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About me
▣Research Scientist at Snap (previously CMU)

▣Interested in data mining, security, user-
behavior modeling and network science

▣Broadly focus on characterizing, detecting and 
mitigating online social misbehavior

http://www.cs.cmu.edu/~neilshah/

http://www.cs.cmu.edu/~neilshah/
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What is social misbehavior?
Malicious behavior on social platforms which is 
unintended by creators or harmful to users

▣Impacts user perception (spam, false information)
▣Impacts user safety (malicious URLs, account 
compromise, blackmail, bullying)
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Social misbehavior is on the rise
▣~13-15% fake and duplicate accounts on 
Facebook/Twitter respectively1,2

▣¼ Americans visited a misinformative website 
around the 2016 election3

1Selective Exposure to Misinformation
2Facebook Q3’17 Earnings Report
3Online Human-bot Interactions: Detection, Estimation and Characterization

Increased interest in cyberbullying 
– Google Trends

Growth in email spam volume and 
bad attachments – IBM Threat 
Intelligence Index 2017

https://www.dartmouth.edu/~nyhan/fake-news-2016.pdf
https://s21.q4cdn.com/399680738/files/doc_financials/2017/Q3/Q3-'17-Earnings-Presentation.pdf
https://arxiv.org/pdf/1703.03107.pdf
https://trends.google.com/trends/explore?date=all&q=cyberbullying
https://www.leadersinsecurity.org/component/phocadownload/category/11-2017-cybersecurity-publications.html?download=185:2017-cybersecurity-publications
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Outlier detection to the rescue
▣Most generally, outlier detection is about 
finding unlikely samples in data

▣In social settings, our samples are often users
▣We can tackle a wide variety of misbehavior 
detection tasks by identifying the right types of 
outlying users.

An outlier is an observation that deviates so 
much from other observations as to arouse 

suspicion that it was generated by a different 
mechanism (Hawkins, 1980).
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Two examples
▣Spotting suspicious link behavior in online 
social networks

▣Combating fake viewership on livestreaming 
platforms
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Popularity on social media
▣Measured inherently by numbers; on social 
networks, followers are the target metric
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Gamifying popularity
When a measure becomes a target, it ceases to 

be a good measure. (Goodhart, 1975)
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Problem definition

▣Ubiquitous problem in social media
▣Disruptive to recommendation
▣Harmful to user trust

Given: a static, social graph G
Find: nodes which are fake followers (“link fraud”)
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Link fraud visualized

Bipartite core: 
nodes used only to 
follow customers 

Clique: nodes follow 
each other, but also 
some customers
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Decomposition for detection

▣Represent input graph as adjacency matrix

▣Use rank-k decomposition to find latent factors 
associated with fraudulent following behavior

0 1 1 0 0 0
1 0 1 1 0 0
1 1 0 1 1 1
0 1 1 0 0 0
0 0 1 0 0 1
0 0 1 0 1 0
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Caveats of decomposition 

▣Decomposition methods miss “stealth attacks” 
below top-k factors

▣Increasing k is computationally expensive

0 1 1 0 0 0
1 0 1 1 0 0
1 1 0 1 1 1
0 1 1 0 0 0
0 0 1 0 0 1
0 0 1 0 1 0
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Singular Value Decomposition
▣Used for low-rank matrix approximation
▣Rank k SVD reduces matrix A into k latent 
factors/dense blocks/communities

▣U and V capture “involvement” of nodes
▣! denotes factor “strength”
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Singular Value Decomposition
▣Used for low-rank matrix approximation
▣Rank k SVD reduces matrix A into k latent 
factors/dense blocks/communities

▣U and V capture “involvement” of nodes
▣! denotes factor “strength”
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SVD: adversarial implications
▣Attacker controls f fake accounts
▣They have c customers, wanting s links each

▣Attack footprint has a closed form!

!1 = $% !1 = % &$ ' !( ≈ % &$ '

f

c

s
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Does this even matter? (yes!)
▣For !" = 50, attackers could avoid detection 
while adding…

▣So how do we catch them?

140 reviews to 140 
Amazon products

92K followers to 10 
Twitter accounts
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Projection as a signal
▣Intuition: Stealth attacks should have very low 
top-k projection, due to poor graph connectivity
▣We quantify projection for each node as 

▣Projected out-degree: !"# $
$

▣Projected in-degree: %"# $
$
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Too-low projection is suspicious
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Our approach: FBOX
▣Three basic components

▣Compute rank-k SVD of A
▣Compute true and projected in/out degrees
▣Identify nodes with too-low projection with respect 
to peers as suspicious

▣ FBOX complements existing spectral methods 

Code publicly available at:
https://goo.gl/gcQMvS

https://goo.gl/gcQMvS
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Experimental results
▣93% precision in manual validation experiment

▣70% of suspects were previously uncaught by 
Twitter, and had engaged in misbehavior for years

▣83% precision on synthetic attacks with half 
camouflage links

▣Linear scaling on # edges
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Technical insights
▣Simple relationship structure can be well-
exploited to identify fake engagement behaviors

▣Dimensionality reduction can help “prime” 
structured data for outlier detection

▣Summary statistics depend on sample size à
affects data distribution and outlier detection 
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Two examples
▣Spotting suspicious link behavior in online social 
networks

▣Combating fake viewership on livestreaming 
platforms
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What is livestreaming?
▣Livestreaming connect viewers with channels
▣Streamers own channels, go live at their whim 
and broadcast content
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Viewbotting on livestreaming 
▣Live viewership is the key popularity metric
▣Faking viewer count offers monetization and 
recommendation benefits
▣Accomplished via “phantom” viewbots

HTTP

HTTP

HTTP
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35.x.x.x
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Problem definition
Given: views ! to broadcasts " (many-to-one)

BroadcastsIPs

HTTP
# $ ,&($)

# ) ,&())

Views
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Problem definition
Given: views ! to broadcasts " (many-to-one)
Find: viewbotted broadcasts "#$%%&' and 
constituent botted views !#$%%&'

BroadcastsIPs

HTTP
( ) ,+())

( . ,+(.)

Views
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Approach considerations
▣Problem constraints

▣No labels/ground truth
▣Only have HTTP and timestamp features

▣Resulting choices
▣Unsupervised approach
▣ Focus on groups of views instead of individuals 
▣Target temporal features – harder to spoof and 
directly related to attacker constraints
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Our approach: FLOCK
▣Three basic components

▣Modeling broadcast viewership
▣Identifying viewbotted broadcasts
▣Identifying fake views
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Modeling broadcast viewership
▣Broadcasts are not mathematical objects
▣But we can model them as such: “bag-of-views” 
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Modeling broadcast viewership
▣Broadcasts are not mathematical objects
▣But we can model them as such: “bag-of-views” 
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Modeling broadcast viewership
▣We can model “typical” viewership across many 
broadcasts via multinomial MLE, but… 
▣Duration influences behavior à create duration-
specific bracket distributions
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Modeling broadcast viewership
▣Intuition: bracket distributions describe 
“typical” broadcast viewership behavior
▣They enable us to evaluate “closeness” of a 
broadcast with respect to the bracket
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Identifying viewbotted broadcasts
▣We can measure closeness using distributional 
distance measures
▣We use Kullback-Leibler (KL) divergence 
between broadcast ! and bracket "(!)
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Identifying viewbotted broadcasts
▣Most broadcasts are close to brackets
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Identifying viewbotted broadcasts
▣Most broadcasts are close to brackets

▣Too-high divergence w.r.t. #views à suspicious
# views

Outliers
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Identifying fake views
▣Broadcasts are outlying because they have 
suspicious views à which ones?

▣Intuition: Find clusters causing high divergence
▣How do we cluster the views?
▣How do we choose the right clusters?
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Identifying fake views: clustering
▣Could use any general ℝ" clustering solution

▣Since we don’t know # clusters a priori, we use 
non-parametric clustering (Pelleg et al, 2000)
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Identifying fake views: choosing
▣!"# should shrink when bad clusters are 
removed, since viewership is more “typical”

▣Since this objective is intractable for large $, we 
propose a greedy approach

▣Deterministic, guaranteed to converge
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Experimental results: broadcasts

▣98% positive and 99% negative precision in 
manual broadcast labeling task
▣Broadcasts labeled according to ISP/IP 
regularity in views

76/89 views last 
~full duration

201/239 views are 
densely clustered 
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Experimental results: views
▣Synthetic attacks with 
varying parameters

▣Ratio of “good” and 
“bad” views
▣Temporal “bad” view 
distribution

▣95% precision and 
100% recall
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Adversarial implications
▣Even if an adversary knows the right bracket 
and target distribution, they still need 40% more 
IPs than under naïve rate-limiting to do as well
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Technical insights
▣Real data can be structurally complex; 
distributions can be more suitable than points

▣Some outlying phenomena are only 
meaningfully outlying in groups

▣Hierarchical outlier detection can reduce 
problem complexity
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Back to the bigger picture
▣We can tackle a wide variety of misbehavior 
detection tasks by identifying the right types of 
outlying users.

▣Outlier detection plays an important role in the 
detection of misbehavior

…and many other application areas!
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Tempering expectations
▣We can tackle a wide variety of misbehavior 
detection tasks by identifying the right types of 
outlying users.

▣But outlier detection is not a “silver bullet”
▣Is outlier detection the best solution for this task?
▣How should my task influence my detection strategy?
▣Are the detected outliers relevant to my task?
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Remark: Suitability
Not all problems are best-suited for 
outlier detection.

“If all you have is a hammer, everything looks like 
a nail.” – Maslow’s hammer

Classification & 
automated response

Changing platform 
infrastructureRevisiting incentive 

structure

Crowdsourcing
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Remark: Problem-specificity
Outlier detection strategies can be 
highly problem-specific.

Parametric or 
non-parametric

Group-wise 
or individual

Multivariate or 
univariate

Hierarchical 
or flat

Distributions or 
point values

Online or 
offline
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Remark: Value
An outlier is only as valuable as the 
behavior it indicates.

Fake follower or 
incompetent Twitter user?

Malicious user or hacked
account?

Fake news article or satire?
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Implications
Outlier detection in practice should…

▣be well-justified in motivation

▣be tailored to address problem constraints

▣be vetted to actually solve that problem with 
minimal error
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Snap is hiring!
▣Research Scientists/Engineers/Interns in 
Security, Data Mining, Deep Learning, NLP, HCI, 
Graphics, Vision & Computational Imaging

▣Many opportunities to work w/ academics

▣Reach out if you’re interested in collaborating!

nshah@snap.com
http://www.cs.cmu.edu/~neilshah

http://www.cs.cmu.edu/~neilshah

