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Abstract. The human brain and the neuronal networks comprising it
are of immense interest to the scienti�c community. In this work, we
focus on the structural connectivity of human brains, investigating sex
di�erences across male and female connectomes (brain-graphs) for the
knowledge discovery problem �Which brain regions exert di�erences in
connectivity across the two sexes? �. One of our main �ndings discloses
the statistical di�erence at the pars orbitalis of the connectome between
sexes, which has been shown to function in language production. More-
over, we use these discriminative regions for the related learning problem
�Can we classify a given human connectome to belong to one of the sexes
just by analyzing its connectivity structure? � . We show that we can learn
decision tree as well as support vector machine classi�cation models for
this task. We show that our models achieve up to 79% prediction ac-
curacy with only a handful of brain regions as discriminating factors.
Importantly, our results are consistent across two data sets, collected at
two di�erent centers, with two di�erent scanning sequences, and two dif-
ferent age groups (children and elderly). This is highly suggestive that
we have discovered scienti�cally meaningful sex di�erences.

Keywords: human connectome, network science, network connectivity,
graph measures, sex classi�cation, pars orbitalis

1 Introduction

The human brain has long been an object of great scienti�c interest. We revel at
the immense capabilities that our highly evolved brains possess and wonder how
the brain functions, how vision is interpreted, how consciousness arises etc., all
of which neuroscience deals with. Recent advances in neuroscience and computer
science have brought to the fore-front an exciting research area of brain networks.
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The fundamental idea giving rise to this area is that the brain can be thought to
be composed of several simple elements that give rise to its complex patterns [19].
Thus the brain can be modeled as a network which admits the brain to network
analysis. Over the years, network science has evolved to a great extent and is
now in a position to analyze real world networks. Emergence of massive data,
faster algorithms, and the ubiquity of networks have immensely contributed to
this phenomena [3,11,13].

One of the overarching ideas in today's brain research is the idea that it
is crucial to study the connections in the brain to gain deeper insight into the
functioning of the brain. This is an exciting research area resulting from the
con�uence of neuroscience and network science which promises us great insight
into the workings of the brain. Several projects have recently been launched tar-
geted at understanding human brain connectomes, including the Human Brain
Project [1], the Human Connectome Project [2], the Brain Genome Superstruct
Project [4], and the International Neuroimaging Data-Sharing Initiative [14].

It is to be noted that analyzing the human connectome is far more challenging
in terms of scale (it has more than a billion times more connections than the
letters in a genome) 5. While the various human connectome projects are still
ongoing, exciting initial results have been obtained by analyzing connectomes.
Some important results include the small world property of brain networks [20],
and the presence of a rich club of hubs [21]. Noting the larger goal outlined above,
one of the research problems that seeks investigation is that of sex di�erences in
brain networks, and what they imply in a biological setting. We investigate this
problem in our work. The main questions we address are the following:

1. Knowledge discovery in connectomes across sexes: What di�erences in the
brain network (connectome structure) do the two sexes exhibit? What re-
gions in the brain show discriminative characteristics?

2. Learning to predict sex by the human connectome: Would the connectivity
structure of the brain admit classi�cation of connectomes into sexes based
solely on their connectivity characteristics?

Our study involves two independent groups of human subjects, both contain-
ing about 100 subjects, with about half male, half female. We found that there
exist several regions in the brain that show statistically signi�cant di�erences
in their connectivity characteristics across the sexes. Among these regions, the
pars orbitalis in the inferior frontal lobe of the brain stands out in particular.
Learning classi�cation models using only a handful of these several discrimi-
native regions and their network properties, we achieve up to 79% prediction
accuracy in classifying the human subjects into sexes by their connectome.

In the rest of the paper we survey related work, describe our datasets and re-
search methods in detail, and present our experiments and �ndings. We conclude
by interpreting our results and discussing future work.

5 http://www.humanconnectomeproject.org/2012/03/

mapping-out-a-new-era-in-brain-research-cnn-labs/

http://www.humanconnectomeproject.org/2012/03/mapping-out-a-new-era-in-brain-research-cnn-labs/
http://www.humanconnectomeproject.org/2012/03/mapping-out-a-new-era-in-brain-research-cnn-labs/
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2 Related Work

There are two main approaches to the above problem of identifying discrim-
inative features of the connectome. The �rst approach would be to look for
subgraph structures (also called signal sub-graphs) which are discriminative and
build a classi�er based on them. This approach has been described in detail by
Vogelstein et.al [22]. This model has been shown to perform better than other
standard graph classi�cation techniques like graph k-NN based on nearest neigh-
bors. The second approach is to identify discriminative graph invariants (either
global or local) and use standard machine learning techniques for classi�cation.
Duarte-Carvajalino et. al [6] analyzed connectome structure to help identify sex
and kinship di�erences. They outlined structural di�erences in brain networks in
terms of network invariants like communicability and edge betweenness central-
ity. This was done at a global (topological) scale with a set of 303 individuals.

Although the above two approaches are the only ones we are aware of that
build classi�ers to distinguish whether individuals di�er across sex, a number of
other studies conduct group-wise statistical analyses of MR-derived connectomes
across sexes, using structural [12] and/or di�usion [9,15,7] data.

In this work, we investigate the structural di�erences on two di�erent data
sets of human connectomes at a local scale, by studying the properties of local
neighborhoods of brain regions. We then look at how these local discriminative
network invariants can be used to classify connectomes with respect to sex.

3 Dataset Description

Our study involves two independent group of human subjects. More speci�cally,
the �rst data set consists of connectome data for 114 individuals (50 females

Fig. 1. Sample brain network of
70 regions.

and 64 males, mean age: around 22 years). The
second dataset consists of 79 connectomes (35
females and 44 males, mean age: around 78
years). Note that there are no cognitive im-
pairments of subjects in our data sets. All con-
nectomes were estimated using MRCAP [8].
Brie�y, di�usion Magnetic Resonance data is
collected for each subject. The pipeline au-
tomatically estimates tensors, performs deter-
ministic tractography [16], and parcellation
into the Desikan atlas [5] yielding a total of 70
nodes per graph. The undirected edge weight
is the number of �bers that pass through any pair of nodes.

Each sample or connectome in our datasets is assigned a class label (0 for
males, 1 for females) thus identifying the sex of person with said connectome. A
sample network is shown in Fig.1.
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4 Connectome Network Analytics

4.1 Preprocessing the Data Sets

Each connectome is represented as a weighted undirected graph (that is sym-
metric and hence strictly upper triangular). We normalize all edge weights per
individual to lie between 0 and 1 to mitigate batches e�ects across individuals
and scanning details [10]. Note that most previous investigations of MRI data
restrict analysis to only a single dataset, and therefore do not face batch e�ects.
Importantly, however, batch e�ects are notoriously larger than within sample
variability, obfuscating the discovery of scienti�cally meaningful di�erences be-
tween populations.

The authors in [6] also point out that there exists an inherent bias in trac-
tography for a given cortical region that depends on the volume of the region,
number of �bre crossings etc. However they also point out that there is no unique
way of normalizing this data. They do however outline di�erent normalization
schemes (based purely on topological properties).

We derived a new normalization scheme, extending their Row Mean Nor-

malization scheme. This scheme divides each edge weight by the total weight
incident on a node, i.e. wij =

aij∑
j aij

. It can be viewed as the probability of a

connection between region i and region j given that
∑

j aij weight emanates
from region i. Note that this provides us valuable information regarding the
di�erences in connectivity between cortical regions: even though a set of �bres
leave a particular region i, only a subset of them are used for the connection
to region j. This model also implies that wij 6= wji, thus making the resulting
graph a weighted directed graph. To reduce the e�ect of mean brain size dif-
ferences between males and females, we normalize the above by the maximum
weight so that max(wij) = 1.

4.2 Graph Invariants

Next we study the graph-centric properties of the human connectomes. In par-
ticular, we computed the following graph invariants6 (also called �network mea-
sures�) as described in [17], which we brie�y summarize below:7

1. Locally weighted clustering coe�cient is a measure of segregation and indi-
cates the presence of clusters, as de�ned by the fraction of triangles around
a given node. This has been generalized to weighted networks as well and
represents the average intensity of triangles around a node.

2. Weighted edge connectivity represents the weight of the edge between pairs
of nodes.

6 We exploited the Brain Connectivity Toolbox to compute our graph invariants:
https://sites.google.com/site/bctnet/

7 The comprehensive list is available here: https://sites.google.com/site/bctnet/measures/list

https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/measures/list#List of graph invariants
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3. Edge betweenness centrality is the fraction of all shortest paths in the network
that contain a given edge. Edges with high values of betweenness centrality
participate in a large number of shortest paths

4. Node participation coe�cient is a measure of diversity of inter-modular con-
nections of individual nodes.

For all the invariants, we compute the mean across all subjects of a class (i.e.
males and females) and analyze the data for di�erences in the mean invariants
across the two classes. We then proceed to analyze which di�erences are statisti-
cally signi�cant. To determine whether a di�erence is statistically signi�cant, we
use a bootstrapping approach. This approach is suited very well for our work as
we have a small sample size, and bootstrapping allows us to test our hypotheses
by creating a large enough sample through repeated sampling. Moreover, it has
the added advantage that no assumption on the sample distribution is made,
other than independence between samples.

We outline the bootstrapping algorithm in Algorithm 1.

Algorithm 1 Bootstrapping algorithm to establish statistical signi�cance

Assume we have two independent sample sets (corresponding to samples of the sexes)
Observed Sample Set 1 is of size n :{xobs1, xobs2, xobs3 . . . xobsn} and has mean µxobs

Observed Sample Set 2 of size m : {yobs1, yobs2, yobs3 . . . yobsm} and has mean µyobs

Observed Di�erence in the sample mean is t∗obs = µxobs − µyobs

We need to see if the above di�erence is statistically signi�cant at a pre-determined
level of signi�cance α
Hypothesis:

� Null Hypothesis (H0): Samples are from the same population
� Alternative hypothesis (H1): Samples are from di�erent population and µx > µy

1. Merge the two sample sets into one sample set of size (m+ n)
2. Draw a bootstrap sample, with replacement, of size (m+ n) from the merged set
3. Calculate the mean of the �rst n observations and set it to µx∗
4. Calculate the mean of the remaining m observations and set it to µy∗
5. Calculate the test statistic t∗ = µx∗ − µy∗
6. Repeat steps 2, 3, 4, 5 B times and obtain B values of the test statistic.
7. The p-value is then given by:

p-value =
NumberOfT imes(t∗ > tobs∗)

B
(1)

8. Reject the null hypothesis if p-value < α

5 Empirical Results

In this section, we �rst present statistical analysis of graph invariants across the
sexes, and later proceed with our results on sex classi�cation using the poten-
tially discriminative invariants discovered through our analysis. We will show
our analysis results mostly on our �rst dataset with 114 subjects (similar results
hold for the second dataset).
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5.1 Analysis of Graph Invariants

Analysis of the Mean Clustering Coe�cient We analyzed the mean clus-
tering coe�cient of each node and present our �ndings (across the two sexes) in
Fig. 2.

Fig. 2. Mean local clustering coe�cient, for female (red) and male (blue).

We note that the mean clustering coe�cient of Node 55 in females is higher
than that of males. In order to rule out the e�ects of outliers (as the mean
is in�uenced by outliers) we also looked at the median. We again noted that
Node 55's clustering coe�cient is higher in females than in males, bolstering our
hypothesis that this di�erence could be discriminative.

To gain more insight, we ranked the brain regions according to their mean
clustering coe�cients (MCC) for both males and females, and we provide the
corresponding network visualizations in Fig. 3. We observe that node 20 has
high MCC in both sexes, while Node 55's MCC is visibly (and as we show later
also signi�cantly) higher for females. We �nd that Node 55 is the pars orbitalis,
in the inferior frontal lobe of the brain8. Interestingly, Node 20 is its comple-
mentary matching region in the other hemisphere of the brain. It is known that
pars orbitalis is involved in language production and participates in prefrontal
associational integration (and probably hence the largest clustering coe�cient).

The observed sample di�erence between Node 55's mean clustering coe�cient
across the sexes in our �rst dataset is noted as 0.0175. To establish statistical
signi�cance of this di�erence, we used the bootstrapping procedure with a sig-
ni�cance level of α = 0.05 and B = 3000. We obtained a p-value of 0.0025 which
is signi�cant at 0.05 level (see 5.1 for more details).

The sample di�erence between Node 55's mean clustering coe�cient in our
second dataset is smaller, and is noted as 0.006023. The p-value obtained by
running boot strapping for B = 3000 iterations is about p ≈ 0.1085, which is

8 http://en.wikipedia.org/wiki/Orbital_part_of_inferior_frontal_gyrus

http://en.wikipedia.org/wiki/Orbital_part_of_inferior_frontal_gyrus
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Fig. 3. Visualization of nodes (brain regions) ranked by Mean Clustering Coe�cient
(MCC) (the larger node size depicts larger MCC), (left) female, and (right) male.

not statistically signi�cant at the 0.05 level. However, this is not to conclude
that there is no evidence of a di�erence, but simply that the evidence is not as
strong as before. In the �rst data set, almost all the subjects are youths in their
20's, whereas in the second data set, the mean age of the subjects is in the 70's.
It is a possibility that the above di�erence may be in�uenced by the age factor
[18], while it remains for future work to investigate these e�ects.

Fig. 4. Mean edge connectivity di�erences between female and male.

Analysis of the Mean Edge Connectivity We computed the average weight
of each edge for each class (by averaging over all subjects belonging to a class) to
identify any edge weight di�erences among sexes. The heat map in Fig.4 shows
the di�erences in the mean edge weights for each edge between female and male.

We note the following observations: (1) we �nd strong connections from Node
55 to Node 48 and Node 63, in one of the sexes; and (2) we note a particularly
dominant edge between Node 33 and Node 68 in one of the sexes.
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Analysis of the Edge Betweenness Centrality In the normalized brain
network of 70 nodes, we represent all the edges by an ID obtained by its position
in the column major order of edges. Thus there are 702 = 4900 edges (because
edges are directed and there are no self-loops). Our analysis of edge betweenness
centrality across di�erent sexes indicates that there exists one edge (namely
edge ID 841) which is discriminative across sexes. Fig.5 shows the mean edge
betweenness centrality of each edge (for female and male) where certain edges
stand out (note that we show only a small range instead of all 4900).

Fig. 5. Mean edge betweenness centrality for the network edges across sexes.

Analysis of the Participation Coe�cient The participation coe�cient is a
measure based on modularity. It represents the diversity of inter-modular con-
nections of a given node. Intuitively the participation coe�cient of a node is
close to 1 if its links are uniformly distributed across all modules and 0 if all
its links are within its own module. A node with a high participation coe�cient
thus represents a connector hub in the brain.

We investigated whether Node 55, which has been identi�ed to be discrimi-
native, is a hub. We note that although there is a di�erence in the participation
coe�cient in Node 55 among the sexes, we observe that there are other nodes
having higher participation coe�cients (see Fig.6). This indicates that Node 55
is unlikely to be a connector hub. In fact as we showed earlier Node 55 is locally
well clustered (recall its high MCC). Therefore, while the clustering coe�cient
of Node 55 is higher in females than in males, the participation coe�cient is
lower in females than in males. This seems to indicate that the brain region cor-
responding to Node 55 connects closely with its neighbors (is densely clustered)
within its own module mostly in one of the sexes (namely female).

Statistical Signi�cance of Di�erences in Graph Invariants Finally, in
order to establish the statistical signi�cance of di�erences for all potential in-
variants we observed in this section, we employed the bootstrapping procedure
with a signi�cance level of α = 0.05 and B = 3000. We show all the p-values
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Fig. 6. Mean participation coe�cient of each region across sexes.

obtained on our �rst data set in Table 3. We note that several of the di�erences
are statistically signi�cant at the 0.05 level (uncorrected for multiple hypothesis
tests). It is left as future work to understand the clinical signi�cance of these
di�erences from a neuroscienti�c point of view.

Table 1. p-values obtained via boot-strapping

Network Measure p-value

Clustering Coe�cient Node 25 0.00145

Clustering Coe�cient Node 55 0.0025

Clustering Coe�cient Node 68 0.0287

Edge Between-ness Centrality Edge 841 < 0.001

Participation Coe�cient Node 18 < 0.001

Participation Coe�cient Node 61 0.005

Participation Coe�cient Node 68 0.0146

Edge Weight between 33-68 < 0.001

Edge Weight between 68-33 0.0912

5.2 Learning Classi�cation Models

Next we use the evidential graph invariants obtained from our analyses of net-
work measures in the previous section and train classi�ers using these invariants
as features. In particular, we train a decision tree (DT) classi�er, and a sup-
port vector machine (SVM) classi�er with a non-linear radial basis kernel. We
estimate the accuracy of our models using a Leave One Out Cross Validation
(LOOCV) on both of our data sets.

For training our classi�ers, we use speci�c features belonging to the same
network measure as well as the combined set of features (see Table 2). Note that
with only a few number of features, which we identi�ed and selected through
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our statistical analyses, we are able to achieve a classi�cation accuracy of 79%
on dataset 1 and 73% on dataset 2, using all the selected features.

Table 2. Accuracy of decision tree (DT) and support vector machine (SVM) classi�ers
on dataset 1 (DT1 and SVM1) and dataset 2 (DT2 and SVM2).

Network Measure Feature Set DT1 SVM1 DT2 SVM2

Clustering Coe�cient (Fig. 2) Nodes {25, 55, 68} 0.71 0.69 0.67 0.63

Edge Connectivity (Fig. 4) Between Nodes 33�68 0.69 0.65 0.65 0.60

Edge Betweenness (Fig. 5) Edge 841 0.67 0.69 0.73 0.73

Participation Coe�cient (Fig. 6) Nodes {18, 61, 68} 0.70 0.70 0.65 0.55

ALL Combined feature set 0.73 0.79 0.73 0.64

We also evaluate the signi�cance of the classi�cation scores obtained. We use
the standard technique of permutation tests, which permutes the class labels and
repeats the classi�cation procedure and computes the p-value thus indicating the
signi�cance of the classi�cation accuracies. The p-values obtained by running
the permutation test with 1000 permutations on data set 1 is shown in Table 3.
We note that most of the classi�cation scores are statistically signi�cant at the
0.05 level (uncorrected for multiple hypothesis testing) which indicates that the
classi�ers indeed have discriminative power.

Table 3. p-values of classi�cation accuracies for data set 1.

Network Measure Feature Set DT SVM

Clustering Coe�cient (Fig. 2) Nodes {25, 55, 68} 0.002 0.004

Edge Connectivity (Fig. 4) Between Nodes 33�68 0.008 0.011

Edge Betweenness Centrality (Fig. 5) Edge 841 0.005 0.001

Participation Coe�cient (Fig. 6) Nodes {18, 61, 68} 0.006 0.001

ALL Combined feature set 0.007 0.001

All in all, with only a handful of network measures we identi�ed through
our statistical observations and analyses, we were able to achieve up to 79%
accuracy in sex classi�cation. Moreover, we were able to explain and interpret
the discriminative features in classifying human subjects into sexes based solely
on their connectome structures.

6 Conclusion

In this work, we studied the connectivity of the brain structure in human sub-
jects, for the speci�c task of identifying regions that are signi�cantly discrimi-
native in sex classi�cation. Our main contributions can be listed as follows.
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� We have shown that there exists di�erences in network-centric measures in
human connectomes across sexes, such as clustering coe�cients, edge be-
tweenness centralities, and participation coe�cients.

� We have shown that these di�erences can be exploited to learn classi�cation
models that perform considerably well where a few, handful of features is
su�cient to boost the accuracy.

Importantly, we were able to show that these results persisted across two
di�erent data sets, collected at di�erent institutions, using di�erent scan param-
eters, and on populations with di�erent ages. This is highly suggestive that our
�ndings are not artifactual, rather, they represent legitimate scienti�c discoveries
in human connectome analyses.

One of our main �ndings has been the statistical di�erence at the pars or-
bitalis of the connectome between the two sexes, which resides in the inferior
frontal lobe of the brain and has been shown to function in language production.

Our study is a proof of principle that the connectome has some information
about the brain. It remains as future work to use our techniques, as well as
study other network measures of the connectome to identify additional evidential
features, to learn new models for more (clinically) interesting covariates, such as
classifying certain diseases like Alzheimer's.

We note that while high performance in such classi�cation tasks is desired,
the understanding of the �ndings is also crucial. For this reason, we used only
those features that we were able to show statistical di�erence across sexes for
our learning task, rather than throwing in all the possible measures we obtained.
We believe that this makes our study interpretable and opens new directions for
further analyses (for instance, we believe it might be particularly interesting to
study how the di�erences in these measures evolve with time by age).

Finally, we provide all of our data and code (speci�cally code for analytics,
graph invariant mining, and classi�ers)9 for scienti�c reproducibility as well as
for promoting further studies on related research topics.
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