Correlation Analysis of Node Importance Measures An Empirical Study through Graph Robustness

Mirza Basim Baig Leman Akoglu

Computer Science

EXAMPLE 24TH INTERNATIONAL WORLD WIDE WEB CONFERENCE Florence 18 - 22 May 2015

Node Importance

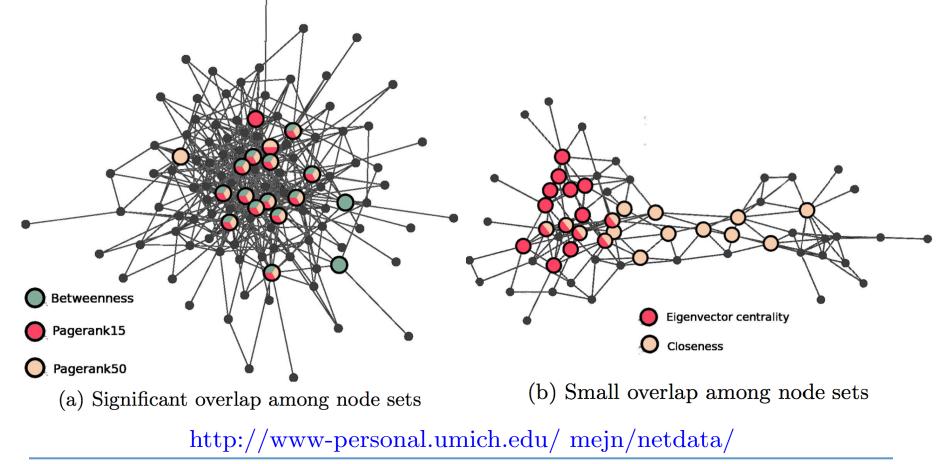
Computer Science

Fundamental in network analysis:

- finding central/influental/core nodes
- measuring attack-tolerance
 - Real graphs are vulnerable to targeted attacks R. Albert, H. Jeong, and A.-L. Barabasi. Error and attack tolerance of complex networks. Nature, 406(6794), 2000.
 - Numerous strategies, based on:
 - Pagerank Betweenness Closeness Katz

Node Importance Measures

- How similar are different importance measures?
 - do various attacks pick similar set of nodes?



Correlation Analysis of Node Importance Measures

This Work:

Computer Science

Empirical analysis of correlations between node importance measures

Goal:

- Reduce long list of measures into groups such that
 - cheaper alternatives to complex measures a few proxies for consensus finding

Related Work

- Correlation analysis of centralities:
 - Bolland, 1988 4 measures
 - Rothenberg et. al, 1995 8 measures
 - □ Valente et. al, 2008 4 measures
 - studied very small graphs (hundreds of nodes), from one domain (often social), with single method
 - Vigna, 2015 5 measures, one large graph
- Correlation of algorithms/measures
 - Abrahao et. al, 2012 clustering algorithms
 - Soundarajan et. al, 2014 graph similarity measures

This Work:

Computer Science

Empirical analysis of correlations between node importance measures

- 15 measures (i.e., attack strategies)
 randomized, local, distance, spectral
 - 68 real-world graphs social, bio, infra, info
 - 3 analysis approaches

 I) rankings, II) node types, III) graph disruption
 - Analysis results

Node attack strategies (I)

	Id	Abbr.	Description	bigO
	1	r	Random node	O(k)
u	2	rn	Random neighbor of a randomly	O(k)
Random			picked node	
nnc	3	rw10	Most visited node in a random walk	O(kT)
$R \epsilon$			of length $T = 10$	
	4	rw50	Most visited node in a random walk	O(kT)
			of length $T = 50$	

Node attack strategies (II)

	Description	bigO
5 deg 6 lcc 7 ecc	Highest degree Highest local clust. co-efficient [38] Highest extended clustering co-efficient [12]	$O(m) \\ O(nd^3) \\ O(nd^{2+D})$

Node attack strategies (III)

	Id Abbr.	Description	bigO
t.	8 rad	Lowest radius [13]	$O(n^3)$
Dist.	9 cc	Highest closeness centrality $[26]$	$O(n^3)$
Τ	10 betw	Highest betweenness centrality [5]	O(nm)

Node attack strategies (IV)

Id Abbr.	Description	bigO
$\begin{array}{c} 11 \ \mathrm{eig} \\ 12 \ \mathrm{pr}15 \\ 13 \ \mathrm{pr}50 \\ 14 \ \mathrm{katz} \\ 15 \ \mathrm{comm} \end{array}$	Highest eigen-vector centrality Highest PageRank [27] (α =0.15) Highest PageRank [27] (α =0.50) Highest Katz index [17] Highest self-communicability [10]	$O(nC)$ $O(mt)$ $O(mt)$ $O(mt)$ $O(n^{3})$

15 node attack strategies

	\mathbf{Id}	Abbr.	Description	bigO
	1	r	Random node	$\overline{O(k)}$
u	2	rn	Random neighbor of a randomly	O(k)
lor			picked node	
Random	3	rw10	Most visited node in a random walk	O(kT)
Rc			of length $T = 10$	
	4	rw50	Most visited node in a random walk	O(kT)
			of length $T = 50$	
1	5	\deg	Highest degree	O(m)
Local	6	lcc	Highest local clust. co-efficient $[38]$	$O(nd^3)$
Lc	7	ecc	Highest extended clustering	$O(nd^{2+D})$
			co-efficient $[12]$	
t.	8	rad	Lowest radius [13]	$O(n^3)$
Dist.	9	СС	Highest closeness centrality [26]	$O(n^3)$
Π	10	betw	Highest betweenness centrality $[5]$	O(nm)
	11	eig	Highest eigen-vector centrality	O(nC)
ral	12	pr15	Highest PageRank [27] (α =0.15)	O(mt)
Spectral	13	$\mathrm{pr}50$	Highest PageRank [27] (α =0.50)	O(mt)
Sp_{0}	14	katz	Highest Katz index [17]	O(mt)
	15	comm	Highest self-communicability [10]	$O(n^3)$

This Work:

Computer Science

Empirical analysis of correlations between node importance measures

15 measures

randomized, local, distance, spectral

68 real-world graphs

social, bio, infra, info

3 analysis approaches

I) rankings, II) node types, III) graph disruption

Analysis results

Computer Science

Id	Name	Туре	Nodes	Edges
1	bo-bio	Bio	1458	5393
2	clegans	Bio	453	4394
3	mintcaenor	Bio	3026	13484
4	mintmammals	Bio	7836	41356
5	mintvirus	Bio	950	3478
6	pollen1	Bio	793	6638
7	pollen2	Bio	766	3133
8	pollen3	Bio	712	2917
9	pollen4	Bio	997	4810
10	seed-dispersion1	Bio	209	1521
11	seed-dispersion2	Bio	317	2527
12	yeasts	Bio	2224	15874
13	coauth2	Information	21363	203989
14	coauth3	Information	4158	31003
15	coauth5	Information	8638	58229
16	csphd	Information	1025	3110
17	jazz	Information	198	5661
18	pgp	Information	10680	59310

* 12 biological networks
* 6 information networks

Correlation Analysis of Node Importance Measures

19	caida6-1	Infra	21202	107050
20	caida6-2	Infra	21157	106623
21	caida6-3	Infra	21232	106974
22	caida6-4	Infra	21245	105770
23	caida6-5	Infra	21339	107459
24	caida7-1	Infra	24013	122185
25	caida7-2	Infra	24018	121913
26	caida7-3	Infra	24056	122342
27	caida7-4	Infra	24078	121700
28	caida7-5	Infra	20906	106460
29	oregon1-1	Infra	10670	54646
30	oregon1-2	Infra	10729	54698
31	oregon1-3	Infra	10790	55164
32	oregon1-4	Infra	10859	55780
33	oregon1-5	Infra	10886	55300
34	oregon1-6	Infra	10943	55590

Computer Science

* 36 infrast. networks

	35	oregon1-7	Infra	11011	55798
	36	oregon1-8	Infra	11051	55937
	37	oregon1-9	Infra	11174	57427
	38	oregon2-1	Infra	10900	73225
	39	oregon2-2	Infra	10981	72656
	40	oregon2-3	Infra	11019	74505
	41	oregon2-4	Infra	11080	74118
	42	oregon2-5	Infra	11113	73945
	43	oregon2-6	Infra	11157	73007
	44	oregon2-7	Infra	11260	73830
	45	oregon2-8	Infra	11375	75910
	46	oregon2-9	Infra	11461	76881
	47	p2p4	Infra	10876	90850
	48	p2p5	Infra	8842	72498
	49	p2p6	Infra	8717	71763
	50	p2p8	Infra	6299	47850
	51	p2p9	Infra	8104	60111
	52	p2p24	Infra	26498	157215
	53	p2p25	Infra	22663	132047
	54	p2p30	Infra	36646	213246
-					

Stony Brook

55	california-cell	Social	1718	9743				
56	egoFacebook	Social	2888	8849				
57	enron	Social	33696	395248				
58	emailURV	Social	1133	12013				
59	pennsylvania-cell	Social	2514	14391				
60	wiki	Social	7066	208509				
61	slashdot	Social	77360	1015534				
62	anybeat	Social	12645	106109				
63	small-company1	Social	320	5042				
64	small-company2	Social	165	1609				
65	medium-company1	Social	1429	40014				
66	medium-company2	Social	3862	178470				
67	large-company1	Social	5793	67298				
68	large-copmany2	Social	5524	193906				
All	All datasets available at:							

Stony Brook University

Computer Science

* 14 social networks

https://github.com/basimbaig/robust14

This Work:

Computer Science

Empirical analysis of correlations between node importance measures

- □ 15 measures
 - randomized, local, distance, spectral
- 68 real-world graphs
 - social, bio, infra, info

3 analysis approaches

- I) rankings, II) node types, III) graph disruption
- Analysis results

Meta-approach

- **Given** strategies 1...M=15, set of (68) graphs G
- Compute similarity s_{ii} between all pairs i, j
- Construct MxM similarity matrix S
- Hierarchically cluster (complete-linkage) S
- **Output** clusters in majority (>50%) of G

Meta-approach

- **Given** strategies 1...M=15, set of (68) graphs G
- Compute similarity s_{ij} between all pairs i, j
- Construct MxM similarity matrix S
- Hierarchically cluster (complete-linkage) S
- **Output** clusters in majority (>50%) of G
 - 3 approaches to similarity:
 - I. RANK-C ranking
 - II. Top*k*-C node characteristics
 - III. Response-C disruption dynamics

Approach I: RANK-C

- Compares strategies based on their ranking of all the nodes
- 1. Rank nodes (ranklist rⁱ for strategy i)
 - non-randomized: sorted by measure
 - randomized: order of nodes picked
- 2. Rank correlation by Weighted-Tau [Vigna,

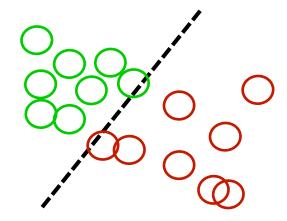
2015]: generalizes Kendall's Tau:

- ties carefully accounted for
- correlation biased toward agreement in higher ranks

 $S_{ij} = Weighted-Tau(r^i, r^j) \in [-1, 1]$

Approach II: Top & -C^{SVM-Sep}

- Compares strategies based on the kind (characteristics) of nodes they select
- 1. Find top-k nodes for strategies 1...M
- Extract recursive structural features
 [Hendersen+ 2011]: node → feature vector
- 3. SVM classifier for k vectors from i and j



feature vectors
nodes by strategy i
nodes by strategy j

Approach II: Top & -C^{SVM-Sep}

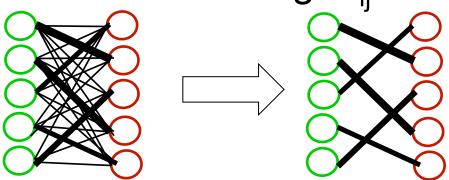
- Compares strategies based on the kind (characteristics) of nodes they select
- 1. Find top-k nodes for strategies 1...M
- 2. Extract recursive structural features [Hendersen+ 2011]: node \rightarrow feature vector
- 3. SVM classifier for k vectors from i and j

 $S_{ij} = 1 - Class-Separability(V_k^i, V_k^j) \in [0,1]$

Class-separability: avg. probability mass of correctly classified node-vectors

Approach II: Top & -C^{BI-MATCH}

- Compares strategies based on the kind (characteristics) of nodes they select
- 1. Find top-k nodes for strategies 1...M
- 2. Extract recursive structural feature vectors
- 3. Construct complete $V_k^i \times V_k^j$ bipartite graph
 - edge weight = vector similarity
- **4.** Find maximum matching m_{ii}*:



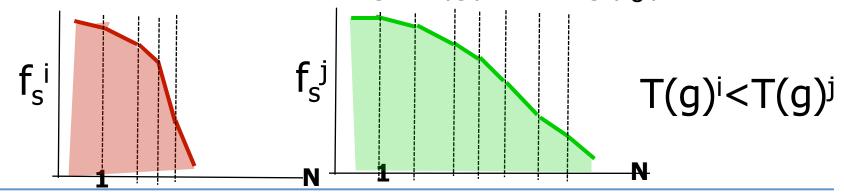
Approach II: Top & -C^{BI-MATCH}

- Compares strategies based on the kind (characteristics) of nodes they select
- 1. Find top-k nodes for strategies 1...M
- 2. Extract recursive structural features [Hendersen+ 2011]: node \rightarrow feature vector
- 3. Construct complete V_kⁱ x V_k^j bipartite graph
 edge weight = vector similarity
- 4. Find maximum matching m_{ij}*

 $S_{ij} = Total-weight(m_{ij}^*) / k \in [0,1]$

Approach III: Response-C

- Compares strategies based on disruption dynamics they cause when nodes removed
- 1. Rank nodes for strategy i
- 2. Remove nodes 1-by-1 in rank order
- 3. Compute robustness f_s^i when s nodes removed; 1) f=GCC fraction, 2) f= λ_1
- 4. Attack-tolerance of g: $T(g)^i = avg(f_s^i)$, s=1...N



Approach III: Response-C

- Compares strategies based on disruption dynamics they cause when nodes removed
- 1. Rank nodes for strategy i
- 2. Remove nodes 1-by-1 in rank order
- 3. Compute robustness f_s^i when s nodes removed; 1) f=GCC fraction, 2) f= λ_1
- 4. Attack-tolerance of g: $T(g)^i = avg(f_s^i)$, s=1...N
- 5. Rank graphs g in G by T(g)ⁱ into Rⁱ

 S_{ii} = Weighted-Tau(R^i, R^j) \in [-1,1]

This Work:

Computer Science

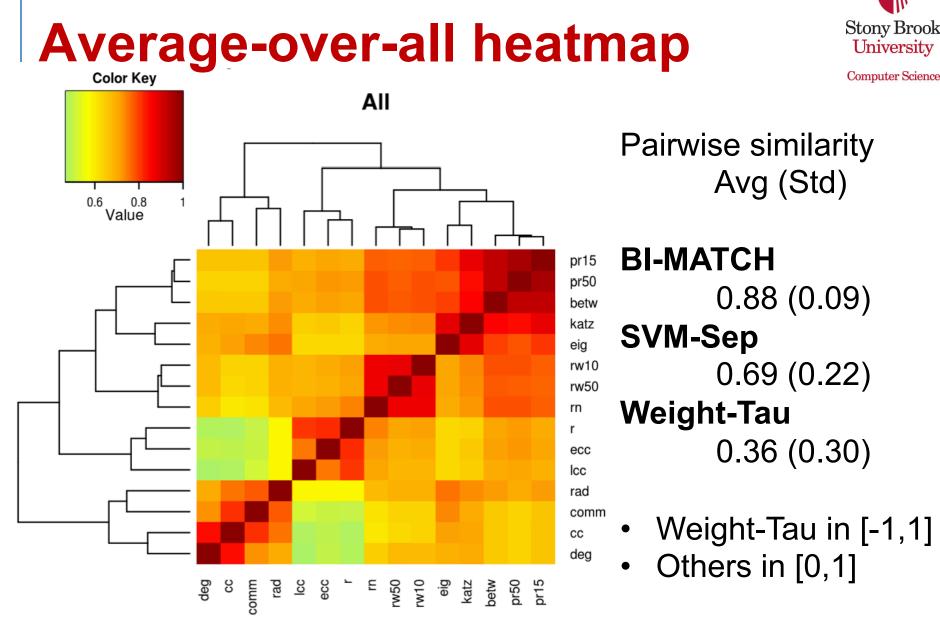
Empirical analysis of correlations between node importance measures

- 15 measures
 - randomized, local, distance, spectral
- 68 real-world graphs
 - social, bio, infra, info

analysis approaches

I) rankings, II) node types, III) graph disruption

Analysis results



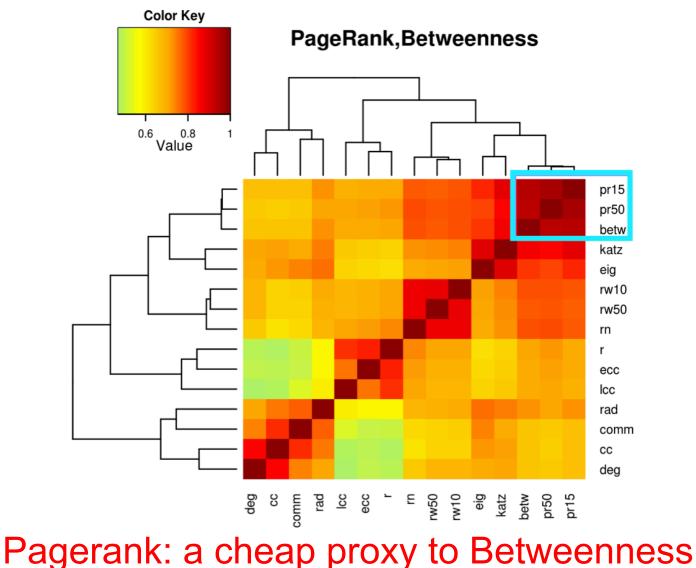
BI-MATCH similarities (SVM and Weight-Tau are similar.)

Correlation Analysis of Node Importance Measures

Correlation Analysis

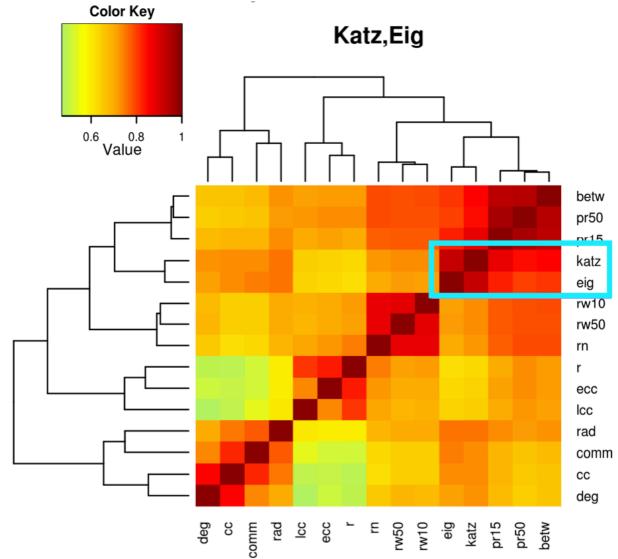
Clusters (Weight-Tau)	# Graphs
1. {PageRank15, PageRank50, Betweenness}	(67/68)
2. {Katz, Eigen-vector}	(56/68)
3. {Closeness, Communicability}	(40/68)
4. {Degree, Radius}	(39/68)
Clusters (SVM-Sep)	# Graphs
1. {PageRank15, PageRank50, Betweenness}	(64/68)
2. {Katz, Eigen-vector}	(54/68)
3. {Closeness, Degree}	(35/68)
Clusters (Bi-Match)	# Graphs
1. {PageRank15, PageRank50, Betweenness}	(62/68)
2. {Katz, Eigen-vector}	(52/68)
3. {Closeness, Degree}	(44/68)

Group#1: Pagerank, Betwennes University

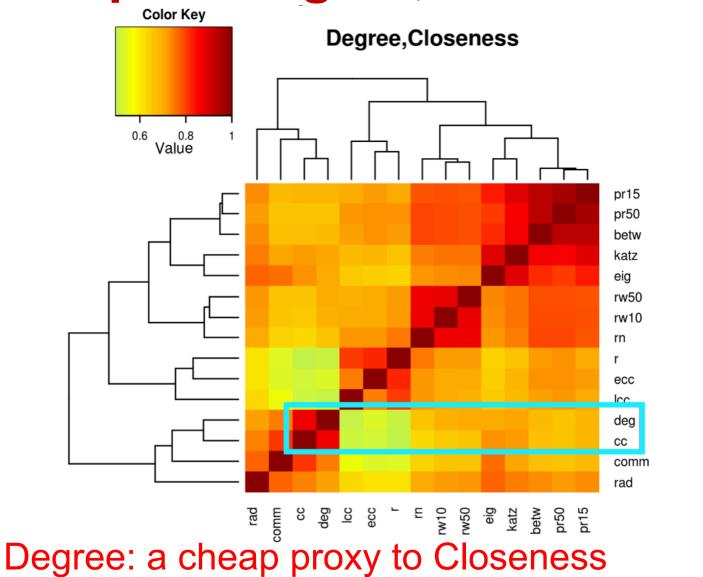


Correlation Analysis of Node Importance Measures

Group#2: Katz, Eigenvector

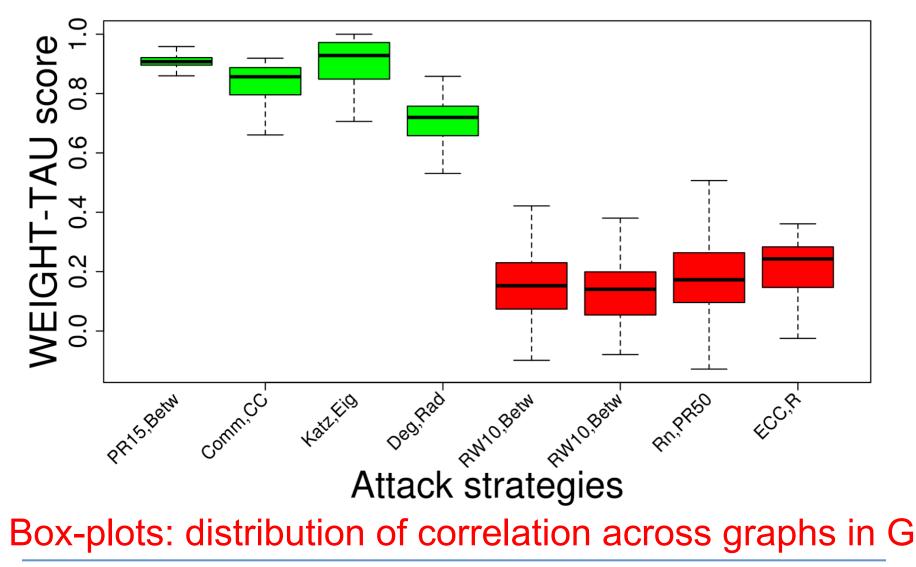


Group#3: Degree, Closeness

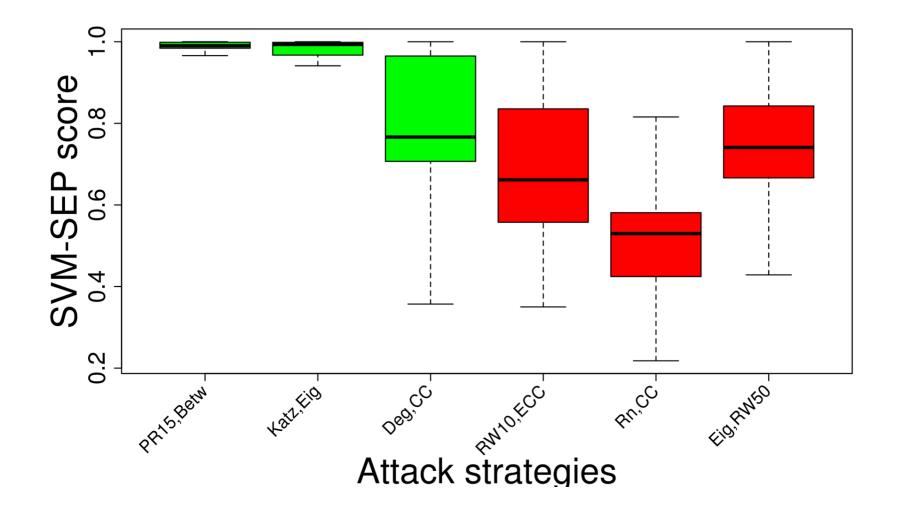


Correlation Analysis of Node Importance Measures

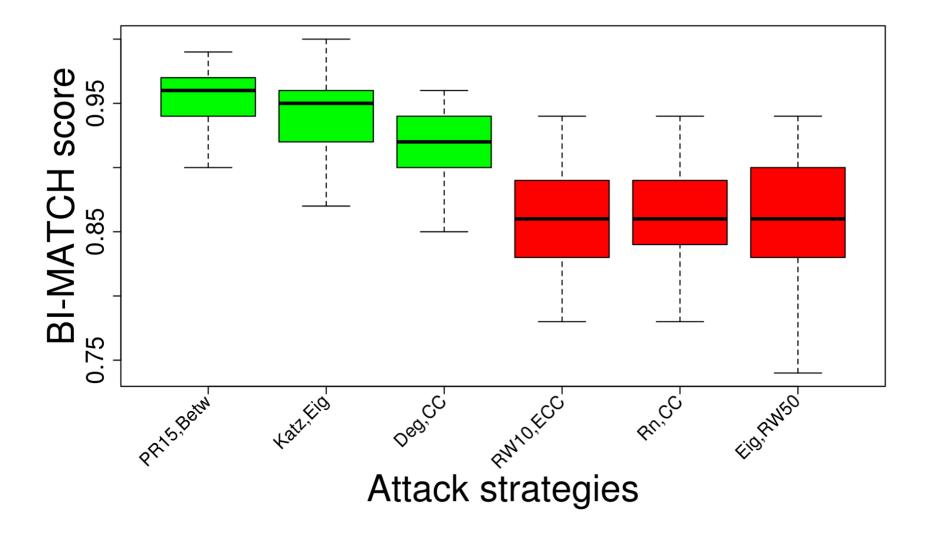
Significance of correlation



Significance of correlation

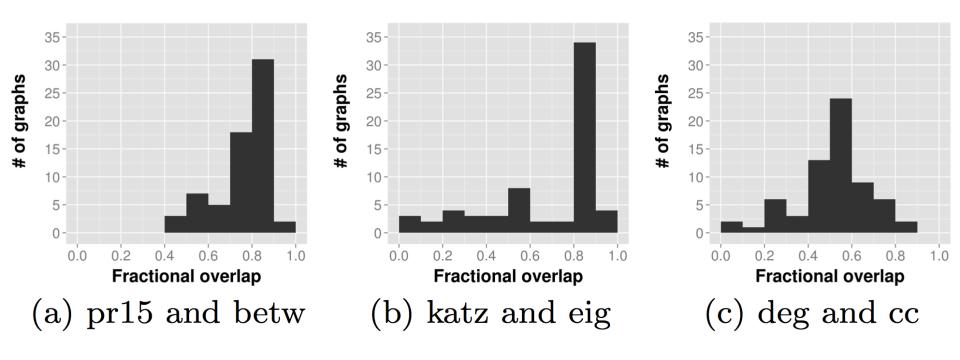


Significance of correlation



Overlap ratio of top-k nodes

Computer Science



k is set to number of 1% of nodes in each graph

Consensus analysis

Computer Science

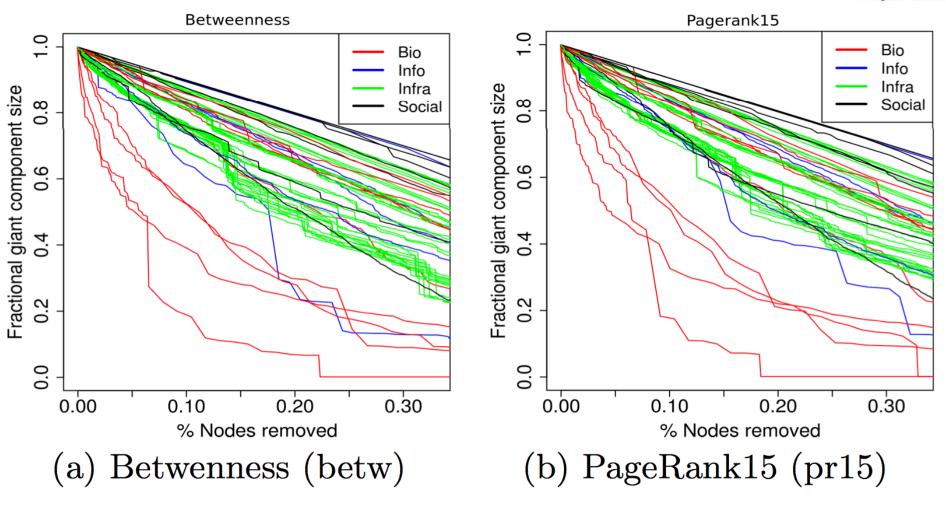
- Compute Kemeny-Young consensus on RANK-C ranking of nodes
- Sort strategies by closeness to consensus

Top 5 node-based strategies closest to the Kemeny-Young consensus across 10 example graphs.

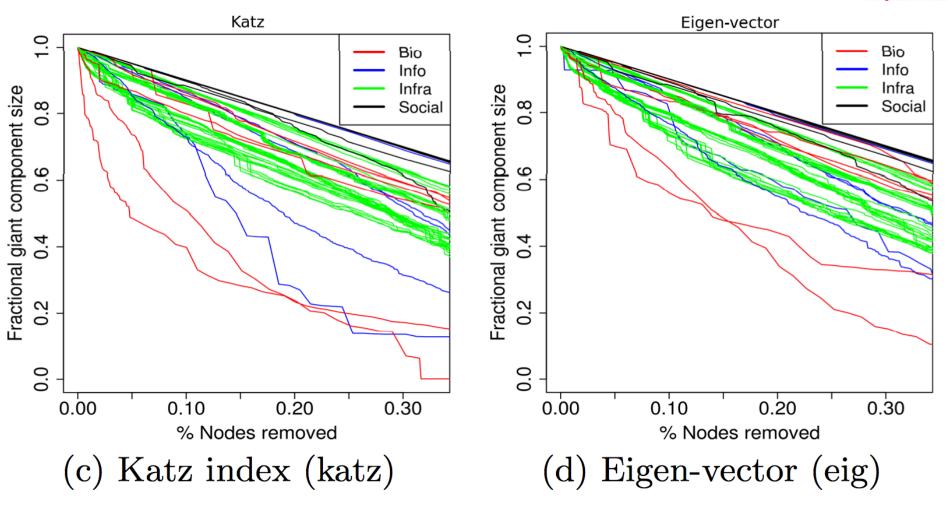
1	2	3	4	5	6	7	8	9	10
katz	katz	pr15	katz	betw	pr15	pr15	katz	katz	pr15
eig	$\mathrm{pr}15$	katz	$\mathrm{pr}15$	katz	katz	katz	pr15	eig	katz
pr15	$\mathrm{pr}50$	$\mathrm{pr}50$	$\mathrm{pr}50$	pr15	$\mathrm{pr}50$	comm	eig	$\mathrm{pr}15$	$\mathrm{pr}50$
betw	eig	betw	CC	$\mathrm{pr}50$	betw	\deg	$\mathrm{pr}50$	$\mathrm{pr}50$	eig
ecc	\deg	eig	comm	ecc	eig	eig	betw	\deg	betw

Katz or pr15 : cheap proxy to consensus

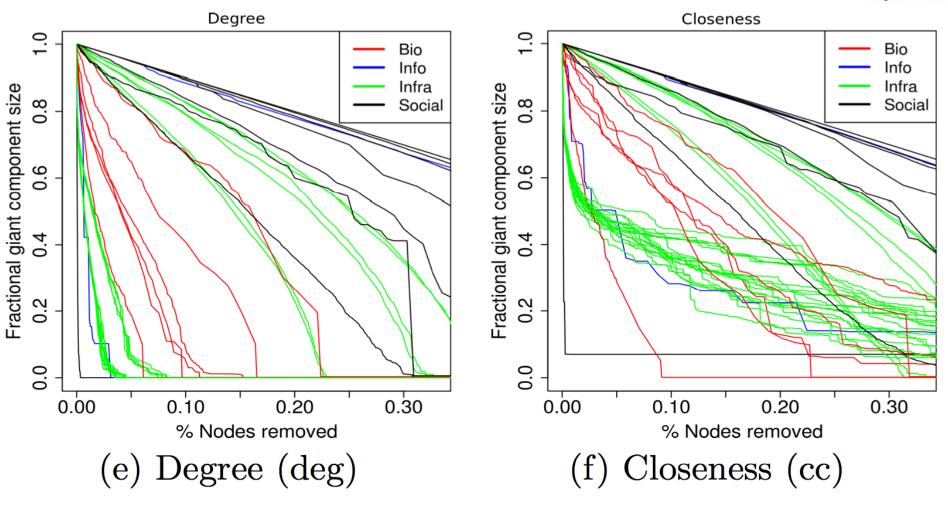
Disruption dynamics



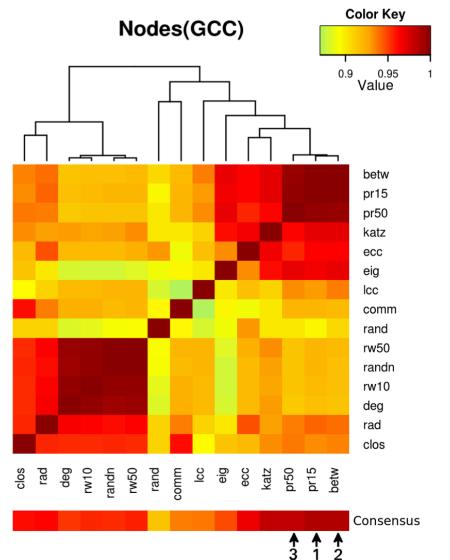
Disruption dynamics

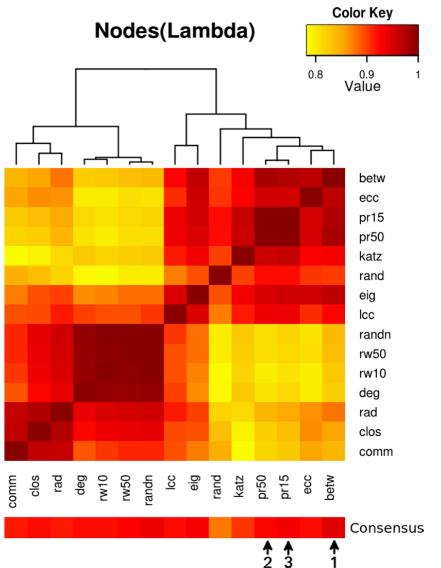


Disruption dynamics



Similarity by Response-C





Correlation Analysis of Node Importance Measures

Stony Brook

University

Conclusion

Summary:

- Studied of 15 measures, 68 graphs (4 domains)
- Employed 3 analysis approaches

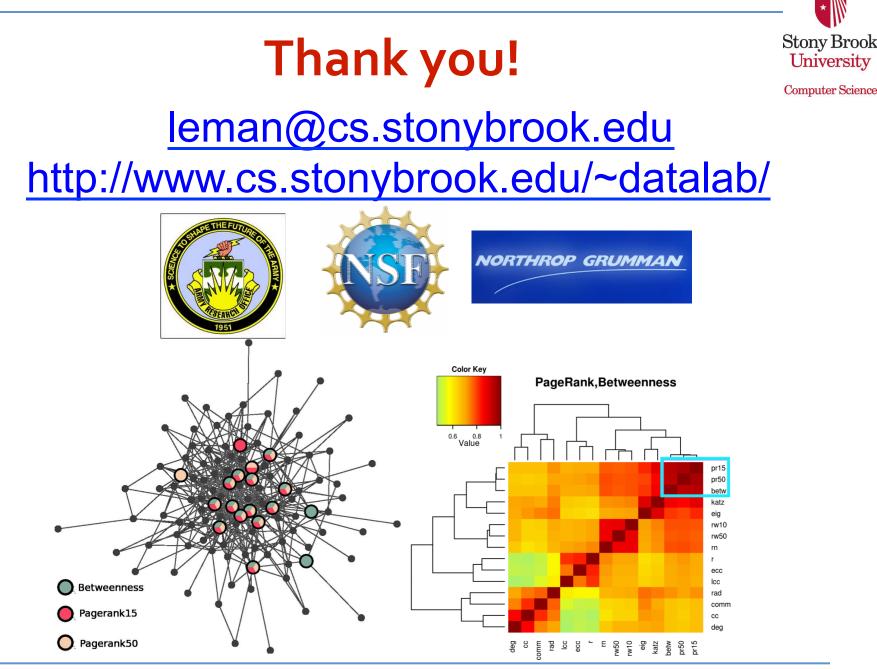
Findings:

- High correlation across measures
- Significant groups of strongly correlated strategies (i.e., measures)

Implications:

Cheap alternatives/approximation

Proxy to consensus



Correlation Analysis of Node Importance Measures