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Abstract

User-generated online reviews can play a significant role in
the success of retail products, hotels, restaurants, etc. How-
ever, review systems are often targeted by opinion spammers
who seek to distort the perceived quality of a product by cre-
ating fraudulent reviews. We propose a fast and effective
framework, FRAUDEAGLE, for spotting fraudsters and fake
reviews in online review datasets. Our method has several
advantages: (1) it exploits the network effect among review-
ers and products, unlike the vast majority of existing meth-
ods that focus on review text or behavioral analysis, (2) it
consists of two complementary steps; scoring users and re-
views for fraud detection, and grouping for visualization and
sensemaking, (3) it operates in a completely unsupervised
fashion requiring no labeled data, while still incorporating
side information if available, and (4) it is scalable to large
datasets as its run time grows linearly with network size. We
demonstrate the effectiveness of our framework on synthetic
and real datasets; where FRAUDEAGLE successfully reveals
fraud-bots in a large online app review database.

Introduction
The Web has greatly enhanced the way people perform cer-
tain activities (e.g. shopping), find information, and interact
with others. Today many people read/write reviews on mer-
chant sites, blogs, forums, and social media before/after they
purchase products or services. Examples include restaurant
reviews on Yelp, product reviews on Amazon, hotel reviews
on TripAdvisor, and many others. Such user-generated con-
tent contains rich information about user experiences and
opinions, which allow future potential customers to make
better decisions about spending their money, and also help
merchants improve their products, services, and marketing.

Since online reviews can directly influence customer pur-
chase decisions, they are crucial to the success of businesses.
While positive reviews with high ratings can yield financial
gains, negative reviews can damage reputation and cause
monetary loss. This effect is magnified as the information
spreads through the Web (Hitlin 2003; Mendoza, Poblete,
and Castillo 2010). As a result, online review systems are at-
tractive targets for opinion fraud. Opinion fraud involves re-
viewers (often paid) writing bogus reviews (Kost May 2012;
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Streitfeld August 2011). These spam reviews come in two
flavors: defaming-spam which untruthfully vilifies, or hype-
spam that deceitfully promotes the target product.

The opinion fraud detection problem is to spot the fake
reviews in online sites, given all the reviews on the site, and
for each review, its text, its author, the product it was written
for, timestamp of posting, and its star-rating. Typically no
user profile information is available (or is self-declared and
cannot be trusted), while more side information for products
(e.g. price, brand), and for reviews (e.g. number of (helpful)
feedbacks) could be available depending on the site.

Detecting opinion fraud, as defined above, is a non-trivial
and challenging problem. Fake reviews are often written by
experienced professionals who are paid to write high qual-
ity, believable reviews. As a result, it is difficult for an av-
erage potential customer to differentiate bogus reviews from
truthful ones, just by looking at individual reviews text(Ott
et al. 2011). As such, manual labeling of reviews is hard and
ground truth information is often unavailable, which makes
training supervised models less attractive for this problem.

Summary of previous work. Previous attempts at solv-
ing the problem use several heuristics, such as duplicated re-
views (Jindal and Liu 2008), or acquire bogus reviews from
non-experts (Ott et al. 2011), to generate pseudo-ground
truth, or a reference dataset. This data is then used for
learning classification models together with carefully engi-
neered features. One downside of such techniques is that
they do not generalize: one needs to collect new data and
train a new model for review data from a different do-
main, e.g., hotel vs. restaurant reviews. Moreover fea-
ture selection becomes a tedious sub-problem, as datasets
from different domains might exhibit different characteris-
tics. Other feature-based proposals include (Lim et al. 2010;
Mukherjee, Liu, and Glance 2012).

A large body of work on fraud detection relies on review
text information (Jindal and Liu 2008; Ott et al. 2011; Feng,
Banerjee, and Choi 2012) or behavioral evidence (Lim et
al. 2010; Xie et al. 2012; Feng et al. 2012), and ignore the
connectivity structure of review data. On the other hand, the
network of reviewers and products contains rich information
that implicitly represents correlations among these entities.
The review network is also invaluable for detecting teams of
fraudsters that operate collaboratively on targeted products.

Our contributions. In this work we propose an unsuper-



vised, general, and network-based framework, FRAUDEA-
GLE, to tackle the opinion fraud detection problem in online
review data. The review network successfully captures the
correlations of labels among users and products, e.g. fraud-
sters are mostly linked to good (bad) products with nega-
tive (positive) fake reviews, and vice versa for honest users.
As such, the network edges are signed by sentiment. We
build an iterative, propagation-based algorithm that exploits
the network structure and the long-range correlations to in-
fer the class labels of users, products, and reviews. A sec-
ond step involves analysis and summarization of results. For
generality, we do not use review text information, but only
the positive or negative sentiment of the reviews. As such,
our method can be applied to any type of review data and is
complementary to existing approaches.

We summarize our main contributions as follows.
• We formulate the opinion fraud detection problem as a

network classification task on signed networks.
• We propose a novel framework that (1) employs a

propagation-based algorithm that exploits the network ef-
fect for classification, and (2) provides a summary and
analysis of results.

• The proposed method is (a) general; which can be applied
to all types of review networks, (b) unsupervised; that can
work with no prior knowledge, and (c) scalable; with its
run time linear in network size.

• We evaluate our method compared to alternative methods
on synthetic and real online app review data, where we
successfully spot fraudulent users and bots that unfairly
distort product ratings.

The rest of the paper is organized as follows: survey, pro-
posed framework, competitors, evaluation, and conclusion.

Related Work
Much of the previous work in opinion fraud focuses on re-
view text content, behavioral analysis, and supervised meth-
ods. (Jindal and Liu 2008) identified opinion spam by
detecting exact text duplicates in an Amazon.com dataset,
while (Ott et al. 2011) crowd-sourced deceptive reviews
in order to create a highly accurate classifier based on n-
grams. Several studies tried to engineer better features to
improve classifier performance. (Li et al. 2011) uses senti-
ment scores, product brand, and reviewer profile attributes
to train classifiers. Other work has computed scores based
on behavioral heuristics, such as rating deviation by (Lim
et al. 2010), and frequent itemset mining to find fraudulent
reviewer groups by (Mukherjee, Liu, and Glance 2012).

Unfortunately, these methods are not generalizable: the
models need re-training to account for differences between
problem domains, such as book reviews versus movie re-
views. Moreover, the features might not be consistent even
for datasets within the same domain, depending on the
dataset source. Consequently, feature extraction becomes
a time-consuming yet pivotal sub-problem with attributes
varying across domains.

Another group of work mines behavioral patterns in re-
view data. (Jindal, Liu, and Lim 2010) finds unexpected
rules to highlight anomalies, and (Xie et al. 2012; Feng et
al. 2012; Feng, Banerjee, and Choi 2012) respectively study

temporal review behavior, rating distributions, and syntactic
stylometry.

On the other hand, methods that account for the network
of reviewers, reviews, and products can more elegantly en-
capsulate structural signals that go beyond the review con-
tent and simple heuristics, thus generalizing across domains.
(Wang et al. 2011) proposed the first (and to the authors’
knowledge the only) review graph-based method and a sim-
ple yet effective algorithm to compute scores for each node.
We propose an even more flexible method that exploits the
network effects; being able to incorporate side information,
is based on the rigorous theoretical foundation of belief
propagation, and is linearly scalable.

Network effects have been exploited in securities
fraud (Neville et al. 2005), accounting fraud (McGlohon
et al. 2009), and auction fraud (Pandit et al. 2007) detec-
tion. However, none of these proposals are applicable to
opinion fraud detection, as their problem domains do not
involve ratings and sentiment spam. Related to ratings
on products, work on recommender systems (Koren 2009;
Menon and Elkan 2011), aim for best prediction of future
user ratings, but do not address the fraud problem.

Proposed FRAUDEAGLE Framework
In this section we first introduce the opinion fraud problem
with a toy example. After we give notation and formal defi-
nition, we present our problem formulation and the proposed
algorithm, along with results on our didactic example. We
conclude this section with a discussion on how to analyze
and summarize results.

Problem Description and Toy Example
Simply put, we consider the problem of spotting fraudulent
reviewers, and consequently spotting fake reviews in online
review datasets.

The online review datasets mainly consist of a set of users
(also called customers, reviewers), a set of products (e.g.,
hotels, restaurants, etc.), and the reviews. Each review is
written from a particular user to a particular product, and
contains a star-rating, often an integer from 1 to 5. As such,
a review dataset can be represented as a bipartite network. In
this network, user nodes are connected to product nodes, in
which the links represent the “reviewed” relationships and
each link is associated with the review rating.

The objects in the review network, i.e. the users, prod-
ucts, and reviews, can be grouped into certain classes. In this
paper, we consider two classes for each object type: prod-
ucts are either good or bad quality, users are either honest or
fraud, and finally reviews are either real or fake.

Intuitively, a product is good (bad) if it most of the time
receives many positive (negative) reviews from honest users.
Similarly, a user is honest (fraud) if s/he mostly writes posi-
tive (negative) reviews to good products, and negative (posi-
tive) reviews to bad products. In other words, a user is fraud
if s/he is trying to promote a set of target bad products (hype-
spam), and/or damage the reputation of a set of target good
products (defaming-spam). All the reviews of honest users
can safely be regarded as real. In an ideal setting, all the
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Figure 1: A toy review network of 6 users and 4 products.
The sentiment of reviews are observed, depicted as signed
edges: thumbs-up for + and thumbs-down for −.

reviews of the fraud users can also be thought of as fake.
However, in reality fraudsters could also write realistic re-
views, trying to hide their otherwise fraudulent activity. All
in all, notice that the class labels of the interconnected ob-
jects in the review data are strongly correlated as they are
described in terms of one another. As a result, it is natural to
think of a review dataset as a network in order to attack the
opinion fraud problem coherently.

Given a user-product review network as described above,
the task is to assign each object with a class label that best
describes the observed data, i.e. the network structure and
ratings. In this task, we need to infer from review text
whether it is of positive or negative sentiment. While there
exists prior work on sentiment classification using text in-
formation (Pang, Lee, and Vaithyanathan 2002), we take the
review rating as a highly correlated indicator for sentiment.
More specifically, we consider a signed network in which
each network link (i.e. review) is marked as positive if its
rating is above a threshold, and as negative otherwise.

We show an example in Figure 1. Users 1-4 are honest
while 5-6 are fraud, and products 1-2 are good-quality while
3-4 are bad. The network structure and the sentiment (sign)
of edges are observed. The fraudsters write fake reviews for
the products except the + review from user 6 to product 2;
it is posted to camouflage this user’s otherwise fraudulent
activity. The goal is to develop a method to automatically
label the users, products, and reviews in the network.

Notice that in our problem setting we do not use the re-
view text and other side information such as timestamp,
product brand, etc. We can, however, integrate such addi-
tional information into our formulation as prior information,
as we will discuss in the proceeding. As such, our proposed
method is highly complementary to existing techniques that
use language technologies or behavioral analysis.

Next, we introduce the notation and define the classifica-
tion problem formally.

Problem Formulation
Notation. We are given a signed review network Gs =
(V, E), in which a set of user nodes U = {u1, . . . , un} and a
set of product nodes P = {p1, . . . , pm} are connected with

signed links e(ui, pj , s) ∈ E , s ∈ {+,−}, and U ∪ P = V .
A neighborhood function N , Nui

⊆ P and Npj
⊆ U , de-

scribes the underlying bipartite network structure.
Each node in V and each edge in E is a random vari-

able that takes a value from an appropriate label domain;
in our case, LU = {honest, fraud}, LP = {good, bad},
and LE = {real, fake}. In this classification task, let
YV = YU ∪ YP and YE respectively denote the nodes and
edges the values of which need to be assigned, and let yi
refer to Yi’s label.

Objective formulation. We next define our objective
function we seek to optimize for the above classification
task. We propose to use an objective function that utilizes
pairwise Markov Random Fields (pMRF) (Kindermann and
Snell 1980), which we adapt to our problem setting as fol-
lows.

LetGs = (V, E) denote a signed network of random vari-
ables as before, where V consists of the unobserved vari-
ables Y which need to be assigned values from label set
L = LU ∪ LP . Let Ψ denote a set of clique potentials that
consists of two types of functions:

• For each Yi ∈ YU and Yj ∈ YP , ψi ∈ Ψ is a prior
mapping ψUi : LU → R≥0, and ψPj : LP → R≥0, re-
spectively, where R≥0 is non-negative real numbers.

• For each e(Y Ui , Y
P
j , s) ∈ E , ψs

ij ∈ Ψ is a compatibility
mapping ψs

ij : LU × LP → R≥0.
Given an assignment y to all the unobserved variables YV

and x to observed ones XV (variables with known values),
our objective is associated with the probability distribution

P (y|x) =
1

Z(x)

∏
Yi∈YV

ψi(yi)
∏

e(Y Ui ,Y Pj ,s)∈E

ψs
ij(yi, yj)

(1)
where Z(x) is the normalization function.
Problem definition. Now we can define the opinion fraud

detection problem more formally.
Given
- a bipartite network Gs = (V, E) of users and products

connected with signed edges,
- prior knowledge (probabilities) of network objects be-

longing to each class, and
- compatibility of two objects with a given pair of labels

being connected;
Classify the network objects Yi ∈ Y = YV ∪ YE , into
one of two respective classes; LU = {honest, fraud},
LP = {good, bad}, and LE = {real, fake}, where the
assignments yi maximize the objective probability in Equa-
tion (1).

We give details on priors and compatibilities in the con-
text of our algorithm, which we discuss in the next section.

Having formulated the objective function for our prob-
lem, we are ready to introduce the two major steps of our
proposed FRAUDEAGLE framework: (1) scoring for fraud
detection, and (2) grouping for analysis and sensemaking.
An overview of FRAUDEAGLE is given in Outline 1.



Step 1. FRAUDEAGLE Scoring
Finding the best assignments to unobserved variables in our
objective function, as given in Equation (1), is the inference
problem. In general, exact inference is known to be an NP-
hard problem, therefore we use a computationally tractable
(in fact linearly scalable with network size) approximate in-
ference algorithm called Loopy Belief Propagation (LBP).
LBP is based on iterative message passing, and while it is
provably correct only for certain cases, it has been shown to
perform extremely well for a wide variety of applications in
the real world (Yedidia, Freeman, and Weiss 2003).

In the following we propose a new algorithm that extends
LBP in order to handle signed networks. At convergence, we
use the maximum likelihood label probabilities for scoring.

signed Inference Algorithm (sIA) The inference algo-
rithm applied on a signed bipartite network can be concisely
expressed as the following equations:

mi→j(yj) = α1

∑
yi∈LU

ψs
ij(yi, yj) ψ

U
i (yi)∏

Yk∈Ni∩YP\Yj

mk→i(yi), ∀yj ∈ LP (2)

bi(yi) = α2 ψ
U
i (yi)

∏
Yj∈Ni∩YP

mj→i(yi),∀yi ∈ LU (3)

where mi→j is a message sent by user Yi to product Yj
(a similar equation can be written for messages from prod-
ucts to users), and bi(yi) denotes the belief of user i having
label yi (again, a similar equation can be written for beliefs
of products). α’s are the normalization constants, which re-
spectively ensure that each message and each set of marginal
probabilities sum to 1.

The algorithm (Outline 1 Line 6-25) proceeds by making
each set of Yi ∈ YU and Yj ∈ YP alternately communicate
messages with its neighbors in an iterative fashion until the
messages stabilize, i.e. convergence. After they stabilize, we
calculate the marginal probabilities; say of assigning Yi with
label yi by computing the final belief bi(yi). Although con-
vergence is not theoretically guaranteed, the LBP has been
shown to converge to beliefs within a small threshold fairly
quickly with accurate results.

Priors. To completely define the sIA algorithm, we need
to instantiate the clique potential functions Ψ. The prior
beliefs ψUi and ψPj , respectively of users and products can
be suitably initialized if there is any prior knowledge of the
objects (e.g. Angry Birds is a good product). These priors
could also be estimated based on available side information
such as review text (e.g. using text-feature classifiers (Ott et
al. 2011)), timeseries activity and other behavioral features
(e.g. using behavioral analysis (Jindal and Liu 2008)), etc.
As such, our method is general and complementary to exist-
ing feature-based methods. In case there is no prior knowl-
edge available, each node is initialized equally likely to have
any of the possible labels.

Compatibility matrices. Finally, we define the compat-
ibility potentials. These can be thought of as matrices with

entries ψs
ij(yi, yj), which gives the likelihood of a node hav-

ing label yi given that it has a neighbor with label yj . Recall
that in our adaptation of belief propagation to the fraud de-
tection problem, these potentials are dependent on and are
thus indexed by review sentiment. A sample instantiation
of the compatibility matrices is shown in Table 1. This in-
stantiation is based on the following intuition: honest users
tend to write positive reviews to good products and nega-
tive ones to bad products, honest users could also have com-
plaints about good products and, although with much less
affinity, might “like” the bad products depending on their
preferences, fraudsters tend to write positive reviews to bad
products to boost their ratings and negative reviews to good
products to underrate them, fraudsters could also behave like
normal honest users with reverse activity in order to cam-
ouflage themselves. Note that automatically learning the
compatibility potentials among classes in the existence of
labeled ground truth data is a valuable future direction.

s: + Products
Users Good Bad
Honest 1-ε ε
Fraud 2ε 1-2ε

s: - Products
Users Good Bad
Honest ε 1-ε
Fraud 1-2ε 2ε

Table 1: Instantiation of the sentiment-based compatibility
matrices for online review fraud detection. Entry (yi, yj)

s

denotes the compatibility of a product node having label yj
while having a user node neighbor with label yi, given the
review from i to j has sentiment s, for small ε.
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Figure 2: Classification results of sIA on toy network in
Figure 1. Dark red (green): fraud (honest) users, also fake
(real) for reviews, and bad (good) for products. Figure is
best viewed in color.

Assigning Scores After sIA converges, the class labels of
users and products can be inferred by their final belief vec-
tors. Each set of marginal beliefs sum to 1, i.e.

∑
yi
bi(yi) =

1, and thus can be treated as class probabilities for users, and
similarly for products (Line 27, 28).

Recall that we also want to label the network edges YE
(i.e. reviews) as fake or real. To do so, we simply take the
converged messages from products to users, i.e. mj→i(yi),
as the final beliefs on reviews. Each message also sum to 1,
i.e.

∑
yi
mj→i(yi) = 1, and thus can be taken as the class

probabilities for the reviews (Line 29).



Outline 1: FRAUDEAGLE FRAMEWORK

1 Step 1. Scoring
2 signedInferenceAlgorithm()
3 Step 2. Grouping
4 findGroups()
5 ——————————————————————

Step 1. signedInferenceAlgorithm()
6 Input: Bipartite network like Figure 1 of users,

products, and review ratings
7 Output: Score for every user (fraud), product (bad),

review (fake)
8 foreach e(Yi, Yj , s) ∈ E s.t. Yi, Yj ∈ YV do // initialize
9 foreach yi ∈ LU , yj ∈ LP do

10 mi→j(yj)← 1, φUi (yi)← |LU |
11 mj→i(yi)← 1, φPj (yj)← |LP |

12 repeat// perform message propagation
13 // update messages from users to products
14 foreach e(Yi, Yj , s) ∈ E s.t. Yi, Yj ∈ YV do
15 foreach yj ∈ LP do
16 mi→j(yj)← α1

∑
yi∈LU

ψs
ij(yi, yj)φ

U
i (yi)∏

Yk∈Ni∩YP\Yj

mk→i(yi)

17 // update messages from products to users
18 foreach e(Yi, Yj , s) ∈ E s.t. Yi, Yj ∈ YV do
19 foreach yi ∈ LU do
20 mj→i(yi)← α3

∑
yj∈LP

ψs
ij(yi, yj)φ

P
j (yj)∏

Yk∈Nj∩YU\Yi

mk→j(yj)

21 until all messages m(y) stop changing
22 foreach Yi, Yj ∈ YV do // compute beliefs
23 foreach yi ∈ LU , yj ∈ LP do
24 bi(yi) = α2φ

U
i (yi)

∏
Yj∈Ni∩YP

mj→i(yi)

25 bj(yj) = α4φ
P
j (yj)

∏
Yi∈Nj∩YU

mi→j(yj)

26 // assign scores
27 scorei(fraud) = bi(yi : fraud), ∀i ∈ U
28 scorej(bad) = bj(yj : bad), ∀j ∈ P
29 scoree(i,j)(fake) = mj→i(yi : fraud), ∀e(i, j) ∈ E
30 ——————————————————————

Step 2. findGroups()
31 Input: ranked list of users by score from Step 1.,

number of top users k
32 Output: bot-users and products under attack
33 Gtop← induced subgraph on top k users and products
34 cluster Gtop (we use cross-associations)
35 return/visualize clusters, bipartite-cores

Each such incoming message to user Yi from each product
j that s/he wrote reviews contributes to the probability of Yi
having label yi and equivalently represents the probability

of his/her review for product j having label yEi . More pre-
cisely, yUi :fraud ≡ yEi :fake and yUi :honest ≡ yEi :real. This
helps us to differentiate the fraudulent reviews of a fraudster
from his/her realistic reviews that s/he wrote to hide his/her
fraudulent activity.

We show the results on our running toy example in Fig-
ure 2. The algorithm correctly classifies all the objects, in-
cluding the (camouflage) positive review from (fraud) user
6 to (good) product 2 which is classified as real.

Step 2. FRAUDEAGLE Grouping
Marginal class probabilities over users, products, and re-
views, i.e. scores, enable us to order each set of them in
a ranked list. While a rank list of, say, users with respect to
being a fraudster is a valuable resource, it does not put the
top such users in context with the products that they rated.

In order to help with visualization, summarization, and
further sensemaking of fraudsters we project the top users
back on the review graph, and obtain the induced subgraph
including these users along with the union of products that
they rated. The idea is to partition this subgraph into clusters
to gain more insight about how they are organized in the net-
work. For partitioning, one can use any graph clustering al-
gorithm. We employ the cross-associations (CA) clustering
algorithm (Chakrabarti et al. 2004) on the adjacency matrix
of the induced graph. The CA algorithm performs cluster-
ing by finding a permutation of the rows (users) and columns
(products) of the matrix such that the resulting matrix con-
tains homogeneous blocks (defined by the clustering), where
dense blocks correspond to near-bipartite cores (e.g., a team
of users attacking on a target set of products).

Given the top-scoring users, the grouping step essen-
tially merges evidence further; by revealing attack and target
groups as well as providing summarization by clustering.

Our Adapted Competitors
In this section we describe two alternative methods that we
developed as baselines. We present them as competitors and
compare all methods in the experiments.

We modify two algorithms for network classification to
handle signed networks for our fraud detection setting:
weighted-vote relational classifier (wv-RC) (Macskassy and
Provost 2003; Hill, Provost, and Volinsky 2007) and hubs-
and-authorities (HITS) algorithm (Kleinberg 1998).

weighted-vote Relational Classifier
The wv-RC is a neighbor-based classifier which estimates
class-membership probability of each node as the weighted
mean of the class-membership probabilities of its neighbors.
In our setting the underlying network is bipartite and the
edges are signed. Therefore, the above definition translates
to the following equations:

PrUi (hon.) =
1

Zi

( ∑
j∈N+

i

w+
ijPrPj (good)−

∑
j∈N−i

w−ijPrPj (bad)

)

PrPj (good) =
1

Zj

( ∑
i∈N+

j

w+
ijPrUi (hon.)−

∑
i∈N−j

w−ijPrUi (fr.)

)



whereN+ denotes the neighbors of a node that are linked
to it by positive weights w+. In our setting, edge weights
are w+=1 and w−=−1, as we have positive and nega-
tive reviews. Z’s are normalization constants, i.e. Zi =∑

j∈N+
i
w+

ij−
∑

j∈N−i
w−ij = |Ni|. Finally, PrUi (fraud) =

1 − PrUi (honest) and PrPj (bad) = 1 − PrPj (good);
PrUi ,PrPj ∈ [0, 1].

We use the above equations to iteratively update class
probabilities of all nodes. Nodes with unknown labels are
initially assigned class priors PrUi (honest) = PrPj (good) =
0.9 (note that priors should be set to other than 0.5 at least for
some nodes for progress). Due to the loopy nature of propa-
gation convergence is not guaranteed, although in our exper-
iments the probabilities converged within a small threshold
of change (ε=10−4) from one iteration to the next.

Iterative Honesty-and-Goodness
We also adapt the HITS algorithm (Kleinberg 1998) to com-
pute the honesty of users and goodness of products. Honesty
and goodness values are defined in terms of one another in a
mutual recursion. The honesty (goodness) value of a user
(product) is computed as the scaled sum of the goodness
(honesty) values of products (users) linked to it by positive
reviews minus the sum of those linked by negative reviews.
We give the corresponding equations as below.

HUi = f

( ∑
j∈N+

i

w+
ijG
P
j +

∑
j∈N−i

w−ijG
P
j

)

GPj = f

( ∑
i∈N+

j

w+
ijH

U
i +

∑
i∈N−j

w−ijH
U
i

)

where f(.) is the normalizing function f(x) = 2
1+exp(x)−1;

HUi , G
P
j ∈ [−1, 1], and w± and N± are defined as before.

We use the above equations to iteratively update the hon-
esty and goodness values of users and products, respectively.
Nodes with unknown labels are initially assigned values
HUi = GPj = ε ≈ 0, i.e. unbiased priors. For convergence,
we need to set a maximum number of iterations.

Computing Review Scores
Both wv-RC and the HITS-like algorithm we adapted for
our setting compute scores for the nodes in the network, i.e.
users and products. To compute the corresponding scores for
the edges, i.e. reviews, we follow similar ideas as in (Wang
et al. 2011).

For each review, we split all the reviews (in fact their own-
ers) for the same product into two sets: agreement set Ua
contains the users who wrote those reviews with the same
sentiment as of current review, and disagreement set Ud con-
tains those who wrote the ones with opposite sentiment.

Then, the reliability score of each review for wv-RC is:

REij =
1

|Ua ∪ Ud|

( ∑
u∈Ua

PrUu (honest)+
∑
u∈Ud

PrUu (fraud)

)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Star Rating (1−5)

Pr
op

or
tio

n 
of

 R
ev

ie
ws

 

 

Figure 3: Star rating distribution for the SWM dataset. No-
tice the upward tilting ‘J’ shape.
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Figure 4: Degree distributions for user and product nodes in
the SWM dataset. Notice the power-law like skewness as
seen in real networks.

Similarly, each review score for the adapted HITS is:

REij = f

(
|GPj |(

∑
u∈Ua

HUu −
∑
u∈Ud

HUu )

)

Evaluation and Comparison
In our experiments we used a new dataset, which is a col-
lection of app reviews. We refer to this data as the SoftWare
Marketplace (SWM) dataset. In this section, we first de-
scribe our data and later present evaluation results on both
synthetic and SWM datasets.

SWM Data and Analysis
Data description. The SWM dataset was collected by
crawling all the software product (app) reviews under the
entertainment category from an anonymous online app store
database. These products consist of a diverse set of sub-
categories (e.g. games, movies, news, sports). The com-
plete collection includes 1, 132, 373 reviews from 966, 842
unique users for 15, 094 apps (as of June 2012). As part of a
review, a user rates a product from 1 (worst) to 5 (best).

Data analysis. Figure 3 shows the star rating distribution
for reviews in the SWM dataset, with 1 being the worst and
5 being the best. As expected, the distribution has a charac-
teristic ‘J’ shape, which reflects user apathy when deciding
whether to review mediocre products. In this dataset, the
reviews are skewed towards positive ratings.

Figure 4 shows that there are many product nodes with
high degree, i.e. with high number of reviews, and much
greater than the user degree. This indicates that a large por-
tion of the reviews come from users who individually have
very few reviews.
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Figure 5: Proposed sIA performs the best; high scores for labeled objects (F: fraud, B: bad). (left) Class-memberships of
top-ranked (a) users and (b) products by (top) sIA, (middle) wv-RC, and (bottom) adapted HITS on the synthetic review graph.
sIA successfully ranks 4 fraudsters and 6 bad products on top, with very high scores. Solid lines depict ideal scores. (right)
Class-memberships of top-ranked (c) users and (d) products when 4 “grumpy” (Gr) users are assigned in the graph. sIA’s
performance remains consistent.

Sanity Check on Synthetic Dataset
Dataset generation. In order to validate the effectiveness
of our algorithm, we first tested it on a syntheticly gen-
erated review dataset, and compared it to two competitors
we described before. To generate a realistic bipartite graph
(with skewed degree distribution, etc.) we used the Random
Typing Graph generator (Akoglu and Faloutsos 2009), with
parameters W=5K, k=5, β=0.6, and q=0.4. The resulting
graph had 12 connected components; we took the largest
component with 196 users, 78 products, and 558 reviews
(we discarded multiple edges).

There is no known generator that mimics review networks
with realistic ratings and fraudulent behavior, therefore we
used the following scheme to create one: we assigned 4
users as fraudsters and the rest as honest, 7 products with the
highest degree as famous good, 6 other as bad, and the rest
as non-famous good. The sentiment on edges are then as-
signed as follows. If there is an edge in the synthetic graph,
i) honest users always give ‘-’ to bad products, ii) fraudsters
always give ‘+’ to bad products, iii) fraudsters always give
‘+’ to the famous good products (to hide their otherwise bad
activity), and iv) honest users always give ‘+’ to good prod-
ucts. This way we ended up with 23 fake reviews.

Proposed algorithm result. We show the class-
memberships for top-scoring (most malicious) users and
products found by our sIA in top row of Figure 5. In (a), the
algorithm successfully ranks all the fraudsters on top. In (b),
all bad products are also ranked top with very high scores,
while another product also shows up with high score (0.75)
—this product has degree 1, from a fraudster with a ‘+’ re-
view, which increases its probability of being bad. Results
are similar for fake reviews, which we omit for brevity.

Competitors. The middle row of Figure 5 gives results

of wv-RC. It successfully ranks all the fraudulent objects
on top. However, the gap between the scores of malicious
and benign objects is quite small, in fact 3 fraudsters have
fraud scores less than 0.5 although they are ranked correctly.
Finally, last row gives results of adapted HITS (recall the
scores for HITS are ∈ [−1, 1], for coherence we add 1 to
the scores and divide by 2 to scale them ∈ [0, 1]). While
successfully recovering bad products in (b), it misses two
fraudsters in (a) (they rank 151th and 175th) —those are the
ones that hide their fraudulent activity more than the others
by rating more products in a honest fashion.

All-negative users. In order to make the classification
task harder, we next assign 4 honest users as “grumpy”
—those who always give ‘-’ to all the products they re-
view, regardless of being good or bad. We show the class-
memberships for users in (c) and products in (d) in Figure 5
(we omit reviews for brevity). In top row, we notice that
sIA ranks all the “grumpy” users on top followed by the as-
signed fraudsters. In middle row, wv-RC also ranks them on
top while fraudsters have lower rank than before (11-14th).
Similar results hold for aHITS where two fraudsters are still
ranked much lower. We conclude that the algorithms do not
differentiate “grumpy” users from fraudsters —they seem
like fraudsters who give ‘-’ to good products while also giv-
ing ‘-’ to bad ones for camouflage. From the system admin’s
point of view both fraudsters and “grumpy” users distort the
product ratings unfairly, and could both be ignored.

Sensitivity analysis. Our formulation involves choos-
ing a small ε for setting compatibility potentials ψs

ij(yi, yj).
Our analysis on this and other synthetic graphs created with
various parameter settings of our graph generator (an thus
varying topologies) showed that a wide range of small ε,
∈ [0.01, 0.15], yields desired results.
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Figure 7: (a) Adjacency matrix on top 100 users ranked by signed belief propagation algorithm and the 427 unique products
these users rated. The blue ‘+’s and red ‘o’s denote the edges and indicate positive and negative reviews, respectively. (b)
Adjacency matrix after rows and columns are reordered for grouping. The dashed vertical lines indicate group boundaries.
Users and products resp. form 4 and 7 major groups. Notice the grouping reveals the 31-user group-attack on 5 products.
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Results on the Real SWM Dataset
We build the customer-app network with review relations
and sign the network edges as positive if its rating is above
3, and as negative if it is below 3.

Since we do not have ground truth label for any of the
nodes, we set all prior potentials to 0.5. As we discussed be-
fore, several heuristics to obtain better priors can be derived,
for example using the side information on timestamps (e.g.,
whether a user wrote all his/her reviews on a single day).
The availability of such information, however, is dataset de-
pendent. We employ our method in a general fashion to
work completely unsupervised, while being complementary
to feature-based methods in the existence of side informa-
tion or any prior knowledge.

The sIA converges in 37 iterations on the SWM net-
work. The distribution of belief scores yUi :fraud of all users
is shown in Figure 6. Most users have relatively small
fraud scores, and are well separated from those with high
scores. There are about 107K (11%) users having fraud
scores greater than or equal to the 90th quantile of the dis-
tribution (0.89), and 156K users with score greater than the
0.5 threshold.

Detecting fraud-bots. Next, we obtain the top-ranked
(most malicious) 100 users and extract the induced graph

on these users and the (427) products they reviewed. The
adjacency matrix of the induced graph is shown in Figure 7
(a). The ‘+’s and ‘o’s depict positive and negative reviews,
respectively. Looking at the spy-plot, we can immediately
realize a group of users who always wrote ‘+’ reviews to a
small set of products.

Cross-associations clusters the users and products, auto-
matically revealing the set of fraudsters as shown in Figure 7
(b); 31 users all with 5-star ratings to a set of 5 products (!).
Further analyses showed that all 5 products belong to the
same developer, which provides further evidence of fraud-
ulent activity. As for more evidence, we analyzed the re-
view text of the fraudsters and found a significant number of
replicated reviews among them. For example, we show the
reviews of 4 example fraudsters in Figure 8. The reviews
that are replicated at least once are highlighted with a (red)
box. The graph of these users, where an edge exists between
two users if they have at least one same review in common,
is in fact connected. This observation suggests multiple user
accounts created by the same fraudster.

The fraudsters in the detected bot, all with rating 5, sig-
nificantly affect the average rating of the 5 products they
reviewed. In Figure 9, notice that all their average ratings
drop close to 1, once those fraudsters and their reviews are
removed from our dataset.

Comparison to other methods. Unlike the synthetic
dataset as discussed before, our SWM data does not contain
ground truth labels. Therefore, obtaining precision-recall
curves of the alternative methods in comparison to sIA is
out of the scope of this work. We can, however, use our re-
sults in the previous section as a pseudo ground truth. That
is, we treat the 31 users which form a bot as true fraudsters.

The bot-fraudsters rank within rank 5 to 43 in the sorted
list of users by sIA (Fig. 7(a)). The same users lie within
ranks 36 and 131 in the sorted list by adapted HITS (aHITS).
Finally, wv-RC puts them between ranks 9860 and 10310
(note that the order of users could be different).



Figure 8: Reviews of 4 example bot members detected in SWM data for (from top to bottom) the same 5 products (all from the
same developer) (see §). Reviews shared among these users are highlighted with a (red) box. Replication of all 5-star reviews
provides evidence for fraudulent activity. Also notice the reviews of each fraudster are written mostly on a single day.
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Figure 9: Average rating of 5 products under attack by a bot
of fraudsters (see §, Fig. 7) drops significantly to≈1 (lowest
possible rating) after removing their fake reviews.

Another way to compare the methods is to study the im-
pact of the fraudsters they detect on the average ratings of
products. In particular, we study the average rating of a
product when fraudsters are included versus when they are
excluded. Figure 10 gives the mean absolute change in aver-
age ratings of products after top users are removed by each
method —these are the users with fraud scores greater than
0.5 for sIA and wv-RC, and with honesty scores less than
0 for aHITS. The figure shows that the rating changes are
more significant for the high-rating products ([3-5]) for the
removed fraudsters by sIA, while changes are more signif-
icant for low-rating ([1-2]) products for fraudsters removed
by wv-RC. In fact when top fraudsters by sIA are removed,
the average rating of high-rated products drop by more than
1 point on average. The removed random users, on the other
hand, do not have as significant effects on the ratings.
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Figure 10: FRAUDEAGLE top-scorers matter. Absolute
change in average ratings of all products, after removing the
reviews of top fraudsters detected by each method, along
with change when as many random users are removed (av-
eraged over 10 runs).

Computational complexity
Lemma 1 Proposed FRAUDEAGLE is scalable to large
data, with computational complexity linear in network size.

Proof 1 In step 1 of FRAUDEAGLE, sIA performs message
passing over the edges in a repeated fashion (see Outline 1
Line 12-21), with time complexity O(|E|d2t), where |E| is
the number of edges in the network, d is the maximum do-
main size of a variable (i.e. number of classes, which is often
small), and t is the number of iterations until convergence.
In our setting, domain sizes of both users and products is
d = |LU | = |LP | = 2, and t � |E| is often small (t = 37
on SWM data). Therefore, the time complexity is linear in
the number of edges, i.e. network size.



In step 2, we cluster the induced graph on top users and
their products using the cross-associations algorithm, which
is also linear in number of edges (Chakrabarti et al. 2004).
The induced graph is also much smaller than the input graph.

Finally, we also empirically show in Figure 11, that the
running time grows linearly with increasing size.
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Figure 11: Run time for sIA vs network size. Notice the
linear scalability with a good fit.

Conclusions
We propose a novel framework called FRAUDEAGLE that
exploits the network effects to automatically detect fraudu-
lent users and fake reviews in online review networks. Our
main contributions are:
• Problem formulation: We formally define the opinion

fraud detection problem as a classification task on signed
bipartite review networks, and thus we capture the net-
work effects for improved classification.

• Scoring algorithm: We show how to efficiently solve the
inference problem, on signed bipartite networks. Our ap-
proach uses several compatibility matrices and computes
scores for all 3 types of objects: reviews (fake/truthful),
users (honest/fraud), and products (good/bad quality).

• Desirable properties: FRAUDEAGLE is (a) general and
applicable to several types of review networks; (b) unsu-
pervised, requiring no prior knowledge or side informa-
tion (although it can use it, if it exists); and (c) scalable,
with linear run-time complexity.

• Evaluation: We compared FRAUDEAGLE against alterna-
tives, on synthetic as well as real networks. FRAUDEA-
GLE successfully detects fraudulent attack groups, and the
users that significantly distort product ratings.
Our method is complementary to previous works that use

text and behavioral clues; future work will seed our algo-
rithm with priors inferred from those clues, and study the
effects of more informed priors on performance.

Acknowledgements
We thank the anonymous reviewers for their constructive feedback.
Research was sponsored by NSF under Grant No. IIS1017415,
ARL under Cooperative Agreement No. W911NF-09-2-0053, and
ADAMS sponsored by DARPA under Agreements No.s W911NF-
12-C-0028, W911NF-11-C-0200, and W911NF-11-C-0088.

References
Akoglu, L., and Faloutsos, C. 2009. RTG: A recursive realistic
graph generator using random typing. DAMI 19(2):194–209.

Chakrabarti, D.; Papadimitriou, S.; Modha, D. S.; and Faloutsos,
C. 2004. Fully automatic cross-associations. In KDD, 79–88.
Feng, S.; Banerjee, R.; and Choi, Y. 2012. Syntactic stylometry
for deception detection. In ACL, 171–175.
Feng, S.; Xing, L.; Gogar, A.; and Choi, Y. 2012. Distributional
footprints of deceptive product reviews. In ICWSM.
Hill, S.; Provost, F.; and Volinsky, C. 2007. Learning and inference
in massive social networks. In MLG, 47–50.
Hitlin, P. 2003. False reporting on the internet and the spread of
rumors: Three case studies. Gnovis J.
Jindal, N., and Liu, B. 2008. Opinion spam and analysis. In
WSDM, 219–230.
Jindal, N.; Liu, B.; and Lim, E.-P. 2010. Finding unusual review
patterns using unexpected rules. In CIKM.
Kindermann, R., and Snell, J. L. 1980. Markov Random Fields and
Their Applications.
Kleinberg, J. M. 1998. Authoritative sources in a hyperlinked
environment. In SODA, 668–677.
Koren, Y. 2009. Collaborative filtering with temporal dynamics.
In KDD, 447–456.
Kost, A. May 2012. Woman Paid To Post Five-Star Google Feed-
back. http://bit.ly/SnOzRi.
Li, F.; Huang, M.; Yang, Y.; and Zhu, X. 2011. Learning to Identify
Review Spam. In IJCAI.
Lim, E.-P.; Nguyen, V.-A.; Jindal, N.; Liu, B.; and Lauw, H. W.
2010. Detecting product review spammers using rating behaviors.
In CIKM, 939–948.
Macskassy, S., and Provost, F. 2003. A simple relational classifier.
In 2nd Workshop on Multi-Relational Data Mining, KDD, 64–76.
McGlohon, M.; Bay, S.; Anderle, M. G.; Steier, D. M.; and Falout-
sos, C. 2009. Snare: a link analytic system for graph labeling and
risk detection. In KDD.
Mendoza, M.; Poblete, B.; and Castillo, C. 2010. Twitter under
crisis: can we trust what we rt? In SOMA, 71–79.
Menon, A. K., and Elkan, C. 2011. Link prediction via matrix
factorization. In ECML/PKDD.
Mukherjee, A.; Liu, B.; and Glance, N. S. 2012. Spotting fake
reviewer groups in consumer reviews. In WWW.
Neville, J.; Simsek, O.; Jensen, D.; Komoroske, J.; Palmer, K.; and
Goldberg, H. G. 2005. Using relational knowledge discovery to
prevent securities fraud. In KDD, 449–458.
Ott, M.; Choi, Y.; Cardie, C.; and Hancock, J. T. 2011. Finding
deceptive opinion spam by any stretch of the imagination. In ACL,
309–319.
Pandit, S.; Chau, D. H.; Wang, S.; and Faloutsos, C. 2007. Net-
probe: a fast and scalable system for fraud detection in online auc-
tion networks. In WWW.
Pang, B.; Lee, L.; and Vaithyanathan, S. 2002. Thumbs up?
sentiment classification using machine learning techniques. CoRR
cs.CL/0205070.
Streitfeld, D. August 2011. In a Race to Out-Rave, 5-Star Web
Reviews Go for 5 Dollars. http://nyti.ms/nqiYyX.
Wang, G.; Xie, S.; Liu, B.; and Yu, P. S. 2011. Review graph based
online store review spammer detection. In ICDM, 1242–1247.
Xie, S.; Wang, G.; Lin, S.; and Yu, P. S. 2012. Review spam
detection via temporal pattern discovery. In KDD, 823–831.
Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2003. Understanding
BP and its generalizations. In Exploring AI in the new millennium.


