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ABSTRACT

Event detection in datasets represented by dynamic graphs
is an important task for its applications in a variety of do-
mains, such as cyber security, online and telecommunica-
tions, fault and fraud detection, etc. Despite recent advances
in this area, there does not exist a single winning algorithm
known to work well across different datasets. In fact, de-
signing a single method that is effective on a wide range of
datasets is a challenging task. In this work, we propose an
ensemble approach for event detection and characterization
of dynamic graphs. Our ensemble leverages three different
base detection techniques, the results of which are system-
atically combined to get a final outcome. What is more,
we characterize the events; by identifying the specific enti-
ties, i.e. nodes and edges, that are most responsible for the
detected changes. Our ensemble employs a robust rank ag-
gregation strategy to order both the time points as well as
the entities by the magnitude of their anomalousness, which
as a result yields a superior ranking compared to the base
techniques, thanks to its voting mechanism. Experiments
performed on both simulated (network traffic flow data with
ground truth) and real data (New York Times news corpus)
show that our proposed ensemble successfully identifies the
important change points in which a given dynamic graph
goes through notable state changes, and reveals the key en-
tities that instantiate these changes.

1. INTRODUCTION

Anomaly detection in datasets represented by dynamic
graphs has received much attention in recent years because
of its wide range of applications in intrusion detection in cy-
ber networks [28], fraud detection (insurance fraud, credit
card fraud, auction fraud etc.) [2, 6], fault detection in med-
ical claims, engineering systems [9], sensor networks and
many more domains. In time series data, events which de-
viate from the normal behavior are anomalous. In dynamic
graph analysis, the whole graph is observed in a sequence of
discrete time ticks. Each of these time ticks represents a par-
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tial connectivity of the whole graph. To detect the anomalies
one has to find the change points in the time series (known
as event detection) and also the entities (nodes/edges) re-
sponsible for those changes (known as characterization).

Despite the availability of enormous amount of data from
different domains, spotting the events of interest is chal-
lenging as they are quite rare. For example, the frequency
of cyber attacks is very low compared to the whole network
flow volume. The number of fraudulent transactions are
rare compared to normal transactions in a financial organi-
zation. Although these events of interest occur infrequently
their importance is very high compared to other events.

A lot of research has been done on event detection and
characterization in different research communities. Both
supervised and unsupervised learning techniques are used.
The limitations of supervised methods are that they re-
quire labeled data which is not always available for real-
world data, and cannot detect novel events that have never
been observed previously. On the other hand, unsupervised
methods do not require labeled data, they detect suspicious
events (change points) or entities if the behavior deviates
from the normal behavior in time [17]. The success of these
algorithms depends on the metric upon which the change
points are detected and also the characteristics of the data
being used. For example, some approaches use a distance
metric between consecutive graph pairs in a time series to
find events [4, 29]. In event detection and characteriza-
tion it is also important to find the anomalousness of rare
events/entities and rank them accordingly. This ranking is
often desirable over the traditional techniques which gives
binary decisions (anomaly vs non-anomaly). There exist
several outlier ranking approaches for graph data [14, 27,
15], however most are for static settings. Very few ranking
approaches are available for dynamic graph based anomaly
detection [13, 30]. Despite the fact that there exist many
algorithms on event detection in dynamic graphs, there is
no single winning algorithm known to work well across dif-
ferent datasets. In fact, designing a single approach robust
to a wide range of datasets is a challenging task.

In this paper, we propose a unified framework for event de-
tection and characterization in dynamic graphs by designing
an ensemble approach that systematically combines results
from different event detection algorithms. Our ensemble uti-
lizes three detectors, and can accommodate other algorithms
that provide detection and characterization. It is well known
that ensemble approaches are effective in improving overall
performance over the individual base techniques [1]. In par-
ticular, the motivation of using a set of algorithms is twofold.



First, we aim to find consensus on the detected anomalies
and second, we aim to identify those anomalies which are de-
tected by one algorithm but not by the others. To the best
of our knowledge, this is the first work in ensemble design for
dynamic graph based event detection and characterization.

In our first algorithm we propose a new event detection
technique which flags the change points in a time-varying
graph at which many nodes deviate from their “normal” be-
havior. We use an “eigen-behavior” based technique which
spots collective behavioral changes of nodes and edges to
find suspicious events. At those events the nodes and edges
which show the highest changes are also marked as anoma-
lies. In detecting collective behavior changes, either many
of the nodes/edges need to go through changes or a few
nodes/edges need to change a lot. The second technique of
the ensemble involves probabilistic time series anomaly de-
tection. Here, we take a statistical approach to fit the time
series of structural features of nodes and edges to several
parametric distributions and select the best fit. The points
are then flagged as anomalous based on their likelihoods. Fi-
nally, we employ a third algorithm called SPIRIT [23] which
can find (hidden) trends in time series data, and dynamically
detects change points by tracking the changes in the trends
to spot potential anomalies. We remark that all three algo-
rithms have two key properties: (1) event detection, and (2)
characterization (finding the culprits).

In summary, our main contributions are as follows:

¢ Ensemble Event Detection: We propose an ensem-
ble approach to detect change points in time series
graph data. Our ensemble effectively merges results
from different techniques to provide a robust outcome.

e Consensus Rank Aggregation: Our method uses
both (i) rank-based and (ii) score-based aggregation
approaches to build multiple consensus rankings. The
results from different consensus approaches are then
merged to obtain a final ranking that is better than
most of the individual base algorithms.

e Characterization: Our approach could also attribute
the changes to specific nodes and edges in the graph
and hence characterize the detected changes.

Different from most earlier works on anomaly detection, we
experiment with both simulated (network traffic flow data
with ground truth) as well as real (New York Times news
corpus data without ground truth) datasets to spot events
and pinpoint anomalous agents. The network flow data
has been carefully simulated in a realistic manner at NGAS
R&T Space Park (www.northropgrumman.com) which mim-
ics operations and anomalies that correspond to real-world
events. We construct dynamic graphs based on the com-
munications (edges) among different hosts (nodes) in the
network. Our proposed approach is able to successfully
unearth these events and the individual agents that initi-
ated the events with high accuracy. Quantitative evalua-
tion based on ground truth shows that our final ensemble
yields better ranking of the events than most of the indi-
vidual base algorithms. We also use published articles (Jan
2000 - July 2007) of New York Times (NYT) [26] where
we construct dynamic graphs based on the named entities
(nodes) being co-mentioned (edges) in the articles. Our ex-
periments successfully reveal several big events during the
time period of the NYT data, such as presidential elections

of 2001, 9/11 terrorist attacks in World Trade Center, 2003
Columbia space shuttle disaster, etc., in addition to the key
entities associated with these events.

The rest of the paper is organized as follows. Section 2
first discusses some important related works. Section 3 de-
scribes the work-flow of our ensemble and then its individ-
ual components. Section 4 gives our experimental setup and
Section 5 presents the results. Finally, we provide a sum-
mary and discuss future directions for research.

2. RELATED WORK

Ensembles for unsupervised outlier detection is an emerg-
ing topic that has been neglected for a long time compared
to ensembles for classification and clustering problems [7,
31, 11]. This is because in unsupervised settings no ground
truth is available to evaluate the merit of the ensemble over
its components. Moreover, unlike in clustering which falls
under unsupervised learning, there exists no objective or fit-
ness functions for outlier mining. Nevertheless, there have
been several recent works on building outlier ensembles. In
a recent position paper, Aggarwal [1] provided a categoriza-
tion of the existing outlier ensemble approaches based on
corresponding algorithmic strategies. According to Aggar-
wal, there have been traces of the very idea of combining
results from different models in many earlier works but none
of them are explicitly named as ensemble approaches.

In particular, ensemble approach is effectively used in
high-dimensional outlier detection [1] where multiple sub-
spaces of data are explored to detect outliers. The feature
bagging approach [20] is the earliest work formalizing an
outlier ensemble in high dimensional feature space, as out-
lier behavior of data points are often described by a subset
of the dimensions. This approach uses the same base algo-
rithm (LOF [3]) on different feature subsets and provides a
rank based merging to create the final consensus. Feature
bagging is better calibrated by [10, 18] which convert the
outlier scores to probability estimates and use a score based
merging. Our approach in contrast uses both rank based
and score based aggregation to build the final ensemble.

In addition to using the variants of the same algorithm
as ensemble components, it is possible to use different algo-
rithms to build a heterogeneous ensemble. In [21] Nguyen
et al. use both LOF [3] and LOCI [22] (density based out-
lier detectors) as components of their ensemble. While their
approach is similar to ours, we build a heterogeneous en-
semble for dynamic graphs in contrast to static clouds of
points and capture the time evolving behavior of the data.
Other existing outlier ensembles are also designed for clouds
of multi-dimensional data points. To the best of our knowl-
edge, ours is the first ensemble approach for event detection
in time-evolving graph data.

3. PROPOSED METHOD
3.1 Ensemble Approach

We design an ensemble framework for event detection and
characterization for dynamic graphs, as they appear in nu-
merous scenarios including computer networks, trading net-
works, transaction networks, phone call and email commu-
nications. We propose to use three different event detection
techniques to find change points in time series of graphs.
Each of these algorithms operate in two phases (i) event de-
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Figure 1: Proposed ensemble approach work-flow.

tection phase and (ii) characterization phase. In this section
we give an overview of the work-flow of our ensemble ap-
proach, and defer the details of these individual techniques
to Section 3.2. A flow chart of the framework is depicted in
Figure 1, which is described next.

3.1.1 Event Detection

We use three event detection algorithms (abstracted as
Algorithml, Algorithm2, Algorithm3) to find anomalous time
ticks (events) that show significant change points in the dy-
namic graph constructed from input time series data. Each
algorithm has a specific measure to score the individual
time ticks, depicting the amount of behavioral change of
the graph. Different algorithms employ different measures.
In general, the higher its score, the more anomalous a time
tick is. Each algorithm provides a ranklist and a scorelist
of time ticks in event detection phase. As such, we obtain
three ranklists ranked from most to least anomalous and
three scorelists for the time ticks as shown in Figure 1.

3.1.2 Characterization

For each time tick found to be anomalous for an algorithm
we also identify the nodes and edges which are responsible
for it. Again, each algorithm has a means to score individual
nodes and edges which represents their amount of change in
behavior. As such, for each anomalous time tick we create
sorted ranked lists of nodes and similarly of edges as shown
in Figure 1. Therefore, the characterization phase of each
algorithm provides a ranklist and a scorelist of nodes/edges
for each anomalous time tick. Note that some time ticks may
be detected as anomalous by only a subset of the algorithms,
in which case we create only as many lists.

3.1.3 Consensus Rank Aggregation

Our goal is to combine the results, i.e., ranked lists, of
the ensemble algorithms to build a final rank ordering of

(i) time ticks, and (ii) nodes/edges at top anomalous time
ticks. In event detection phase, each of the base algorithm
gives an anomalousness score to each time tick and then
sort the list of those time ticks based on these scores to
obtain the ranklist. Again in characterization phase, the
anomalousness scores of nodes/edges are sorted to obtain
the corresponding ranklists for top anomalous time ticks.
To build the ensemble, we merge the results from different
base algorithms to come up with the final result. We use
both (i) rank based merging and (ii) score based merging to
build the consensus.

Rank Based Merging: Different algorithms provide dif-
ferent scoring techniques of time ticks/nodes/edges accord-
ing to their anomalousness which are not comparable. We
use only the rankings of the time ticks to merge the ranklists
obtained from the base algorithms in rank based merging.
Here we use two techniques:

e Inverse Rank Merging: Each time tick/node/edge
has a rank associated with it in a ranklist. We use in-
verse of these ranks (1/R) (here, R is the rank of a time
tick/node/edge in a ranklist) to calculate a score as-
sociated with individual time tick/node/edge. So, the
top element in the ranklist has rank 1 and score 1, next
element has rank 2 and score 0.5 and so on. We calcu-
late the final score of individual time tick/node/edge
by taking the average of these inverse rank scores from
all the base algorithms. Finally, according to this fi-
nal averaged rank scores we sort the time ticks/nodes/
edges to obtain the final merged ranklist.

e Kemeny Young: Kemeny Young [16] method is a
voting system which uses preferential ballot and pair-
wise comparison count to identify the most popular
choice. We consider our algorithms as voters and the
time ticks/nodes/edges as the candidates they vote for.
The time tick/node/edge which comes at the top in a
ranklist from a base algorithm is the most preferred
candidate for that algorithm. The next one has less
preference than the first one and so on. We calcu-
late the scores in two steps, (i) creating a matrix that
counts pair-wise voter preferences and (ii) calculating a
score for each ranking position which is the sum of the
pair-wise counts that apply to that ranking. We sort
the time ticks/nodes/edges according to these scores
to obtain the final merged ranklist.

Score based merging: As scores from different algo-
rithms are not comparable we convert the scores to a well-
calibrated probability estimate to make them comparable.
In score based merging we use two techniques to convert
output scores from the algorithms to probability estimates:

e Unification: The unification method [18] of anoma-
lousness scores has three steps (i) Regularization, (ii)
Normalization, and (iii) Gaussian Scaling:

i) Regularization: We regularize the anomalous-
ness scores from different base algorithms by trans-
forming the interval of the scores from [base,00)
to [0,00) in a way which does not change the rank
order. If the range of score already is in the in-
terval [0,00) then we skip this step.



ii) Normalization: We use a linear transformation
to transform interval of the scores to [0,1].

iii) Scaling: We use Gaussian scaling to convert the
normalized scores to probability estimates which
represent the probability of anomalousness of the
time ticks/nodes/edges.

e Mixture Modeling: In the mixture modeling ap-
proach [10] we model the score distributions of the
time ticks/nodes/edges as a mixture of Exponential
and Gaussian probability distribution. The typical
anomaly score distribution of the anomalous and nor-
mal classes show that the normal class follows an Ex-
ponential distribution and anomalous class follows a
Gaussian distribution [10]. This suggests that a mix-
ture model consisting of an Exponential and a Gaus-
sian component may fit well to the anomaly score dis-
tributions. We use an ezpectation mazimization (EM)
algorithm to minimize the negative log likelihood func-
tion of the mixture model to estimate the parameters.
We calculate the final posterior probability with Bayes’
rule which represents the probability of anomalousness
of the time ticks/nodes/edges.

After converting the scores from the base algorithms to
probability estimates we use two techniques to merge them,
(i) taking average of the probability scores and (i) taking
maximum of the probability scores. Then we sort these
scores to obtain the final merged ranklist.

These orderings from different consensus rank merging
techniques essentially capture the agreement among the in-
dividual base algorithms and also includes the points where
they disagree. Finally, we merge the ranklists from different
consensus rank merging techniques using inverse rank merg-
ing approach to get the final ranklist of time ticks/nodes/
edges. Here, we use inverse rank merging for its stable per-
formance among all consensus approaches. The final ensem-
ble scores (1/R) associated with the final ranklist are fed to
mixture modeling [10] to find a cut-off for anomaly detec-
tion. Section 5 contains our experimental results.

3.1.4 Feature Extraction

For event detection and specifically for characterization,
we capture the behavior of the dynamic graph through the
behavior of its entities, i.e. nodes and edges. As such, given
the graph sequence G, ..., Gy, ..., we extract several graph-
centric features for every node and edge for each G;. This
way, each node/edge is represented by a time series of its
feature values. We experimented with several features. In
particular, for nodes we extracted (1) weighted degree, (2)
degree, and (3) number of local triangles associated with
each node. For edges we extracted (1) weight, (2) number
of common neighbors, and (3) number of total neighbors of
the two end points of each edge.

Having outlined the general work-flow of our approach,
we next describe the individual algorithms of the ensemble.

3.2 Ensemble Components

3.2.1 Eigen Behavior based Event Detection(EBED)

In this algorithm we use the time series features of nodes
and edges of our input graph to detect the change points
through eigen-behavior analysis.
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Figure 2: EBED change-point detection work-flow.

Figure 2 illustrates our proposed method, where T denotes
the number of time ticks, N denotes the number of graph
entities (nodes and edges), and F' denotes the number of
graph-centric features extracted. We take a T' x N matrix
for a selected feature F; for nodes and edges (e.g., degree),
define a window size W over the time series values of all
entities, and compute the largest right singular vector of
W. We treat this vector as the “eigen-behavior” u(¢) of the
system during time window ¢, as the right singular vector of
W is the same as the principal eigenvector of WTW which
is essentially the time series similarity matrix of the graph
entities. This vector is positive due to a famous theorem by
Perron-Frobenius [24, 8], and lends itself to interpreting its
entries as the “activity” or “behavior” of each graph entity.
To capture the behavior of the graph over time, we slide
the window down one time tick and recompute its eigen-
behavior. We keep doing this until we reach the end of the
time series.

Given new data i.e., a new graph at time ¢, we calculate
the eigen-behavior of the new W. Using the eigen-behavior
vectors u(t') computed at previous time windows t' < ¢,
we compute a typical eigen-behavior vector r(t') by taking
their arithmetic average. We compare the eigen-behavior
u(t) with the typical eigen-behavior 7(¢') to quantify their
similarity. As the anomalousness measure, we use what we
call the Z score which is Z = 1 — uTr. If u(t) is the same
as r(t') then their dot product is 1, i.e., Z = 0 and if u(t)
is perpendicular to r(¢') then Z = 1. Thus, Z € [0,1] and a
significantly high value of Z indicates a change point.

For each detected anomalous time tick £, we also pinpoint
the specific nodes and edges which are responsible for the
change. To do so, we compute the percentage of relative
change (u;(f) — 7:(¥')) for all nodes/edges. The higher the
relative change, the more anomalous the node/edge.

3.2.2 Probabilistic Time Series Anomaly Detection
(PTSAD)

To observe the lower-granularity behavior of nodes and
edges we design a second algorithm which uses a probabilis-
tic approach to detect anomalies in time series data. Here,
we use several parametric distributions to fit individual time
series of nodes and edges. We start with a well-known para-
metric distribution, Poisson, which is often used for fitting
count data. While simple Poisson is not sufficient for sparse



series with many zeros, as often observed in the real-world.
In fact most real-world count data is frequently character-
ized by overdispersion and excess number of zeros. Hence,
our second choice is a Zero-Inflated Poisson (ZIP) [19] count
model, as it provides a way of modeling excess zeros.

We further look for simpler models which fit the data with
many zeros and employ the hurdle models. Rather than
using a single complex distribution, hurdle models [25, 12]
assume that the data is generated by two simple, separate
processes; (i) the hurdle and (ii) the count components. The
former process determines whether there exists activity or
not at a certain time tick and in case of activity the count
process determines the actual positive counts. One simple
way to model the hurdle process is to assume an independent
Bernoulli. In reality, there may be dependencies, where each
activity influences the probability of subsequent activities.
Thus, we also consider modeling the hurdle process with first
order Markov models. For the count component, we use the
Zero-Truncated Poisson (ZTP) [5] distribution.
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Figure 3: PTSAD approach for event detection in
time series of three example nodes (rows) in network
traffic flow data.

All in all, we fit four different (parametric) distributions
to a training portion of each node/edge time series: Pois-
son, ZIP, Bernoulli+ZTP and Markov+ZTP. In order to se-
lect the best model for each time series, we employ a model
selection procedure where we use several criteria including
Akaike Information Criterion (AIC), log-likelihood of train-
ing data, Vuong’s likelihood ratio test [32], and finally the
log gain on test data. We further check the goodness of fit
for those models with bootstrapping. Note that the best-fit
model for each entity may be different. We also remark that
our framework is flexible to incorporate additional distribu-
tions in the future, including non-parametric ones.

After fitting all the time series training data of individual
nodes and edges we perform a single-sided test to compute
a p-value (i.e., P(X > z) = 1—cdfu(z) + pdfu(z), where H
is the model that fits best for a given entity). The lower the
p-value, the more anomalous the time tick is for a given en-
tity (to flag anomalies, we use the 0.05 threshold to capture

significance at the 95 percentile). As it would be unrealistic
to assume that the training data is anomaly-free, we first
use the p-values to spot anomalous time ticks in the train-
ing data. We then remove those anomalous points and refit
our models to build the representative ones. At this point,
our system is ready to assess new coming data.

In Figure 3, we show example anomalous time ticks (red
bars) as detected in the time series of three randomly se-
lected nodes from our simulated network traffic flow data.
The dashed bar separates test series from the training series.

PTSAD does not yield an aggregated result/score for the
individual time ticks. It rather finds the anomalous time
ticks for individual nodes/edges. Thus we aggregate the p-
values of all nodes/edges along all the time ticks. We do
so by taking the normalized sum of the p-values and invert
them (€ [0,1]) (so that higher is more anomalous) and then
sort the time ticks accordingly. After detecting the most
anomalous aggregated time ticks, we use the normalized log-
arithm of p-values (€ [0, 1]) of nodes/edges corresponding to
those time ticks for characterization (again, the higher, the
more anomalous).

3.2.3 SPIRIT

We use a third algorithm called SPIRIT for Streaming
Pattern DIscoveRy in multlple Time-Series by Papadim-
itriou et al. [23]. This approach can incrementally capture
correlations, discover trends, and dynamically detect change
points in multiple regular time series data. Here, the intu-
ition is to discover the underlying trend of a large number
of numerical streams with a few hidden variables, where the
hidden variables are the projections of the observed streams
onto the principal direction vectors (eigenvectors). These
discovered trends are exploited for detecting anomalies.

In a nutshell, the algorithm starts with a specific number
of hidden variables which capture the general trends of the
data. Whenever the main trends change, new hidden vari-
ables are introduced or several of existing ones are discarded
to capture the change. This algorithm can further quantify
the change in the behavior of graph entities for character-
ization through their participation weights, which are the
entries of the principal direction vectors for the entities. For
further details on the specific algorithm, we refer the reader
to the original paper [23].

Finally, we remark that our ensemble is flexible to incor-
porate other approaches for event detection in multiple time
series data.

4. EXPERIMENT SETUP
4.1 Dataset Description

4.1.1 Dataset 1: Challenge Network Traffic Flow

The simulated dataset that we use is a Cyber Challenge
Network traffic flow data over 217 hours (=9 days) and cap-
tures the interactions between hosts in the network. The
dataset contains the to-from information of the interactions
along with the time stamps. The time-aggregated graph
representing the whole network has 125 nodes and 352 un-
directed edges connecting them. We choose the sample rate
of 10 minutes for this dataset (with 1304 time ticks) as lower
sample rates result in excess number of change points (po-
tentially many false positives) due to large fluctuations in



the graph structure over small time periods, on the other
hand, higher sample rates obscure the true positives (i.e.,
actual changes).

4.1.2 Dataset 2: NYT News Corpus

The real dataset that we use is the NYT hand-annotated
(by human editors) news corpus [26] of seven and a half
years of published articles(Jan 2000 - July 2007). We con-
struct our dynamic graphs based on the named entities co-
mentioned in an article. Therefore, the named entities are
the nodes of the graph and if two entities are co-mentioned in
an article there is an edge between them. Here the named
entities are people, places, organizations, etc. This data
has around 320000 entities to construct the time-aggregated
graph. We analyze the data with weekly granularity.

4.2 Feature Selection

We extracted different features for nodes and edges with
selected sample rates for both datasets. In particular, for
nodes we extracted (1) degree, (2) weighted degree, and (3)
number of local triangles. For undirected edges we extracted
(1) weight, (2) number of common neighbors, and (3) num-
ber of total degree of the two end points. To avoid the skew-
ing effect of large edge weights we selected the degree feature
for the nodes to analyze the network for our final ensemble.
We also selected the total degree feature for analyzing the
time series of edges. For NYT data we used weighted de-
gree feature for the nodes and weights feature for the edges
to build the final ensemble. However the choice of these
features can be application dependent.

4.3 Window Size Selection in EBED

For EBED we use a window size W of 4 for both datasets
to calculate the principal eigen-vector. In social network or
any human activity related network, a window size corre-
sponding to 7 days generally represents the pattern of hu-
man behavior. As our experiment with network flow data
was not portraying human activity, we experimented with
different window sizes (4,5,6,7 etc.) to find the best size
suitable for the network. Similarly, we experimented with
different window sizes to come up with a suitable size for
NYT data. In general, the larger the window gets, the more
aggregated the results become.

4.4 Model Selection in PTSAD

For probabilistic time series analysis, we fit four different
(parametric) distributions (Poisson, ZIP, Bernoulli+ZTP and
Markov+ZTP) to a training portion of each node/edge time
series. We used first 7 days of data from network flow dataset
and first 100 weeks of data from NYT dataset for training
and rest of the data from both datasets for testing. To pick
the best fit out of the four for each time series, we employed
several model selection procedures; including the straight-
forward log-likelihood of training data, the Akaike Informa-
tion Criterion (AIC), Vuong’s likelihood ratio test [32], and
finally the log gain on test data. Each model selection crite-
rion votes for a distribution (i.e., model) for the time series
of each node/edge. The distribution which gets the highest
vote is selected as a best fit for that particular node/edge.
We briefly describe the four criteria as follows.

e Log-likelihood is higher for the better model. Model
complexity (i.e. number of parameters) is not incor-
porated.

e AIC penalizes high model complexity. The lower the
AIC, the better the model.

e Vuong’s test finds the log-likelihood ratio of a given
pair of models (say model 1 and model 2) and calcu-
lates a p-value for the sign of the ratio. If p-value is
larger than 0.05, then the ratio does not give any de-
cision (i.e., one model cannot be claimed better than
the other). Otherwise, model 1 is claimed to be better
than model 2 if the ratio is positive, and vice versa if
the ratio is negative.

e Log gain is similar to Vuong’s test, but instead assesses
the log-likelihood ratio on the test data.

Table 1 shows the percentage pairwise agreements be-
tween the model selection criteria on the best model chosen
for the nodes’ time series of our network flow data. We also
give the cardinality, which denotes the number of series for
which both models can provide a fit (some fittings may fail
due to model or data degeneracy, hence cardinality is less
than the number of nodes). We notice that there exist high
agreements among the various tests, and we use the majority
vote to pick the final model for each node/edge.

Table 1: Agreement Among Model Selection Crite-
ria in Challenge Network

cardinality | Log Vuong’s | Log

+ % of likelihood | Test Gain

agreement

AIC card.: 121 card.: 83 | card.: 96
78.51% 97.59% 82.29%

Log card.: 83 | card.: 96

likelihood 100% 80.21%

Vuong’s card.:81

Test 90.12%

4.5 Goodness of Fit Test

We further check the goodness of fit for the best model
chosen using bootstrapping. For each node/edge, we take
the best fit model and its fitted parameters P. We generate
N (= 1000) simulated time series by bootstrapping from the
best fit model. Next we estimate the parameters P* from
each of the N time series and form an empirical distribution
of those fitted parameters. We obtain a 95% bootstrap confi-
dence interval as the interval from the 2.5%-ile to 97.5%-ile
of this bootstrap distribution. If P falls within the con-
fidence interval, we conclude that the best fit is indeed a
good fit for the nodes/edges time series.

S. EXPERIMENT RESULTS

In this section we present our experimental results of event
detection and characterization in the simulated Cyber Chal-
lenge Network dataset and NYT news corpus dataset using
our ensemble approach.

5.1 Dataset 1: Results

5.1.1 Event Detection

Recall from Section 3.2 the three methods used in our
ensemble have different scoring techniques to rank the time
ticks for change point detection:



e 7 score is used for EBED.

e Inverse of the normalized sum of p-values of all nodes/
edges is used for PTSAD.

e Projection is used for SPIRIT.

As the scoring measures are completely different, it is not
possible to directly combine these scores to build a ranking
of the time ticks by anomalousness. Therefore, we make
individual sorted ranked lists for each algorithm, and use
both rank based merging and score based merging tech-
niques described in Section 3.1.3 to come up with the con-
sensus ranklists. Finally, we use inverse rank based merging
to obtain the final ranklist.

Figure 4 shows the top ranking time points (with red
bars) from all three techniques used in our ensemble to find
anomalous events (from top to bottom: EBED, PTSAD,
and SPIRIT). We notice that time tick 376 is detected as a
change point by all the three algorithms and it is the highest
ranked anomalous event. EBED and PTSAD also agree on
time tick 1126, at which point SPIRIT also has a somewhat
small spike. There also exist some events that only individ-
ual methods detect. Our ensemble also includes those in the
final ordering.
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Figure 4: Change point detection in time series of
challenge network for all three base algorithms in
our ensemble approach. Red bars depict the top
anomalous time ticks.

5.1.2  Characterization

After detecting anomalous events, we identify the nodes
and edges which are responsible for those events. Again,
different algorithms have different scoring techniques to at-
tribute the change to specific nodes/edges. Following are
the scores used by the algorithms in our ensemble.

e Relative change (% change of current eigen-behavior
from previous one) is used for EBED.

e Normalized logarithm of p-value is used for PTSAD.
e Participation weight is used for SPIRIT.

normalizedlogarithm

normalizedlogarithm
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Figure 5: Anomalous nodes at time tick 376 from
three algorithms. Agreements among different algo-
rithms are marked with dashed green boxes.

Figure 5 shows the anomalous nodes for time tick 376 from
all the three algorithms (from top to bottom: EBED, PT-
SAD, and SPIRIT). We realize that the results from differ-
ent algorithms show considerable agreement. In particular,
all the algorithms agree on IP ‘10.51.16.1’ to be anomalous.
In addition, we show the anomalous nodes for time tick 1126
in Figure 6 (as detected by EBED and PTSAD). They both
agree on IP ‘10.50.10.14’ to be anomalous, while PTSAD
also flags several additional IPs as suspicious.
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Figure 6: Anomalous nodes at time tick 1126 from
EBED and PTSAD. The agreed-upon IP (node) is
marked with a dashed green box.

Similarly, Figure 7 shows the anomalous edges for time
tick 376 from all the algorithms. Again, we notice that the
results from different algorithms have several agreements
on the anomalous edges as well as individually identified
ones. In particular, FBED and SPIRIT agree on edges
‘10.51.16.1-°10.50.10.14" and ‘10.51.16.1’—°10.51.16.57’. In
addition, EBED and PTSAD agree on edges ‘10.51.16.1’—
‘10.51.16.33” and ‘10.51.16.1’—10.51.16.41°. Recall from Fig-
ure 5 that IP ‘10.51.16.1’ is the top anomalous node detected
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three base algorithms. Agreements among the algo-
rithms are marked with dashed green boxes.
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Figure 8: Time series of the top two anomalous
nodes at time tick 376, when both IPs link to nu-
merous other IPs.

by all the algorithms. The edge detection identifies the spe-
cific connections of those IPs that are most suspicious.

For further analysis we illustrate the time series of the top
two node anomalies of time tick 376, i.e., IPs ‘10.51.16.1” and
10.51.16.129’, in Figure 8. We notice that both nodes’ con-
nectivity increased significantly at the detected event. Fig-
ure 9 also depicts the graph visualization (from left to right)
before, at, and after the event. From the figure we clearly
see the change in the behavior of the two hosts; while being
sparsely connected otherwise, they suddenly start commu-
nicating with many other hosts at time tick 376.

Essentially, the events and the specific agents identified as
suspicious via our proposed approach correspond to a series
of emergency event scenarios and their associated master-
minds as simulated in our challenge network flow data. For
data sharing agreement reasons, however, we are not allowed
to elaborate on the specifics of the real-world events simu-
lated in the data any further.

Table 2: Average Precision values for Event Detec-
tion [feature: Degree, sample rate: 10 minutes]

Algorithms AP
Base EBED 0.8333
Algorithms PTSAD 0.5722
SPIRIT 0.7292
Inverse Rank 1.0000
Consensus Kemeny Young 0.8095
Rank Unification(avg) 0.8056
Merging Unification(max) 0.7255
Algorithms | Mixture Model(avg) | 0.1684
Mixture Model(max) | 0.1684
Final Ensemble 0.8667

Table 3: Average Precision values for Characteriza-
tion [feature: Degree, sample rate: 10 minutes]

Algorithms Event: | Event:

376 1126
Base EBED 1.0000 | 1.0000
Algorithms PTSAD 1.0000 | 0.2500
SPIRIT 0.3026 | 0.0213
Inverse Rank 1.0000 | 0.5000
Consensus Kemeny Young 1.0000 | 0.2000
Rank Unification(avg) 1.0000 | 1.0000
Merging Unification(max) 0.8333 | 1.0000
Algorithms | Mixture Model(avg) | 1.0000 | 1.0000
Mixture Model(max) | 1.0000 | 1.0000
Final Ensemble 1.0000 | 1.0000

5.1.3 Quantitative Results

The ground truth of our Network traffic flow data con-
tains two major events (time tick 376 and 1126) and three
associated nodes (IP ‘10.51.16.1°, IP ‘10.50.10.14’ and IP
‘10.51.16.129’) responsible for those events. Table 2 and
Table 3 present the average precision (AP) values of event
detection and characterization phases, respectively, both for
the individual base algorithms as well as the consensus ap-
proaches and the final ensemble (for sample rate 10 minutes,
using feature degree). We note that the final ensemble for
event detection has higher AP than all three individual en-
semble components (in Table 2). Although the individual
consensus approach of inverse rank based merging has higher
AP than the final ensemble, the relation is reverse in char-
acterization phase of time tick 1126 (in Table 3). Similarly,
performance of mixture-modeling based consensus approach
differs notably for detection versus characterization. These
show that there is no single detector or consensus approach
that consistently performs the best. On the other hand, the
AP values for the final ensemble show that it is as good as
the best individual base algorithm. Therefore, our ensem-
ble framework proves to be an effective approach for event
detection and characterization, which provides better or as
good results as the best individual component.

5.2 Dataset 2: Results

5.2.1 Event Detection

Figure 10 shows the top ranking time points (with red
bars) from all three techniques used in our ensemble with
weighted degree feature to find anomalous events in NYT
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Figure 9: Cyber Challenge Network visualized (from left to right) before, at, and after the detected event at
time tick 376. Notice the behavioral change of the two anomalous nodes detected in characterization step.

dataset(from top to bottom: EBED, PTSAD, and SPIRIT).
We observe that time ticks 61,62 are detected as change
points by all the three algorithms. EBED and SPIRIT also
agree on time ticks 90 and 162. The final ensemble dig
out some important real-world events, such as, time ticks
61,62 represent the events after the presidential election of
USA in 2001 when George W. Bush was elected as presi-
dent and was mentioned a lot in news articles, time tick 90
represents the 9/11 World Trade Center (WTC) terrorist
attack in 2001 and time tick 162 represents the space shut-
tle Columbia (sent by NASA) disaster in 2003. There also
exist some events that only individual methods detect. Our
ensemble also includes those in the final ordering.
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Figure 10: Change point detection in time series of
NYT data for all three algorithms in our ensemble
approach. Dashed green boxes depict three impor-
tant real-world events ranked at the top.

5.2.2 Characterization

The characterization phase also finds entities associated or
responsible for the detected events. For example, character-
ization of event 162 was able to find the seven astronauts of
NASA who were killer in Columbia Space Shuttle disaster.
Figure 11 shows the visualization of the change from week

161 to week 162 where suddenly the seven astronauts were
highly co-mentioned with each other. We skip the detailed
results of characterization phase for space limitation.

week161 week162

Figure 11: Characterization for 2003 Columbia Dis-
aster. Visualization of graph structure change from
time tick 161 to time tick 162 in NYT data, where a
clique of NASA and seven astronauts emerges.

6. DISCUSSION

In this work, we proposed an ensemble approach for de-
tecting and characterizing events in dynamically evolving
graph data. This is the first work in ensemble design with
dynamic graph based event detection algorithms as indi-
vidual components. Our ensemble framework incorporates
three different techniques; an eigen-behavior tracking based
approach that we propose, a probabilistic model fitting ap-
proach, and a trend extraction based approach. Our method
combines the findings in a unified manner to obtain a final
consensus on the anomalousness of the time points. A key
aspect of our proposed method is its focus on characteriza-
tion; in addition to spotting suspicious change points, we
also pinpoint the specific nodes and edges in the network
that are most responsible for the changes. These are often
considered as the specific entities associated with the de-
tected events. Finally, our framework is amenable to incor-
porating additional techniques that exhibit event detection,
ranking, and characterization properties.



We validated our proposed method on a simulated cy-
ber network traffic dataset of hundreds of network hosts
and their interactions. Our approach has successfully de-
tected several change points in the cyber flows, as well as
unearthing the hosts responsible for those changes with high
accuracy. Additional experiments on a real NYT news cor-
pus identified major events across the seven years span of
the dataset and the key entities involved in those events.
While our quantitative results showed that the ensemble ap-
proach outperforms the individual base algorithms and pro-
vides more accurate results, the qualitative results revealed
events that agree with human interpretation.

While our experimental results have provided evidence
that our proposed ensemble approach is successful for event
detection and characterization with high performance in dy-
namic graphs both in simulated dataset with small ground
truth and real dataset with large volume, further work is
needed to fully analyze its performance on other large real
datasets with more ground truth anomalies. Our future re-
search will incorporate additional algorithms into the en-
semble and investigate means to estimate detector accura-
cies and utilize weights proportional to these accuracies in
combining their results. We will also extend our ensem-
ble approach to outlier detection for high dimensional data
points as well as other anomaly mining settings.
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