over the iterations.

Note that the computational challenge of choosing the best edge arises only
in this first step—when we aim to find the best non-existing edge to add to the
graph. For the other steps, the search to add/delete edges is performed locally, in
the neighborhood of the nodes that we connect, which is considerably faster.

Remarks: Before we conclude, we comment on several aspects of EdgeRewire.
In the proposed algorithm, we start by adding the best non-existing edge and
build the following steps around it. An alternative way of rewiring is to start by
removing the existing edge that would decrease robustness the least and build the
solution around it. Experiments with this approach, however, produced notably
inferior results. This is potentially due to the fact that such an edge initially picked
to be removed lives in the periphery of the graph, connecting low-degree nodes,
and thus building a solution at the edge of the network gives poor results. Another
remark is about the incremental construction of each rewiring, through three steps
(Lines 7, 8, and 9). As the decision at each step is local, the end result may not
always yield a positive total difference in robustness, in which case steps 7-9 are
repeated until a plausible solution is found.

4 Related Work and Alternative Approaches

We covered related work on measures of graph robustness in §2. Therefore, in this
section, we discuss related work on graph manipulation algorithms for optimizing
robustness. The main type of manipulations include (1) the addition/deletion of
edges and/or nodes, and (2) the rewiring of edges.

4.1 Edge/Node Addition/Deletion

These manipulation algorithms can be organized in various ways. For instance,
one group focuses on improving graph robustness by edge additions, whereas an-
other aims to degrade robustness by carefully removing edges and/or nodes. The
algorithms can also be grouped based on their approaches. While most of them are
intuitive heuristic based approaches, several others involve optimization schemes.

14 Hau Chan, Leman Akoglu

Table 1 Comparison of related work. MIH: measure-independent heuristic, Opt: optimization-
based approach. Measures are those that the methods in the Opt-category aim to optimize.

Related work Nod
e/e

dg
e de

let
ion

Ed
ge

ad
dit

ion

Ed
ge

rew
iri

ng

Degr
ee-

pr
ese

rvi
ng

MIH
/ Opt

Meas
ur

es

[2], [20] X MIH
[4] X X MIH

[37], [39] X Opt spectral radius λ1
[36] X X Opt λ1
[41] X Opt algebraic connectivity µ2
[19] X Opt effective resistance R
[8] X X Opt natural connectivity N

[25], [32], [43] X X MIH
[35] X Opt µ2
[40] X X Opt λ1 and µ2

EdgeRewire X X Opt 6 measures (§2.1 & §2.2)

The most frequently studied manipulation heuristic to degrade robustness has
been the removal of most connected (i.e., highest degree) nodes [2, 4, 20]. Holme et
al. [20] includes a comparative study where they show that removing nodes/edges
based on betweenness centrality is better than degree centrality, especially for
removal of edges. Beygelzimer et al. [4] investigate modification schemes to improve
network robustness. They study edge addition strategies based on (1) random
and (2) preferential schemes, and find that preferential edge addition, specifically
connecting the lowest degree nodes, yields the best overall results.

The above strategies are heuristics that modify a given graph structure irre-
spective of a robustness measure. That is, they select nodes/edges based on intu-
itive criteria (e.g., centrality) rather than directly optimizing a particular measure.
As such, they would select the same set of nodes/edges to manipulate for any ro-
bustness measure of interest. Unlike these measure-independent heuristics, several
approaches involve optimization techniques to systematically manipulate a specific
robustness measure, such as spectral radius [36, 37, 39], algebraic connectivity [41],
effective graph resistance [19], and natural connectivity [8].

The algorithms proposed in all of these works focus on addition/deletion of
nodes/edges or altering the edge weights.

4.2 Edge Rewiring

Similar to the above, edge rewiring approaches can be grouped into heuristic versus
optimization based solutions. Moreover, several aim to perform degree-preserving
rewiring whereas others do not consider such a constraint.

Schneider et al. [32] introduce a new robustness measure in terms of the relative
size of the largest component during iterative malicious attacks, and propose a
simple degree-preserving rewiring scheme to improve this measure. In particular,
two randomly selected edges are swapped if the robustness with respect to the
node attacks is increased. Zeng et al. [43] adopt their measure and use the same
rewiring scheme to improve robustness with respect to edge based attacks.

Optimizing Network Robustness by Edge Rewiring: A General Framework 15

Surprisingly, the robustness optimization by Schneider et al. [32] reveal an
emerging “onion-like” topology that the resulting networks exhibit, consisting of
a core of highly connected nodes hierarchically surrounded by rings of nodes with
decreasing degree. Such a structure resembles highly assortative networks [29], in
which nodes of similar degrees are connected. Louzada et al. [25] use this insight to
develop a new rewiring approach, which they call smart rewiring, that is likely to
increase assortativity by connecting two average degree nodes. Their rewiring ap-
proach also decreases the emphasis on hubs such that their removal would not have
huge impact on the global connectivity. Their scheme is also degree-preserving.

Beygelzimer et al. [4] also study a list of rewiring heuristics. Preferential
rewiring disconnects a random edge from the highest degree node, preferential
random edge rewiring disconnects a random edge from its higher degree node, and
random rewiring removes a random edge—after which all add an edge by connect-
ing two random nodes. They find preferential schemes to perform better. We note
that none of their schemes is degree-preserving.

All of the rewiring strategies to this end are measure-independent heuristics. As
for optimization-based approaches, Sydney et al. propose a rewiring algorithm for
optimizing algebraic connectivity, however their approach is not degree-preserving
[35]. Closest to our work are the degree-preserving rewiring approaches proposed by
Van Mieghem et al. for optimizing spectral radius λ1 and algebraic connectivity µ2

[40]. They analyze Newman’s assortativity ρ [29] and provide theoretical bounds
that show ρ to correlate positively with λ1 and negatively with µ2. Based on
their analysis they propose an assortative rewiring algorithm to improve λ1 which
however decreases µ2, and a disassortative one with the opposite effects.

We compare EdgeRewire to the approaches proposed by [25], [32], and [40]
in the experiments, where we describe them in more detail. Table 1 provides a
summary and comparison of related work.

5 Evaluation

The goals of this section are to show (1) that our EdgeRewire algorithm is sig-
nificantly more effective in improving the robustness of a given graph as compared
to several state-of-the-art approaches, and (2) that our rewired graphs are less
vulnerable to attacks than graphs rewired through these other methods.

EdgeRewire is applicable to all six spectrum based measures introduced in
§2. Two of the measures, particularly λ1 and µ2, have been studied extensively as
graph robustness measures, for which there exist several state-of-the-art degree-
preserving rewiring approaches proposed in the literature that we use as competi-
tors or baselines. For the other four spectrum based measures (i.e., spectral gap,
natural connectivity, effective resistance, and number of spanning trees), we are
the first to consider them in the context of degree-preserving edge-rewiring. Nev-
ertheless, we apply the methods earlier proposed for λ1 and µ2 for manipulating
those measures as well and compare EdgeRewire to their results. Note that these
baselines are not expected to perform well for these four measures as they were not
designed for them in the first place, however since we are the first to consider these
latter four measures, we use them as baselines for the sake of comparison. Next we
briefly describe these existing approaches, and then compare their performances
against EdgeRewire on real-world graphs.

16 Hau Chan, Leman Akoglu

Table 2 Dataset summary; 3 categories of datasets used in evaluation (AS router, P2P, and
flight networks) where rewiring is applicable. |V |: number of nodes, |E|: number of edges.
Datasets listed in increasing size order within each category. λ: spectral radius, µ: algebraic
connectivity. All publicly available, see §5.2 for links to the datasets.

Dataset |V | |E| λ µ

Oregon-A (O-A) 633 1,086 20.61 0.19
Oregon-B (O-B) 1,503 2,810 28.74 0.13
Oregon-C (O-C) 2,504 4,723 35.19 0.14
Oregon-D (O-D) 2,854 4,932 35.98 0.08
Oregon-E (O-E) 3,995 7,710 40.65 0.08
Oregon-F (O-F) 5,296 10,097 43.06 0.02
Oregon-G (O-G) 7,352 15,665 51.19 0.06
Oregon-H (O-H) 10,860 23,409 56.84 0.06
Oregon-I (O-I) 13,947 30,584 61.65 0.06
P2P-A (P-A) 6,301 20,777 28.38 0.07
P2P-B (P-B) 8,114 26,013 28.45 0.07
P2P-C (P-C) 8,717 31,525 22.38 0.18

Flight 2,939 15,677 63.00 0.04
Airport 1,574 34,430 112.35 0.22

5.1 Existing edge rewiring approaches as baselines

To show the effectiveness of EdgeRewire, we compare the robustness values of
our rewired graphs to those of graphs rewired by the following existing heuristics.

1. Assortative (Van Mieghem et al. [40]): Randomly select two edges with four
different nodes. Rewire the edges such that the two highest-degree nodes and
the two lowest-degree nodes are connected.

2. Disassortative (Van Mieghem et al. [40]): Randomly select two edges with four
different nodes. Rewire the edges such that the highest degree node is linked to
the lowest degree node, and the remaining nodes are connected to each other.

3. Smart (Louzada et al. [25]): Randomly select a node i with at least two neigh-
bors where their degrees are larger than one. Select the lowest degree neighbor,
say j, and the highest degree neighbor, say k, of i. Randomly select a neighbor
of j, say m, and a neighbor of k, say n. Rewire the edges such that j and k
and m and n are connected while j and m and k and n are disconnected.

4. Random (Schneider et al. [32]): Randomly select two edges and swap two ends
arbitrarily in one of two ways that preserve the degrees.

We note that the above approaches do not explicitly check whether each
rewiring achieves an increase in robustness. As such, we also consider variants
of them that commit a rewiring only if it increases the measure, or else repeat
the random selection. In other words, we require each heuristic to check for im-
provement of the robustness measure under consideration at every step. Overall,
we compare to eight different baseline heuristics.

5.2 Dataset description

We use three different categories of datasets to evaluate the methods as shown
in Table 2. Those include AS router, P2P, and flight networks for which edge

Optimizing Network Robustness by Edge Rewiring: A General Framework 17

rewiring is meaningful and applicable (e.g., rewiring flights is seamless com-
pared to rewiring road networks). All of our datasets are publicly available
at http://snap.stanford.edu/data/ (Oregon and Gnutella) and at http://

konect.uni-koblenz.de/networks/ (OpenFlights and US Airports).

– Oregon Autonomous System (AS) Router Networks These networks
are AS-level connectivity networks inferred from Oregon route-views, and were
collected once a week, for 9 consecutive weeks. The nine Oregon graphs, which
we name as Oregon-A through Oregon-I, correspond to individual weeks.

– Gnutella Peer-to-Peer Networks Gnutella graphs are peer-to-peer (P2P)
connectivity networks collected daily, over consecutive days. The three Gnutella
graphs, named P2P-A through P2P-C, correspond to individual days.

– OpenFlights and US Airports These are two networks of flights; one be-
tween US airports, and another between airports of the world in 2010, which
we name as Flight and Airport, respectively.

5.3 Evaluation based on robustness improvement on all robustness measures

We start with employing EdgeRewire and all the existing methods as described
in §5.1 on all of our real-world graphs and measure the improvement in robustness
for all the six measures that we consider. Table 3 shows the robustness improve-
ment percentages of our EdgeRewire versus the best performing baseline for each
respective adjacency-spectrum based measure and Laplacian-spectrum based mea-
sure after 100 edge-rewirings and 40 edge-rewirings, respectively. It is clear that
our EdgeRewire outperforms the best baseline by a very large margin for all the
measures and on all of the datasets.

We remark that we are the first to introduce a degree-preserving rewiring
framework/algorithm for spectral gap, natural connectivity, effective resistance,
and number of spanning trees. As such, there is no existing method customized
for those measures. One the other hand, there are degree-preserving algorithms
such as those by Van Mieghem et al. [40] for spectral radius λ1 and algebraic
connectivity µ2. Therefore, in the following, we provide more in depth evaluation
of performance on these two measures. For the rest of the text, we denote λ1
and µ2 as λ and µ for simplicity, and refer to EdgeRewire that optimizes the
respective measures as EdgeRewire-λ and EdgeRewire-µ.

5.4 Evaluation based on robustness improvement on λ and µ

As mentioned in §5.1, we also consider a variant of each baseline that ensures
improvement at every rewiring step. Correspondingly, we introduce AssortativeM
(M, for modified), Smart-λ, and Random-λ to guarantee that they increase λ
at every rewiring step. Moreover, we introduce DisassortativeM, Smart-µ, and
Random-µ for improving µ at every rewiring step. Van Mieghem et al. [40] show
that Assortative improves λ but decreases µ, whereas Disassortative improves µ
while decreasing λ. Therefore, we do not consider the opposite variants of them
(i.e., it does not make sense to consider Assortative-µ and Disassortative-λ).

18 Hau Chan, Leman Akoglu

Table 3 Edge-rewiring performances: robustness improvement percentages (higher is better)
on all our real-world graphs after k = 100 and k = 40 rewirings for adjacency-spectrum based
measures and Laplacian-spectrum based measures, respectively. λ1: spectral radius, λ1 − λ2:
spectral gap, N: natural connectivity, µ2: algebraic connectivity, R: effective resistance, and
S: number of spanning trees. Values in non-italic for EdgeRewire and values in italic in
parentheses for the best performing baseline (see §5.1) for each respective measure demonstrate
the superiority of EdgeRewire over existing approaches.

Measures O-A O-B O-C O-D O-E O-F

λ1 12.41 11.71 8.89 7.65 6.72 7.52
(best baseline) (8.05) (5.38) (3.58) (2.54) (1.92) (1.89)
λ1 − λ2 39.57 30.64 29.43 31.37 19.70 23.21

(36.57) (27.30) (19.30) (22.44) (10.89) (11.31)
N 14.86 13.28 9.84 8.45 7.34 8.17

(9.77) (6.07) (3.75) (2.78) (2.37) (2.20)

µ2 95.90 61.09 53.33 58.01 55.37 299.16
(43.72) (12.37) (1.39) (23.19) (9.88) (42.68)

R 37.18 36.75 34.05 35.53 35.76 48.18
(10.18) (13.77) (4.20) (5.25) (4.26) (9.34)

S 7901.53 3649.20 858.62 997.89 4024.50 5157.66
(2409.75) (1618.57) (283.79) (551.54) (146.27) (413.05)

Measures O-G O-H O-I P-A P-B P-C

λ1 7.21 6.35 5.76 12.61 12.66 21.53
(best baseline) (1.85) (1.20) (0.93) (0.30) (0.20) (0.11)
λ1 − λ2 23.00 19.67 17.47 49.15 53.65 114.59

(9.96) (5.96) (4.96) (3.77) (4.04) (2.85)
N 7.73 6.76 6.10 14.32 14.38 25.10

(2.03) (1.33) (0.98) (0.35) (0.27) (0.11)

µ2 86.01 51.35 27.57 185.59 119.71 69.83
(14.02) (7.71) (6.13) (0.00) (0.01) (0.00)

R 41.35 42.83 31.43 37.18 10.64 6.88
(3.84) (3.62) (2.98) (1.35) (0.18) (0.18)

S 14898.57 4028.65 2398.93 18282.71 43580.95 92550.46
(229.69) (84.85) (63.59) (36.44) (22.13) (11.88)

Measures Airport Flight

λ1 1.28 3.53
(best heuristic) (0.26) (0.42)
λ1 − λ2 2.13 9.59

(1.70) (4.85)
N 1.32 3.73

(0.25) (0.46)

µ2 17.33 140.44
(12.92) (4.45)

R 42.92 42.47
(3.40) (4.85)

S 119051.84 591652.13
(201.48) (538.66)

To show that EdgeRewire-λ and EdgeRewire-µ are effective in improving λ
and µ, respectively, we compare the graphs rewired by our methods to graphs
rewired by different heuristics. In particular, we record the λ and µ values of the
rewired graphs after each successive edge-rewiring. Figure 3 shows the λ values for
four example graphs using EdgeRewire-λ and the corresponding heuristics where
we perform the rewiring procedure up to 500 times. Figure 4 shows the µ values of
the rewired graphs using EdgeRewire-µ and the corresponding heuristics where
we repeat the procedure 200 times. Clearly, our methods obtain much higher λ and

Optimizing Network Robustness by Edge Rewiring: A General Framework 19

Table 4 Edge-rewiring (λ) performances: λ value (higher is better) after k = 500 rewirings.

Methods O-A O-B O-C O-D O-E O-F O-G O-H

EdgeRewire-λ 24.38 37.05 43.50 41.94 48.49 52.33 61.38 67.28
Assortative 23.51 32.88 38.99 38.62 43.38 45.84 54.17 59.37
AssortativeM 24.04 33.53 39.45 39.17 43.87 46.41 54.81 59.96
Smart 20.86 29.59 36.20 36.25 40.90 43.49 51.67 57.18
Smart-λ 21.07 30.26 37.04 37.55 42.44 45.11 53.39 58.67
Random 21.18 29.61 36.00 36.25 41.01 43.75 52.00 57.40
Random-λ 23.28 31.85 38.05 38.50 42.85 45.56 53.78 58.98

Methods O-I P-A P-B P-C Airport Flight

EdgeRewire-λ 71.93 42.56 43.28 35.06 117.69 71.49
Assortative 63.96 28.07 28.12 22.14 112.79 63.78
AssortativeM 64.34 28.83 28.75 22.49 113.75 64.36
Smart 61.98 27.71 27.90 21.96 110.89 60.62
Smart-λ 63.22 28.43 28.48 22.44 112.62 63.28
Random 62.12 27.64 27.81 21.94 110.72 61.88
Random-λ 63.52 28.65 28.62 22.45 113.14 63.96

Table 5 Edge-Rewiring (µ) performances: µ value (higher is better) after k = 200 rewirings.
µ = 0.00 implies that the graph becomes disconnected within k rewirings.

Methods O-A O-B O-C O-D O-E O-F O-G O-H

EdgeRewire-µ 0.55 0.34 0.33 0.22 0.21 0.15 0.17 0.14
Disassortative 0.37 0.20 0.15 0.10 0.10 0.04 0.09 0.06
DisassortativeM 0.45 0.26 0.16 0.12 0.12 0.06 0.10 0.06
Smart 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00
Smart-µ 0.26 0.13 0.14 0.09 0.09 0.03 0.07 0.06
Random 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
Random-µ 0.36 0.22 0.15 0.11 0.09 0.04 0.08 0.06

Methods O-I P-A P-B P-C Airport Flight

EdgeRewire-µ 0.13 0.32 0.22 0.46 0.39 0.20
Disassortative 0.08 0.10 0.07 0.19 0.25 0.05
DisassortativeM 0.08 0.09 0.07 0.18 0.25 0.05
Smart 0.00 0.04 0.05 0.13 0.19 0.00
Smart-µ 0.07 0.07 0.07 0.20 0.27 0.05
Random 0.02 0.04 0.04 0.11 0.20 0.04
Random-µ 0.08 0.11 0.10 0.18 0.25 0.05

µ values than other heuristics. While the plots are for some selected datasets, the
plots for other datasets are very similar. Due to space consideration, we provide
Table 4 and Table 5 to show the final λ and µ values after 500 (for λ) and 200 (for
µ) edge-rewirings for all of the graphs.

In a separate experiment, we also studied the number of edge-rewirings required
for the methods to achieve a certain percentage of improvement of the original λ
and µ values. We show these results for Oregon-G in Table 6 (similar pattern is
observed for other datasets). We see that other heuristics require up to several
orders of magnitude higher number of edge-rewirings than our methods to achieve
the same improvement. Notice that the original versions of Smart and Random
heuristics disconnect the graph before reaching the desired improvement for µ2.

5.5 Running time analysis of EdgeRewire

To study the running time of our EdgeRewire, we record (1) the total time
(in seconds) to perform the kth edge-rewiring (here we refer to rewirings that

20 Hau Chan, Leman Akoglu

0 100 200 300 400 500
50

52

54

56

58

60

62

Number of Edge−Rewirings

λ

Oregon−G: Rewiring vs λ

EdgeRewire−λ

Assortative

AssortativeM

Smart

Smart−λ

Random

Random−λ

Student Version of MATLAB

0 100 200 300 400 500
20

25

30

35

Number of Edge−Rewirings

λ

P2P−C: Rewiring vs λ

EdgeRewire−λ

Assortative

AssortativeM

Smart

Smart−λ

Random

Random−λ

Student Version of MATLAB

0 100 200 300 400 500
110

111

112

113

114

115

116

117

118

Number of Edge−Rewirings

λ

Airport: Rewiring vs λ

EdgeRewire−λ

Assortative

AssortativeM

Smart

Smart−λ

Random

Random−λ

Student Version of MATLAB

0 100 200 300 400 500
60

62

64

66

68

70

72

Number of Edge−Rewirings

λ

Flight: Rewiring vs λ

EdgeRewire−λ

Assortative

AssortativeM

Smart

Smart−λ

Random

Random−λ

Student Version of MATLAB

Fig. 3 λ value (higher is better) after k edge-rewirings on Oregon-G, P2P-C, Airport, and
Flight. Our method outperforms all heuristics by a large margin. (figures best in color)

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of Edge−Rewirings

µ

Oregon−G: Rewiring vs µ

EdgeRewire−µ

Dissortative

DissortativeM

Smart

Smart−µ

Random

Random−µ

Student Version of MATLAB

0 50 100 150 200
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Edge−Rewirings

µ

P2P−C: Rewiring vs µ

EdgeRewire−µ

Dissortative

DissortativeM

Smart

Smart−µ

Random

Random−µ

Student Version of MATLAB

0 50 100 150 200

0.2

0.25

0.3

0.35

0.4

Number of Edge−Rewirings

µ

Airport: Rewiring vs µ

EdgeRewire−µ

Dissortative

DissortativeM

Smart

Smart−µ

Random

Random−µ

Student Version of MATLAB

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of Edge−Rewirings

µ

Flight: Rewiring vs µ

EdgeRewire−µ

Dissortative

DissortativeM

Smart

Smart−µ

Random

Random−µ

Student Version of MATLAB

Fig. 4 µ value (higher is better) after k edge-rewirings on Oregon-G, P2P-C, Airport, and
Flight. Our method outperforms all heuristics by a large margin. (figures best in color)

Optimizing Network Robustness by Edge Rewiring: A General Framework 21

Table 6 Oregon-G: Number of edge-rewirings required to increase λ and µ by certain per-
centage (lower is better). * depicts disconnected graph, i.e., µ = 0.

λ µ
Methods 0.01% 0.02% 0.05% 0.1% 0.05% 0.1% 0.2% 0.4%
EdgeRewire-(λ/µ) 9 18 58 164 3 3 6 10
(As/Disas)sortative 66 139 411 > 500 14 94 121 166
(As/Disas)sortativeM 59 113 323 > 500 6 18 36 98
Smart > 500 > 500 > 500 > 500 * * * *
Smart-(λ/µ) 84 190 497 > 500 73 109 > 200 > 200
Random 330 > 500 > 500 > 500 * * * *
Random-(λ/µ) 88 171 > 500 > 500 65 67 117 >200

0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

Number of Edge−Rewirings

C
u

m
u

la
ti
v
e

 r
u

n
n

in
g

 t
im

e
 (

s
e

c
)

Oregon−G: Rewiring vs running time

EdgeRewire−λ

EdgeRewire−µ

AssortativeM

DissortativeM

Smart−λ

Smart−µ

Random−λ

Random−µ

Student Version of MATLAB

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

Number of Edge−Rewirings

C
u

m
u

la
ti
v
e

 r
u

n
n

in
g

 t
im

e
 (

s
e

c
)

Oregon−G: Rewiring vs running time

EdgeRewire−λ

EdgeRewire−µ

AssortativeM

DissortativeM

Smart−λ

Smart−µ

Random−λ

Random−µ

Student Version of MATLAB

(a) (b)

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

Number of Edge−Rewirings

C
u

m
u

la
ti
v
e

 c
h

e
c
k

Oregon−G: Rewiring vs check

EdgeRewire−λ

EdgeRewire−µ

AssortativeM

DissortativeM

Smart−λ

Smart−µ

Random−λ

Random−µ

Student Version of MATLAB

0 50 100 150 200
0

20

40

60

80

100

120

Number of Iterations

C
u
m

u
la

ti
v
e
 r

u
n
n
in

g
 t
im

e
 (

s
e
c
)

Oregon−G: Iteration vs running time

EdgeRewire−λ

EdgeRewire−µ

AssortativeM

DissortativeM

Smart−λ

Smart−µ

Random−λ

Random−µ

Student Version of MATLAB

(c) (d)

Fig. 5 The plots on the top row show the total time in seconds (y-axis) to perform the kth

successful edge-rewiring with improvement in robustness (x-axis) in log-y-axis scale (a) and
linear scale (b). (c) Number of rewirings to inspect/check (y-axis) to perform the kth (success-
ful) edge-rewiring (x-axis). (d) Total time in seconds (y-axis) to perform the nth inspection
(x-axis). All of the plots are based on operations performed on Oregon-G and other datasets
are similar. (figures best in color)

yield improvement in robustness as successful/committed rewirings), (2) the total
number of candidate rewirings that are needed to be inspected (or “check”ed) to
obtain the kth (successful) edge-rewiring, and (3) the total time to perform the
inspections. Figure 5 shows that the running time of EdgeRewire grows linearly
with respect to both the number of successful rewirings (5b) as well as the number

22 Hau Chan, Leman Akoglu

of inspections (i.e., iterations) (5d). Notice that the total time of the methods
(5b) is correlated with the number of checks/inspections that they make (5c)
before committing a successful rewiring that yields improvement in robustness.
However, each inspection takes constant time, and hence the linear growth of time
by number of inspections (5d).

We note that EdgeRewire-µ takes the longest time to perform k successful
rewirings. However, we remark that it achieves significantly larger improvement in
robustness with each rewiring compared to the other methods. We demonstrate
this in Figure 6, which shows the total time (in seconds) taken by each method to
achieve a certain percentage of robustness improvement for λ (left) and µ (right).
Notice that to achieve a certain level of robustness increase, EdgeRewire takes
less time in general. Importantly, it performs significantly fewer edge-rewirings to
achieve a particular level of increase (also visible through Figures 3 and 4). The
latter is particularly critical for our task, as we often do not want to make too
many changes to the network to increase its robustness to a desired level.

5.6 Evaluation based on attack tolerance

In addition to evaluating performance in improving a robustness value of interest,
we also evaluate performance in achieving increased tolerance to attacks. In par-
ticular, we aim to quantify whether the graphs rewired by our framework are less
vulnerable to attacks as compared to the graphs rewired by the other methods.
Since the rewired graphs attain different λ and µ values after a certain number of
rewirings (i.e., budget), we measure the tolerance of a graph to an attack based on
the fraction of the robustness value retained after each attack. Intuitively, if a graph
is less vulnerable to an attack, then the attack would not change the value too
much. Therefore, the graph that responds with the least marginal change on the
value to a given attack is considered to be the most resilient, i.e., attack-tolerant.

Figure 7 demonstrates examples of how we determine which graph is the most
resilient to attacks (we defer the specific definitions of what an attack constitutes
to the next subsections). Specifically, if the fraction of λ or µ retained after a series
of attacks is consistently higher for a graph, then we conclude that the method
that generated the graph is superior. In this particular instance, graphs rewired
by our method are the most robust to various attacks (as defined and discussed
below). We create Table 7 based on this principle and select the rewiring method
that produces the graph that achieves the largest area under these resilience curves
as shown in the figure. We use the graphs that have been rewired 500 times and
200 times for λ and µ improvements, respectively.

5.6.1 Attacks to Decrease λ

For graphs with λ improvement, we consider two types of attacks. The first type
of attacks are based on edge betweenness (B), and the second based on NetMelt
[36] (N). In (B) attack, we select edges with the highest betweenness. In (N)
attack, we select the edge (p, r) with the highest value of upur where u is the
principle eigenvector of λ and up and ur are the corresponding (node) values in
the eigenvector. Table 7 (left) depicts the rewiring method that yields the most
robust graph for different attacks on various real-world graphs. We see that our

Optimizing Network Robustness by Edge Rewiring: A General Framework 23

0 5 10 15 20
10

−1

10
0

10
1

10
2

10
3

10
4

Percentage of λ Value Increase

T
im

e

Oregon−G: Time vs λ percentage increase

EdgeRewire−λ

AssortativeM

Smart−λ

Random−λ

Student Version of MATLAB

0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

Percentage of µ Value Increase

T
im

e

Oregon−G: Time vs µ percentage increase

EdgeRewire−µ

DissortativeM

Smart−µ

Random−µ

Student Version of MATLAB

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

Percentage of λ Value Increase

N
u

m
b

e
r

o
f

E
d

g
e

−
re

w
ir
in

g
s

Oregon−G: Rewiring vs λ percentage increase

EdgeRewire−λ

AssortativeM

Smart−λ

Random−λ

Student Version of MATLAB

0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

10
5

Percentage of µ Value Increase

N
u

m
b

e
r

o
f

E
d

g
e

−
re

w
ir
in

g
s

Oregon−G: Rewiring vs µ percentage increase

EdgeRewire−µ

DissortativeM

Smart−µ

Random−µ

Student Version of MATLAB

Fig. 6 The plots on the top row show the total time in seconds (y-axis) to achieve a certain
percentage of robustness improvement (x-axis) for λ (left) and µ (right). The bottom plots
show the number of edge-rewirings performed (y-axis) to achieve the certain level of robustness
increase (x-axis) for λ (left) and µ (right). All of the plots are based on Oregon-G and other
datasets are similar. (figures best in color)

Table 7 (left) Which λ-rewired graph is the most resistant to (100) attacks? and
(right) Which µ-rewired graph is the most resistant to (100) attacks? The method
that produces the most attack-tolerant graph is listed for both Betweenness based, and for
NetMelt based attacks. EdgeRewire produces graphs that not only exhibit higher robustness
with respect to a measure, but also with respect to external attacks.

Attacks: Betweenness NetMelt Betweenness NetMelt
Graphs λ-rewired µ-rewired

Oregon-A EdgeRewire-λ EdgeRewire-λ EdgeRewire-µ DisassortativeM
Oregon-B EdgeRewire-λ EdgeRewire-λ EdgeRewire-µ DisassortativeM
Oregon-C EdgeRewire-λ EdgeRewire-λ EdgeRewire-µ EdgeRewire-µ
Oregon-D EdgeRewire-λ No Rewire EdgeRewire-µ Smart-µ
Oregon-E EdgeRewire-λ EdgeRewire-λ EdgeRewire-µ EdgeRewire-µ
Oregon-F EdgeRewire-λ EdgeRewire-λ EdgeRewire-µ EdgeRewire-µ
Oregon-G EdgeRewire-λ EdgeRewire-λ EdgeRewire-µ EdgeRewire-µ
Oregon-H EdgeRewire-λ EdgeRewire-λ EdgeRewire-µ EdgeRewire-µ
Oregon-I EdgeRewire-λ EdgeRewire-λ EdgeRewire-µ EdgeRewire-µ
P2P-A EdgeRewire-λ Smart EdgeRewire-µ DisassortativeM
P2P-B EdgeRewire-λ Smart-λ EdgeRewire-µ EdgeRewire-µ
P2P-C EdgeRewire-λ Random EdgeRewire-µ EdgeRewire-µ
Flight AssortativeM EdgeRewire-λ EdgeRewire-µ EdgeRewire-µ
Airport EdgeRewire-λ EdgeRewire-λ EdgeRewire-µ EdgeRewire-µ

24 Hau Chan, Leman Akoglu

0 20 40 60 80 100 120
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Number of Edge−Betweenness Attacks

R
e

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
λ

re
ta

in
e

d

Oregon−G: Edge−Betweenness Attack vs λ

EdgeRewire−λ

Assortative

AssortativeM

Smart

Smart−λ

Random

Random−λ

NoRewire

Student Version of MATLAB

0 20 40 60 80 100 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Edge−Betweenness Attacks

R
e

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
µ

re
ta

in
e

d

Oregon−G: Edge−Betweenness Attack vs µ

EdgeRewire−µ

Dissortative

DissortativeM

Smart

Smart−µ

Random

Random−µ

NoRewire

Student Version of MATLAB

0 20 40 60 80 100 120
0.88

0.9

0.92

0.94

0.96

0.98

1

Number of Edge−NetMelt Attacks

R
e

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
λ

re
ta

in
e

d

Oregon−G: Edge−NetMelt Attack vs λ

EdgeRewire−λ

Assortative

AssortativeM

Smart

Smart−λ

Random

Random−λ

NoRewire

Student Version of MATLAB

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Edge−NetMelt−µ Attacks

R
e

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
µ

re
ta

in
e

d

Oregon−G: Edge−NetMelt−µ Attack vs µ

EdgeRewire−µ

Dissortative

DissortativeM

Smart

Smart−µ

Random

Random−µ

NoRewire

Student Version of MATLAB

Fig. 7 Relative fraction of λ (left) and µ (right) value retained after k attacks on the
graphs rewired by EdgeRewire-λ (left), EdgeRewire-µ (right), and corresponding heuris-
tics on Oregon-G. Notice that graphs rewired by our methods are less vulnerable to different
attacks compared to graphs rewired by other methods. (figures best in color)

EdgeRewire-λ produces graphs that are most resilient to edge betweenness based
attacks for all datasets but Flight. As for NetMelt based attacks, the graphs by
EdgeRewire-λ are also the most robust for 10 out of the 14 datasets. For the
remaining four datasets, we do not observe any other particular method that is as
consistently better as EdgeRewire-λ.

5.6.2 Attacks to Decrease µ

For graphs with µ improvement, we also consider attacks based on betweenness
(B) and NetMelt-µ (N). NetMelt-µ is similar to the original NetMelt except that
the importances of the edges are instead computed based on the eigenvectors of µ.
Table 7 (right) depicts the rewiring method that yields the most robust graph for
different attacks on various real-world graphs. We observe that our EdgeRewire-µ
produces graphs that are most robust to edge betweenness attacks for all of the
datasets. The graphs by EdgeRewire-µ are also the most robust for 10 out of the
14 datasets with respect to the NetMelt-µ attacks (especially on the larger datasets
within each category), where DisassortativeM appears to be the second best al-

Optimizing Network Robustness by Edge Rewiring: A General Framework 25

ternative. These experiments demonstrate that it is harder for edge betweenness
and NetMelt-µ attacks to disconnect graphs rewired by our EdgeRewire-µ.

5.7 Summary of Results

In this work, we conducted a long list of experiments to study the effectiveness, run-
ning time, and the attack tolerance achieved for our EdgeRewire on 14 real-world
graphs from 3 different domains (AS router, P2P, flight networks), as compared
to 8 baseline methods. To conclude, we provide a summary of our results.

We showed in Table 3 that our EdgeRewire outperforms the best baseline by
a large margin for all the measures on all of the datasets under a given budget (i.e.,
number of rewirings). In particular, the significant improvement of our method over
the baselines can be observed in Figure 3 (Table 4 for all datasets) and Figure 4
(Table 5 for all datasets) for λ1 and µ2, respectively. We also studied the number
of rewirings required by each method to achieve a certain percentage improvement
on λ1 and µ2. As shown in Table 6, the baseline heuristics require up to several
orders of magnitude higher number of edge-rewirings than our methods to achieve
the same robustness improvement. This is an important advantage of our method,
as it is desirable to avoid making too many changes to the network to increase its
robustness to a certain level. We also notice that the original versions of several
baselines, Random and Smart, end up disconnecting the graph before being able
to reach the desired improvement for µ2, whereas committing only the rewirings
that improve the measure guarantees to retain connectivity.

Our study of the running time of EdgeRewire showed that the running time
grows linearly with respect to the number of successful rewirings as well as the
number of inspections (i.e., iterations) of the algorithm (Figure 5). We also studied
the time required by each method to achieve a certain percentage improvement on
λ1 and µ2. As shown in Figure 6, the time required by EdgeRewire is significantly
smaller than the baselines to achieve the same robustness improvement.

Our final set of experiments inspected the attack tolerance of graphs produced
by the competing rewiring methods. As illustrated in Figure 7 and Table 7, we
found that EdgeRewire produced graphs that are more resilient to external at-
tacks. In particular, 13/14 and 14/14 graphs rewired by EdgeRewire were the
most resilient against betweenness based attacks w.r.t. λ1 and µ2, respectively.
Similarly, 10/14 graphs rewired by EdgeRewire were more resistant against at-
tacks based on NetMelt [36] w.r.t. both λ1 and µ2.

All in all, our experiments demonstrate that EdgeRewire is superior to state-
of-the-art baselines in producing graphs under a fixed budget that not only exhibit
higher robustness as quantified by a spectral measure, but also with respect to
external attacks. Moreover, its running time is linear with respect to the number
of rewirings performed, where other methods require significantly larger number
of rewirings (and hence time) to achieve the same robustness improvement.

6 Conclusion and Future Work

In this work we addressed the problem of modifying a graph’s structure through
degree-preserving edge rewirings so as to maximally improve its robustness under

26 Hau Chan, Leman Akoglu

a specified budget, where robustness is quantified by spectral measures. We pro-
posed a general framework called EdgeRewire that accommodates six different
well-established spectral measures. Different from a vast literature of measure-
independent heuristics, our approach leverages matrix perturbation theory to di-
rectly optimize a given measure. Experiments showed that EdgeRewire produces
graphs with significantly higher robustness than several state-of-the art degree-
preserving rewiring approaches. Moreover, our rewired graphs are, in general, less
vulnerable to various attacks.

Optimizing the robustness of a network is an important problem for various
applications, and our research sets off several future directions. First, it would be
useful to devise algorithms like EdgeRewire, to maximally improve robustness
when multiple measures are of interest to a given application. In other words, fu-
ture research can focus on edge manipulation (add or rewire) algorithms that could
improve multiple measures simultaneously. It would be interesting knowledge dis-
covery to understand whether joint improvement of certain measures would be
even possible. For example, Van Mieghem et al. [40] showed that their assortative
algorithm improved λ but decreased µ, whereas their disassortative scheme im-
proved µ while decreasing λ. This suggests a clash or “competition” between these
two measures, and it is not directly obvious whether methods that can improve
them both simultaneously can be designed. Another research direction is to devise
other degree-preserving edge rewiring algorithms (heuristic or optimization-based)
in order to improve those measures for which EdgeRewire is currently the only
solution, including natural connectivity and effective resistance, and compare them
to EdgeRewire. Alternatively, one could focus on improving the individual steps
of EdgeRewire itself, either in speed or in accuracy of approximation. Finally,
even though the optimal edge addition/deletion problem has been shown to be
NP-hard for algebraic connectivity [28] and spectral radius [39], the computational
complexity of the degree-preserving edge rewiring problem remains open.

Acknowledgments

The authors thank the anonymous reviewers for their useful comments. This ma-
terial is based upon work supported by the ARO Young Investigator Program un-
der Contract No. W911NF-14-1-0029, NSF CAREER 1452425, IIS 1408287 and
IIP1069147, a Facebook Faculty Gift, an R&D grant from Northrop Grumman
Aerospace Systems, and Stony Brook University Office of Vice President for Re-
search. Any conclusions expressed in this material are of the authors’ and do not
necessarily reflect the views, either expressed or implied, of the funding parties.

References

1. L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anoma-
lies in weighted graphs. In Proceedings of the 14th Pacific-Asia Conference
on Advances in Knowledge Discovery and Data Mining - Volume Part II,
PAKDD’10, pages 410–421, 2010.

2. R. Albert, H. Jeong, and A.-L. Barabasi. Error and attack tolerance of complex
networks. Nature, 406(6794):378–382, July 2000.

Optimizing Network Robustness by Edge Rewiring: A General Framework 27

3. J. Baras and P. Hovareshti. Efficient and robust communication topologies for
distributed decision making in networked systems. In Proceedings of the 48th
IEEE Conference on Decision and Control, held jointly with the 2009 28th
Chinese Control Conference, CDC/CCC’09, pages 3751–3756, Dec 2009.

4. A. Beygelzimer, G. Grinstein, R. Linsker, and I. Rish. Improving network
robustness by edge modification. Physica A: Statistical Mechanics and its
Applications, 357(3–4):593 – 612, 2005.

5. A. E. Brouwer and W. H. Haemers. Spectra of graphs. Springer, New York,
2012.

6. F. Buekenhout and M. Parker. The number of nets of the regular convex
polytopes in dimension <= 4. Discrete Mathematics, 186(1-3):69–94, 1998.

7. D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos. Epidemic
thresholds in real networks. ACM Transactions on Information and System
Security, 10(4):1:1–1:26, Jan. 2008.

8. H. Chan, L. Akoglu, and H. Tong. Make it or break it: Manipulating robustness
in large networks. In Proceedings of the 2014 SIAM International Conference
on Data Mining, SDM’14, pages 325–333, 2014.

9. H. Chan, S. Han, and L. Akoglu. Where graph topology matters: The robust
subgraph problem. In Proceedings of the 2015 SIAM International Conference
on Data Mining, SDM’15, pages 10–18, 2015.

10. A. K. Chandra, P. Raghavan, W. L. Ruzzo, and R. Smolensky. The electrical
resistance of a graph captures its commute and cover times. In Proceedings
of the Twenty-first Annual ACM Symposium on Theory of Computing, STOC
’89, pages 574–586, 1989.

11. D. M. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs: Theory and
Application. Academic Press, New York, 1980.

12. L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas. Characteri-
zation of complex networks: A survey of measurements. Advances in Physics,
56:167–242, 2007.

13. W. Ellens and R. E. Kooij. Graph measures and network robustness. CoRR,
abs/1311.5064:1–13, 2013.

14. W. Ellens, F. Spieksma, P. Van Mieghem, A. Jamakovic, and R. Kooij. Effec-
tive graph resistance. Linear Algebra and its Applications, 435(10):2491–2506,
2011.

15. E. Estrada. Network robustness to targeted attacks. the interplay of ex-
pansibility and degree distribution. Physical Journal B - Complex Systems,
52(4):563–574, 2006.

16. E. Estrada, N. Hatano, and M. Benzi. The physics of communicability in
complex networks. Physics Reports, 514(3):89 – 119, 2012.

17. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
internet topology. SIGCOMM Computer Communication Review, 29(4):251–
262, Aug. 1999.

18. M. Fiedler. Algebraic Connectivity of Graphs. Czechoslovak Mathematical
Journal, 23:298–305, 1973.

19. A. Ghosh, S. Boyd, and A. Saberi. Minimizing effective resistance of a graph.
SIAM Review, 50(1):37–66, Feb. 2008.

20. P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han. Attack vulnerability of
complex networks. Physical Review E, 65(5):056109, 2002.

28 Hau Chan, Leman Akoglu

21. A. Jamakovic and P. Van Mieghem. On the robustness of complex networks by
using the algebraic connectivity. In Proceedings of the 7th International IFIP-
TC6 Networking Conference on AdHoc and Sensor Networks, Wireless Net-
works, Next Generation Internet, NETWORKING’08, pages 183–194, 2008.

22. D. J. Klein and M. Randić. Resistance distance. Mathematical Chemistry,
12(1):81–95, 1993.

23. V. Latora and M. Marchiori. A measure of centrality based on the network
efficiency. New Journal of Physics, 9(188), 2007.

24. L. T. Le, T. Eliassi-Rad, and H. Tong. Met: A fast algorithm for minimiz-
ing propagation in large graphs with small eigen-gaps. In Proceedings of the
2015 SIAM International Conference on Data Mining, SDM’15, pages 694–
702, 2015.

25. V. H. P. Louzada, F. Daolio, H. J. Herrmann, and M. Tomassini. Smart
rewiring for network robustness. Journal of Complex networks, 1(150-159),
2013.

26. F. D. Malliaros, V. Megalooikonomou, and C. Faloutsos. Fast robustness es-
timation in large social graphs: Communities and anomaly detection. In Pro-
ceedings of the 2012 SIAM International Conference on Data Mining, SDM’12,
pages 942–953, 2012.

27. T. C. Matisziw and A. T. Murray. Modeling s-t path availability to support
disaster vulnerability assessment of network infrastructure. Computers and
Operations Research, 36(1):16–26, Jan. 2009.

28. D. Mosk-Aoyama. Maximum algebraic connectivity augmentation is np-hard.
Operations Research Letters, 36(6):677–679, 2008.

29. M. E. J. Newman. Mixing patterns in networks. Physical Review E, 67:026126,
Feb 2003.

30. S. Saha, A. Adiga, B. A. Prakash, and A. K. S. Vullikanti. Approximation
algorithms for reducing the spectral radius to control epidemic spread. In Pro-
ceedings of the 2015 SIAM International Conference on Data Mining, SDM’15,
pages 568–576, 2015.

31. S. Scellato, I. Leontiadis, C. Mascolo, P. Basu, and M. Zafer. Evaluating
temporal robustness of mobile networks. IEEE Transactions on Mobile Com-
puting, 12(1):105–117, Jan. 2013.

32. C. M. Schneider, A. A. Moreira, J. S. Andrade, S. Havlin, and H. J. Her-
rmann. Mitigation of malicious attacks on networks. Proceedings of the Na-
tional Academy of Sciences, 108(10):3838–3841, Mar. 2011.

33. G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press,
New York, 1990.

34. F. Sun and M. A. Shayman. On pairwise connectivity of wireless multihop
networks. International Journal of Network Security, 2(1/2):37–49, Mar. 2007.

35. A. Sydney, C. Scoglio, and D. Gruenbacher. Optimizing algebraic connectivity
by edge rewiring. Applied Mathematics and Computation, 219(10):5465 – 5479,
2013.

36. H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos.
Gelling, and melting, large graphs by edge manipulation. In Proceedings of
the 21st ACM International Conference on Information and Knowledge Man-
agement, CIKM ’12, pages 245–254, 2012.

37. H. Tong, B. A. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, and
D. H. Chau. On the vulnerability of large graphs. In Proceedings of the 2010

Optimizing Network Robustness by Edge Rewiring: A General Framework 29

IEEE International Conference on Data Mining, ICDM ’10, pages 1091–1096,
2010.

38. C. E. Tsourakakis. Fast counting of triangles in large real networks with-
out counting: Algorithms and laws. In Proceedings of the 2008 Eighth IEEE
International Conference on Data Mining, ICDM ’08, pages 608–617, 2008.

39. P. Van Mieghem, D. Stevanović, F. Kuipers, C. Li, R. van de Bovenkamp,
D. Liu, and H. Wang. Decreasing the spectral radius of a graph by link
removals. Physical Review E, 84:016101, Jul 2011.

40. P. Van Mieghem, H. Wang, X. Ge, S. Tang, and F. A. Kuipers. Influence of
assortativity and degree-preserving rewiring on the spectra of networks. The
European Physical Journal B, 76(4):643–652, 2010.

41. H. Wang and P. Van Mieghem. Algebraic connectivity optimization via link
addition. In Proceedings of the 3rd International Conference on Bio-Inspired
Models of Network, Information and Computing Sytems, BIONETICS ’08,
pages 22:1–22:8, 2008.

42. J. Wu, B. Mauricio, Y.-J. Tan, and H.-Z. Deng. Natural connectivity of com-
plex networks. Chinese Physics Letters, 27(7):078902, 2010.

43. A. Zeng and W. Liu. Enhancing network robustness against malicious attacks.
Physical Review E, 85:066130, 2012.

