
Discovering Opinion Spammer Groups by
Network Footprints

Junting Ye Leman Akoglu

Department of Computer Science, Stony Brook University
{juyye,leman}@cs.stonybrook.edu

Abstract. Online reviews are an important source for consumers to
evaluate products/services on the Internet (e.g. Amazon, Yelp, etc.).
However, more and more fraudulent reviewers write fake reviews to mis-
lead users. To maximize their impact and share effort, many spam attacks
are organized as campaigns, by a group of spammers. In this paper, we
propose a new two-step method to discover spammer groups and their
targeted products. First, we introduce NFS (Network Footprint Score),
a new measure that quantifies the likelihood of products being spam
campaign targets. Second, we carefully devise GroupStrainer to cluster
spammers on a 2-hop subgraph induced by top ranking products. We
demonstrate the efficiency and effectiveness of our approach on both syn-
thetic and real-world datasets from two different domains with millions
of products and reviewers. Moreover, we discover interesting strategies
that spammers employ through case studies of our detected groups.

Keywords: opinion spam · spammer groups · spam detection · graph
anomaly detection · efficient hierarchical clustering · network footprints

1 Introduction

Online reviews of products and services are an increasingly important source of
information for consumers. They are valuable since, unlike advertisements, they
reflect the testimonials of other, “real” consumers. While many positive reviews
can increase the revenue of a business, negative reviews can cause substantial
loss. As a result of such financial incentives, opinion spam has become a critical
issue [17], where fraudulent reviewers fabricate spam reviews to unjustly promote
or demote (e.g., under competition) certain products and businesses.

Opinion spam is surprisingly prevalent; one-third of consumer reviews on the
Internet1, and more than 20% of reviews on Yelp2 are estimated to be fake.
Despite being widespread, opinion spam remains a mostly open and challenging
problem for at least two main reasons; (1) humans are incapable of distinguishing
fake reviews based on text [25], which renders manual labeling extremely difficult
and hence supervised methods inapplicable, and (2) fraudulent reviewers are

1
http://www.nytimes.com/2012/08/26/business/book-reviewers-for-hire-meet-a-demand-for
-online-raves.html

2
http://www.businessinsider.com/20-percent-of-yelp-reviews-fake-2013-9

2 Junting Ye Leman Akoglu

often professionals, paid by businesses to write detailed and genuine-looking
reviews.

Since the seminal work by Jindal and Liu [17], opinion spam has been the
focus of research for the last 7-8 years (Section 5). Most existing work aim
to detect individual spam reviews [12, 17, 20, 21, 25, 26] or spammers [1, 11, 13,
18, 22, 26]. However, fraud/spam is often a collective act, where the involved
individuals cooperate in groups to execute spam campaigns. This way, they can
increase total impact (i.e., dominate the sentiments towards target products via
flooding deceptive opinions), split total effort, and camouflage (i.e., hide their
suspicious behaviors by balancing workload so that no single individual stands
out). Surprisingly, however, only a few efforts aim to detect group-level opinion
spam [23, 27, 28]. Moreover, most existing work employ supervised techniques
[17, 12, 25, 20] and/or utilize side information, such as behavioral [17, 22, 23, 27,
28] or linguistic [12, 25] clues of spammers. The former is inadmissible, due to
the difficulty in obtaining ground truth labels. The latter, on the other hand, is
not adversarially robust; the spammers can fine-tune their language (e.g., usage
of superlatives, self-references, etc.) and behavior (e.g., login times, IPs, etc.) to
mimic genuine users as closely as possible and evade detection.

In this work, we propose a new unsupervised and scalable approach for de-
tecting opinion spammer groups solely based on their network footprints. At its
heart, our method consists of two key components:

– NFS (Network Footprint Score). We introduce a new graph-based mea-
sure that quantifies the statistical distortions caused by spamming activi-
ties in well-understood network characteristics. NFS is fast to compute and
more robust to evasion than linguistic and behavioral measures, provided
that spammers have only a partial view of the review network (Section 2).

– GroupStrainer. We devise a fast method to group spammers on a care-
fully induced subnetwork of highly suspicious products and reviewers. Group-
Strainer employs a hierarchical clustering algorithm that leverages similarity-
sensitive hashing to speed up the merging steps. The output is a set of spam-
mer groups and their nested hierarchy, which facilitates sensemaking of their
organizational structure, as well as verification by end analysts (Section 3).

In the experiments, we compare our method to various graph anomaly de-
tection methods on synthetic datasets and study its performance on two large
real-world datasets (Amazon and iTunes). Our results show that we effectively
spot spammer groups with high accuracy, which is superior to existing methods.

2 Measuring Network Footprints

A perfect form of an opinion spam campaign would certainly reflect a near-replica
of the characteristics that genuine reviewers exhibit on online review sites. Those
characteristics include linguistic, behavioral, and relational (network-level) pat-
terns. One can argue that language and behavior patterns are relatively easier to
mimic by the spammers as compared to network-based patterns. For example,

Discovering Opinion Spammer Groups by Network Footprints 3

spammers could adjust their usage of certain language constructs (e.g., superla-
tives, self-references, etc.) that have been found to be associated with deception
[25], so as to evade classifiers [8].

On the other hand, spoofing network-level characteristics in general is adver-
sarially harder for various reasons. First, spammers (adversaries) often do not
have a complete view of the entire review network, due to its sheer scale and
access properties. Moreover, the reviewers that belong to a spam campaign have
to act as a group, which would create different dynamics in the review network
than the independent actions of genuine reviewers. Finally, spammers do not
replicate “unimportant” structures in the network due to limited budget.

Therefore, in this work we focus on the network-level characteristics of opin-
ion spammers in the user–product bipartite review network. We develop a network-
based method that is able to distinguish the network footprints of spammer
groups from those of individual genuine users. In particular, we propose a new
measure called the NFS (for Network Footprint Score), that quantifies the ex-
tent to which statistical network characteristics of reviewers are distorted by
spamming activities.

To design our NFS measure, we leverage two key observations associated
with real-world networks:

1. Neighbor diversity: The neighbors of a node in a real network are expected
to consist of nodes with varying behavior and levels of activity. As such, the
neighbors should not be overly dependent on one another; rather, they should
be spread across sources of varying quality or importance. For example, in
social networks a person has friends with varying levels of “popularity”.

2. Self-similarity: Real-world networks are self-similar [4, 5]; that is, portions
of the network often have properties similar to the entire network. In partic-
ular, the importances of the neighbors of a node follow a skewed, power-law-
like distribution, just as the case for all of the nodes in the entire network.

In a nutshell, while the former observation implies (i) local diversity of node
importances in the neighborhood of a node, the latter implies (ii) distributional
similarity between node importances at local (i.e., neighborhood) and global
level (i.e., at large). Importance of nodes in a network can be captured by their
centrality. There exist a long list of work on developing various measures for
node centralities [10]. In this work, we consider two different measures; degree
and Pagerank centrality, which respectively use local and global information to
quantify node importances.3

In the following, we describe how we utilize each of the above insights to
measure the network footprints of spammer groups in review networks. More
precisely, a review network is a bipartite graph G that consists of n reviewer
nodes connected to m product nodes through review relations.

3
We compute these measures based on the reviewer–product bipartite review network.

4 Junting Ye Leman Akoglu

2.1 Neighbor diversity of nodes

We can translate Observation 1 above to the domain of review networks as
follows. An honest set of reviewers for a product arises by independent actions of
individuals with varying behavior and levels of activity. As a result, the centrality
of the reviewers of a product is expected to vary to a large extent. In analogy to
social networks where a person has friends with varying level of “popularity”, a
product would have reviewers with varying level of network centrality.

In other words, a set of reviewers all with centrality (degree or Pagerank)
values falling into a narrow interval is suspicious. Such a large set of highly
similar reviewers (i.e., “clones”) raises the suspicion that they have emerged
through certain means of a cooperation, e.g., under a spam campaign.

To quantify the diversity of neighbor centralities of a given product, we first
split the centrality values of its reviewers into buckets to create a non-parametric
estimation of their density through a histogram. We then compute the skewness
of the histogram through entropy. More specifically, given the (degree of Pager-

ank) centralities {c(i)1 , . . . , c
(i)
deg(i)} of the reviewers of a product i with degree

deg(i), we create a list of buckets k = {0, 1, . . .}. We let the bucket boundary
values grow exponentially as a · bk, as both degree and Pagerank values of nodes
in real-world networks have been observed to follow skewed distributions [6, 9].

For degree centrality we use a = 3 and b = 3 such that the bucket boundaries

are {1, 3, 9, 27, . . .} and place each reviewer j with degree c
(i)
j to bucket k with

a · bk−1 ≤ c
(i)
j < a · bk. On the other hand, we use a = 0.3 and b = 0.3 for

Pagerank where bucket boundaries become {1, 0.3, 0.09, 0.027, . . .} as it takes

values in [0, 1], and place each reviewer j with Pagerank c
(i)
j to bucket k with

a · bk−1 ≥ c
(i)
j > a · bk. The choice of a and b has little effect on our results as

long as we use a logarithmic binning [24] so as to capture the skewness of data.
Given the placement of reviewers into K buckets by their centrality, we next

count the reviewers in each bucket and normalize the counts by the total count

deg(i) to obtain a discrete probability distribution P (i) with values [p
(i)
1 , . . . , p

(i)
K].

We then compute the Shannon entropy of P (i) as Hc(i) = −
∑K

k=1 p
(i)
k log p

(i)
k for

centrality c. As such, a product i receives two neighbor-diversity scores, Hdeg(i)
and Hpr(i), for degree and Pagerank respectively. The lower these scores are,
the more likely the product is the target of a spam campaign and hence the
more suspicious are the reviewers of the product as they appear near-replicas of
one another in the network—cooperating around the same goal, leaving similar
network footprints.

2.2 Self-similarity in real-world graphs

Similarly, we can leverage Observation 2 to measure the distributional distortions
caused by spam activities. Specifically, self-similarity implies that the centrality
of reviewers for a particular product should follow a similar distribution as to the
centrality of all reviewers in the network. Note that while Observation 1 enforces
the neighbor centralities to be diverse, Observation 2 requires them to also closely

Discovering Opinion Spammer Groups by Network Footprints 5

follow global distributional patterns. It is well-known that degree and Pagerank
distributions of nodes in real-world graphs follow power-law-like distributions [6,
9]. As such, a diverse but e.g., Gaussian-distributed set of neighbor centralities
would still raise a red flag in terms of self-similarity, while considered normal in
terms of neighbor diversity.

Therefore, we define a second type of score for each product i as the KL-
divergence between the histogram density of the centralities of its reviewers

P (i) = [p
(i)
1 , . . . , p

(i)
K] and that of all reviewers in the network denoted by Q;

KLc(P
(i)‖Q) =

∑
k p

(i)
k log

p
(i)
k

qk
. We compute Q in the same way we computed

P ’s as before, where this time we split into buckets the centrality values of all
the reviewers in the network.4 As a result, a product i receives two scores for
divergence from self-similarity, KLdeg(i) and KLpr(i), for degree and Pagerank
respectively. The larger these scores are, the more likely the product is the target
of a spam campaign.

2.3 NFS measure

To quantify the extent to which a product is under attack by a spam campaign,
we combine the scores derived from the network footprints into a final score.
Overall, we have four suspiciousness scores for a product, two based on neighbor-
diversity; Hdeg and Hpr, and two based on self-similarity; KLdeg and KLpr.
These capture different semantics; a product is likely a target the lower the
H and the higher the KL scores. Moreover, they are not normalized within a
standard range.

To unify the scores into a single score with a standard scale, we leverage
the cumulative distribution function (CDF). In particular, let us denote by H =
{H(1), H(2), . . .} the list of entropy scores (based on degree or Pagerank) we
computed for a set of products. To quantify the extremity of a particular H(i),
we use the empirical CDF over H and estimate the probability that the set
contains a value as low as H(i) as

f(H(i)) = P (H ≤ H(i)) ,

which is equal to the fraction of scores in H that are less than or equal to H(i).
On the other hand, for KL scores, we estimate the probability that the set
KL = {KL(1),KL(2), . . .} contains a value as high as KL(i) by

f(KL(i)) = 1− P (KL ≤ KL(i)) .

As such, f(·) takes low values for low H(i) values and high KL(i) values.
Finally, we combine the f values to compute the NFS of a product i as given in
Equ. (1), such that NFS(i) ∈ [0, 1] where high values are suspicious.

NFS(i) = 1−
√
f(Hdeg(i))2 + f(Hpr(i))2 + f(KLdeg(i))2 + f(KLpr(i))2

4
(1)

4
We use Laplace smoothing for empty buckets.

6 Junting Ye Leman Akoglu

Algorithm 1: ComputeNFS

1 Input: Reviewer–Product graph G = (V,E), degree threshold η
2 Output: Network Footprint Score (NFS) of products with degree ≥ η
3 Compute centrality c of each reviewer in G, c = {degree, Pagerank}
4 Create a list of buckets k = {0, 1, . . .}
5 foreach reviewer j in G, 1 ≤ j ≤ n do //Compute global histogram Q
6 if c =degree then

7 place j to bucketk with a · bk−1 ≤ c(i)j < a · bk, (a = 3, b = 3)

8 else place j to bucketk with a · bk−1 ≥ c(i)j > a · bk, (a = .3, b = .3)

9 forall the non-empty buckets k = {0, 1, . . .} do
10 qk = |bucketk|/n

11 foreach product i with deg(i) ≥ η do
12 Create a list of buckets k = {0, 1, . . .}
13 foreach neighbor (reviewer) j of product i do
14 if c =degree then

15 place j to bucketk with a · bk−1 ≤ c(i)j < a · bk, (a = 3, b = 3)

16 else place j to bucketk with a · bk−1 ≥ c(i)j > a · bk, (a = .3, b = .3)

17 forall the non-empty buckets k = {0, 1, . . .} do //local histogram P (i)

18 p
(i)
k = |bucketk|/deg(i)

19 Compute entropy Hc(i) based on p
(i)
k ’s

20 K′ = number of uncommon buckets where qk 6= 0 and p
(i)
k = 0

21 forall the buckets k where qk 6= 0 do //local smoothed histogram P (i)

22 if p
(i)
k = 0 then p

(i)
k = 1/(deg(i) +K′) //Laplace smoothing

23 else p
(i)
k = (p

(i)
k · deg(i))/(deg(i) +K′) //Re-normalize

24 Compute divergence KLc(P
(i)‖Q) based on p

(i)
k ’s and qk’s

25 Compute NFS of i by Equ. (1) based on Hc(i) and KLc(P
(i)‖Q)

The complete list of steps to compute NFS is given in Algorithm 1. Note
that we utilize centrality density distributions Pdeg and Ppr over neighbors to
compute the NFS of a product. These distributions are meaningful only when a
product has a large number of review(er)s, since only a few data points cannot
constitute a reliable distribution (in this work products with less than 20 reviews
are ignored, i.e., we set η = 20). This, however, is not a severe limitation of
our approach. The reason is that spam campaigns often involve reasonably large
number of reviewers in order to (1) increase the total impact on a target product
and (2) share the overall effort. Small spam campaigns are of little spamming
power and can be overlooked without much risk.

3 Detecting Spammer Groups

We compute the NFS for the products, as a measure of their abnormality of
being targeted by suspiciously similar reviewers. Such groups of highly similar
reviewers potentially work together under the same spam campaigns. Our end
goal is to identify all such spammer groups.

Discovering Opinion Spammer Groups by Network Footprints 7

To achieve this goal, we construct a subnetwork consisting of the top products
with the highest NFS values5 denoted as P1, all the reviewers of these products
R, and all the products that these reviewers reviewed P2 ⊇ P1. In other words,
the subnetwork is the induced subgraph of our original graph G on the nodes
within 2-hops away from the top products in P1, i.e. G[P2 ∪ R]. We represent
this subgraph with a p× u adjacency matrix A, where |P2| = p and |R| = u.

An example of A can be seen in Figure 3 (top). This matrix contains highly
similar users, i.e., columns, since the subgraph is biased toward products with
high NFS values. However, it is clear that the reviewer groups are not immedi-
ately evident from the figure. To fully automate the group identification process,
we propose a fast algorithm called GroupStrainer that finds clusters of highly
similar columns of A, which carefully re-organizes/shuffles the columns to better
reveal the reviewer groups. The output of GroupStrainer on the example matrix
can be seen in Figure 3 (bottom), and will be discussed further in Section 4.

Note that the goal here is not to cluster all the columns of A (notice the
last several in Figure 3 (bottom) that do not belong to any group), but to chip
off groups where columns within each group are strongly similar. Moreover, we
ideally do not want to pre-specify the number of groups a priori, which is a chal-
lenging parameter to set. To achieve both of these goals, GroupStrainer adopts
an agglomerative hierarchical clustering scheme, where columns are iteratively
merged to form larger groups. Such a scheme also reveals the nested, hierarchical
structure of the groups that provides further insights to the end analyst.

A naive agglomerative clustering has O(u3) complexity, where in each step
similarities of all-pairs are compared. Moreover, clusters are merged two at a time
in each step. In our approach, we leverage Locality-Sensitive Hashing (LSH) [15]
to speed up the process of finding similar set of clusters. Provided a set of similar
clusters, we can then merge two or more clusters at a time which speeds up the
hierarchy construction.

In a nutshell, LSH is a randomized algorithm for similarity search, which
ensures similar points are hashed to the same hash bucket with high probability,
while non-similar points are rarely hashed to the same bucket. As a result, it
quickens the similarity search by narrowing down the search to points that are
hashed only to the same buckets. In order to systematically reduce the proba-
bility of highly similar points hashing to different buckets, it employs multiple
hash functions. At its heart, LSH generates signatures for each data point, where
it ensures that the similarity between the original points is proportional to the
probability of their signatures to be equal. As a consequence, the more similar
two points are, the more likely their signatures match, and the more probable
that they hash to the same bucket (hence locality-, or similarity-sensitive hash-
ing). LSH uses different, suitable signature generation functions with respect to
different similarity functions. In this paper, we use two: min-hashing for Jaccard
similarity and random-projection for cosine similarity.

5
Rather than an arbitrary top k, we adopt the mixture-modeling approach in [14], where NFS val-
ues are modeled as drawn from two distributions; Gaussian for normal values and exponential for
outliers. Model parameters and assignment of points to distributions are learned by the EM algo-
rithm. Top products are then the ones whose NFS values belong to the exponential distribution.

8 Junting Ye Leman Akoglu

Algorithm 2: GroupStrainer

1 Input: p× u adjacency matrix A of 2-hop network of top products with highest
NFS values, similarity lower bound sL (default 0.5)

2 Output: User groups Uout and their hierarchical structure
3 Create a list of similarity thresholds S = {0.95, 0.90, . . . , sL}
4 Set k1 = u, U1 := {1, 2, . . . , u} → {1, 2, . . . , u} // init reviewer groups
5 for T = 1 to |S| do
6 Estimate LSH parameters r and b for threshold S(T)
7 //Step 1. Generate signatures

8 Init signature matrix M [i][j] ∈ Rrb×kT

9 if T = 1 then // use Jaccard similarity, generate min-hash signatures
10 for i = 1 to rb do
11 πi ← generate random permutation (1 . . . p)

12 for j = 1 to kT do M [i][j]← minv∈Njπi(v)

13 else // use cosine similarity, generate random-projection signatures
14 for i = 1 to rb do
15 ri ← pick a random hyperplane ∈ Rp×1

16 for j = 1 to kT do M [i][j]← sign(rsum(A(:, UT =j)/|UT =j|) · ri)

17 //Step 2. Generate hash tables
18 for h = 1 to b do
19 for j = 1 to kT do hash(M [(h− 1) · r + 1:h · r][j])
20 //Step 3. Merge clusters from hash tables
21 Build candidate groups g’s: union of clusters that hash to at least one same

bucket in all hash tables, i.e. {ci, cj} ∈ g if hashh(ci) = hashh(cj) for ∃h
22 foreach candidate group g do
23 foreach ci, cj ∈ g, i 6= j do
24 if sim(vi,vj) ≥ S(T) then //merge
25 g = g\{ci, cj} ∪ {ci ∪ cj}
26 kT = kT − 1, UT (ci) = UT (cj) = min(UT (ci), U

T (cj))

27 kT+1 = kT , UT+1 = UT

28 return Uout = U |S|+1, evolving groups {U1, . . . , U |S|} to build nested hierarchy

The details of our GroupStrainer is given in Algorithm 2, which consists of
three main steps: (1) generate LSH signatures (Lines 7-16), (2) generate hash
tables (17-19), and (3) merge clusters using hash buckets (20-24).

In the first iteration of step (1), i.e. T = 1, the clusters consist of individual,
binary columns of A, represented by vj’s, 1 ≤ j ≤ u. As the similarity measure,
we use Jaccard similarity which is high for those columns (i.e., reviewers) with
many exclusive common neighbors (i.e., products). Min-hashing is designed to
capture the Jaccard similarity between binary vectors; that is, it can be shown
that the probability that the min-hash values (signatures) of two binary vectors
agree is equal to their Jaccard similarity (Lines 9-12). For T > 1, the clusters
consist of multiple columns. This time, we represent each cluster j by a length-p
real-valued vector vj in which the entries denote the density of each row, i.e.,
vj = rsum(A(:, UT = j)/|UT = j|, where UT is the mapping of columns to
clusters at iteration T , UT = j depicts the indices of columns that belong to
cluster j, rsum is the row-sum of entries in the induced adjacency matrix, and

Discovering Opinion Spammer Groups by Network Footprints 9

|UT = j| is the size of cluster j. Then, we use the cosine similarity between vi and
vj as the similarity measure of two clusters i and j. In LSH, random-projection
based signature generation captures cosine similarity; that is, it can be shown
that the probability that the random-projection values of two real-valued vectors
agree is proportional to their cosine similarity [19] (Lines 13-16).

In step (2), LSH performs multiple hash operations on different subset of
signatures to increase the probability that two highly similar items hash to the
same bucket in at least one hash table (Lines 18-19).

Step (3) involves the main merging operations. First we construct the groups
of candidate clusters to be merged, where all the clusters that hash to the same
hash bucket in at least one hash table are put into the same group g (Line
21). These are called candidate clusters as LSH is a probabilistic algorithm,
and can yield false positives. Therefore, rather than merging all the clusters
in each group directly, we verify whether their similarity is above the desired
threshold (Line 24), before committing the merge (Lines 25-26). Note that at this
merge step, more than two clusters can be merged. With respect to complexity
GroupStrainer is only sub-quadratic; it performs pairwise similarity computation
among clusters only within groups (Line 23), rather than among all the clusters.
The number of clusters within each group at a given iteration is often much
smaller than the total. This contributes to a significant reduction in running
time, while enabling us to focus on merging highly similar clusters.

Finally, we describe the process of constructing a nested hierarchy of clus-
ters. A specific iteration finds groups of clusters with similarity above a desired
threshold. At the beginning (T = 1), we set a large/conservative threshold of
0.95 such that only extremely similar columns are grouped. As T increases, we
gradually lower the similarity threshold so as to allow the hierarchy to grow.
Here, the user can specify a lower bound sL for the threshold (default 0.5), so as
to prevent clusters with similarity below the bound to be merged. Depending on
sL, our hierarchy may contain a single or multiple tree(s), as well as singleton
columns that do not belong to any cluster. We treat all non-singleton trees as
candidates of spammer groups, and inspect them in size order. Other ranking
measures can also be used to prioritize inspection.

4 Evaluation

We first evaluate the performance of our method on synthetic datasets, as com-
pared to several existing methods. Our method consists of two steps: NFS com-
putation and GroupStrainer. The former tries to capture the targeted products,
and the latter focuses on detecting spammer groups through their collusion on
the target products. As such, we design separate data generators for each step
to best simulate these scenarios. In addition, we apply our method on two real-
world review datasets and show through detailed case analyses that it detects
many suspicious user groups. A summary of the datasets is given in Table 1.

10 Junting Ye Leman Akoglu

Table 1. Summary of synthetic and real-world datasets used in this work.

Synthetic Data Real-world Data
Chung-Lu1 Chung-Lu2 RTG1 RTG2 iTunes Amazon

of users 532,742 2,133,399 604,520 876,627 966,808 2,146,074
of products 157,768 665,381 604,805 876,950 15,093 1,230,916

of edges 1,299,059 5,191,053 3,097,342 4,644,572 1,132,329 5,838,061

4.1 Performance of NFS on synthetic data

Synthetic data generation. We use two models to create synthetic graphs: Chung-
Lu [7] and the RTG [2]. Chung-Lu creates random graphs with a given degree
sequence. We draw the degrees of reviewers and products from a power-law
distribution with exponent 2.9 and 2.1, respectively, as observed in the real
world [1, 6, 9]. RTG model also creates realistic bipartite graphs that not only
follow power-law degree distribution but also contain communities, which are
common in real-world graphs. We create two graphs with different sizes using
each model (Table 1). Next, we follow the injection process in [16] to simulate and
inject spammer groups into our graphs. Specifically, we add 3 spammer groups
with 1000, 2000 and 4000 users respectively. Each spammer group targets a set of
designated products (100, 200 and 400 in size). Each injected spammer writes 20
reviews to their target products, with σ percent camouflage written to untargeted
ones. There exist two strategies to camouflage: writing reviews (1) to top 100
most popular (highest degree) products; and (2) to random untargeted products.
This way, we create four injection configurations; σ=10% or 30% camouflage on
popular products, and σ=10% or 30% on random ones, where larger σ and
random camouflage are relatively harder to detect.

Compared methods. NFS measures the suspiciousness of products. In order to
rank the users, we utilize the FraudEagle method [1]. FraudEagle computes
scores for users and products by propagating unbiased beliefs in the review net-
work. We assign NFS values of products as their initial beliefs (i.e., priors). Thus
users who targeted many products with large NFS values gain high score at con-
vergence. In our setting, review ratings (often from 1 to 5) are not utilized. Thus
we ignore the edge signs in FraudEagle to make these methods comparable.6

In addition to (1) FraudEagle [1], we also compare to (2) CatchSync [16],
designed to spot synchronized behavior among users and (3) Oddball [3], for de-
tecting users whose neighbors are in near-clique or star shapes. Oddball requires
unipartite graphs, thus we use the projected review network on users, where two
users with at least 5 common neighbors (products) are connected.

Performance results. In Section 2, we introduced two key observations that we
use to design NFS: neighbor diversity and self-similarity. In Fig. 1, we show the
entropy Hdeg vs. KL-divergence KLdeg of products on the Chung-Lu1 graph as
an example. We can see that the products targeted by a group of spammers
reside in the bottom-right part of the figure.

6
Accordinly, we use a single edge compatibility table (i.e., [0.9 0.1; 0.1 0.9]) for FraudEagle [1].

Discovering Opinion Spammer Groups by Network Footprints 11

Table 2. AUC of Precision-Recall curve on synthetic datasets. Two values in each
entry: (former) performance on high degree users (threshold at 20) and performance
on all users. (HDP: number of high degree products (≥ 20); FE: FraudEagle.)

Dataset Camouf. HDP Oddball[3] CatchSync[16] FE[1] NFS+FE

Chung-
Lu1

10% Pop. 6170 0.990/0.937 1.000/0.009 0.570/0.569 1.000/1.000
30% Pop. 6172 0.997/0.973 1.000/0.008 0.570/0.570 1.000/1.000
10% Rand. 6205 0.982/0.886 1.000/0.007 0.552/0.552 1.000/1.000
30% Rand. 6266 0.881/0.386 0.957/0.007 0.532/0.526 1.000/1.000

Chung-
Lu2

10% Pop. 25306 0.977/0.943 1.000/0.002 0.294/0.294 1.000/1.000
30% Pop. 25302 0.995/0.988 1.000/0.002 0.294/0.294 1.000/1.000
10% Rand. 25330 0.955/0.887 1.000/0.002 0.280/0.279 1.000/1.000
30% Rand. 25392 0.711/0.374 0.982/0.002 0.261/0.256 1.000/0.977

RTG1

10% Pop. 17771 0.945/0.852 1.000/0.008 0.176/0.176 1.000/1.000
30% Pop. 17766 0.929/0.842 0.997/0.007 0.176/0.176 1.000/1.000
10% Rand. 17780 0.918/0.803 0.995/0.007 0.168/0.168 1.000/1.000
30% Rand. 17843 0.637/0.367 0.878/0.007 0.163/0.158 0.952/0.950

RTG2

10% Pop. 25658 0.906/0.778 1.000/0.005 0.129/0.129 1.000/1.000
30% Pop. 25658 0.879/0.746 1.000/0.005 0.129/0.129 1.000/1.000
10% Rand. 25678 0.877/0.741 0.987/0.005 0.123/0.123 1.000/1.000
30% Rand. 25716 0.577/0.331 0.778/0.005 0.119/0.115 0.952/0.951

0 1 2 3 4
KL Divergence

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
n
tr

o
p
y

100

101

[1,2] [3,8] [9,24] [25,82]
0

50

100

150

200

Neighbors’ Degree Range

C
o

u
n

t

[1,2] [3,8] [9,24] [25,82] [83,248] [249,746]
0

20

40

60

80

100

Neighbors’ Degree Range

C
o

u
n

t

[1,2] [3,8] [9,24] [25,82]
0

2

4

6

8

10

12

Neighbors’ Degree Range

C
ou

nt

[1,2] [3,8] [9,24] [25,82] [83,248] [249,746]
0

5

10

15

20

Neighbors’ Degree Range

C
o

u
n

t

[1,2] [3,8] [9,24] [25,82]
0

50

100

150

200

250

Neighbors’ Degree Range

C
o

u
n

t

Fig. 1. Degree entropy Hdeg vs. KL-divergence KLdeg of prod-
ucts (dots) in Chung-Lu1 (σ=10% pop. camouflage). Bottom-
right depicts suspicious products with neighbors having abnor-
mally similar degrees, whereas upper-left are clustered with
normal products whose neighbors have diverse degree distri-
butions that obeys the overall trend.

Table 2 presents
the performance re-
sults (AUC of preci-
sion recall curve)
of different meth-
ods. Each method
is tested on high-
degree users as well
as all the users.
Note that for all
methods, users with
high degrees are eas-
ier to rank as they
exhibit more infor-
mation for analy-
sis. However, when
all users are con-
sidered, the rank-
ings become con-
taminated with low
degree users bubbling up high in the ranking due to errors in scoring, and the
performance of the methods drop relatively. This problem is especially evident
for CatchSync. In contrast, our approach outperforms others and achieves near-
perfect accuracy on all settings (ranking the spammers on top). These results
demonstrate the effectiveness and robustness of NFS.

12 Junting Ye Leman Akoglu

Table 3. Group discovery performance of GroupStrainer for varying ε (camouflage)
and SCI (collusion) for spammers. We report NMI/hierarchy similarity threshold.

Dataset SCI = 1.0 SCI = 0.9 SCI = 0.8 SCI = 0.7 SCI = 0.6 SCI = 0.5 SCI = 0.4

ε = 0 1.000/0.95 1.000/0.70 1.000/0.65 1.000/0.65 0.997/0.65 1.000/0.60 0.948/0.55
ε = 0.2 0.994/0.65 0.997/0.55 1.000/0.60 0.995/0.60 0.998/0.55 0.990/0.60 0.980/0.50
ε = 0.4 0.993/0.50 1.000/0.55 0.993/0.55 0.998/0.55 0.994/0.55 0.988/0.55 0.980/0.50
ε = 0.6 0.989/0.55 0.998/0.50 0.991/0.50 0.991/0.55 0.996/0.50 0.995/0.50 0.984/0.45
ε = 0.8 0.984/0.50 0.987/0.50 0.989/0.50 0.993/0.50 0.977/0.45 0.991/0.50 0.976/0.45

4.2 Performance of GroupStrainer on synthetic data

Spammer group generation. As GroupStrainer operates on a carefully induced
subgraph, we inject 20 spammer groups into a subgraph with 800 users and
200 products. Spammers are assigned to groups (of sizes between 10 to 40) at
random without replacement (each spammer belongs to only one group), while
the targeted products (of sizes between 2 and 12) are randomly chosen with
replacement (products can be attacked several times).

From real-world datasets, we observed varying degree of collusion among
spammers; in some groups they write reviews to all the targeted products, while
in other groups they are organized into sub-groups to target different subsets of
products. To the best of our knowledge, the underlying motivation is to alleviate
their suspiciousness and reduce their workload at the same time. To capture this
behavior, we use a Spammer Collusion Index (SCI) for each spammer group g

defined as SCI(g) =
∑

gi,gj⊂g,i6=j
|t(gi)∩t(gj)|
|t(gi)∪t(gj)|/

(
n
2

)
, where gi, gj are subgroups in

g, t(gi) denotes the set of products gi targets, and n is the number of subgroups
in g. As such, SCI is the average Jaccard similarity of subgroups’ target sets. We
divide groups with more than 5 targets randomly into two subgroups to simulate
collusion behavior. In addition, all spammers have ε probability to randomly
write reviews to untargeted products (i.e., camouflage).

Table 3 shows the group detection performance of GroupStrainer on datasets
simulated with varying levels of camouflage (i.e., ε) and collusion (i.e., SCI)
among the spammers. We report NMI ∈ [0, 1] (Normalized Mutual Information)
that measures the clustering quality of GroupStrainer w.r.t. ground truth, as
well as the corresponding level (i.e., similarity threshold) of the hierarchy that
maps to the original groups. We find that GroupStrainer recovers the (sub)group
hierarchy among spammers effectively, with high accuracy even for large ε.

4.3 Results on real-world data

Having validated the effectiveness of NFS and GroupStrainer through synthetic
results, we next employ our method on two real-world review datasets; iTunes app-
store reviews, and Amazon product reviews.

Fig. 2 illustrates the scatter plot of Hdeg vs. KLdeg for products in iTunes,
where outliers with large NFS values are circled (Hpr vs. KLpr looks similar).

Discovering Opinion Spammer Groups by Network Footprints 13

Table 4. Summary statistics of detected groups in iTunes and Amazon. #P (#U):
number of products (users), t: time stamps, ?: ratings, s: scattered (distribution), c:
concentrated (distribution), Dup: number of duplicate reviews/total count.

iTunes Amazon

ID #P #U t, ? Dup Developer #P #U t, ? Dup Category, Author

1 5 31 s, c 51/154 all same 10 20 c, c 90/138 Books, all same
2 8 38 c, s 29/202 2 same 4 12 s, c 32/47 Books, all same
3 4 61 s, c 34/144 all inaccessible 7 9 c, c 44/60 Books, all same
4 4 17 c, s 0/68 1 inaccessible 7 19 s, c 5/88 Books, all same
5 5 102 c, s 8/326 different 23 42 c, c 2/468 Music, all same
6 6 50 s, c 4/173 all same 8 17 s, c 9/73 Books, 4/8 same
7 2 56 c, c 12/112 different 6 18 s, c 4/94 Movies&TV, all same
8 4 42 c, c 8/112 2 same
9 6 67 s, c 0/137 all same

The adjacency matrix A of the 2-hop induced subnetwork on the outlier products
is shown in Fig. 3 (top). While the groups are not directly evident here, the
GroupStrainer output clearly reveals various colluding user groups as shown in
Fig. 3 (bottom). Statistics and properties of the groups are listed in Table 4.

0.0 0.5 1.0 1.5 2.0 2.5

KL Divergence

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
n
tr

o
p
y

100

101

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NFS
0

50

100

150

200

#
 o

f
pr

od
uc

ts

Product outliers are in red circles

[1,2] [3,8] [9,24]
0

10

20

30

40

Neighbors’ Degree Range

C
o

u
n

t

[1,2] [3,8] [9,24]
0

10

20

30

40

Neighbors’ Degree Range

C
o

u
n

t

[1,2] [3,8] [9,24]
0

5

10

15

20

25

Neighbors’ Degree Range

C
o

u
n

t

[1,2] [3,8] [9,24] [25,82]
0

20

40

60

80

100

120

Neighbors’ Degree Range

C
o

u
n

t

[1,2] [3,8] [9,24] [25,82]
0

2

4

6

8

Neighbors’ Degree Range

C
o

u
n

t

Fig. 2. Degree entropy Hdeg vs. KL-divergence KLdeg of prod-
ucts (dots) in iTunes. Top-left: distribution of NFS scores;
circled points: outlier products by NFS.

We note that
group#1 is the same
31 users spamming
5 products of the
same developer with
all-5? reviews, as
was previously found
in [1]. Our method
finds other suspi-
cious user groups;
e.g., group#2 con-
sists of 8 products,
each receiving all
their reviews on the
same day from a
subset of 38 users.
Interestingly, while
the time-stamp is
the same (concen-
trated), the ratings are a bit diversified (not all 5?s but 3&4?s as well)—
potentially for camouflage. This behavior is observed among other groups; while
some groups concentrate on both time and ratings (c,c), e.g., all 5? in one day,
most groups aim to diversify in one of the aspect. We also note the duplicate
reviews across reviewers in the same group.

Similar results are obtained on Amazon, as shown in Fig. 4. We also provide
the summary statistics and characteristics of the 7 colluding groups in Table 4.

14 Junting Ye Leman Akoglu

Group: (1) (2) (3) (4) (5) (6) (7) (8) (9)

Fig. 3. (top) 2-hop induced network of top-ranking products by NFS in iTunes, (bot-
tom) output of GroupStrainer with 9 discovered colluding user groups.

Group: (1) (2) (3) (4) (5) (6) (7)

Fig. 4. Output of GroupStrainer on Amazon, with 7 discovered colluding user groups.

We find that the majority of the targeted products in our groups belong to the
Books category. This is not a freak occurrence, as the media has reported that
the authors of books get involved in opinion spam to gain popularity (see URL
in footnote1 on pg. 1). For example, group#1 consists of 20 users spamming
10 books. 19/20 users write their reviews on the exact same day. 15/20 has
duplicate reviews across products, in total 90/138 reviews have at least one
copy. Our dataset listed the same author for 9/10 books. Manual inspection of
the authors revealed that the 10th book also belonged to the same author but
was mis-indexed by Amazon.

5 Related Work

Opinion spam is one of the new forms of Web-based spam, emerging as a result
of review-based sites (TripAdvisor, Yelp, etc.) gaining popularity. We organize
related work into two: (i) spotting individual spam reviewers or fake reviews,
and (ii) detecting group spammers.

Detecting individual spam reviews and reviewers. To identify individual fake
reviews, supervised models have been trained based on text and behavioral fea-
tures [17] or linguistic patterns [12, 25]. Another approach [20] employs the semi-
supervised co-training method by using review text and reviewer features as two

Discovering Opinion Spammer Groups by Network Footprints 15

separate views. Relational models have also been explored [21], which correlate
reviews written by the same users and from the same IPs. Similarly, behav-
ioral methods have been developed to identify individual spam reviewers [13,
22]. Other approaches use association based rule mining of rating patterns [18],
or temporal analysis [11]. There also exist network-based methods that spot both
suspicious reviewers and reviews [1, 26]. Those infer a suspiciousness score for
each node/edge in the user-product or user-review-product network.

Detecting group spam. There exist only a few efforts that focus on group-level
opinion spam detection [23, 27, 28]. This is counter-intuitive, since spam/fraud
is often an organized act in which the involved individuals cooperate to reduce
effort and response time, increase total impact, and camouflage so that no sin-
gle individual stands out. All related work in this category define group-level
or pairwise spam indicators to score reviewer groups by suspiciousness. Their
indicators are several behavioral and linguistic features. In contrast, our work
solely uses network footprints without relying on side information (e.g., language,
time-stamps, etc.) that can be fine-tuned by spammers.

6 Conclusion

We proposed an unsupervised and scalable approach for spotting spammer groups
in online review sites solely based on their network footprints. Our method con-
sists of two main components: (1) NFS; a new measure that quantifies the statis-
tical distortions of well-studied properties in the review network, and (2) Group-
Strainer; a hierarchical clustering method that chips off colluding groups from a
subnetwork induced on target products with high NFS values. We validated the
effectiveness of our method on both synthetic and real-world datasets, where we
detected various groups of users with suspicious colluding behavior.

Acknowledgments. The authors thank the anonymous reviewers for their use-
ful comments. This material is based upon work supported by the ARO Young
Investigator Program under Contract No. W911NF-14-1-0029, NSF CAREER
1452425, IIS 1408287 and IIP1069147, a Facebook Faculty Gift, an R&D grant
from Northrop Grumman Aerospace Systems, and Stony Brook University Of-
fice of Vice President for Research. Any conclusions expressed in this material
are of the authors’ and do not necessarily reflect the views, either expressed or
implied, of the funding parties.

References

1. L. Akoglu, R. Chandy, and C. Faloutsos. Opinion fraud detection in online reviews
by network effects. In ICWSM, 2013.

2. L. Akoglu and C. Faloutsos. RTG: A recursive realistic graph generator using
random typing. In ECML/PKDD, pages 13–28, 2009.

16 Junting Ye Leman Akoglu

3. L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies in
weighted graphs. In PAKDD, pages 410–421, 2010.

4. A.-L. Barabási, R. Albert, and H. Jeong. Scale-free characteristics of random
networks: the topology of the world-wide web. Physica A: Statistical Mechanics
and its Applications, 281(1-4):69–77, June 2000.

5. A. A. Benczr, K. Csalogny, T. Sarls, and M. Uher. Spamrank – fully automatic
link spam detection. In AIRWeb, pages 25–38, 2005.

6. A. Broder. Graph structure in the web. Computer Networks, 33(1-6):309–320,
2000.

7. F. R. K. Chung and L. Lu. The average distance in a random graph with given
expected degrees. Internet Mathematics, 1(1):91–113, 2003.

8. N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adversarial classifi-
cation. In KDD, pages 99–108, 2004.

9. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
internet topology. In SIGCOMM, pages 251–262, 1999.

10. K. Faust. Centrality in affiliation networks. Social Networks, 19(2):157–191, 1997.
11. G. Fei, A. Mukherjee, B. Liu, M. Hsu, M. Castellanos, and R. Ghosh. Exploiting

burstiness in reviews for review spammer detection. In ICWSM, 2013.
12. S. Feng, R. Banerjee, and Y. Choi. Syntactic stylometry for deception detection.

In ACL, 2012.
13. S. Feng, L. Xing, A. Gogar, and Y. Choi. Distributional footprints of deceptive

product reviews. In ICWSM, 2012.
14. J. Gao and P.-N. Tan. Converting output scores from outlier detection algorithms

to probability estimates. In ICDM, 2006.
15. A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via

hashing. In VLDB, pages 518–529, 1999.
16. M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang. Catchsync: catching

synchronized behavior in large directed graphs. In KDD, pages 941–950, 2014.
17. N. Jindal and B. Liu. Opinion spam and analysis. In WSDM, pages 219–230, 2008.
18. N. Jindal, B. Liu, and E.-P. Lim. Finding unusual review patterns using unexpected

rules. In CIKM, pages 1549–1552. ACM, 2010.
19. W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert

space. volume 26 of Contemporary Mathematics, pages 189–206. 1984.
20. F. Li, M. Huang, Y. Yang, and X. Zhu. Learning to identify review spam. In

IJCAI, 2011.
21. H. Li, Z. Chen, B. Liu, X. Wei, and J. Shao. Spotting fake reviews via collective

positive-unlabeled learning. In ICDM, 2014.
22. A. Mukherjee, A. Kumar, B. Liu, J. Wang, M. Hsu, M. Castellanos, and R. Ghosh.

Spotting opinion spammers using behavioral footprints. In KDD, 2013.
23. A. Mukherjee, B. Liu, and N. S. Glance. Spotting fake reviewer groups in consumer

reviews. In WWW, 2012.
24. M. Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary

Physics, 46(5):323–351, 2005.
25. M. Ott, Y. Choi, C. Cardie, and J. T. Hancock. Finding deceptive opinion spam

by any stretch of the imagination. In ACL, pages 309–319, 2011.
26. G. Wang, S. Xie, B. Liu, and P. S. Yu. Review graph based online store review

spammer detection. In ICDM, pages 1242–1247, 2011.
27. C. Xu and J. Zhang. Combating product review spam campaigns via multiple

heterogeneous pairwise features. In SDM. SIAM, 2015.
28. C. Xu, J. Zhang, K. Chang, and C. Long. Uncovering collusive spammers in

Chinese review websites. In CIKM, pages 979–988. ACM, 2013.

