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Node Importance 
Fundamental in network analysis: 
n  finding central/influental/core nodes 
n  measuring attack-tolerance 

Ø  Real graphs are vulnerable to targeted attacks 

Ø  Numerous strategies, based on: 
  Pagerank 
  Betweenness 
  Closeness 
  Katz 
  … 
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R. Albert, H. Jeong, and A.-L. Barabasi. Error and attack 
tolerance of complex networks. Nature, 406(6794), 2000. 
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n  How similar are different importance measures? 
q  do various attacks pick similar set of nodes? 

Node Importance Measures 
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(a) Significant overlap among node sets (b) Small overlap among node sets

Figure 1: Comparing top 15 nodes picked by heuristic strategies in two example real-world graphs (a) Word adjacencies
network, (b) Dolphin social network from http://www-personal.umich.edu/ mejn/netdata/. (best viewed in color)

by Soundarajan et al. to analyze the correlations between
graph similarity measures [29]. With the aforementioned
goal in mind, we make the following contributions:

• We present the first large-scale and thorough correla-
tion analysis of centrality-based graph attack strate-
gies. Our study involves 15 strategies on 68 real-world
graphs spread across 4 di↵erent categories (social, bi-
ological, infrastructure, and information networks).

• We measure the correlation between the strategies in
three di↵erent ways: (1) by comparing their rankings
of nodes in the networks ordered by importance for
disruption, (2) by comparing the characteristics (or
type) of the top nodes they target, and (3) the dis-
ruption dynamics they cause on the network, i.e., how
the network disintegrates when the nodes are removed
successively in their ranked order.

• Our analysis reveals the following findings: (1) the
heuristic strategies, i.e., di↵erent node centrality mea-
sures employed by those, are surprisingly well corre-
lated, (2) there exist groups of comparable strategies
with strong correlation across all three measurements
and the majority of the networks, and (3) a few strate-
gies produce a ranking that is very close to the con-
sensus ranking among all of the strategies.

• These findings o↵er guidelines for selecting suitable at-
tack strategies and present approximation opportuni-
ties, where computationally expensive strategies can
be closely approximated by comparable cheaper ones,
and a few strategies can be used to find a close proxy
of the consensus among all of them.

2. BACKGROUND AND METHODOLOGY
We compare and contrast 15 node-based graph attack

strategies, with varying time complexities (Table 1).
To analyze the correlation among the strategies, we use

three di↵erent analysis methodologies. First, we compare
the strategies based on their overall ranking of nodes. Specif-
ically, we consider the similarity between two strategies to
be the weighted correlation between their rankings.
Second, we adopt a similar approach to Abrahao et al.’s [1]

(that characterized graph clustering algorithms) to compare
the strategies based on the characteristics of the top nodes

Table 1: Node-based attack strategies. k: node removal budget,
n: number of nodes, m: number of edges, d: average degree, t:
maximum number of iterations, C: topology dependent constant,
D: depth to which ecc is computed, T : random walk length, ↵:
damping factor, O(·): complexity of finding (top) k nodes.

Id Abbr. Description bigO

R
a
n
d
o
m

1 r Random node O(k)
2 rn Random neighbor of a randomly

picked node
O(k)

3 rw10 Most visited node in a random walk
of length T = 10

O(kT )

4 rw50 Most visited node in a random walk
of length T = 50

O(kT )

L
o
c
a
l

5 deg Highest degree O(m)
6 lcc Highest local clust. co-e�cient [38] O(nd3)
7 ecc Highest extended clustering

co-e�cient [12]
O(nd2+D)

D
i
s
t
.

8 rad Lowest radius [13] O(n3)
9 cc Highest closeness centrality [26] O(n3)
10 betw Highest betweenness centrality [5] O(nm)

S
p
e
c
t
r
a
l

11 eig Highest eigen-vector centrality O(nC)
12 pr15 Highest PageRank [27] (↵=0.15) O(mt)
13 pr50 Highest PageRank [27] (↵=0.50) O(mt)
14 katz Highest Katz index [17] O(mt)
15 comm Highest self-communicability [10] O(n3)

that they target. Given the top few nodes, we leverage our
earlier work [14] to characterize each node with a vector
of representative graph-centric features. We quantify the
similarity between two strategies through the matching and
the separability between their feature vectors.
Third, we use the ranking provided by a strategy to re-

move the nodes one by one from a given graph. We track the
response of the graph to these removals, and then compare
two strategies based on the gradual impact that they incur
on the graph connectedness.
We apply each of these correlation analysis methods on

68 real-world networks from four di↵erent domains (social,
biological, infrastructure, and information). We look for
strong correlations among strategies which hold across all
three analysis techniques and a large body of the networks.
In the following, we refer to the corresponding methods as

Rank-C, Topk-C, and Response-C respectively (C for cor-
relation). Since all three methods use the ranking of nodes
by the strategies, we briefly discuss how we obtain these
rankings. We then describe our methodologies in detail.
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This Work: 
Empirical analysis of correlations between       
node importance measures 

q  15 measures  
  randomized, local, distance, spectral 

q  68 real-world graphs  
 social, bio, infra, info 

q  3 analysis approaches                             
 I) rankings, II) node types, III) graph disruption 
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Goal:	
  
Ø  Reduce	
  long	
  list	
  of	
  measures	
  into	
  groups	
  

such	
  that	
  
Ø  	
  	
  cheaper	
  alterna6ves	
  to	
  complex	
  measures	
  
Ø  	
  	
  a	
  few	
  proxies	
  for	
  consensus	
  finding	
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Related Work 
n  Correlation analysis of centralities: 

q  Bolland, 1988 – 4 measures 
q  Rothenberg et. al, 1995 – 8 measures 
q  Valente et. al,  2008 – 4 measures 
à  studied very small graphs (hundreds of nodes), from 

one domain (often social), with single method 
q  Vigna, 2015 – 5 measures, one large graph 

n  Correlation of algorithms/measures 
q  Abrahao et. al, 2012 – clustering algorithms 
q  Soundarajan et. al, 2014 – graph similarity measures 
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This Work: 
Empirical analysis of correlations between       
node importance measures 

q  15 measures (i.e., attack strategies)  
  randomized, local, distance, spectral 

q  68 real-world graphs  
 social, bio, infra, info 

q  3 analysis approaches                             
 I) rankings, II) node types, III) graph disruption 

q  Analysis results 
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Node attack strategies (I) 
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(a) Significant overlap among node sets (b) Small overlap among node sets

Figure 1: Comparing top 15 nodes picked by heuristic strategies in two example real-world graphs (a) Word adjacencies
network, (b) Dolphin social network from http://www-personal.umich.edu/ mejn/netdata/. (best viewed in color)

by Soundarajan et al. to analyze the correlations between
graph similarity measures [29]. With the aforementioned
goal in mind, we make the following contributions:

• We present the first large-scale and thorough correla-
tion analysis of centrality-based graph attack strate-
gies. Our study involves 15 strategies on 68 real-world
graphs spread across 4 di↵erent categories (social, bi-
ological, infrastructure, and information networks).

• We measure the correlation between the strategies in
three di↵erent ways: (1) by comparing their rankings
of nodes in the networks ordered by importance for
disruption, (2) by comparing the characteristics (or
type) of the top nodes they target, and (3) the dis-
ruption dynamics they cause on the network, i.e., how
the network disintegrates when the nodes are removed
successively in their ranked order.

• Our analysis reveals the following findings: (1) the
heuristic strategies, i.e., di↵erent node centrality mea-
sures employed by those, are surprisingly well corre-
lated, (2) there exist groups of comparable strategies
with strong correlation across all three measurements
and the majority of the networks, and (3) a few strate-
gies produce a ranking that is very close to the con-
sensus ranking among all of the strategies.

• These findings o↵er guidelines for selecting suitable at-
tack strategies and present approximation opportuni-
ties, where computationally expensive strategies can
be closely approximated by comparable cheaper ones,
and a few strategies can be used to find a close proxy
of the consensus among all of them.

2. BACKGROUND AND METHODOLOGY
We compare and contrast 15 node-based graph attack

strategies, with varying time complexities (Table 1).
To analyze the correlation among the strategies, we use

three di↵erent analysis methodologies. First, we compare
the strategies based on their overall ranking of nodes. Specif-
ically, we consider the similarity between two strategies to
be the weighted correlation between their rankings.
Second, we adopt a similar approach to Abrahao et al.’s [1]

(that characterized graph clustering algorithms) to compare
the strategies based on the characteristics of the top nodes

Table 1: Node-based attack strategies. k: node removal budget,
n: number of nodes, m: number of edges, d: average degree, t:
maximum number of iterations, C: topology dependent constant,
D: depth to which ecc is computed, T : random walk length, ↵:
damping factor, O(·): complexity of finding (top) k nodes.

Id Abbr. Description bigO

R
a
n
d
o
m

1 r Random node O(k)
2 rn Random neighbor of a randomly

picked node
O(k)

3 rw10 Most visited node in a random walk
of length T = 10

O(kT )

4 rw50 Most visited node in a random walk
of length T = 50

O(kT )

L
o
c
a
l

5 deg Highest degree O(m)
6 lcc Highest local clust. co-e�cient [38] O(nd3)
7 ecc Highest extended clustering

co-e�cient [12]
O(nd2+D)

D
i
s
t
.

8 rad Lowest radius [13] O(n3)
9 cc Highest closeness centrality [26] O(n3)
10 betw Highest betweenness centrality [5] O(nm)

S
p
e
c
t
r
a
l

11 eig Highest eigen-vector centrality O(nC)
12 pr15 Highest PageRank [27] (↵=0.15) O(mt)
13 pr50 Highest PageRank [27] (↵=0.50) O(mt)
14 katz Highest Katz index [17] O(mt)
15 comm Highest self-communicability [10] O(n3)

that they target. Given the top few nodes, we leverage our
earlier work [14] to characterize each node with a vector
of representative graph-centric features. We quantify the
similarity between two strategies through the matching and
the separability between their feature vectors.
Third, we use the ranking provided by a strategy to re-

move the nodes one by one from a given graph. We track the
response of the graph to these removals, and then compare
two strategies based on the gradual impact that they incur
on the graph connectedness.
We apply each of these correlation analysis methods on

68 real-world networks from four di↵erent domains (social,
biological, infrastructure, and information). We look for
strong correlations among strategies which hold across all
three analysis techniques and a large body of the networks.
In the following, we refer to the corresponding methods as

Rank-C, Topk-C, and Response-C respectively (C for cor-
relation). Since all three methods use the ranking of nodes
by the strategies, we briefly discuss how we obtain these
rankings. We then describe our methodologies in detail.

(a) Significant overlap among node sets (b) Small overlap among node sets

Figure 1: Comparing top 15 nodes picked by heuristic strategies in two example real-world graphs (a) Word adjacencies
network, (b) Dolphin social network from http://www-personal.umich.edu/ mejn/netdata/. (best viewed in color)

by Soundarajan et al. to analyze the correlations between
graph similarity measures [29]. With the aforementioned
goal in mind, we make the following contributions:

• We present the first large-scale and thorough correla-
tion analysis of centrality-based graph attack strate-
gies. Our study involves 15 strategies on 68 real-world
graphs spread across 4 di↵erent categories (social, bi-
ological, infrastructure, and information networks).

• We measure the correlation between the strategies in
three di↵erent ways: (1) by comparing their rankings
of nodes in the networks ordered by importance for
disruption, (2) by comparing the characteristics (or
type) of the top nodes they target, and (3) the dis-
ruption dynamics they cause on the network, i.e., how
the network disintegrates when the nodes are removed
successively in their ranked order.

• Our analysis reveals the following findings: (1) the
heuristic strategies, i.e., di↵erent node centrality mea-
sures employed by those, are surprisingly well corre-
lated, (2) there exist groups of comparable strategies
with strong correlation across all three measurements
and the majority of the networks, and (3) a few strate-
gies produce a ranking that is very close to the con-
sensus ranking among all of the strategies.

• These findings o↵er guidelines for selecting suitable at-
tack strategies and present approximation opportuni-
ties, where computationally expensive strategies can
be closely approximated by comparable cheaper ones,
and a few strategies can be used to find a close proxy
of the consensus among all of them.

2. BACKGROUND AND METHODOLOGY
We compare and contrast 15 node-based graph attack

strategies, with varying time complexities (Table 1).
To analyze the correlation among the strategies, we use

three di↵erent analysis methodologies. First, we compare
the strategies based on their overall ranking of nodes. Specif-
ically, we consider the similarity between two strategies to
be the weighted correlation between their rankings.
Second, we adopt a similar approach to Abrahao et al.’s [1]

(that characterized graph clustering algorithms) to compare
the strategies based on the characteristics of the top nodes

Table 1: Node-based attack strategies. k: node removal budget,
n: number of nodes, m: number of edges, d: average degree, t:
maximum number of iterations, C: topology dependent constant,
D: depth to which ecc is computed, T : random walk length, ↵:
damping factor, O(·): complexity of finding (top) k nodes.

Id Abbr. Description bigO

R
a
n
d
o
m

1 r Random node O(k)
2 rn Random neighbor of a randomly

picked node
O(k)

3 rw10 Most visited node in a random walk
of length T = 10

O(kT )

4 rw50 Most visited node in a random walk
of length T = 50

O(kT )

L
o
c
a
l

5 deg Highest degree O(m)
6 lcc Highest local clust. co-e�cient [38] O(nd3)
7 ecc Highest extended clustering

co-e�cient [12]
O(nd2+D)

D
i
s
t
.

8 rad Lowest radius [13] O(n3)
9 cc Highest closeness centrality [26] O(n3)
10 betw Highest betweenness centrality [5] O(nm)

S
p
e
c
t
r
a
l

11 eig Highest eigen-vector centrality O(nC)
12 pr15 Highest PageRank [27] (↵=0.15) O(mt)
13 pr50 Highest PageRank [27] (↵=0.50) O(mt)
14 katz Highest Katz index [17] O(mt)
15 comm Highest self-communicability [10] O(n3)

that they target. Given the top few nodes, we leverage our
earlier work [14] to characterize each node with a vector
of representative graph-centric features. We quantify the
similarity between two strategies through the matching and
the separability between their feature vectors.
Third, we use the ranking provided by a strategy to re-

move the nodes one by one from a given graph. We track the
response of the graph to these removals, and then compare
two strategies based on the gradual impact that they incur
on the graph connectedness.
We apply each of these correlation analysis methods on

68 real-world networks from four di↵erent domains (social,
biological, infrastructure, and information). We look for
strong correlations among strategies which hold across all
three analysis techniques and a large body of the networks.
In the following, we refer to the corresponding methods as

Rank-C, Topk-C, and Response-C respectively (C for cor-
relation). Since all three methods use the ranking of nodes
by the strategies, we briefly discuss how we obtain these
rankings. We then describe our methodologies in detail.
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Node attack strategies (II) 
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(a) Significant overlap among node sets (b) Small overlap among node sets

Figure 1: Comparing top 15 nodes picked by heuristic strategies in two example real-world graphs (a) Word adjacencies
network, (b) Dolphin social network from http://www-personal.umich.edu/ mejn/netdata/. (best viewed in color)

by Soundarajan et al. to analyze the correlations between
graph similarity measures [29]. With the aforementioned
goal in mind, we make the following contributions:

• We present the first large-scale and thorough correla-
tion analysis of centrality-based graph attack strate-
gies. Our study involves 15 strategies on 68 real-world
graphs spread across 4 di↵erent categories (social, bi-
ological, infrastructure, and information networks).

• We measure the correlation between the strategies in
three di↵erent ways: (1) by comparing their rankings
of nodes in the networks ordered by importance for
disruption, (2) by comparing the characteristics (or
type) of the top nodes they target, and (3) the dis-
ruption dynamics they cause on the network, i.e., how
the network disintegrates when the nodes are removed
successively in their ranked order.

• Our analysis reveals the following findings: (1) the
heuristic strategies, i.e., di↵erent node centrality mea-
sures employed by those, are surprisingly well corre-
lated, (2) there exist groups of comparable strategies
with strong correlation across all three measurements
and the majority of the networks, and (3) a few strate-
gies produce a ranking that is very close to the con-
sensus ranking among all of the strategies.

• These findings o↵er guidelines for selecting suitable at-
tack strategies and present approximation opportuni-
ties, where computationally expensive strategies can
be closely approximated by comparable cheaper ones,
and a few strategies can be used to find a close proxy
of the consensus among all of them.

2. BACKGROUND AND METHODOLOGY
We compare and contrast 15 node-based graph attack

strategies, with varying time complexities (Table 1).
To analyze the correlation among the strategies, we use

three di↵erent analysis methodologies. First, we compare
the strategies based on their overall ranking of nodes. Specif-
ically, we consider the similarity between two strategies to
be the weighted correlation between their rankings.
Second, we adopt a similar approach to Abrahao et al.’s [1]

(that characterized graph clustering algorithms) to compare
the strategies based on the characteristics of the top nodes

Table 1: Node-based attack strategies. k: node removal budget,
n: number of nodes, m: number of edges, d: average degree, t:
maximum number of iterations, C: topology dependent constant,
D: depth to which ecc is computed, T : random walk length, ↵:
damping factor, O(·): complexity of finding (top) k nodes.

Id Abbr. Description bigO

R
a
n
d
o
m

1 r Random node O(k)
2 rn Random neighbor of a randomly

picked node
O(k)

3 rw10 Most visited node in a random walk
of length T = 10

O(kT )

4 rw50 Most visited node in a random walk
of length T = 50

O(kT )

L
o
c
a
l

5 deg Highest degree O(m)
6 lcc Highest local clust. co-e�cient [38] O(nd3)
7 ecc Highest extended clustering

co-e�cient [12]
O(nd2+D)

D
i
s
t
.

8 rad Lowest radius [13] O(n3)
9 cc Highest closeness centrality [26] O(n3)
10 betw Highest betweenness centrality [5] O(nm)

S
p
e
c
t
r
a
l

11 eig Highest eigen-vector centrality O(nC)
12 pr15 Highest PageRank [27] (↵=0.15) O(mt)
13 pr50 Highest PageRank [27] (↵=0.50) O(mt)
14 katz Highest Katz index [17] O(mt)
15 comm Highest self-communicability [10] O(n3)

that they target. Given the top few nodes, we leverage our
earlier work [14] to characterize each node with a vector
of representative graph-centric features. We quantify the
similarity between two strategies through the matching and
the separability between their feature vectors.
Third, we use the ranking provided by a strategy to re-

move the nodes one by one from a given graph. We track the
response of the graph to these removals, and then compare
two strategies based on the gradual impact that they incur
on the graph connectedness.
We apply each of these correlation analysis methods on

68 real-world networks from four di↵erent domains (social,
biological, infrastructure, and information). We look for
strong correlations among strategies which hold across all
three analysis techniques and a large body of the networks.
In the following, we refer to the corresponding methods as

Rank-C, Topk-C, and Response-C respectively (C for cor-
relation). Since all three methods use the ranking of nodes
by the strategies, we briefly discuss how we obtain these
rankings. We then describe our methodologies in detail.

(a) Significant overlap among node sets (b) Small overlap among node sets

Figure 1: Comparing top 15 nodes picked by heuristic strategies in two example real-world graphs (a) Word adjacencies
network, (b) Dolphin social network from http://www-personal.umich.edu/ mejn/netdata/. (best viewed in color)

by Soundarajan et al. to analyze the correlations between
graph similarity measures [29]. With the aforementioned
goal in mind, we make the following contributions:

• We present the first large-scale and thorough correla-
tion analysis of centrality-based graph attack strate-
gies. Our study involves 15 strategies on 68 real-world
graphs spread across 4 di↵erent categories (social, bi-
ological, infrastructure, and information networks).

• We measure the correlation between the strategies in
three di↵erent ways: (1) by comparing their rankings
of nodes in the networks ordered by importance for
disruption, (2) by comparing the characteristics (or
type) of the top nodes they target, and (3) the dis-
ruption dynamics they cause on the network, i.e., how
the network disintegrates when the nodes are removed
successively in their ranked order.

• Our analysis reveals the following findings: (1) the
heuristic strategies, i.e., di↵erent node centrality mea-
sures employed by those, are surprisingly well corre-
lated, (2) there exist groups of comparable strategies
with strong correlation across all three measurements
and the majority of the networks, and (3) a few strate-
gies produce a ranking that is very close to the con-
sensus ranking among all of the strategies.

• These findings o↵er guidelines for selecting suitable at-
tack strategies and present approximation opportuni-
ties, where computationally expensive strategies can
be closely approximated by comparable cheaper ones,
and a few strategies can be used to find a close proxy
of the consensus among all of them.

2. BACKGROUND AND METHODOLOGY
We compare and contrast 15 node-based graph attack

strategies, with varying time complexities (Table 1).
To analyze the correlation among the strategies, we use

three di↵erent analysis methodologies. First, we compare
the strategies based on their overall ranking of nodes. Specif-
ically, we consider the similarity between two strategies to
be the weighted correlation between their rankings.
Second, we adopt a similar approach to Abrahao et al.’s [1]

(that characterized graph clustering algorithms) to compare
the strategies based on the characteristics of the top nodes

Table 1: Node-based attack strategies. k: node removal budget,
n: number of nodes, m: number of edges, d: average degree, t:
maximum number of iterations, C: topology dependent constant,
D: depth to which ecc is computed, T : random walk length, ↵:
damping factor, O(·): complexity of finding (top) k nodes.

Id Abbr. Description bigO

R
a
n
d
o
m

1 r Random node O(k)
2 rn Random neighbor of a randomly

picked node
O(k)

3 rw10 Most visited node in a random walk
of length T = 10

O(kT )

4 rw50 Most visited node in a random walk
of length T = 50

O(kT )

L
o
c
a
l

5 deg Highest degree O(m)
6 lcc Highest local clust. co-e�cient [38] O(nd3)
7 ecc Highest extended clustering

co-e�cient [12]
O(nd2+D)

D
i
s
t
.

8 rad Lowest radius [13] O(n3)
9 cc Highest closeness centrality [26] O(n3)
10 betw Highest betweenness centrality [5] O(nm)

S
p
e
c
t
r
a
l

11 eig Highest eigen-vector centrality O(nC)
12 pr15 Highest PageRank [27] (↵=0.15) O(mt)
13 pr50 Highest PageRank [27] (↵=0.50) O(mt)
14 katz Highest Katz index [17] O(mt)
15 comm Highest self-communicability [10] O(n3)

that they target. Given the top few nodes, we leverage our
earlier work [14] to characterize each node with a vector
of representative graph-centric features. We quantify the
similarity between two strategies through the matching and
the separability between their feature vectors.
Third, we use the ranking provided by a strategy to re-

move the nodes one by one from a given graph. We track the
response of the graph to these removals, and then compare
two strategies based on the gradual impact that they incur
on the graph connectedness.
We apply each of these correlation analysis methods on

68 real-world networks from four di↵erent domains (social,
biological, infrastructure, and information). We look for
strong correlations among strategies which hold across all
three analysis techniques and a large body of the networks.
In the following, we refer to the corresponding methods as

Rank-C, Topk-C, and Response-C respectively (C for cor-
relation). Since all three methods use the ranking of nodes
by the strategies, we briefly discuss how we obtain these
rankings. We then describe our methodologies in detail.
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Node attack strategies (III) 
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(a) Significant overlap among node sets (b) Small overlap among node sets

Figure 1: Comparing top 15 nodes picked by heuristic strategies in two example real-world graphs (a) Word adjacencies
network, (b) Dolphin social network from http://www-personal.umich.edu/ mejn/netdata/. (best viewed in color)

by Soundarajan et al. to analyze the correlations between
graph similarity measures [29]. With the aforementioned
goal in mind, we make the following contributions:

• We present the first large-scale and thorough correla-
tion analysis of centrality-based graph attack strate-
gies. Our study involves 15 strategies on 68 real-world
graphs spread across 4 di↵erent categories (social, bi-
ological, infrastructure, and information networks).

• We measure the correlation between the strategies in
three di↵erent ways: (1) by comparing their rankings
of nodes in the networks ordered by importance for
disruption, (2) by comparing the characteristics (or
type) of the top nodes they target, and (3) the dis-
ruption dynamics they cause on the network, i.e., how
the network disintegrates when the nodes are removed
successively in their ranked order.

• Our analysis reveals the following findings: (1) the
heuristic strategies, i.e., di↵erent node centrality mea-
sures employed by those, are surprisingly well corre-
lated, (2) there exist groups of comparable strategies
with strong correlation across all three measurements
and the majority of the networks, and (3) a few strate-
gies produce a ranking that is very close to the con-
sensus ranking among all of the strategies.

• These findings o↵er guidelines for selecting suitable at-
tack strategies and present approximation opportuni-
ties, where computationally expensive strategies can
be closely approximated by comparable cheaper ones,
and a few strategies can be used to find a close proxy
of the consensus among all of them.

2. BACKGROUND AND METHODOLOGY
We compare and contrast 15 node-based graph attack

strategies, with varying time complexities (Table 1).
To analyze the correlation among the strategies, we use

three di↵erent analysis methodologies. First, we compare
the strategies based on their overall ranking of nodes. Specif-
ically, we consider the similarity between two strategies to
be the weighted correlation between their rankings.
Second, we adopt a similar approach to Abrahao et al.’s [1]

(that characterized graph clustering algorithms) to compare
the strategies based on the characteristics of the top nodes

Table 1: Node-based attack strategies. k: node removal budget,
n: number of nodes, m: number of edges, d: average degree, t:
maximum number of iterations, C: topology dependent constant,
D: depth to which ecc is computed, T : random walk length, ↵:
damping factor, O(·): complexity of finding (top) k nodes.

Id Abbr. Description bigO

R
a
n
d
o
m

1 r Random node O(k)
2 rn Random neighbor of a randomly

picked node
O(k)

3 rw10 Most visited node in a random walk
of length T = 10

O(kT )

4 rw50 Most visited node in a random walk
of length T = 50

O(kT )

L
o
c
a
l

5 deg Highest degree O(m)
6 lcc Highest local clust. co-e�cient [38] O(nd3)
7 ecc Highest extended clustering

co-e�cient [12]
O(nd2+D)

D
i
s
t
.

8 rad Lowest radius [13] O(n3)
9 cc Highest closeness centrality [26] O(n3)
10 betw Highest betweenness centrality [5] O(nm)

S
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l

11 eig Highest eigen-vector centrality O(nC)
12 pr15 Highest PageRank [27] (↵=0.15) O(mt)
13 pr50 Highest PageRank [27] (↵=0.50) O(mt)
14 katz Highest Katz index [17] O(mt)
15 comm Highest self-communicability [10] O(n3)

that they target. Given the top few nodes, we leverage our
earlier work [14] to characterize each node with a vector
of representative graph-centric features. We quantify the
similarity between two strategies through the matching and
the separability between their feature vectors.
Third, we use the ranking provided by a strategy to re-

move the nodes one by one from a given graph. We track the
response of the graph to these removals, and then compare
two strategies based on the gradual impact that they incur
on the graph connectedness.
We apply each of these correlation analysis methods on

68 real-world networks from four di↵erent domains (social,
biological, infrastructure, and information). We look for
strong correlations among strategies which hold across all
three analysis techniques and a large body of the networks.
In the following, we refer to the corresponding methods as

Rank-C, Topk-C, and Response-C respectively (C for cor-
relation). Since all three methods use the ranking of nodes
by the strategies, we briefly discuss how we obtain these
rankings. We then describe our methodologies in detail.

(a) Significant overlap among node sets (b) Small overlap among node sets

Figure 1: Comparing top 15 nodes picked by heuristic strategies in two example real-world graphs (a) Word adjacencies
network, (b) Dolphin social network from http://www-personal.umich.edu/ mejn/netdata/. (best viewed in color)

by Soundarajan et al. to analyze the correlations between
graph similarity measures [29]. With the aforementioned
goal in mind, we make the following contributions:

• We present the first large-scale and thorough correla-
tion analysis of centrality-based graph attack strate-
gies. Our study involves 15 strategies on 68 real-world
graphs spread across 4 di↵erent categories (social, bi-
ological, infrastructure, and information networks).

• We measure the correlation between the strategies in
three di↵erent ways: (1) by comparing their rankings
of nodes in the networks ordered by importance for
disruption, (2) by comparing the characteristics (or
type) of the top nodes they target, and (3) the dis-
ruption dynamics they cause on the network, i.e., how
the network disintegrates when the nodes are removed
successively in their ranked order.

• Our analysis reveals the following findings: (1) the
heuristic strategies, i.e., di↵erent node centrality mea-
sures employed by those, are surprisingly well corre-
lated, (2) there exist groups of comparable strategies
with strong correlation across all three measurements
and the majority of the networks, and (3) a few strate-
gies produce a ranking that is very close to the con-
sensus ranking among all of the strategies.

• These findings o↵er guidelines for selecting suitable at-
tack strategies and present approximation opportuni-
ties, where computationally expensive strategies can
be closely approximated by comparable cheaper ones,
and a few strategies can be used to find a close proxy
of the consensus among all of them.

2. BACKGROUND AND METHODOLOGY
We compare and contrast 15 node-based graph attack

strategies, with varying time complexities (Table 1).
To analyze the correlation among the strategies, we use

three di↵erent analysis methodologies. First, we compare
the strategies based on their overall ranking of nodes. Specif-
ically, we consider the similarity between two strategies to
be the weighted correlation between their rankings.
Second, we adopt a similar approach to Abrahao et al.’s [1]

(that characterized graph clustering algorithms) to compare
the strategies based on the characteristics of the top nodes

Table 1: Node-based attack strategies. k: node removal budget,
n: number of nodes, m: number of edges, d: average degree, t:
maximum number of iterations, C: topology dependent constant,
D: depth to which ecc is computed, T : random walk length, ↵:
damping factor, O(·): complexity of finding (top) k nodes.

Id Abbr. Description bigO

R
a
n
d
o
m

1 r Random node O(k)
2 rn Random neighbor of a randomly

picked node
O(k)

3 rw10 Most visited node in a random walk
of length T = 10

O(kT )

4 rw50 Most visited node in a random walk
of length T = 50

O(kT )
L
o
c
a
l

5 deg Highest degree O(m)
6 lcc Highest local clust. co-e�cient [38] O(nd3)
7 ecc Highest extended clustering

co-e�cient [12]
O(nd2+D)

D
i
s
t
.

8 rad Lowest radius [13] O(n3)
9 cc Highest closeness centrality [26] O(n3)
10 betw Highest betweenness centrality [5] O(nm)

S
p
e
c
t
r
a
l

11 eig Highest eigen-vector centrality O(nC)
12 pr15 Highest PageRank [27] (↵=0.15) O(mt)
13 pr50 Highest PageRank [27] (↵=0.50) O(mt)
14 katz Highest Katz index [17] O(mt)
15 comm Highest self-communicability [10] O(n3)

that they target. Given the top few nodes, we leverage our
earlier work [14] to characterize each node with a vector
of representative graph-centric features. We quantify the
similarity between two strategies through the matching and
the separability between their feature vectors.
Third, we use the ranking provided by a strategy to re-

move the nodes one by one from a given graph. We track the
response of the graph to these removals, and then compare
two strategies based on the gradual impact that they incur
on the graph connectedness.
We apply each of these correlation analysis methods on

68 real-world networks from four di↵erent domains (social,
biological, infrastructure, and information). We look for
strong correlations among strategies which hold across all
three analysis techniques and a large body of the networks.
In the following, we refer to the corresponding methods as

Rank-C, Topk-C, and Response-C respectively (C for cor-
relation). Since all three methods use the ranking of nodes
by the strategies, we briefly discuss how we obtain these
rankings. We then describe our methodologies in detail.
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Figure 1: Comparing top 15 nodes picked by heuristic strategies in two example real-world graphs (a) Word adjacencies
network, (b) Dolphin social network from http://www-personal.umich.edu/ mejn/netdata/. (best viewed in color)

by Soundarajan et al. to analyze the correlations between
graph similarity measures [29]. With the aforementioned
goal in mind, we make the following contributions:

• We present the first large-scale and thorough correla-
tion analysis of centrality-based graph attack strate-
gies. Our study involves 15 strategies on 68 real-world
graphs spread across 4 di↵erent categories (social, bi-
ological, infrastructure, and information networks).

• We measure the correlation between the strategies in
three di↵erent ways: (1) by comparing their rankings
of nodes in the networks ordered by importance for
disruption, (2) by comparing the characteristics (or
type) of the top nodes they target, and (3) the dis-
ruption dynamics they cause on the network, i.e., how
the network disintegrates when the nodes are removed
successively in their ranked order.

• Our analysis reveals the following findings: (1) the
heuristic strategies, i.e., di↵erent node centrality mea-
sures employed by those, are surprisingly well corre-
lated, (2) there exist groups of comparable strategies
with strong correlation across all three measurements
and the majority of the networks, and (3) a few strate-
gies produce a ranking that is very close to the con-
sensus ranking among all of the strategies.

• These findings o↵er guidelines for selecting suitable at-
tack strategies and present approximation opportuni-
ties, where computationally expensive strategies can
be closely approximated by comparable cheaper ones,
and a few strategies can be used to find a close proxy
of the consensus among all of them.

2. BACKGROUND AND METHODOLOGY
We compare and contrast 15 node-based graph attack

strategies, with varying time complexities (Table 1).
To analyze the correlation among the strategies, we use

three di↵erent analysis methodologies. First, we compare
the strategies based on their overall ranking of nodes. Specif-
ically, we consider the similarity between two strategies to
be the weighted correlation between their rankings.
Second, we adopt a similar approach to Abrahao et al.’s [1]

(that characterized graph clustering algorithms) to compare
the strategies based on the characteristics of the top nodes

Table 1: Node-based attack strategies. k: node removal budget,
n: number of nodes, m: number of edges, d: average degree, t:
maximum number of iterations, C: topology dependent constant,
D: depth to which ecc is computed, T : random walk length, ↵:
damping factor, O(·): complexity of finding (top) k nodes.

Id Abbr. Description bigO

R
a
n
d
o
m

1 r Random node O(k)
2 rn Random neighbor of a randomly

picked node
O(k)

3 rw10 Most visited node in a random walk
of length T = 10

O(kT )

4 rw50 Most visited node in a random walk
of length T = 50

O(kT )

L
o
c
a
l

5 deg Highest degree O(m)
6 lcc Highest local clust. co-e�cient [38] O(nd3)
7 ecc Highest extended clustering

co-e�cient [12]
O(nd2+D)

D
i
s
t
.

8 rad Lowest radius [13] O(n3)
9 cc Highest closeness centrality [26] O(n3)
10 betw Highest betweenness centrality [5] O(nm)

S
p
e
c
t
r
a
l

11 eig Highest eigen-vector centrality O(nC)
12 pr15 Highest PageRank [27] (↵=0.15) O(mt)
13 pr50 Highest PageRank [27] (↵=0.50) O(mt)
14 katz Highest Katz index [17] O(mt)
15 comm Highest self-communicability [10] O(n3)

that they target. Given the top few nodes, we leverage our
earlier work [14] to characterize each node with a vector
of representative graph-centric features. We quantify the
similarity between two strategies through the matching and
the separability between their feature vectors.
Third, we use the ranking provided by a strategy to re-

move the nodes one by one from a given graph. We track the
response of the graph to these removals, and then compare
two strategies based on the gradual impact that they incur
on the graph connectedness.
We apply each of these correlation analysis methods on

68 real-world networks from four di↵erent domains (social,
biological, infrastructure, and information). We look for
strong correlations among strategies which hold across all
three analysis techniques and a large body of the networks.
In the following, we refer to the corresponding methods as

Rank-C, Topk-C, and Response-C respectively (C for cor-
relation). Since all three methods use the ranking of nodes
by the strategies, we briefly discuss how we obtain these
rankings. We then describe our methodologies in detail.

(a) Significant overlap among node sets (b) Small overlap among node sets

Figure 1: Comparing top 15 nodes picked by heuristic strategies in two example real-world graphs (a) Word adjacencies
network, (b) Dolphin social network from http://www-personal.umich.edu/ mejn/netdata/. (best viewed in color)

by Soundarajan et al. to analyze the correlations between
graph similarity measures [29]. With the aforementioned
goal in mind, we make the following contributions:

• We present the first large-scale and thorough correla-
tion analysis of centrality-based graph attack strate-
gies. Our study involves 15 strategies on 68 real-world
graphs spread across 4 di↵erent categories (social, bi-
ological, infrastructure, and information networks).

• We measure the correlation between the strategies in
three di↵erent ways: (1) by comparing their rankings
of nodes in the networks ordered by importance for
disruption, (2) by comparing the characteristics (or
type) of the top nodes they target, and (3) the dis-
ruption dynamics they cause on the network, i.e., how
the network disintegrates when the nodes are removed
successively in their ranked order.

• Our analysis reveals the following findings: (1) the
heuristic strategies, i.e., di↵erent node centrality mea-
sures employed by those, are surprisingly well corre-
lated, (2) there exist groups of comparable strategies
with strong correlation across all three measurements
and the majority of the networks, and (3) a few strate-
gies produce a ranking that is very close to the con-
sensus ranking among all of the strategies.

• These findings o↵er guidelines for selecting suitable at-
tack strategies and present approximation opportuni-
ties, where computationally expensive strategies can
be closely approximated by comparable cheaper ones,
and a few strategies can be used to find a close proxy
of the consensus among all of them.

2. BACKGROUND AND METHODOLOGY
We compare and contrast 15 node-based graph attack

strategies, with varying time complexities (Table 1).
To analyze the correlation among the strategies, we use

three di↵erent analysis methodologies. First, we compare
the strategies based on their overall ranking of nodes. Specif-
ically, we consider the similarity between two strategies to
be the weighted correlation between their rankings.
Second, we adopt a similar approach to Abrahao et al.’s [1]

(that characterized graph clustering algorithms) to compare
the strategies based on the characteristics of the top nodes

Table 1: Node-based attack strategies. k: node removal budget,
n: number of nodes, m: number of edges, d: average degree, t:
maximum number of iterations, C: topology dependent constant,
D: depth to which ecc is computed, T : random walk length, ↵:
damping factor, O(·): complexity of finding (top) k nodes.

Id Abbr. Description bigO

R
a
n
d
o
m

1 r Random node O(k)
2 rn Random neighbor of a randomly

picked node
O(k)

3 rw10 Most visited node in a random walk
of length T = 10

O(kT )

4 rw50 Most visited node in a random walk
of length T = 50

O(kT )

L
o
c
a
l

5 deg Highest degree O(m)
6 lcc Highest local clust. co-e�cient [38] O(nd3)
7 ecc Highest extended clustering

co-e�cient [12]
O(nd2+D)

D
i
s
t
.

8 rad Lowest radius [13] O(n3)
9 cc Highest closeness centrality [26] O(n3)
10 betw Highest betweenness centrality [5] O(nm)

S
p
e
c
t
r
a
l

11 eig Highest eigen-vector centrality O(nC)
12 pr15 Highest PageRank [27] (↵=0.15) O(mt)
13 pr50 Highest PageRank [27] (↵=0.50) O(mt)
14 katz Highest Katz index [17] O(mt)
15 comm Highest self-communicability [10] O(n3)

that they target. Given the top few nodes, we leverage our
earlier work [14] to characterize each node with a vector
of representative graph-centric features. We quantify the
similarity between two strategies through the matching and
the separability between their feature vectors.
Third, we use the ranking provided by a strategy to re-

move the nodes one by one from a given graph. We track the
response of the graph to these removals, and then compare
two strategies based on the gradual impact that they incur
on the graph connectedness.
We apply each of these correlation analysis methods on

68 real-world networks from four di↵erent domains (social,
biological, infrastructure, and information). We look for
strong correlations among strategies which hold across all
three analysis techniques and a large body of the networks.
In the following, we refer to the corresponding methods as

Rank-C, Topk-C, and Response-C respectively (C for cor-
relation). Since all three methods use the ranking of nodes
by the strategies, we briefly discuss how we obtain these
rankings. We then describe our methodologies in detail.
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Figure 1: Comparing top 15 nodes picked by heuristic strategies in two example real-world graphs (a) Word adjacencies
network, (b) Dolphin social network from http://www-personal.umich.edu/ mejn/netdata/. (best viewed in color)

by Soundarajan et al. to analyze the correlations between
graph similarity measures [29]. With the aforementioned
goal in mind, we make the following contributions:

• We present the first large-scale and thorough correla-
tion analysis of centrality-based graph attack strate-
gies. Our study involves 15 strategies on 68 real-world
graphs spread across 4 di↵erent categories (social, bi-
ological, infrastructure, and information networks).

• We measure the correlation between the strategies in
three di↵erent ways: (1) by comparing their rankings
of nodes in the networks ordered by importance for
disruption, (2) by comparing the characteristics (or
type) of the top nodes they target, and (3) the dis-
ruption dynamics they cause on the network, i.e., how
the network disintegrates when the nodes are removed
successively in their ranked order.

• Our analysis reveals the following findings: (1) the
heuristic strategies, i.e., di↵erent node centrality mea-
sures employed by those, are surprisingly well corre-
lated, (2) there exist groups of comparable strategies
with strong correlation across all three measurements
and the majority of the networks, and (3) a few strate-
gies produce a ranking that is very close to the con-
sensus ranking among all of the strategies.

• These findings o↵er guidelines for selecting suitable at-
tack strategies and present approximation opportuni-
ties, where computationally expensive strategies can
be closely approximated by comparable cheaper ones,
and a few strategies can be used to find a close proxy
of the consensus among all of them.

2. BACKGROUND AND METHODOLOGY
We compare and contrast 15 node-based graph attack

strategies, with varying time complexities (Table 1).
To analyze the correlation among the strategies, we use

three di↵erent analysis methodologies. First, we compare
the strategies based on their overall ranking of nodes. Specif-
ically, we consider the similarity between two strategies to
be the weighted correlation between their rankings.
Second, we adopt a similar approach to Abrahao et al.’s [1]

(that characterized graph clustering algorithms) to compare
the strategies based on the characteristics of the top nodes

Table 1: Node-based attack strategies. k: node removal budget,
n: number of nodes, m: number of edges, d: average degree, t:
maximum number of iterations, C: topology dependent constant,
D: depth to which ecc is computed, T : random walk length, ↵:
damping factor, O(·): complexity of finding (top) k nodes.

Id Abbr. Description bigO
R
a
n
d
o
m

1 r Random node O(k)
2 rn Random neighbor of a randomly

picked node
O(k)

3 rw10 Most visited node in a random walk
of length T = 10

O(kT )

4 rw50 Most visited node in a random walk
of length T = 50

O(kT )

L
o
c
a
l

5 deg Highest degree O(m)
6 lcc Highest local clust. co-e�cient [38] O(nd3)
7 ecc Highest extended clustering

co-e�cient [12]
O(nd2+D)

D
i
s
t
.

8 rad Lowest radius [13] O(n3)
9 cc Highest closeness centrality [26] O(n3)
10 betw Highest betweenness centrality [5] O(nm)

S
p
e
c
t
r
a
l

11 eig Highest eigen-vector centrality O(nC)
12 pr15 Highest PageRank [27] (↵=0.15) O(mt)
13 pr50 Highest PageRank [27] (↵=0.50) O(mt)
14 katz Highest Katz index [17] O(mt)
15 comm Highest self-communicability [10] O(n3)

that they target. Given the top few nodes, we leverage our
earlier work [14] to characterize each node with a vector
of representative graph-centric features. We quantify the
similarity between two strategies through the matching and
the separability between their feature vectors.
Third, we use the ranking provided by a strategy to re-

move the nodes one by one from a given graph. We track the
response of the graph to these removals, and then compare
two strategies based on the gradual impact that they incur
on the graph connectedness.
We apply each of these correlation analysis methods on

68 real-world networks from four di↵erent domains (social,
biological, infrastructure, and information). We look for
strong correlations among strategies which hold across all
three analysis techniques and a large body of the networks.
In the following, we refer to the corresponding methods as

Rank-C, Topk-C, and Response-C respectively (C for cor-
relation). Since all three methods use the ranking of nodes
by the strategies, we briefly discuss how we obtain these
rankings. We then describe our methodologies in detail.
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Table 8: The list of real-world networks used in this work. We have a total of 68 graphs, ranging over 4 different categories
(social, biological, infrastructure, and information networks).

Id Name Type Nodes Edges Id Name Type Nodes Edges
1 bo-bio Bio 1458 5393 35 oregon1-7 Infra 11011 55798
2 clegans Bio 453 4394 36 oregon1-8 Infra 11051 55937
3 mintcaenor Bio 3026 13484 37 oregon1-9 Infra 11174 57427
4 mintmammals Bio 7836 41356 38 oregon2-1 Infra 10900 73225
5 mintvirus Bio 950 3478 39 oregon2-2 Infra 10981 72656
6 pollen1 Bio 793 6638 40 oregon2-3 Infra 11019 74505
7 pollen2 Bio 766 3133 41 oregon2-4 Infra 11080 74118
8 pollen3 Bio 712 2917 42 oregon2-5 Infra 11113 73945
9 pollen4 Bio 997 4810 43 oregon2-6 Infra 11157 73007
10 seed-dispersion1 Bio 209 1521 44 oregon2-7 Infra 11260 73830
11 seed-dispersion2 Bio 317 2527 45 oregon2-8 Infra 11375 75910
12 yeasts Bio 2224 15874 46 oregon2-9 Infra 11461 76881
13 coauth2 Information 21363 203989 47 p2p4 Infra 10876 90850
14 coauth3 Information 4158 31003 48 p2p5 Infra 8842 72498
15 coauth5 Information 8638 58229 49 p2p6 Infra 8717 71763
16 csphd Information 1025 3110 50 p2p8 Infra 6299 47850
17 jazz Information 198 5661 51 p2p9 Infra 8104 60111
18 pgp Information 10680 59310 52 p2p24 Infra 26498 157215
19 caida6-1 Infra 21202 107050 53 p2p25 Infra 22663 132047
20 caida6-2 Infra 21157 106623 54 p2p30 Infra 36646 213246
21 caida6-3 Infra 21232 106974 55 california-cell Social 1718 9743
22 caida6-4 Infra 21245 105770 56 egoFacebook Social 2888 8849
23 caida6-5 Infra 21339 107459 57 enron Social 33696 395248
24 caida7-1 Infra 24013 122185 58 emailURV Social 1133 12013
25 caida7-2 Infra 24018 121913 59 pennsylvania-cell Social 2514 14391
26 caida7-3 Infra 24056 122342 60 wiki Social 7066 208509
27 caida7-4 Infra 24078 121700 61 slashdot Social 77360 1015534
28 caida7-5 Infra 20906 106460 62 anybeat Social 12645 106109
29 oregon1-1 Infra 10670 54646 63 small-company1 Social 320 5042
30 oregon1-2 Infra 10729 54698 64 small-company2 Social 165 1609
31 oregon1-3 Infra 10790 55164 65 medium-company1 Social 1429 40014
32 oregon1-4 Infra 10859 55780 66 medium-company2 Social 3862 178470
33 oregon1-5 Infra 10886 55300 67 large-company1 Social 5793 67298
34 oregon1-6 Infra 10943 55590 68 large-copmany2 Social 5524 193906

* 12 biological 
   networks 
* 6 information 
   networks  
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Table 8: The list of real-world networks used in this work. We have a total of 68 graphs, ranging over 4 different categories
(social, biological, infrastructure, and information networks).

Id Name Type Nodes Edges Id Name Type Nodes Edges
1 bo-bio Bio 1458 5393 35 oregon1-7 Infra 11011 55798
2 clegans Bio 453 4394 36 oregon1-8 Infra 11051 55937
3 mintcaenor Bio 3026 13484 37 oregon1-9 Infra 11174 57427
4 mintmammals Bio 7836 41356 38 oregon2-1 Infra 10900 73225
5 mintvirus Bio 950 3478 39 oregon2-2 Infra 10981 72656
6 pollen1 Bio 793 6638 40 oregon2-3 Infra 11019 74505
7 pollen2 Bio 766 3133 41 oregon2-4 Infra 11080 74118
8 pollen3 Bio 712 2917 42 oregon2-5 Infra 11113 73945
9 pollen4 Bio 997 4810 43 oregon2-6 Infra 11157 73007
10 seed-dispersion1 Bio 209 1521 44 oregon2-7 Infra 11260 73830
11 seed-dispersion2 Bio 317 2527 45 oregon2-8 Infra 11375 75910
12 yeasts Bio 2224 15874 46 oregon2-9 Infra 11461 76881
13 coauth2 Information 21363 203989 47 p2p4 Infra 10876 90850
14 coauth3 Information 4158 31003 48 p2p5 Infra 8842 72498
15 coauth5 Information 8638 58229 49 p2p6 Infra 8717 71763
16 csphd Information 1025 3110 50 p2p8 Infra 6299 47850
17 jazz Information 198 5661 51 p2p9 Infra 8104 60111
18 pgp Information 10680 59310 52 p2p24 Infra 26498 157215
19 caida6-1 Infra 21202 107050 53 p2p25 Infra 22663 132047
20 caida6-2 Infra 21157 106623 54 p2p30 Infra 36646 213246
21 caida6-3 Infra 21232 106974 55 california-cell Social 1718 9743
22 caida6-4 Infra 21245 105770 56 egoFacebook Social 2888 8849
23 caida6-5 Infra 21339 107459 57 enron Social 33696 395248
24 caida7-1 Infra 24013 122185 58 emailURV Social 1133 12013
25 caida7-2 Infra 24018 121913 59 pennsylvania-cell Social 2514 14391
26 caida7-3 Infra 24056 122342 60 wiki Social 7066 208509
27 caida7-4 Infra 24078 121700 61 slashdot Social 77360 1015534
28 caida7-5 Infra 20906 106460 62 anybeat Social 12645 106109
29 oregon1-1 Infra 10670 54646 63 small-company1 Social 320 5042
30 oregon1-2 Infra 10729 54698 64 small-company2 Social 165 1609
31 oregon1-3 Infra 10790 55164 65 medium-company1 Social 1429 40014
32 oregon1-4 Infra 10859 55780 66 medium-company2 Social 3862 178470
33 oregon1-5 Infra 10886 55300 67 large-company1 Social 5793 67298
34 oregon1-6 Infra 10943 55590 68 large-copmany2 Social 5524 193906

* 36 infrast. 
  networks 
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Table 8: The list of real-world networks used in this work. We have a total of 68 graphs, ranging over 4 different categories
(social, biological, infrastructure, and information networks).

Id Name Type Nodes Edges Id Name Type Nodes Edges
1 bo-bio Bio 1458 5393 35 oregon1-7 Infra 11011 55798
2 clegans Bio 453 4394 36 oregon1-8 Infra 11051 55937
3 mintcaenor Bio 3026 13484 37 oregon1-9 Infra 11174 57427
4 mintmammals Bio 7836 41356 38 oregon2-1 Infra 10900 73225
5 mintvirus Bio 950 3478 39 oregon2-2 Infra 10981 72656
6 pollen1 Bio 793 6638 40 oregon2-3 Infra 11019 74505
7 pollen2 Bio 766 3133 41 oregon2-4 Infra 11080 74118
8 pollen3 Bio 712 2917 42 oregon2-5 Infra 11113 73945
9 pollen4 Bio 997 4810 43 oregon2-6 Infra 11157 73007
10 seed-dispersion1 Bio 209 1521 44 oregon2-7 Infra 11260 73830
11 seed-dispersion2 Bio 317 2527 45 oregon2-8 Infra 11375 75910
12 yeasts Bio 2224 15874 46 oregon2-9 Infra 11461 76881
13 coauth2 Information 21363 203989 47 p2p4 Infra 10876 90850
14 coauth3 Information 4158 31003 48 p2p5 Infra 8842 72498
15 coauth5 Information 8638 58229 49 p2p6 Infra 8717 71763
16 csphd Information 1025 3110 50 p2p8 Infra 6299 47850
17 jazz Information 198 5661 51 p2p9 Infra 8104 60111
18 pgp Information 10680 59310 52 p2p24 Infra 26498 157215
19 caida6-1 Infra 21202 107050 53 p2p25 Infra 22663 132047
20 caida6-2 Infra 21157 106623 54 p2p30 Infra 36646 213246
21 caida6-3 Infra 21232 106974 55 california-cell Social 1718 9743
22 caida6-4 Infra 21245 105770 56 egoFacebook Social 2888 8849
23 caida6-5 Infra 21339 107459 57 enron Social 33696 395248
24 caida7-1 Infra 24013 122185 58 emailURV Social 1133 12013
25 caida7-2 Infra 24018 121913 59 pennsylvania-cell Social 2514 14391
26 caida7-3 Infra 24056 122342 60 wiki Social 7066 208509
27 caida7-4 Infra 24078 121700 61 slashdot Social 77360 1015534
28 caida7-5 Infra 20906 106460 62 anybeat Social 12645 106109
29 oregon1-1 Infra 10670 54646 63 small-company1 Social 320 5042
30 oregon1-2 Infra 10729 54698 64 small-company2 Social 165 1609
31 oregon1-3 Infra 10790 55164 65 medium-company1 Social 1429 40014
32 oregon1-4 Infra 10859 55780 66 medium-company2 Social 3862 178470
33 oregon1-5 Infra 10886 55300 67 large-company1 Social 5793 67298
34 oregon1-6 Infra 10943 55590 68 large-copmany2 Social 5524 193906



Real-world graphs 

16 Baig & Akoglu Correlation Analysis of Node Importance Measures 

Table 8: The list of real-world networks used in this work. We have a total of 68 graphs, ranging over 4 different categories
(social, biological, infrastructure, and information networks).

Id Name Type Nodes Edges Id Name Type Nodes Edges
1 bo-bio Bio 1458 5393 35 oregon1-7 Infra 11011 55798
2 clegans Bio 453 4394 36 oregon1-8 Infra 11051 55937
3 mintcaenor Bio 3026 13484 37 oregon1-9 Infra 11174 57427
4 mintmammals Bio 7836 41356 38 oregon2-1 Infra 10900 73225
5 mintvirus Bio 950 3478 39 oregon2-2 Infra 10981 72656
6 pollen1 Bio 793 6638 40 oregon2-3 Infra 11019 74505
7 pollen2 Bio 766 3133 41 oregon2-4 Infra 11080 74118
8 pollen3 Bio 712 2917 42 oregon2-5 Infra 11113 73945
9 pollen4 Bio 997 4810 43 oregon2-6 Infra 11157 73007
10 seed-dispersion1 Bio 209 1521 44 oregon2-7 Infra 11260 73830
11 seed-dispersion2 Bio 317 2527 45 oregon2-8 Infra 11375 75910
12 yeasts Bio 2224 15874 46 oregon2-9 Infra 11461 76881
13 coauth2 Information 21363 203989 47 p2p4 Infra 10876 90850
14 coauth3 Information 4158 31003 48 p2p5 Infra 8842 72498
15 coauth5 Information 8638 58229 49 p2p6 Infra 8717 71763
16 csphd Information 1025 3110 50 p2p8 Infra 6299 47850
17 jazz Information 198 5661 51 p2p9 Infra 8104 60111
18 pgp Information 10680 59310 52 p2p24 Infra 26498 157215
19 caida6-1 Infra 21202 107050 53 p2p25 Infra 22663 132047
20 caida6-2 Infra 21157 106623 54 p2p30 Infra 36646 213246
21 caida6-3 Infra 21232 106974 55 california-cell Social 1718 9743
22 caida6-4 Infra 21245 105770 56 egoFacebook Social 2888 8849
23 caida6-5 Infra 21339 107459 57 enron Social 33696 395248
24 caida7-1 Infra 24013 122185 58 emailURV Social 1133 12013
25 caida7-2 Infra 24018 121913 59 pennsylvania-cell Social 2514 14391
26 caida7-3 Infra 24056 122342 60 wiki Social 7066 208509
27 caida7-4 Infra 24078 121700 61 slashdot Social 77360 1015534
28 caida7-5 Infra 20906 106460 62 anybeat Social 12645 106109
29 oregon1-1 Infra 10670 54646 63 small-company1 Social 320 5042
30 oregon1-2 Infra 10729 54698 64 small-company2 Social 165 1609
31 oregon1-3 Infra 10790 55164 65 medium-company1 Social 1429 40014
32 oregon1-4 Infra 10859 55780 66 medium-company2 Social 3862 178470
33 oregon1-5 Infra 10886 55300 67 large-company1 Social 5793 67298
34 oregon1-6 Infra 10943 55590 68 large-copmany2 Social 5524 193906

All datasets available at: 
https://github.com/basimbaig/robust14 

* 14 social 
  networks 



This Work: 
Empirical analysis of correlations between       
node importance measures 

q  15 measures  
  randomized, local, distance, spectral 

q  68 real-world graphs  
 social, bio, infra, info 

q  3 analysis approaches                             
 I) rankings, II) node types, III) graph disruption 

q  Analysis results 
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Meta-approach 
Given strategies 1…M=15, set of (68) graphs G 
n  Compute similarity sij between all pairs i, j 
n  Construct MxM similarity matrix S 
n  Hierarchically cluster (complete-linkage) S 
Output clusters in majority (>50%) of G 
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Meta-approach 
Given strategies 1…M=15, set of (68) graphs G 
n  Compute similarity sij between all pairs i, j 
n  Construct MxM similarity matrix S 
n  Hierarchically cluster (complete-linkage) S 
Output clusters in majority (>50%) of G 
 
   3 approaches to similarity: 

I.  RANK-C   ranking 
II.  Topk-C   node characteristics 
III.  Response-C  disruption dynamics 
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Approach I: RANK-C 
n  Compares strategies based on their ranking of 

all the nodes 
1. Rank nodes (ranklist ri for strategy i) 

q  non-randomized: sorted by measure  
q  randomized: order of nodes picked 

2. Rank correlation by Weighted-Tau [Vigna,   
    2015]: generalizes Kendall’s Tau: 

q  ties carefully accounted for 
q  correlation biased toward agreement in higher ranks 

    Sij = Weighted-Tau(ri, rj)     [-1,1] 
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Approach II: Topk -CSVM-Sep 

n  Compares strategies based on the kind  
(characteristics) of nodes they select 

1. Find top-k nodes for strategies 1…M 
2. Extract recursive structural features     
    [Hendersen+ 2011]: node à feature vector 
3. SVM classifier for k vectors from i and j 
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Approach II: Topk -CSVM-Sep 

n  Compares strategies based on the kind  
(characteristics) of nodes they select 

1. Find top-k nodes for strategies 1…M 
2. Extract recursive structural features     
    [Hendersen+ 2011]: node à feature vector 
3. SVM classifier for k vectors from i and j 

 Sij = 1 - Class-Separability(Vk
i, Vk

j)      [0,1] 
 
    Class-separability: avg. probability mass of   
    correctly classified node-vectors 
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Approach II: Topk -CBI-MATCH 
n  Compares strategies based on the kind  

(characteristics) of nodes they select 
1. Find top-k nodes for strategies 1…M 
2. Extract recursive structural feature vectors     
3. Construct complete Vk

i x Vk
j  bipartite graph 

q  edge weight = vector similarity 
4. Find maximum matching mij*: 
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Approach II: Topk -CBI-MATCH 
n  Compares strategies based on the kind  

(characteristics) of nodes they select 
1. Find top-k nodes for strategies 1…M 
2. Extract recursive structural features     
    [Hendersen+ 2011]: node à feature vector 
3. Construct complete Vk

i x Vk
j  bipartite graph 

q  edge weight = vector similarity 
4. Find maximum matching mij* 

   Sij = Total-weight(mij*) / k      [0,1] 
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Approach III: Response-C  
n  Compares strategies based on disruption 

dynamics they cause when nodes removed 
1. Rank nodes for strategy i 
2. Remove nodes 1-by-1 in rank order 
3. Compute robustness fsi when s nodes 

 removed;   1) f=GCC fraction,  2) f=λ1 
4. Attack-tolerance of g: T(g)i  = avg(fsi), s=1…N 
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Approach III: Response-C  
n  Compares strategies based on disruption 

dynamics they cause when nodes removed 
1. Rank nodes for strategy i 
2. Remove nodes 1-by-1 in rank order 
3. Compute robustness fsi when s nodes 

 removed;   1) f=GCC fraction,  2) f=λ1 
4. Attack-tolerance of g: T(g)i  = avg(fsi), s=1…N 
5. Rank graphs g in G by T(g)i into Ri  

 Sij = Weighted-Tau(Ri, Rj)     [-1,1] 
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This Work: 
Empirical analysis of correlations between       
node importance measures 

q  15 measures  
  randomized, local, distance, spectral 

q  68 real-world graphs  
 social, bio, infra, info 

q  3 analysis approaches                             
 I) rankings, II) node types, III) graph disruption 

q  Analysis results 
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Average-over-all heatmap 
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Pairwise similarity 
 Avg (Std) 

 
BI-MATCH    

 0.88 (0.09) 
SVM-Sep            

 0.69 (0.22) 
Weight-Tau   

 0.36 (0.30) 
 
•  Weight-Tau in [-1,1] 
•  Others in [0,1] 
 
 BI-MATCH similarities (SVM and Weight-Tau are similar.)  



Correlation Analysis 
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1: Input: a set of graphs G, set of strategies {s1, . . . , sM}

2: for each graph G 2 G do

3: for each strategy si do
4: Rank all nodes in G using si
5: Remove nodes one-by-one in rank order
6: Record connectedness measure (1) fraction of GCC

(giant connected component) size or (2) �1(G)
7: Compute average robustness Ai

8: end for

9: end for

10: Rank graphs in G into Ri based on Ai from each si
11: Compute similarity between each sj , sk pair using

Weight-Tau (Rj , Rk)
12: Hierarchically cluster s1, . . . , sM by similarity

Figure 3: Comparing & clustering attack strategies based on
(Response-C): the incurred disruption on graph connectedness.

graph. The summary of this approach is given in Figure 3.
In particular, we take the ranked list of nodes by a strat-

egy and remove them from the target graph one by one while
monitoring the value of a selected robustness measure. In
this work, we consider two widely used connectedness mea-
sures; (1) fraction of the giant connected component (GCC)
size and (2) the largest eigenvalue of the adjacency matrix
(�1) of the graph. We recompute the measure every time
a node is removed from the target graph and aggregate the
values into a single resilience score A = 1

N

PN
i=0 f(i), where

N is the number of nodes and f(i) is the value of the connect-
edness measure after i nodes have been removed from the
graph. As such, As can be seen as the “average resilience”
of a graph when attacked by strategy s; the lower the As,
the less resilient the target graph.

Each strategy then ranks the given set of graphs by their
resilience to the specific attack. Following on our earlier
conjecture, similar attack strategies would cause similar dis-
ruption and hence provide a similar resilience ranking of the
graphs. Once again, we reduce our problem of comparing
attack strategies to comparing ranked lists, where we use
Weight-Tau as a measure of similarity.

2.4 Finding a consensus strategy
Besides studying the similarities among attack strategies,

another question we pose in this work is whether there exists
an attack strategy that can be used as a proxy for a consen-
sus among all of them. To answer this question we compute
a Kemeny-Young consensus [18] of the ranked lists produced
by the strategies in Rank-C and Response-C, and look for
strategies that are consistently close to the consensus.

3. EXPERIMENT RESULTS
In this study we used 68 real-world graphs, spread across

4 categories (14 social, 12 biological, 36 infrastructure, and 6
information). The sizes of the graphs vary from a few thou-
sand to a million edges. All datasets and more details can
be downloaded at https://github.com/basimbaig/robust14.

3.1 Correlation analysis (Rank-C & Topk-C)
We start by looking at how attack strategies rank the

nodes in a graph (Rank-C) and whether the structural char-
acteristics of these nodes overlap (Topk-C). We set k in
Topk-C to the number of 1% of nodes in each graph, as
we have graphs of varying sizes. Table 2 presents the clus-
ters obtained by applying our analysis framework presented

Table 2: Clusters obtained using Weight-Tau , SVM-Sep , and
Bi-Match for node-based attack strategies.

Clusters (Weight-Tau ) # Graphs

1. {PageRank15, PageRank50, Betweenness} (67/68)

2. {Katz, Eigen-vector} (56/68)

3. {Closeness, Communicability} (40/68)

4. {Degree, Radius} (39/68)

Clusters ( SVM-Sep ) # Graphs

1. {PageRank15, PageRank50, Betweenness} (64/68)

2. {Katz, Eigen-vector} (54/68)

3. {Closeness, Degree} (35/68)

Clusters (Bi-Match ) # Graphs

1. {PageRank15, PageRank50, Betweenness} (62/68)

2. {Katz, Eigen-vector} (52/68)

3. {Closeness, Degree} (44/68)

in Figure 2. Note that we only show clusters that appear
in at least 50% of our graphs. Even though we study a
large set of strategies, we find that a majority of them are
correlated to at least one other strategy. In particular, we
find three clusters of highly correlated node-based strategies,
namely {PageRank15, PageRank50, Betweenness}, {Katz,
Eigen-vector}, and {Degree, Closeness}.
We note that the clustering results in Table 2 hold irre-

spective of the methodology used to compute the similarity
scores. This implies that our findings most likely reflect the
underlying correlations amongst the attack strategies. An
exception we notice is {Degree, Radius} which appears only
in our Weight-Tau results. The reason this cluster did not
show up in Bi-Match and SVM-Sep is because the num-
ber of graphs where this cluster appears for those is below
our threshold but is nevertheless reasonably high (29/68 for
SVM-Sep , and 31/68 for Bi-Match ).
Figures 4 shows how these clusters actually appear. For

brevity we only show the average heatmaps in the figures but
for generating the results we went through the clustering re-
sults of each graph and strategy pair.2 Each heatmap shows
the average similarity scores across all the graphs where a
specific cluster appears. The heatmap marked ‘All’ simply
shows an average of the scores across all the graphs.
We notice that the strategies in the same cluster are

strongly correlated in the graphs where they appear. What
is more, the clustering structure still remains visible when
the similarity matrices are averaged across ‘All’ graphs.
That is, the correlations do not “wash away” when all
the graphs are considered. We also notice from the ‘All’
heatmaps that the attack-strategies are overall well corre-
lated. The average pairwise similarity of the strategies is
0.88 with 0.09 standard deviation.3

To illustrate the di↵erence of clustered strategies, Figure
5 shows the distribution of raw similarity scores for (i) pairs
of clustered and (ii) pairs of randomly picked strategies. We
see a clear di↵erence in scores between the two, irrespective
of the method used to compute the similarity scores.

2We present heatmaps for Bi-Match due to space limit. Those
for SVM-Sep and Weight-Tau are similar.
3Results are similar for SVM-Sep : 0.69 (0.22), and Weight-

Tau : 0.36 (0.30). Note that Weight-Tau2 [�1, 1] whereas oth-
ers are 2 [0, 1].



Group#1: Pagerank,Betwenness 

Baig & Akoglu Correlation Analysis of Node Importance Measures 30 

Pagerank: a cheap proxy to Betweenness  



Group#2: Katz, Eigenvector 
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Group#3: Degree, Closeness 
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Degree: a cheap proxy to Closeness 



Significance of correlation 
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Box-plots: distribution of correlation across graphs in G 



Significance of correlation 
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Significance of correlation 
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Overlap ratio of top-k nodes 
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k is set to number of 1% of nodes in each graph  



Consensus analysis 
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Figure 4: Node-based attack strategies clustered with Bi-

Match . Heatmaps representing individual clusters from Table
2 are the average of heatmaps obtained from graphs where the
cluster appears. (bottom) Average heatmap across all graphs.

Figure 5: Box plots showing the distribution of similarity scores
for all graphs for (green boxes) pairs of correlated strategies, and
(red boxes) random pairs of strategies for comparison. (left)
Weight-Tau , (middle) SVM-Sep , (right) Bi-Match .

(a) pr15 and betw (b) katz and eig (c) deg and cc

Figure 6: Distribution of the fractional overlap (1-1 correspon-
dence) among top k nodes picked by correlated strategies.

Further, Figure 6 shows that the clustered strategies share
significant overlap among their top k entities.
Table 1 showed that attack strategies have a wide variety

of costs. Looking at our clustering results, we find attack
strategies that fall in the same cluster but have di↵ering
computational costs. These include clusters {PageRank,
Betweenness} and {Degree, Closeness}, where bold-faced
strategies are cheaper. This result provides us with approx-
imation opportunities; e.g., if a user is interested in pick-
ing nodes with highest betweenness (computationally expen-
sive), s/he can employ PageRank as a proxy. This kind of
approximation is tremendously helpful, especially for very
large-scale real-world graphs.
Next we create consensus rankings in Rank-C and aim

to identify a few (cheap) strategies close to the consensus.
Table 3 lists the top 5 strategies with most similar rankings
to the consensus on ten example graphs. We find that katz,
eig, betw, pr15 appear in majority of the graphs, where e.g.,
pr15 can be used as a cheap proxy to the consensus.

Table 3: Top 5 node-based strategies closest to the Kemeny-
Young consensus across 10 example graphs.

1 2 3 4 5 6 7 8 9 10

katz katz pr15 katz betw pr15 pr15 katz katz pr15
eig pr15 katz pr15 katz katz katz pr15 eig katz
pr15 pr50 pr50 pr50 pr15 pr50 comm eig pr15 pr50
betw eig betw cc pr50 betw deg pr50 pr50 eig
ecc deg eig comm ecc eig eig betw deg betw

3.2 Correlation analysis by Response-C

Previously, we compared the nodes picked by each attack
strategy directly (Weight-Tau ) or by mapping them to a
feature space (Bi-Match ,SVM-Sep ). Next, we actually
simulate attacks on our graphs. That is, we remove nodes
from each graph in order of the ranked list produced by each
attack strategy. We use this attack-driven study as another
way to validate our clustering results in §3.1.
Figure 7 shows how the robustness changes as more and

more nodes are removed from the graphs. We notice that the
graphs respond to correlated attack strategies similarly. For
example, highly correlated (a) Betwenness and (b) PageR-
ank cause similar disruption on a given graph.
The similarity between strategies based on how they rank

the graphs by their resilience, as shown in Figure 8 (for both
GCC fraction and �1), provides results in agreement with

Figure 4: Node-based attack strategies clustered with Bi-

Match . Heatmaps representing individual clusters from Table
2 are the average of heatmaps obtained from graphs where the
cluster appears. (bottom) Average heatmap across all graphs.

Figure 5: Box plots showing the distribution of similarity scores
for all graphs for (green boxes) pairs of correlated strategies, and
(red boxes) random pairs of strategies for comparison. (left)
Weight-Tau , (middle) SVM-Sep , (right) Bi-Match .

(a) pr15 and betw (b) katz and eig (c) deg and cc

Figure 6: Distribution of the fractional overlap (1-1 correspon-
dence) among top k nodes picked by correlated strategies.

Further, Figure 6 shows that the clustered strategies share
significant overlap among their top k entities.
Table 1 showed that attack strategies have a wide variety

of costs. Looking at our clustering results, we find attack
strategies that fall in the same cluster but have di↵ering
computational costs. These include clusters {PageRank,
Betweenness} and {Degree, Closeness}, where bold-faced
strategies are cheaper. This result provides us with approx-
imation opportunities; e.g., if a user is interested in pick-
ing nodes with highest betweenness (computationally expen-
sive), s/he can employ PageRank as a proxy. This kind of
approximation is tremendously helpful, especially for very
large-scale real-world graphs.
Next we create consensus rankings in Rank-C and aim

to identify a few (cheap) strategies close to the consensus.
Table 3 lists the top 5 strategies with most similar rankings
to the consensus on ten example graphs. We find that katz,
eig, betw, pr15 appear in majority of the graphs, where e.g.,
pr15 can be used as a cheap proxy to the consensus.

Table 3: Top 5 node-based strategies closest to the Kemeny-
Young consensus across 10 example graphs.

1 2 3 4 5 6 7 8 9 10

katz katz pr15 katz betw pr15 pr15 katz katz pr15
eig pr15 katz pr15 katz katz katz pr15 eig katz
pr15 pr50 pr50 pr50 pr15 pr50 comm eig pr15 pr50
betw eig betw cc pr50 betw deg pr50 pr50 eig
ecc deg eig comm ecc eig eig betw deg betw

3.2 Correlation analysis by Response-C

Previously, we compared the nodes picked by each attack
strategy directly (Weight-Tau ) or by mapping them to a
feature space (Bi-Match ,SVM-Sep ). Next, we actually
simulate attacks on our graphs. That is, we remove nodes
from each graph in order of the ranked list produced by each
attack strategy. We use this attack-driven study as another
way to validate our clustering results in §3.1.
Figure 7 shows how the robustness changes as more and

more nodes are removed from the graphs. We notice that the
graphs respond to correlated attack strategies similarly. For
example, highly correlated (a) Betwenness and (b) PageR-
ank cause similar disruption on a given graph.
The similarity between strategies based on how they rank

the graphs by their resilience, as shown in Figure 8 (for both
GCC fraction and �1), provides results in agreement with

n  Compute Kemeny-Young consensus on      
RANK-C ranking of nodes 

n  Sort strategies by closeness to consensus 

Katz or pr15 : cheap proxy to consensus 



Disruption dynamics 
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Disruption dynamics 
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Disruption dynamics 
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Similarity by Response-C 
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Conclusion 
Summary: 
n  Studied of 15 measures, 68 graphs (4 domains) 
n  Employed 3 analysis approaches 
Findings: 
n  High correlation across measures 
n  Significant groups of strongly correlated 

strategies (i.e., measures) 
Implications: 
n  Cheap alternatives/approximation 
n  Proxy to consensus 
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