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Attributed graphs 
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Attributed graph: each node has 1+  properties
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Attributed networks 
n  Social networks

q  demographics, 
lifestyles, likes, …

n  PPI networks
q  Gene encodings

n  Gene interaction 
networks
q  ontological properties

n  Web 
q  page properties  

n  …
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Motivating question: 
How can we make sense of        
node-attributed networks

-  subgraphs
-  summaries
-  comparisons

? 

220 nodes,  
6215 edges 
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Attributed networks 

Idea is “description-by-parts”:
identifying & characterizing the subgraphs

5 



6 



Research questions: 
①  How to characterize &                     

measure the quality of …
②  How to summarize &  

interactively explore …
③  How to characterize differences 

between classes of …                            
… attributed subgraphs?

1)   Scalable Anomaly Ranking of Attributed Neighborhoods  SIAM SDM 2016 
2)    Discovering Communities and Anomalies in Attributed Graphs:  
          Interactive Visual Exploration and Summarization         ACM TKDD, 2018                                     
       Bryan Perozzi and Leman Akoglu 
3)    Ties That Bind - Characterizing Classes by Attributes and Social Ties   
       Aria Rezaei, Bryan Perozzi, Leman Akoglu                             WWW 2017 Companion 
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This talk 
n  Attributed (sub)graphs*

q  Subgraphs
q  Summarization
q  Comparisons 

* social circles, communities, egonetworks, …

[SIAM SDM’16] 

[ACM TKDD’18] 

[WWW ’17] 
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What’s a “good” subgraph anyway? 
v  Given an attributed subgraph,                            

how to quantify its quality? 
q  Structure-only

n  Internal-only
q  average degree

n  Boundary-only 
q  cut edges

n  Internal + Boundary
q  conductance

q  Structure + Attributes

Internal 

External 

Scalable Anomaly Ranking of Attributed Neighborhoods  
Bryan Perozzi and Leman Akoglu   SIAM SDM 2016. 
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Normality (intuition) 

high 

low 

n   Given an attributed subgraph         
how to quantify quality? 
q  Internal 

n  structural density 
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Normality (intuition) 

wine cheese 

high 

low 
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n   Given an attributed subgraph         
how to quantify quality? 
q  Internal 

n  structural density AND 
n  attribute coherence 

v neighborhood “focus” 



Normality (intuition) 
n   Given an attributed subgraph         

how to quantify quality? 
q  Internal 

n  structural density AND 
n  attribute coherence 

v neighborhood “focus” 
q  Boundary 

n  structural sparsity, OR 
n  external separation 

v “exoneration” 

high 

low 

12 



n  “exoneration” : by (a) null model, (b) attributes 
Normality (intuition) 

(b) neighborhood overlap (a) hub effect 

edges expected, 
not surprising 

separable by 
different “focus” 

n  Motivation: 
q  no good cuts in real-world graphs 
q  social circles overlap    

[Leskovec+ ‘08] 
[McAuley+ ‘14] 
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The measure of Normality  

1 

different across neighborhoods. Moreover, the attribute
weights are often latent. For defining our quality criteria we
can assume w is known. Later in Section 4 we will show that
thanks to our formulation, we can infer this weight vector so
as to make a given neighborhood as internally consistent and
externally well-separated as possible. In the following we
discuss the properties captured by Eq. (3.2).

First, notice that the internal consistency is decreased
by missing edges inside a neighborhood, as A

ij

= 0 for
(i, j) /2 E . Second, the existence of an edge is rewarded
as much as the “surprise” of the edge. Specifically, kikj

2m

denotes the probability that two nodes of degrees k
i

and k
j

are connected to each other by chance in a random network
with the same degree distribution as the original graph [15].
As such, we define the surprise of an edge (i, j) 2 E as
(1 � kikj

2m

). The smaller kikj

2m

is for an existing edge inside
a neighborhood, the more surprising it is and the more it
contributes to the quality of the neighborhood.

These two properties quantify the structure of the neigh-
borhood. On the other hand, the similarity function quanti-
fies the attribute coherence. As a result, the more similar the
neighborhood nodes can be made by some choice of w, the
higher I becomes. If no such weights can be found, inter-
nal consistency reduces even if the community is a complete
graph with no missing edges.

Overall, a neighborhood with (1) many existing and (2)
“surprising” internal edges among its members where (3) (a
subset of) attributes make them highly similar receives a high
internal consistency score.

3.1.2 External separability: Besides being internally
consistent, we consider a neighborhood to be of high quality
if it is also well-separated from its boundary. In particular, a
well-separated neighborhood either has (1) few cross-edges
at its boundary, or (2) many cross-edges that can be “exon-
erated”. A cross-edge (i, b) 2 E (i 2 C, b 2 B) is exoner-
ated either when it is unsurprising (i.e., expected under the
null model) or when internal node i is dissimilar to boundary
node b based on the focus attribute weights. The latter cri-
terion ensures that what makes the neighborhood members
similar to one another does not also make them similar to the
boundary nodes, but rather differentiates them. The external
separability E of a neighborhood C is then

E = �
X

i2C,b2B,
(i,b)2E

�
1�min(1,

k
i

k
b

2m
)

�
s(x

i

,x
b

|w)  0 .

(3.3)

External separability considers only the boundary edges
and quantifies the degree that these cross-edges can be exon-
erated. As discussed earlier, cross-edges are exonerated in
two possible ways. First, a cross-edge may be unsurprising;
in which case the term (1 � min(1, kikb

2m

)) becomes small
or ideally zero (recall Fig. 2 (a) scenario). Second, the

boundary node of a cross-edge may not share the same fo-
cus attributes with the internal node; in which case the term
s(x

i

,x
b

|w) becomes small or ideally zero (recall Fig. 2 (b)
scenario). The higher the number of cross-edges that can be
exonerated, the larger E (note the negative sign) and hence
the quality of a neighborhood becomes.

Note that good neighborhoods by normality differ
from quasi-cliques for which only internal quality measures,
such as density [17] or average degree [5], are defined.
Different from those and besides internal consistency, we
also quantify the quality of the boundary of a neighborhood.
Normality is also different from popular measures that
do quantify the boundary, such as cut-ratio [7], modularity
[15] or conductance [4], for which good neighborhoods are
expected to have only a few cross-edges. In contrast, our
formulation allows for many cross-edges as long as they are
either (i) unsurprising (under the null model) or if surprising,
(ii) can be exonerated by the neighborhood focus. These
advantages arise as we utilize both structure and attributes in
a systematic and intuitive way to define our measure.

3.2 Normality Having defined the two criteria for the
quality of a neighborhood, normality (N ) is written as
the sum of the two quantities I and E, where high quality
neighborhoods are expected to have both high internal con-
sistency and high external separability.

N = I + E =

X

i2C,j2C

�
A

ij

� k
i

k
j

2m

�
s(x

i

,x
j

|w)

�
X

i2C,b2B
(i,b)2E

�
1�min(1,

k
i

k
b

2m
)

�
s(x

i

,x
b

|w)(3.4)

For a neighborhood with the highest normality, all
the possible internal edges exist and are also surprising for
which pairwise similarities are high. These ensure that the
first term is maximized. Moreover, the neighborhood either
has no cross-edges or the similarity or surprise of existing
cross-edges to the boundary nodes are near zero, such that
the second term vanishes. Neighborhoods of a graph for
which the normality takes negative values are of lesser
quality and deemed as anomalous.
Choice of similarity function: To this end, we considered
the node attributes to be scalar variables where s(x

i

,x
j

|w)

is the weighted dot-product similarity. If the attributes are
categorical (e.g., location, occupation, etc.), one can instead
use the Kronecker delta function �(·) that takes the value 1 if
two nodes exhibit the same value for a categorical attribute
and 0 otherwise.

The choice of the similarity function is especially im-
portant for binary attributes (e.g., likes-biking, has-job, etc.).
While those can be thought of as categorical variables tak-
ing the values {0, 1}, using Kronecker � becomes undesir-
able for nodes inside a neighborhood. The reason is, inter-

internal  
consistency 

Null model 

dot-product, or 
Kronecker’s δ “focus” vector 

wine cheese 

Details 
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The measure of Normality  

1 

different across neighborhoods. Moreover, the attribute
weights are often latent. For defining our quality criteria we
can assume w is known. Later in Section 4 we will show that
thanks to our formulation, we can infer this weight vector so
as to make a given neighborhood as internally consistent and
externally well-separated as possible. In the following we
discuss the properties captured by Eq. (3.2).

First, notice that the internal consistency is decreased
by missing edges inside a neighborhood, as A

ij

= 0 for
(i, j) /2 E . Second, the existence of an edge is rewarded
as much as the “surprise” of the edge. Specifically, kikj

2m

denotes the probability that two nodes of degrees k
i

and k
j

are connected to each other by chance in a random network
with the same degree distribution as the original graph [15].
As such, we define the surprise of an edge (i, j) 2 E as
(1 � kikj

2m

). The smaller kikj

2m

is for an existing edge inside
a neighborhood, the more surprising it is and the more it
contributes to the quality of the neighborhood.

These two properties quantify the structure of the neigh-
borhood. On the other hand, the similarity function quanti-
fies the attribute coherence. As a result, the more similar the
neighborhood nodes can be made by some choice of w, the
higher I becomes. If no such weights can be found, inter-
nal consistency reduces even if the community is a complete
graph with no missing edges.

Overall, a neighborhood with (1) many existing and (2)
“surprising” internal edges among its members where (3) (a
subset of) attributes make them highly similar receives a high
internal consistency score.

3.1.2 External separability: Besides being internally
consistent, we consider a neighborhood to be of high quality
if it is also well-separated from its boundary. In particular, a
well-separated neighborhood either has (1) few cross-edges
at its boundary, or (2) many cross-edges that can be “exon-
erated”. A cross-edge (i, b) 2 E (i 2 C, b 2 B) is exoner-
ated either when it is unsurprising (i.e., expected under the
null model) or when internal node i is dissimilar to boundary
node b based on the focus attribute weights. The latter cri-
terion ensures that what makes the neighborhood members
similar to one another does not also make them similar to the
boundary nodes, but rather differentiates them. The external
separability E of a neighborhood C is then

E = �
X

i2C,b2B,
(i,b)2E

�
1�min(1,

k
i

k
b

2m
)

�
s(x

i

,x
b

|w)  0 .

(3.3)

External separability considers only the boundary edges
and quantifies the degree that these cross-edges can be exon-
erated. As discussed earlier, cross-edges are exonerated in
two possible ways. First, a cross-edge may be unsurprising;
in which case the term (1 � min(1, kikb

2m

)) becomes small
or ideally zero (recall Fig. 2 (a) scenario). Second, the

boundary node of a cross-edge may not share the same fo-
cus attributes with the internal node; in which case the term
s(x

i

,x
b

|w) becomes small or ideally zero (recall Fig. 2 (b)
scenario). The higher the number of cross-edges that can be
exonerated, the larger E (note the negative sign) and hence
the quality of a neighborhood becomes.

Note that good neighborhoods by normality differ
from quasi-cliques for which only internal quality measures,
such as density [17] or average degree [5], are defined.
Different from those and besides internal consistency, we
also quantify the quality of the boundary of a neighborhood.
Normality is also different from popular measures that
do quantify the boundary, such as cut-ratio [7], modularity
[15] or conductance [4], for which good neighborhoods are
expected to have only a few cross-edges. In contrast, our
formulation allows for many cross-edges as long as they are
either (i) unsurprising (under the null model) or if surprising,
(ii) can be exonerated by the neighborhood focus. These
advantages arise as we utilize both structure and attributes in
a systematic and intuitive way to define our measure.

3.2 Normality Having defined the two criteria for the
quality of a neighborhood, normality (N ) is written as
the sum of the two quantities I and E, where high quality
neighborhoods are expected to have both high internal con-
sistency and high external separability.

N = I + E =

X

i2C,j2C

�
A

ij

� k
i

k
j

2m
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s(x

i
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j

|w)
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1�min(1,

k
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k
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)

�
s(x
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|w)(3.4)

For a neighborhood with the highest normality, all
the possible internal edges exist and are also surprising for
which pairwise similarities are high. These ensure that the
first term is maximized. Moreover, the neighborhood either
has no cross-edges or the similarity or surprise of existing
cross-edges to the boundary nodes are near zero, such that
the second term vanishes. Neighborhoods of a graph for
which the normality takes negative values are of lesser
quality and deemed as anomalous.
Choice of similarity function: To this end, we considered
the node attributes to be scalar variables where s(x

i

,x
j

|w)

is the weighted dot-product similarity. If the attributes are
categorical (e.g., location, occupation, etc.), one can instead
use the Kronecker delta function �(·) that takes the value 1 if
two nodes exhibit the same value for a categorical attribute
and 0 otherwise.

The choice of the similarity function is especially im-
portant for binary attributes (e.g., likes-biking, has-job, etc.).
While those can be thought of as categorical variables tak-
ing the values {0, 1}, using Kronecker � becomes undesir-
able for nodes inside a neighborhood. The reason is, inter-
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separability 
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The measure of Normality  
n  Given an attributed subgraph, can we find the 

attribute weights?

Fig. 2. Main interactive visualization interface with 3 panels: (middle) Community Exploration, (left) Filtering, and (right) Algorithmic Summary.

This helps the user to quickly identify overlapping/redundant
ones, as well as observe the distribution of social circles by
size and characterizing attributes. Hovering over each circle
displays (on-demand) its size, list of members, as well as its
quality (a score named normality, see §III).

Left panel is for filtering, where the user can selectively
view in the middle panel only the circles of certain focus
attribute(s), size(s), and those within certain quality range.

Right and the final panel is the summary view, which
displays K circles as selected by our summarization algorithm
such that a weighted combination of circle quality, network
coverage, and attribute diversity is maximized. K and the
respective weights for those quantities are input by the user
(top right). Average normality, egonet coverage, and attribute
diversity of the summary is displayed (bottom right). The user
can also devise their own summary by selecting (through a
click) the circles they would like to include in the summary,
and can use the algorithmic summary for guidance. This
enables users to explore and build alternative summaries.

III. SENSEMAKING OF NODE-ATTRIBUTED NETWORKS

NANSENSE consists of the three main steps below. We
present the details of each step in the following subsections.

1) Deconstruction, or extraction of overlapping attributed
communities;

2) Summarization, or selecting a subset of representative
communities that are high quality, diverse in their at-
tributes, and cover the input graph well;

3) Interactive Visualization, or presenting the user with
a concise list and summary of communities, and help
them explore and interact with all other communities
and devise alternative summaries.

A. Step 1. Deconstruction
Our goal is to follow a divide-and-conquer approach to

summarizing large graphs. As such, we will aim to decompose
a given network into its building blocks. For social networks,
the building blocks are the communities, or the social circles.

1) Quantifying Community Quality: In this work we
adopt a measure of quality for attributed communities, called
normality [32], which enables us (1) to extract communities
from the input graph independently in parallel using local
search algorithms, and (2) rank attributes by their contribution
to the quality of each community.

For an attributed graph G = (V, E ,A), with n nodes in V ,
m edges in E , d node-attributes in A, and adjacency matrix
A where A

ij

= 1 8(i, j) 2 E and 0 o.w., let C denote a
community or circle (subset of nodes) in G. We denote by B
the set of boundary nodes, which reside outside the circle but
have at least one edge to some node in C. The normality score
for a given community C is defined as

N(C) =

X

i2C,j2C,

i 6=j

�
A

ij

�

k
i

k
j

2m

�
simw(xi,xj) (1)

�

X

i2C,b2B

(i,b)2E

�
1�min(1,

k
i

k
b

2m
)

�
simw(xi,xb) (2)

where k
i

is the degree and xi is the length-d = |A| attribute
vector of node i. simw(xi,xj) = w

T

(xi � xj) defines a
weighted dot product similarity between two nodes. Intuitively,
term (1) captures internal connectivity2 and attribute-similarity

2Note that k
i

k
j

2m is the expected number of edges between two nodes of
degrees ki and kj in a random graph. Then, (Aij�

k
i

k
j

2m ) captures the excess
“surprise”, the higher the better.

1

2 

latent 

of nodes in C (the higher, the better) and term (2) captures
external separation (the fewer edges and less similar nodes at
the boundary, the better). Normality is further standardized to
take values in [0, 1] for size-invariant scoring [32].

2) Inferring Community “Focus”: Different communi-
ties form for different purposes (e.g., high school, football,
summer-camp friends, etc.). Attributes that characterize a
community around which its members “click” are called
focus attributes [32]. As such, w weighs attributes differently
for each community. In practice, however, the weights are
unknown. By reorganizing the terms that do not depend on
w, normality can be rewritten as

max

w
w

T

·

 X

i2C,j2C,

i 6=j

�
A

ij

�

k
i

k
j

2m

�
(xi � xj) (3)

�

X

i2C,b2B

(i,b)2E

�
1�min(1,

k
i

k
b

2m
)

�
(xi � xb)

�

max

w
w

T

· (x

I

+ x

E

) (4)

where sum of internal and external scores, x = (x

I

+ x

E

),
can be directly computed from data, and the goal is to find
a non-negative unit vector w whose dot product by x is the
maximum. Intuitively, w reflects the distribution of weights
to attributes that maximize the normality of a given circle. As
such, normality measure enables us to automatically infer the
focus attribute(s) of a given circle that maximize its quality.

For sense-making purposes we will represent each com-
munity to “focus” on one attribute only. In other words, we
assume each circle of friends form around a single subject
(e.g. high school friends). The solution is then the attribute
that corresponds to the index with the largest value in x.

3) Extracting Social Circles: Thus far, we defined how
to score a given community and identify its focus attribute.
Our goal is to extract high quality communities from an
input attributed graph. To this end, we introduce a greedy
randomized local search algorithm, which starts with a single
seed node and expands the community by adding/removing
nodes one by one as the normality increases. It repeats this
procedure for each node in the graph as the seed to extract
multiple communities. Note that these communities could be
overlapping, where the same nodes may belong to different
circles with varying “focus”.

The skeleton of our community extraction algorithm is
given in Algorithm 1. It considers each node in the graph
as the seed node T

max

times. Each time, two main pro-
cedures are called; a construction step and a local search
step. Construction, as given in Algorithm 2, computes the
delta-improvement in normality of adding each node at the
boundary of the current subgraph (lines 3-6). The additive
nature of normality enables incremental and efficient updating
when a new node is added to a community without having
to recompute it from scratch. If none of them increases the
score, the current subgraph is returned (line 7). Otherwise,
it picks at random one of the boundary nodes with positive
normality improvement that is among the top (1�↵) fraction

Algorithm 1 EXTRACTATTRIBUTEDSOCIALCIRCLES

Input: G = (V, E ,A), node attribute vectors x

u2V , T
max

,↵
Output: set of extracted communities C

1: C := ;

2: for each u 2 V do
3: for t = 1 : T

max

do
4: S := CONSTRUCTION(u,G,↵)
5: C := C [ LOCALSEARCH(S,G)

6: end for
7: end for
8: return C

Algorithm 2 CONSTRUCTION {build initial subgraph}
Input: seed node s, G = (V, E ,A), x

u2V , ↵
Output: initial subgraph S

1: S = s
2: while true do
3: B := boundary nodes of S
4: for each b 2 B do
5: �N

b

:= N(S [ b)�N(S)
6: end for
7: if �N

b

 0, 8b 2 B then return S
8: max� := maximum �N

b

9: min� := minimum positive �N
b

10: B
cand

:= boundary nodes for which:
�N

b

� min�+ ↵ ⇤ (max��min�)

11: pick v 2 B
cand

at random
12: S := S [ v
13: end while

Algorithm 3 LOCALSEARCH {improve normality of S}
Input: initial subgraph S, G = (V, E ,A), x

i2V
Output: social circle S

1: while true do
2: B := boundary nodes of S
3: for each b 2 B do
4: �N

b

:= N(S\b)�N(S)
5: end for
6: if �N

b

< 0, 8b 2 B then return S
7: S := S\b

del

for b
del

2 B with maximum �N
8: while true do
9: B := boundary nodes of S

10: for each b 2 B do
11: �N

b

:= N(S [ b)�N(S)
12: end for
13: if �N

b

 0, 8b 2 B then break
14: S := S [ b

add

for b
add

2 B with maximum �N
15: end while
16: end while

and adds it to the subgraph (lines 8-12). ↵ is a user defined
parameter that controls the “greediness” vs. “randomness” of
the algorithm; ↵ = 1 corresponds to the deterministic best-first
greedy strategy. We set ↵ = 0.85 in our experiments, which
allows for finding a different initial subgraph with potentially

      

Details 
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Optimizing Normality  

2

1

3 

nal consistency by the � function is the same both when all
the neighborhood nodes exhibit a particular binary attribute
(all 1) and when none does (all 0). However, one may not
want to characterize a neighborhood based on attributes that
its members do not exhibit even if the agreement is large.
Therefore, we propose to use dot-product for computing in-
ternal consistency and Kronecker � for computing external
separability for binary-attributed graphs.

4 Anomaly Mining of Entity Neighborhoods
As presented so far, when given a neighborhood C of an
attributed graph and vector w of attribute weights, we can
directly compute its normality using Eq. (3.4). However,
for the task of anomaly mining, the focus of a neighborhood
is latent and hard to guess without any prior knowledge. This
is especially true in high dimensions where most attributes
are irrelevant, making a uniform attribute weight vector
impractical. Moreover, even if the neighborhood focus is
known a priori, it is hard to assign weights to those attributes
beyond that of binary relevance.

In this section, we propose an optimization approach to
automatically infer the attribute weight vector for a given
neighborhood, as the vector that maximizes its normality
score. That is, we aim to identify a subspace that would
make the neighborhood’s normality as high as possible.
All neighborhoods can then be ranked based on their (best
possible) normality scores, and those with lowest scores can
be deemed anomalous. This allows us to restate our original
problem in Section 2 as follows:
Given a set of neighborhoods C and normality N ;
Find the attribute weight vector w

C

i

which maximizes
N(C

i

) for each neighborhood C
i

2 C,
Rank neighborhoods C by normality score,
Find the neighborhoods of lowest quality.

4.1 Neighborhood Focus Extraction Our goal is to find
an attribute weight vector (hereafter called w

C

) for a neigh-
borhood C, which makes its normality as high as possi-
ble, such that connected nodes in the neighborhood are very
similar and the nodes at the boundary are dissimilar. To this
end, we leverage our normality to formulate an objective
function parameterized by the attribute weights. This objec-
tive also has the nice property of quantifying structure, by
penalizing non-existing in-edges and surprising cross-edges.
Our formulation for focus extraction is then max

w

C

N(C),
which by reorganizing the terms that do not depend on w

C

,
can be rewritten (based on Eq. (3.4)) as

max

w

C

w

C

T ·
 X

i2C,j2C

�
A

ij

� k
i

k
j

2m

�
s(x

i

,x
j

)

�
X

i2C,b2B
(i,b)2E

�
1�min(1,

k
i

k
b

2m
)

�
s(x

i

,x
b

)

�

max

w

C

w

C

T · (x
I

+ x

E

)(4.5)

where x

I

and x

E

are vectors that respectively denote the
first and the second summation terms. Note that these can
be directly computed from data. Moreover, the similarity
function s(x

i

,x
j

) can be replaced by either (x

i

� x

j

) or
�(x

i

,x
j

) depending on the type of the node attributes.

4.2 Size-invariant Scoring The normality score in Eq.
(4.5) grows in magnitude with the size of the neighborhood
C being considered. Normalization is desirable then, in
order to compare across differences in both neighborhood
and boundary size.

We note that I is the maximum in the case of a fully
connected neighborhood the members of which all agree
upon the focus attributes. Therefore, I

max

= |C|2, where
s
max

(x

i

,x
j

) = 1 provided that the attributes x

i

(f) are
normalized to [0, 1] for each node i. On the other hand the
minimum is negative, when there exists no internal edges
and pairwise similarities are maximum. That is, I

min

=P
i2C,j2C

�kikj

2m

. To normalize the internal consistency
I , we subtract I

min

and divide by I
max

� I
min

, which is
equivalent to a weighted version of edge density.

To normalize external separability, we derive a mea-
sure similar to conductance [4], i.e., ratio of boundary or
cut edges to the total volume (sum of the degrees of the
neighborhood nodes). The difference is that each edge
is weighted based on its surprise and the similarity of its
end nodes. In particular, we define x
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Overall, we scale our measure as follows, where the
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Note that we introduce a set of constraints on w

C

to fully formulate the objective. In particular, we require
the attribute weights to be non-negative and that w

C

is
normalized (or regularized) to its p-norm. These constraints
also facilitate the interpretation of the weights. In the
following we let x = (
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+
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), where x(f) 2 [�1, 1].
There are various ways to choose p, yielding different

interpretations. If one uses kw
C

k
p=1

, a.k.a. the L
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norm,

different across neighborhoods. Moreover, the attribute
weights are often latent. For defining our quality criteria we
can assume w is known. Later in Section 4 we will show that
thanks to our formulation, we can infer this weight vector so
as to make a given neighborhood as internally consistent and
externally well-separated as possible. In the following we
discuss the properties captured by Eq. (3.2).

First, notice that the internal consistency is decreased
by missing edges inside a neighborhood, as A

ij

= 0 for
(i, j) /2 E . Second, the existence of an edge is rewarded
as much as the “surprise” of the edge. Specifically, kikj

2m

denotes the probability that two nodes of degrees k
i

and k
j

are connected to each other by chance in a random network
with the same degree distribution as the original graph [15].
As such, we define the surprise of an edge (i, j) 2 E as
(1 � kikj

2m

). The smaller kikj

2m

is for an existing edge inside
a neighborhood, the more surprising it is and the more it
contributes to the quality of the neighborhood.

These two properties quantify the structure of the neigh-
borhood. On the other hand, the similarity function quanti-
fies the attribute coherence. As a result, the more similar the
neighborhood nodes can be made by some choice of w, the
higher I becomes. If no such weights can be found, inter-
nal consistency reduces even if the community is a complete
graph with no missing edges.

Overall, a neighborhood with (1) many existing and (2)
“surprising” internal edges among its members where (3) (a
subset of) attributes make them highly similar receives a high
internal consistency score.

3.1.2 External separability: Besides being internally
consistent, we consider a neighborhood to be of high quality
if it is also well-separated from its boundary. In particular, a
well-separated neighborhood either has (1) few cross-edges
at its boundary, or (2) many cross-edges that can be “exon-
erated”. A cross-edge (i, b) 2 E (i 2 C, b 2 B) is exoner-
ated either when it is unsurprising (i.e., expected under the
null model) or when internal node i is dissimilar to boundary
node b based on the focus attribute weights. The latter cri-
terion ensures that what makes the neighborhood members
similar to one another does not also make them similar to the
boundary nodes, but rather differentiates them. The external
separability E of a neighborhood C is then
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External separability considers only the boundary edges
and quantifies the degree that these cross-edges can be exon-
erated. As discussed earlier, cross-edges are exonerated in
two possible ways. First, a cross-edge may be unsurprising;
in which case the term (1 � min(1, kikb

2m

)) becomes small
or ideally zero (recall Fig. 2 (a) scenario). Second, the

boundary node of a cross-edge may not share the same fo-
cus attributes with the internal node; in which case the term
s(x

i

,x
b

|w) becomes small or ideally zero (recall Fig. 2 (b)
scenario). The higher the number of cross-edges that can be
exonerated, the larger E (note the negative sign) and hence
the quality of a neighborhood becomes.

Note that good neighborhoods by normality differ
from quasi-cliques for which only internal quality measures,
such as density [17] or average degree [5], are defined.
Different from those and besides internal consistency, we
also quantify the quality of the boundary of a neighborhood.
Normality is also different from popular measures that
do quantify the boundary, such as cut-ratio [7], modularity
[15] or conductance [4], for which good neighborhoods are
expected to have only a few cross-edges. In contrast, our
formulation allows for many cross-edges as long as they are
either (i) unsurprising (under the null model) or if surprising,
(ii) can be exonerated by the neighborhood focus. These
advantages arise as we utilize both structure and attributes in
a systematic and intuitive way to define our measure.

3.2 Normality Having defined the two criteria for the
quality of a neighborhood, normality (N ) is written as
the sum of the two quantities I and E, where high quality
neighborhoods are expected to have both high internal con-
sistency and high external separability.
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For a neighborhood with the highest normality, all
the possible internal edges exist and are also surprising for
which pairwise similarities are high. These ensure that the
first term is maximized. Moreover, the neighborhood either
has no cross-edges or the similarity or surprise of existing
cross-edges to the boundary nodes are near zero, such that
the second term vanishes. Neighborhoods of a graph for
which the normality takes negative values are of lesser
quality and deemed as anomalous.
Choice of similarity function: To this end, we considered
the node attributes to be scalar variables where s(x

i

,x
j

|w)

is the weighted dot-product similarity. If the attributes are
categorical (e.g., location, occupation, etc.), one can instead
use the Kronecker delta function �(·) that takes the value 1 if
two nodes exhibit the same value for a categorical attribute
and 0 otherwise.

The choice of the similarity function is especially im-
portant for binary attributes (e.g., likes-biking, has-job, etc.).
While those can be thought of as categorical variables tak-
ing the values {0, 1}, using Kronecker � becomes undesir-
able for nodes inside a neighborhood. The reason is, inter-

nal consistency by the � function is the same both when all
the neighborhood nodes exhibit a particular binary attribute
(all 1) and when none does (all 0). However, one may not
want to characterize a neighborhood based on attributes that
its members do not exhibit even if the agreement is large.
Therefore, we propose to use dot-product for computing in-
ternal consistency and Kronecker � for computing external
separability for binary-attributed graphs.

4 Anomaly Mining of Entity Neighborhoods
As presented so far, when given a neighborhood C of an
attributed graph and vector w of attribute weights, we can
directly compute its normality using Eq. (3.4). However,
for the task of anomaly mining, the focus of a neighborhood
is latent and hard to guess without any prior knowledge. This
is especially true in high dimensions where most attributes
are irrelevant, making a uniform attribute weight vector
impractical. Moreover, even if the neighborhood focus is
known a priori, it is hard to assign weights to those attributes
beyond that of binary relevance.

In this section, we propose an optimization approach to
automatically infer the attribute weight vector for a given
neighborhood, as the vector that maximizes its normality
score. That is, we aim to identify a subspace that would
make the neighborhood’s normality as high as possible.
All neighborhoods can then be ranked based on their (best
possible) normality scores, and those with lowest scores can
be deemed anomalous. This allows us to restate our original
problem in Section 2 as follows:
Given a set of neighborhoods C and normality N ;
Find the attribute weight vector w

C

i

which maximizes
N(C

i

) for each neighborhood C
i

2 C,
Rank neighborhoods C by normality score,
Find the neighborhoods of lowest quality.

4.1 Neighborhood Focus Extraction Our goal is to find
an attribute weight vector (hereafter called w

C

) for a neigh-
borhood C, which makes its normality as high as possi-
ble, such that connected nodes in the neighborhood are very
similar and the nodes at the boundary are dissimilar. To this
end, we leverage our normality to formulate an objective
function parameterized by the attribute weights. This objec-
tive also has the nice property of quantifying structure, by
penalizing non-existing in-edges and surprising cross-edges.
Our formulation for focus extraction is then max
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which by reorganizing the terms that do not depend on w
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,
can be rewritten (based on Eq. (3.4)) as
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where x

I

and x

E

are vectors that respectively denote the
first and the second summation terms. Note that these can
be directly computed from data. Moreover, the similarity
function s(x
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j

) can be replaced by either (x
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) or
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) depending on the type of the node attributes.

4.2 Size-invariant Scoring The normality score in Eq.
(4.5) grows in magnitude with the size of the neighborhood
C being considered. Normalization is desirable then, in
order to compare across differences in both neighborhood
and boundary size.

We note that I is the maximum in the case of a fully
connected neighborhood the members of which all agree
upon the focus attributes. Therefore, I
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, which is
equivalent to a weighted version of edge density.

To normalize external separability, we derive a mea-
sure similar to conductance [4], i.e., ratio of boundary or
cut edges to the total volume (sum of the degrees of the
neighborhood nodes). The difference is that each edge
is weighted based on its surprise and the similarity of its
end nodes. In particular, we define x
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). Note that similar to E, ˜I considers
only the existing edges in the graph. Therefore, ˜I � E can
be seen as the total weighted volume of the neighborhood.

Overall, we scale our measure as follows, where the
division of the vectors in the second term is element-wise.
As such, ˆx
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4.3 Objective Optimization The normalized objective
function can be written as
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Note that we introduce a set of constraints on w

C

to fully formulate the objective. In particular, we require
the attribute weights to be non-negative and that w

C

is
normalized (or regularized) to its p-norm. These constraints
also facilitate the interpretation of the weights. In the
following we let x = (
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nal consistency by the � function is the same both when all
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(all 1) and when none does (all 0). However, one may not
want to characterize a neighborhood based on attributes that
its members do not exhibit even if the agreement is large.
Therefore, we propose to use dot-product for computing in-
ternal consistency and Kronecker � for computing external
separability for binary-attributed graphs.

4 Anomaly Mining of Entity Neighborhoods
As presented so far, when given a neighborhood C of an
attributed graph and vector w of attribute weights, we can
directly compute its normality using Eq. (3.4). However,
for the task of anomaly mining, the focus of a neighborhood
is latent and hard to guess without any prior knowledge. This
is especially true in high dimensions where most attributes
are irrelevant, making a uniform attribute weight vector
impractical. Moreover, even if the neighborhood focus is
known a priori, it is hard to assign weights to those attributes
beyond that of binary relevance.

In this section, we propose an optimization approach to
automatically infer the attribute weight vector for a given
neighborhood, as the vector that maximizes its normality
score. That is, we aim to identify a subspace that would
make the neighborhood’s normality as high as possible.
All neighborhoods can then be ranked based on their (best
possible) normality scores, and those with lowest scores can
be deemed anomalous. This allows us to restate our original
problem in Section 2 as follows:
Given a set of neighborhoods C and normality N ;
Find the attribute weight vector w
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Rank neighborhoods C by normality score,
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4.1 Neighborhood Focus Extraction Our goal is to find
an attribute weight vector (hereafter called w
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) for a neigh-
borhood C, which makes its normality as high as possi-
ble, such that connected nodes in the neighborhood are very
similar and the nodes at the boundary are dissimilar. To this
end, we leverage our normality to formulate an objective
function parameterized by the attribute weights. This objec-
tive also has the nice property of quantifying structure, by
penalizing non-existing in-edges and surprising cross-edges.
Our formulation for focus extraction is then max
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4.2 Size-invariant Scoring The normality score in Eq.
(4.5) grows in magnitude with the size of the neighborhood
C being considered. Normalization is desirable then, in
order to compare across differences in both neighborhood
and boundary size.
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, which is
equivalent to a weighted version of edge density.

To normalize external separability, we derive a mea-
sure similar to conductance [4], i.e., ratio of boundary or
cut edges to the total volume (sum of the degrees of the
neighborhood nodes). The difference is that each edge
is weighted based on its surprise and the similarity of its
end nodes. In particular, we define x
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Note that we introduce a set of constraints on w
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to fully formulate the objective. In particular, we require
the attribute weights to be non-negative and that w
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:                      one attribute f  with largest x  

Table 1: Real-world graphs used in this work. ⇤ depicts datasets with ground truth circles. n: number of nodes, m:
number of edges, d: number of attributes, |C|: number of circles, |S|: average circle size.

Name n = |V| m = |E| d = |A| |C| |S| nodes edges attributes
⇤Facebook 4,039 88,234 42-576 193 21.93 users friendships user profile information
⇤Twitter 81,306 1,768,149 1-2,271 4,869 12.51 users follow relations hashtags and user mentions
⇤Google+ 107,614 13,673,453 1-4,122 479 134.75 users friendships user profile information
DBLP 108,030 276,658 23,285 n/a n/a authors co-authorships title words used in articles
Citeseer 294,104 782,147 206,430 n/a n/a articles citations abstract words used in articles
LastFM 272,412 350,239 3,929,101 n/a n/a users friendships music pieces listened to

the solution picks as the neighborhood focus the single
attribute with the largest x entry. That is, w

C

(f) = 1

where max(x) = x(f) and 0 otherwise. One can interpret
this as the most important attribute that characterizes the
neighborhood. Note that x may contain only negative
entries, in which case the largest negative entry is selected.
This implies that there exists no attribute that can make the
normality positive, and hence such a neighborhood is
considered anomalous. Note that when p = 1, ˆN 2 [�1, 1].

If there are multiple attributes with positive x entries, we
can also select all of them as the neighborhood focus. The
weights of these attributes, however, should be proportional
to the magnitude of their x values. This is exactly what
kw

C

k
p=2

, or the L
2

norm yields. In particular, we can
show that w

C

(f) =

x(f)pP
x(i)>0 x(i)

2
, for x(f) > 0 and

0 otherwise, where w

C

is unit-normalized. Then, the
normality score of the neighborhood becomes

N = w

C

T · x

=

X

x(f)>0

x(f)qP
x(i)>0

x(i)2
x(f) =

s X

x(i)>0

x(i)2 = kx
+

k
2

i.e., the L
2

-norm of x induced on the positive entries. As
such, when there are multiple attributes that can make the
normality positive, L

2

formulation produces an objec-
tive value that is higher than that of the L

1

formulation. This
agrees with intuition; the larger the number of attributes with
positive x entries, the more attribute-coherence the neighbor-
hood exhibits, and the higher the normality gets incre-
mentally. On the other hand, if there are no positive entries
in x, the L

2

optimization selects the single attribute with the
largest negative entry, and we consider the neighborhood as
anomalous. In all, ˆN 2 [�1, kx

+

k
2

] when p = 2.
While L

1

and L
2

are the two most commonly used
norms, one can also enforce w

C

(f)  1

k

, for each f , to
obtain the largest k entries of x that can be interpreted as
the top-k most relevant attributes for the neighborhood (note
that those may involve both positive and negative entries). In
principle, x provides a systematic and intuitive way to rank
the attributes by their relevance to a neighborhood.
Computational complexity: Notice that the solution to the
optimization is quite straightforward where the complexity
mainly revolves around computing the x vector. Specifically,

the complexity is O(|C|2d + |E
B

|d) for computing x and
O(d) for finding the maximum entry (for L

1

regularization)
or positive entries (for L

2

regularization), where E
B

is the
number of cross-edges which is upper-bounded by |C||B|.
Therefore, the complexity is quadratic w.r.t. the neighbor-
hood size |C| ⌧ n, and linear in the number of attributes d,
while it is independent of the size of the entire graph.

5 Experiments
Through experiments, we (1) evaluate AMEN’s perfor-
mance in anomaly detection, (2) perform case studies that
analyze the type of anomalies we find, and (3) utilize
normality as an exploratory tool to study the correlation
between structure and attributes across different graphs.
Datasets. A detailed description of real-world graphs used
in this work is given in Table 1.2 Facebook, Twitter, and
Google+ each consists of a collection of ground-truth social
circles. For these graphs, we consider these circles as their
entity neighborhoods. For the other graphs, we consider the
egonets (subgraphs induced on each node and its neighbors)
as their entity neighborhoods.
Baselines. We compare AMEN’s performance in anomaly
detection against existing measures and methods: Average-
Degree [5], Cut-Ratio [7], Conductance [4], Flake-ODF [6],
OddBall [1], SODA [11], and Attribute-Weighted Normalized
Cut (AW-NCut) [10] (See Appendix B for definitions).

5.1 Anomaly Detection Our evaluation of AMEN’s
anomaly detection performance is two-fold. First, we per-
form quantitative evaluation; we inject anomalies into DBLP,
Citeseer, and LastFM and compare detection performance
of different approaches. Second, we perform a qualita-
tive case study of ground-truth neighborhoods with low
normality score from Facebook, Twitter, and Google+.
Quantitative Evaluation. To create ground truth anoma-
lies, we use the egonets from DBLP, Citeseer, and LastFM
which we perturb to obtain anomalous neighborhoods. Per-
turbations involve disruptions in (1) structure, (2) attributes,
and (3) both. We start by choosing “good” neighborhoods;
specifically, small egonets (of size 30-100) that we expect

2Datasets available from http://snap.stanford.edu/

data/ and https://code.google.com/p/scpm/.

Table 1: Real-world graphs used in this work. ⇤ depicts datasets with ground truth circles. n: number of nodes, m:
number of edges, d: number of attributes, |C|: number of circles, |S|: average circle size.
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positive x entries, the more attribute-coherence the neighbor-
hood exhibits, and the higher the normality gets incre-
mentally. On the other hand, if there are no positive entries
in x, the L
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optimization selects the single attribute with the
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, for each f , to
obtain the largest k entries of x that can be interpreted as
the top-k most relevant attributes for the neighborhood (note
that those may involve both positive and negative entries). In
principle, x provides a systematic and intuitive way to rank
the attributes by their relevance to a neighborhood.
Computational complexity: Notice that the solution to the
optimization is quite straightforward where the complexity
mainly revolves around computing the x vector. Specifically,
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|d) for computing x and
O(d) for finding the maximum entry (for L
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number of cross-edges which is upper-bounded by |C||B|.
Therefore, the complexity is quadratic w.r.t. the neighbor-
hood size |C| ⌧ n, and linear in the number of attributes d,
while it is independent of the size of the entire graph.

5 Experiments
Through experiments, we (1) evaluate AMEN’s perfor-
mance in anomaly detection, (2) perform case studies that
analyze the type of anomalies we find, and (3) utilize
normality as an exploratory tool to study the correlation
between structure and attributes across different graphs.
Datasets. A detailed description of real-world graphs used
in this work is given in Table 1.2 Facebook, Twitter, and
Google+ each consists of a collection of ground-truth social
circles. For these graphs, we consider these circles as their
entity neighborhoods. For the other graphs, we consider the
egonets (subgraphs induced on each node and its neighbors)
as their entity neighborhoods.
Baselines. We compare AMEN’s performance in anomaly
detection against existing measures and methods: Average-
Degree [5], Cut-Ratio [7], Conductance [4], Flake-ODF [6],
OddBall [1], SODA [11], and Attribute-Weighted Normalized
Cut (AW-NCut) [10] (See Appendix B for definitions).

5.1 Anomaly Detection Our evaluation of AMEN’s
anomaly detection performance is two-fold. First, we per-
form quantitative evaluation; we inject anomalies into DBLP,
Citeseer, and LastFM and compare detection performance
of different approaches. Second, we perform a qualita-
tive case study of ground-truth neighborhoods with low
normality score from Facebook, Twitter, and Google+.
Quantitative Evaluation. To create ground truth anoma-
lies, we use the egonets from DBLP, Citeseer, and LastFM
which we perturb to obtain anomalous neighborhoods. Per-
turbations involve disruptions in (1) structure, (2) attributes,
and (3) both. We start by choosing “good” neighborhoods;
specifically, small egonets (of size 30-100) that we expect

2Datasets available from http://snap.stanford.edu/
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Table 1: Real-world graphs used in this work. ⇤ depicts datasets with ground truth circles. n: number of nodes, m:
number of edges, d: number of attributes, |C|: number of circles, |S|: average circle size.

Name n = |V| m = |E| d = |A| |C| |S| nodes edges attributes
⇤Facebook 4,039 88,234 42-576 193 21.93 users friendships user profile information
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⇤Google+ 107,614 13,673,453 1-4,122 479 134.75 users friendships user profile information
DBLP 108,030 276,658 23,285 n/a n/a authors co-authorships title words used in articles
Citeseer 294,104 782,147 206,430 n/a n/a articles citations abstract words used in articles
LastFM 272,412 350,239 3,929,101 n/a n/a users friendships music pieces listened to
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analyze the type of anomalies we find, and (3) utilize
normality as an exploratory tool to study the correlation
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in this work is given in Table 1.2 Facebook, Twitter, and
Google+ each consists of a collection of ground-truth social
circles. For these graphs, we consider these circles as their
entity neighborhoods. For the other graphs, we consider the
egonets (subgraphs induced on each node and its neighbors)
as their entity neighborhoods.
Baselines. We compare AMEN’s performance in anomaly
detection against existing measures and methods: Average-
Degree [5], Cut-Ratio [7], Conductance [4], Flake-ODF [6],
OddBall [1], SODA [11], and Attribute-Weighted Normalized
Cut (AW-NCut) [10] (See Appendix B for definitions).

5.1 Anomaly Detection Our evaluation of AMEN’s
anomaly detection performance is two-fold. First, we per-
form quantitative evaluation; we inject anomalies into DBLP,
Citeseer, and LastFM and compare detection performance
of different approaches. Second, we perform a qualita-
tive case study of ground-truth neighborhoods with low
normality score from Facebook, Twitter, and Google+.
Quantitative Evaluation. To create ground truth anoma-
lies, we use the egonets from DBLP, Citeseer, and LastFM
which we perturb to obtain anomalous neighborhoods. Per-
turbations involve disruptions in (1) structure, (2) attributes,
and (3) both. We start by choosing “good” neighborhoods;
specifically, small egonets (of size 30-100) that we expect
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Through experiments, we (1) evaluate AMEN’s perfor-
mance in anomaly detection, (2) perform case studies that
analyze the type of anomalies we find, and (3) utilize
normality as an exploratory tool to study the correlation
between structure and attributes across different graphs.
Datasets. A detailed description of real-world graphs used
in this work is given in Table 1.2 Facebook, Twitter, and
Google+ each consists of a collection of ground-truth social
circles. For these graphs, we consider these circles as their
entity neighborhoods. For the other graphs, we consider the
egonets (subgraphs induced on each node and its neighbors)
as their entity neighborhoods.
Baselines. We compare AMEN’s performance in anomaly
detection against existing measures and methods: Average-
Degree [5], Cut-Ratio [7], Conductance [4], Flake-ODF [6],
OddBall [1], SODA [11], and Attribute-Weighted Normalized
Cut (AW-NCut) [10] (See Appendix B for definitions).

5.1 Anomaly Detection Our evaluation of AMEN’s
anomaly detection performance is two-fold. First, we per-
form quantitative evaluation; we inject anomalies into DBLP,
Citeseer, and LastFM and compare detection performance
of different approaches. Second, we perform a qualita-
tive case study of ground-truth neighborhoods with low
normality score from Facebook, Twitter, and Google+.
Quantitative Evaluation. To create ground truth anoma-
lies, we use the egonets from DBLP, Citeseer, and LastFM
which we perturb to obtain anomalous neighborhoods. Per-
turbations involve disruptions in (1) structure, (2) attributes,
and (3) both. We start by choosing “good” neighborhoods;
specifically, small egonets (of size 30-100) that we expect
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(a) edge & node views of an attributed graph (b) graph layout visualization (c) community view

Fig. 1. Sensemaking of attributed graphs is challenging with traditional means. (a) Table view for edge relations and node attributes—does not provide much
insight, (b) Graph visualization with layout algorithm—a “hairball” (!), and (c) Community view—there are too many, possibly overlapping and potentially
redundant communities of varying quality that do not provide a succinct summary of the network. (size: proportional to number of community members,
color: representative/characterizing attribute (e.g., high school), numbers inside circles: quality score, see §III).

we deconstruct the network into its building blocks, i.e. com-
munities (or social circles1) of various characteristics such as
college friends, co-workers, etc. We then design an interactive
interface that enables users to efficiently explore, characterize,
and build various alternative summaries of the network via
a few essential communities that make up its backbone. Our
main contributions are as follows:

1) We introduce a new community extraction approach
for attributed graphs, to decompose an input network
into the social circles that its nodes form. Our goal is to
enable the user to view the network in alternative ways,
therefore, we extract a list of overlapping and nested
communities of varying size, quality, and characteristics.

2) We next formulate a summarization task with a multi-
criteria objective, which automatically selects a subset of
the communities that (i) cover the entire graph well, are
(ii) high quality and (iii) diverse in their characteristics.
Users get to adjust which aspect of the summarization
they want to focus on: coverage, quality, or diversity; to
obtain various alternative summaries.

3) We also design and build an interactive visualization
interface that presents the communities to a user in an
interpretable, user-friendly fashion. The user can explore
all the communities (from step 1), and interactively de-
vise their own characterizing summaries. Users can also
collaborate with the machine, where they can analyze
various algorithm-generated summaries (from step 2)
and build on them to devise new alternatives.

4) Our data and code are open-sourced at https://www.
dropbox.com/home/Public/nansense for reproducibility
and future research.

Our work differs from prior work in multiple key aspects. It
is one of few work on sensemaking of attributed networks. Our
emphasis is on communities and yet we do not solely propose
a community extraction algorithm. We seek concise, repre-
sentative summaries of the communities, and aim to facilitate
alternative summaries of the network for exploratory tasks.
We further introduce an interactive system for end-users to
analyze the communities, explore and build summaries. While
there exist disjoint related effort (in community extraction,

1Words {community, social circle, cluster} are used interchangeably in text.

summarization, and interactive visualization), none of those
works attempt to build a single framework that unify all three
tasks. NANSENSE is unique in being a concerted effort that
provides an end-to-end analytics approach to sensemaking of
node-attributed networks.

II. DATA AND OVERVIEW

A. Data Description
A direct realization of attributed social networks is the

Facebook networks of 100 colleges and universities from
September 2005, first studied in [38]. These networks include
only the intra-school friendship links.

The school networks are attributed; in which nodes exhibit
7 categorical attributes: student/faculty flag, gender,

major, 2nd major/minor (if applicable), dorm,

graduation year, high school.
The number of nodes among the networks range from

769 to 41554, and edges from 16656 to 1590655. In our
experiments, we consider one particular university, with 6637
students/faculty and 249967 undirected friendship edges. Fur-
ther, we focus on the individual egonetworks, defined per node
as its direct neighbors and all the connections among them.
Average number of nodes per egonetwork in this graph is 75.3,
with the largest one containing 840 nodes.

Our goal is to characterize the egonetwork of a given node
to make sense of the kind of social circles s/he lives in.

B. A 10K-Feet View
Before we dive into the details of the inner-workings of

our approach, we illustrate the end-product in Figure 2, which
shows the interactive exploration and visualization interface
presented to a user. It contains three main panels, the filtering
panel (left), the community exploration panel (middle), and
algorithmic-summary panel (right).

Middle panel is the primary community exploration view,
which shows all the social circles of an input egonetwork
identified by our community extraction algorithm. In this view
social circles are shown with circles, with size proportional to
the number of nodes they contain. Color indicates the primary
attribute that characterizes a circle (e.g., major), referred as the
focus attribute [32]. Circles are positioned in 2-d such that the
more they overlap, the closer they are placed to each other.

Overview 

Fig. 2. Main interactive visualization interface with 3 panels: (middle) Community Exploration, (left) Filtering, and (right) Algorithmic Summary.

This helps the user to quickly identify overlapping/redundant
ones, as well as observe the distribution of social circles by
size and characterizing attributes. Hovering over each circle
displays (on-demand) its size, list of members, as well as its
quality (a score named normality, see §III).

Left panel is for filtering, where the user can selectively
view in the middle panel only the circles of certain focus
attribute(s), size(s), and those within certain quality range.

Right and the final panel is the summary view, which
displays K circles as selected by our summarization algorithm
such that a weighted combination of circle quality, network
coverage, and attribute diversity is maximized. K and the
respective weights for those quantities are input by the user
(top right). Average normality, egonet coverage, and attribute
diversity of the summary is displayed (bottom right). The user
can also devise their own summary by selecting (through a
click) the circles they would like to include in the summary,
and can use the algorithmic summary for guidance. This
enables users to explore and build alternative summaries.

III. SENSEMAKING OF NODE-ATTRIBUTED NETWORKS

NANSENSE consists of the three main steps below. We
present the details of each step in the following subsections.

1) Deconstruction, or extraction of overlapping attributed
communities;

2) Summarization, or selecting a subset of representative
communities that are high quality, diverse in their at-
tributes, and cover the input graph well;

3) Interactive Visualization, or presenting the user with
a concise list and summary of communities, and help
them explore and interact with all other communities
and devise alternative summaries.

A. Step 1. Deconstruction
Our goal is to follow a divide-and-conquer approach to

summarizing large graphs. As such, we will aim to decompose
a given network into its building blocks. For social networks,
the building blocks are the communities, or the social circles.

1) Quantifying Community Quality: In this work we
adopt a measure of quality for attributed communities, called
normality [32], which enables us (1) to extract communities
from the input graph independently in parallel using local
search algorithms, and (2) rank attributes by their contribution
to the quality of each community.

For an attributed graph G = (V, E ,A), with n nodes in V ,
m edges in E , d node-attributes in A, and adjacency matrix
A where A

ij

= 1 8(i, j) 2 E and 0 o.w., let C denote a
community or circle (subset of nodes) in G. We denote by B
the set of boundary nodes, which reside outside the circle but
have at least one edge to some node in C. The normality score
for a given community C is defined as
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where k
i

is the degree and xi is the length-d = |A| attribute
vector of node i. simw(xi,xj) = w

T

(xi � xj) defines a
weighted dot product similarity between two nodes. Intuitively,
term (1) captures internal connectivity2 and attribute-similarity
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2m is the expected number of edges between two nodes of
degrees ki and kj in a random graph. Then, (Aij�
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2m ) captures the excess
“surprise”, the higher the better.
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1) Exploratory and Interactive Summarization: Our first
challenge is to visualize all the extracted communities in a
fashion that can help the user to explore them and build their
own summary by selecting a representative subset effectively
and efficiently. For summarization purposes, the visualization
should help the user quickly grasp the size, normality, and the
focus attribute of each community. In addition, the amount
of overlap between the communities should be presented in
an effective way, since the user would want to avoid select-
ing largely overlapping communities in order to efficiently
increase the coverage with a few communities.

To this end, our idea is to visualize each community as a
circle in 2-d as shown in Fig. 5. Each circle is colored by its
focus attribute and circle size is proportional to community
size. Hovering over each circle displays the exact size, nor-
mality, and community members. Importantly, the higher the
overlap between two communities, the closer the center points
of corresponding circles are placed. We define the distance
between two communities C

k

and C
l

as

dist(C
k

, C
l

) = 1�

|C
k

\ C
l

|

min(|C
k

|, |C
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|)

,

and compute the R⇥R distances between all pairs of extracted
communities. Multi-Dimensional Scaling (MDS) is used to
find a 2-d embedding of the communities such that the pair-
wise distances as defined above are preserved in the Euclidean
space as much as possible. As such, largely overlapping as well
as nested communities are clustered in the display. The user
can then aim to select large circles that are spread out in the
2-d embedding in order to most effectively increase coverage.

Fig. 5 shows 7 (highlighted) circles selected by the user.
Each time a user selects (or de-selects) a circle to be included
in (or excluded from) the summary, quantities of interest—
normality, coverage, diversity—are displayed in (blue) bar
plots as in Fig. 7 (bottom left). Red vertical lines show the
values before the last selection; which, in the figure, increased
normality, decreased coverage, and did not change diversity.

Fig. 5. Community Exploration Panel. Users can view, select and de-select
circles for summarization, and be displayed the avg. normality, coverage, and
diversity of their current summary (best in color).

2) Filtering: While searching for circles to select for their
summary, the user may want to focus on communities with
certain properties. As such, we introduce a panel for filtering
communities by focus attribute, normality, and size, as shown
in Fig. 6. The user can click on the attribute names of interest,
use a horizontal slider to specify a range for normality, as well
as check/uncheck size values to display only the communities
that meet all specified criteria in the mid-panel (Fig. 5).

Fig. 6. Filtering (by attribute, normality, and size) Panel.

3) Algorithm-Guided Human-in-the-loop Summariza-
tion: Finally, we integrate a panel that enables the user to
display the output from our summarization algorithm. To do
so, the user enters their choice for K, and any two of the
weights for normality, coverage, and diversity from drop-down
lists (upon which the third remaining weight is automatically
set so that their sum is 1) as shown in Fig. 7 (top right). Upon
user input, K algorithm-selected circles are displayed to the
user in a separate plot (top left), along with the quantities of
interest (bottom right). This output is likely to guide the user
in revising their own summary (Fig. 5), toward an alternative
and/or better summary than the algorithm’s (w.r.t. objective
value, recall that the greedy algorithm is not exact).

Fig. 7. Algorithmic Summary Panel. Users (top right) input desired K and
weights for quantities of interets, and be displayed (top left) algorithm-selected
communities, and (bottom right) algorithmic summary results.
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(a) edge & node views of an attributed graph (b) graph layout visualization (c) community view

Fig. 1. Sensemaking of attributed graphs is challenging with traditional means. (a) Table view for edge relations and node attributes—does not provide much
insight, (b) Graph visualization with layout algorithm—a “hairball” (!), and (c) Community view—there are too many, possibly overlapping and potentially
redundant communities of varying quality that do not provide a succinct summary of the network. (size: proportional to number of community members,
color: representative/characterizing attribute (e.g., high school), numbers inside circles: quality score, see §III).

we deconstruct the network into its building blocks, i.e. com-
munities (or social circles1) of various characteristics such as
college friends, co-workers, etc. We then design an interactive
interface that enables users to efficiently explore, characterize,
and build various alternative summaries of the network via
a few essential communities that make up its backbone. Our
main contributions are as follows:

1) We introduce a new community extraction approach
for attributed graphs, to decompose an input network
into the social circles that its nodes form. Our goal is to
enable the user to view the network in alternative ways,
therefore, we extract a list of overlapping and nested
communities of varying size, quality, and characteristics.

2) We next formulate a summarization task with a multi-
criteria objective, which automatically selects a subset of
the communities that (i) cover the entire graph well, are
(ii) high quality and (iii) diverse in their characteristics.
Users get to adjust which aspect of the summarization
they want to focus on: coverage, quality, or diversity; to
obtain various alternative summaries.

3) We also design and build an interactive visualization
interface that presents the communities to a user in an
interpretable, user-friendly fashion. The user can explore
all the communities (from step 1), and interactively de-
vise their own characterizing summaries. Users can also
collaborate with the machine, where they can analyze
various algorithm-generated summaries (from step 2)
and build on them to devise new alternatives.

4) Our data and code are open-sourced at https://www.
dropbox.com/home/Public/nansense for reproducibility
and future research.

Our work differs from prior work in multiple key aspects. It
is one of few work on sensemaking of attributed networks. Our
emphasis is on communities and yet we do not solely propose
a community extraction algorithm. We seek concise, repre-
sentative summaries of the communities, and aim to facilitate
alternative summaries of the network for exploratory tasks.
We further introduce an interactive system for end-users to
analyze the communities, explore and build summaries. While
there exist disjoint related effort (in community extraction,

1Words {community, social circle, cluster} are used interchangeably in text.

summarization, and interactive visualization), none of those
works attempt to build a single framework that unify all three
tasks. NANSENSE is unique in being a concerted effort that
provides an end-to-end analytics approach to sensemaking of
node-attributed networks.

II. DATA AND OVERVIEW

A. Data Description
A direct realization of attributed social networks is the

Facebook networks of 100 colleges and universities from
September 2005, first studied in [38]. These networks include
only the intra-school friendship links.

The school networks are attributed; in which nodes exhibit
7 categorical attributes: student/faculty flag, gender,

major, 2nd major/minor (if applicable), dorm,

graduation year, high school.
The number of nodes among the networks range from

769 to 41554, and edges from 16656 to 1590655. In our
experiments, we consider one particular university, with 6637
students/faculty and 249967 undirected friendship edges. Fur-
ther, we focus on the individual egonetworks, defined per node
as its direct neighbors and all the connections among them.
Average number of nodes per egonetwork in this graph is 75.3,
with the largest one containing 840 nodes.

Our goal is to characterize the egonetwork of a given node
to make sense of the kind of social circles s/he lives in.

B. A 10K-Feet View
Before we dive into the details of the inner-workings of

our approach, we illustrate the end-product in Figure 2, which
shows the interactive exploration and visualization interface
presented to a user. It contains three main panels, the filtering
panel (left), the community exploration panel (middle), and
algorithmic-summary panel (right).

Middle panel is the primary community exploration view,
which shows all the social circles of an input egonetwork
identified by our community extraction algorithm. In this view
social circles are shown with circles, with size proportional to
the number of nodes they contain. Color indicates the primary
attribute that characterizes a circle (e.g., major), referred as the
focus attribute [32]. Circles are positioned in 2-d such that the
more they overlap, the closer they are placed to each other.

Overview 

Fig. 2. Main interactive visualization interface with 3 panels: (middle) Community Exploration, (left) Filtering, and (right) Algorithmic Summary.

This helps the user to quickly identify overlapping/redundant
ones, as well as observe the distribution of social circles by
size and characterizing attributes. Hovering over each circle
displays (on-demand) its size, list of members, as well as its
quality (a score named normality, see §III).

Left panel is for filtering, where the user can selectively
view in the middle panel only the circles of certain focus
attribute(s), size(s), and those within certain quality range.

Right and the final panel is the summary view, which
displays K circles as selected by our summarization algorithm
such that a weighted combination of circle quality, network
coverage, and attribute diversity is maximized. K and the
respective weights for those quantities are input by the user
(top right). Average normality, egonet coverage, and attribute
diversity of the summary is displayed (bottom right). The user
can also devise their own summary by selecting (through a
click) the circles they would like to include in the summary,
and can use the algorithmic summary for guidance. This
enables users to explore and build alternative summaries.

III. SENSEMAKING OF NODE-ATTRIBUTED NETWORKS

NANSENSE consists of the three main steps below. We
present the details of each step in the following subsections.

1) Deconstruction, or extraction of overlapping attributed
communities;

2) Summarization, or selecting a subset of representative
communities that are high quality, diverse in their at-
tributes, and cover the input graph well;

3) Interactive Visualization, or presenting the user with
a concise list and summary of communities, and help
them explore and interact with all other communities
and devise alternative summaries.

A. Step 1. Deconstruction
Our goal is to follow a divide-and-conquer approach to

summarizing large graphs. As such, we will aim to decompose
a given network into its building blocks. For social networks,
the building blocks are the communities, or the social circles.

1) Quantifying Community Quality: In this work we
adopt a measure of quality for attributed communities, called
normality [32], which enables us (1) to extract communities
from the input graph independently in parallel using local
search algorithms, and (2) rank attributes by their contribution
to the quality of each community.

For an attributed graph G = (V, E ,A), with n nodes in V ,
m edges in E , d node-attributes in A, and adjacency matrix
A where A

ij

= 1 8(i, j) 2 E and 0 o.w., let C denote a
community or circle (subset of nodes) in G. We denote by B
the set of boundary nodes, which reside outside the circle but
have at least one edge to some node in C. The normality score
for a given community C is defined as
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is the degree and xi is the length-d = |A| attribute
vector of node i. simw(xi,xj) = w
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(xi � xj) defines a
weighted dot product similarity between two nodes. Intuitively,
term (1) captures internal connectivity2 and attribute-similarity
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1) Exploratory and Interactive Summarization: Our first
challenge is to visualize all the extracted communities in a
fashion that can help the user to explore them and build their
own summary by selecting a representative subset effectively
and efficiently. For summarization purposes, the visualization
should help the user quickly grasp the size, normality, and the
focus attribute of each community. In addition, the amount
of overlap between the communities should be presented in
an effective way, since the user would want to avoid select-
ing largely overlapping communities in order to efficiently
increase the coverage with a few communities.

To this end, our idea is to visualize each community as a
circle in 2-d as shown in Fig. 5. Each circle is colored by its
focus attribute and circle size is proportional to community
size. Hovering over each circle displays the exact size, nor-
mality, and community members. Importantly, the higher the
overlap between two communities, the closer the center points
of corresponding circles are placed. We define the distance
between two communities C

k

and C
l

as

dist(C
k

, C
l

) = 1�

|C
k

\ C
l

|

min(|C
k
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,

and compute the R⇥R distances between all pairs of extracted
communities. Multi-Dimensional Scaling (MDS) is used to
find a 2-d embedding of the communities such that the pair-
wise distances as defined above are preserved in the Euclidean
space as much as possible. As such, largely overlapping as well
as nested communities are clustered in the display. The user
can then aim to select large circles that are spread out in the
2-d embedding in order to most effectively increase coverage.

Fig. 5 shows 7 (highlighted) circles selected by the user.
Each time a user selects (or de-selects) a circle to be included
in (or excluded from) the summary, quantities of interest—
normality, coverage, diversity—are displayed in (blue) bar
plots as in Fig. 7 (bottom left). Red vertical lines show the
values before the last selection; which, in the figure, increased
normality, decreased coverage, and did not change diversity.

Fig. 5. Community Exploration Panel. Users can view, select and de-select
circles for summarization, and be displayed the avg. normality, coverage, and
diversity of their current summary (best in color).

2) Filtering: While searching for circles to select for their
summary, the user may want to focus on communities with
certain properties. As such, we introduce a panel for filtering
communities by focus attribute, normality, and size, as shown
in Fig. 6. The user can click on the attribute names of interest,
use a horizontal slider to specify a range for normality, as well
as check/uncheck size values to display only the communities
that meet all specified criteria in the mid-panel (Fig. 5).

Fig. 6. Filtering (by attribute, normality, and size) Panel.

3) Algorithm-Guided Human-in-the-loop Summariza-
tion: Finally, we integrate a panel that enables the user to
display the output from our summarization algorithm. To do
so, the user enters their choice for K, and any two of the
weights for normality, coverage, and diversity from drop-down
lists (upon which the third remaining weight is automatically
set so that their sum is 1) as shown in Fig. 7 (top right). Upon
user input, K algorithm-selected circles are displayed to the
user in a separate plot (top left), along with the quantities of
interest (bottom right). This output is likely to guide the user
in revising their own summary (Fig. 5), toward an alternative
and/or better summary than the algorithm’s (w.r.t. objective
value, recall that the greedy algorithm is not exact).

Fig. 7. Algorithmic Summary Panel. Users (top right) input desired K and
weights for quantities of interets, and be displayed (top left) algorithm-selected
communities, and (bottom right) algorithmic summary results.
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of nodes in C (the higher, the better) and term (2) captures
external separation (the fewer edges and less similar nodes at
the boundary, the better). Normality is further standardized to
take values in [0, 1] for size-invariant scoring [32].

2) Inferring Community “Focus”: Different communi-
ties form for different purposes (e.g., high school, football,
summer-camp friends, etc.). Attributes that characterize a
community around which its members “click” are called
focus attributes [32]. As such, w weighs attributes differently
for each community. In practice, however, the weights are
unknown. By reorganizing the terms that do not depend on
w, normality can be rewritten as

max
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where sum of internal and external scores, x = (x

I

+ x

E

),
can be directly computed from data, and the goal is to find
a non-negative unit vector w whose dot product by x is the
maximum. Intuitively, w reflects the distribution of weights
to attributes that maximize the normality of a given circle. As
such, normality measure enables us to automatically infer the
focus attribute(s) of a given circle that maximize its quality.

For sense-making purposes we will represent each com-
munity to “focus” on one attribute only. In other words, we
assume each circle of friends form around a single subject
(e.g. high school friends). The solution is then the attribute
that corresponds to the index with the largest value in x.

3) Extracting Social Circles: Thus far, we defined how
to score a given community and identify its focus attribute.
Our goal is to extract high quality communities from an
input attributed graph. To this end, we introduce a greedy
randomized local search algorithm, which starts with a single
seed node and expands the community by adding/removing
nodes one by one as the normality increases. It repeats this
procedure for each node in the graph as the seed to extract
multiple communities. Note that these communities could be
overlapping, where the same nodes may belong to different
circles with varying “focus”.

The skeleton of our community extraction algorithm is
given in Algorithm 1. It considers each node in the graph
as the seed node T

max

times. Each time, two main pro-
cedures are called; a construction step and a local search
step. Construction, as given in Algorithm 2, computes the
delta-improvement in normality of adding each node at the
boundary of the current subgraph (lines 3-6). The additive
nature of normality enables incremental and efficient updating
when a new node is added to a community without having
to recompute it from scratch. If none of them increases the
score, the current subgraph is returned (line 7). Otherwise,
it picks at random one of the boundary nodes with positive
normality improvement that is among the top (1�↵) fraction

Algorithm 1 EXTRACTATTRIBUTEDSOCIALCIRCLES

Input: G = (V, E ,A), node attribute vectors x

u2V , T
max

,↵
Output: set of extracted communities C

1: C := ;

2: for each u 2 V do
3: for t = 1 : T

max

do
4: S := CONSTRUCTION(u,G,↵)
5: C := C [ LOCALSEARCH(S,G)

6: end for
7: end for
8: return C

Algorithm 2 CONSTRUCTION {build initial subgraph}
Input: seed node s, G = (V, E ,A), x

u2V , ↵
Output: initial subgraph S

1: S = s
2: while true do
3: B := boundary nodes of S
4: for each b 2 B do
5: �N

b

:= N(S [ b)�N(S)
6: end for
7: if �N

b

 0, 8b 2 B then return S
8: max� := maximum �N

b

9: min� := minimum positive �N
b

10: B
cand

:= boundary nodes for which:
�N

b

� min�+ ↵ ⇤ (max��min�)

11: pick v 2 B
cand

at random
12: S := S [ v
13: end while

Algorithm 3 LOCALSEARCH {improve normality of S}
Input: initial subgraph S, G = (V, E ,A), x

i2V
Output: social circle S

1: while true do
2: B := boundary nodes of S
3: for each b 2 B do
4: �N

b

:= N(S\b)�N(S)
5: end for
6: if �N

b

< 0, 8b 2 B then return S
7: S := S\b

del

for b
del

2 B with maximum �N
8: while true do
9: B := boundary nodes of S

10: for each b 2 B do
11: �N

b

:= N(S [ b)�N(S)
12: end for
13: if �N

b

 0, 8b 2 B then break
14: S := S [ b

add

for b
add

2 B with maximum �N
15: end while
16: end while

and adds it to the subgraph (lines 8-12). ↵ is a user defined
parameter that controls the “greediness” vs. “randomness” of
the algorithm; ↵ = 1 corresponds to the deterministic best-first
greedy strategy. We set ↵ = 0.85 in our experiments, which
allows for finding a different initial subgraph with potentially
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(a) edge & node views of an attributed graph (b) graph layout visualization (c) community view

Fig. 1. Sensemaking of attributed graphs is challenging with traditional means. (a) Table view for edge relations and node attributes—does not provide much
insight, (b) Graph visualization with layout algorithm—a “hairball” (!), and (c) Community view—there are too many, possibly overlapping and potentially
redundant communities of varying quality that do not provide a succinct summary of the network. (size: proportional to number of community members,
color: representative/characterizing attribute (e.g., high school), numbers inside circles: quality score, see §III).

we deconstruct the network into its building blocks, i.e. com-
munities (or social circles1) of various characteristics such as
college friends, co-workers, etc. We then design an interactive
interface that enables users to efficiently explore, characterize,
and build various alternative summaries of the network via
a few essential communities that make up its backbone. Our
main contributions are as follows:

1) We introduce a new community extraction approach
for attributed graphs, to decompose an input network
into the social circles that its nodes form. Our goal is to
enable the user to view the network in alternative ways,
therefore, we extract a list of overlapping and nested
communities of varying size, quality, and characteristics.

2) We next formulate a summarization task with a multi-
criteria objective, which automatically selects a subset of
the communities that (i) cover the entire graph well, are
(ii) high quality and (iii) diverse in their characteristics.
Users get to adjust which aspect of the summarization
they want to focus on: coverage, quality, or diversity; to
obtain various alternative summaries.

3) We also design and build an interactive visualization
interface that presents the communities to a user in an
interpretable, user-friendly fashion. The user can explore
all the communities (from step 1), and interactively de-
vise their own characterizing summaries. Users can also
collaborate with the machine, where they can analyze
various algorithm-generated summaries (from step 2)
and build on them to devise new alternatives.

4) Our data and code are open-sourced at https://www.
dropbox.com/home/Public/nansense for reproducibility
and future research.

Our work differs from prior work in multiple key aspects. It
is one of few work on sensemaking of attributed networks. Our
emphasis is on communities and yet we do not solely propose
a community extraction algorithm. We seek concise, repre-
sentative summaries of the communities, and aim to facilitate
alternative summaries of the network for exploratory tasks.
We further introduce an interactive system for end-users to
analyze the communities, explore and build summaries. While
there exist disjoint related effort (in community extraction,

1Words {community, social circle, cluster} are used interchangeably in text.

summarization, and interactive visualization), none of those
works attempt to build a single framework that unify all three
tasks. NANSENSE is unique in being a concerted effort that
provides an end-to-end analytics approach to sensemaking of
node-attributed networks.

II. DATA AND OVERVIEW

A. Data Description
A direct realization of attributed social networks is the

Facebook networks of 100 colleges and universities from
September 2005, first studied in [38]. These networks include
only the intra-school friendship links.

The school networks are attributed; in which nodes exhibit
7 categorical attributes: student/faculty flag, gender,

major, 2nd major/minor (if applicable), dorm,

graduation year, high school.
The number of nodes among the networks range from

769 to 41554, and edges from 16656 to 1590655. In our
experiments, we consider one particular university, with 6637
students/faculty and 249967 undirected friendship edges. Fur-
ther, we focus on the individual egonetworks, defined per node
as its direct neighbors and all the connections among them.
Average number of nodes per egonetwork in this graph is 75.3,
with the largest one containing 840 nodes.

Our goal is to characterize the egonetwork of a given node
to make sense of the kind of social circles s/he lives in.

B. A 10K-Feet View
Before we dive into the details of the inner-workings of

our approach, we illustrate the end-product in Figure 2, which
shows the interactive exploration and visualization interface
presented to a user. It contains three main panels, the filtering
panel (left), the community exploration panel (middle), and
algorithmic-summary panel (right).

Middle panel is the primary community exploration view,
which shows all the social circles of an input egonetwork
identified by our community extraction algorithm. In this view
social circles are shown with circles, with size proportional to
the number of nodes they contain. Color indicates the primary
attribute that characterizes a circle (e.g., major), referred as the
focus attribute [32]. Circles are positioned in 2-d such that the
more they overlap, the closer they are placed to each other.

Overview 

Fig. 2. Main interactive visualization interface with 3 panels: (middle) Community Exploration, (left) Filtering, and (right) Algorithmic Summary.

This helps the user to quickly identify overlapping/redundant
ones, as well as observe the distribution of social circles by
size and characterizing attributes. Hovering over each circle
displays (on-demand) its size, list of members, as well as its
quality (a score named normality, see §III).

Left panel is for filtering, where the user can selectively
view in the middle panel only the circles of certain focus
attribute(s), size(s), and those within certain quality range.

Right and the final panel is the summary view, which
displays K circles as selected by our summarization algorithm
such that a weighted combination of circle quality, network
coverage, and attribute diversity is maximized. K and the
respective weights for those quantities are input by the user
(top right). Average normality, egonet coverage, and attribute
diversity of the summary is displayed (bottom right). The user
can also devise their own summary by selecting (through a
click) the circles they would like to include in the summary,
and can use the algorithmic summary for guidance. This
enables users to explore and build alternative summaries.

III. SENSEMAKING OF NODE-ATTRIBUTED NETWORKS

NANSENSE consists of the three main steps below. We
present the details of each step in the following subsections.

1) Deconstruction, or extraction of overlapping attributed
communities;

2) Summarization, or selecting a subset of representative
communities that are high quality, diverse in their at-
tributes, and cover the input graph well;

3) Interactive Visualization, or presenting the user with
a concise list and summary of communities, and help
them explore and interact with all other communities
and devise alternative summaries.

A. Step 1. Deconstruction
Our goal is to follow a divide-and-conquer approach to

summarizing large graphs. As such, we will aim to decompose
a given network into its building blocks. For social networks,
the building blocks are the communities, or the social circles.

1) Quantifying Community Quality: In this work we
adopt a measure of quality for attributed communities, called
normality [32], which enables us (1) to extract communities
from the input graph independently in parallel using local
search algorithms, and (2) rank attributes by their contribution
to the quality of each community.

For an attributed graph G = (V, E ,A), with n nodes in V ,
m edges in E , d node-attributes in A, and adjacency matrix
A where A

ij

= 1 8(i, j) 2 E and 0 o.w., let C denote a
community or circle (subset of nodes) in G. We denote by B
the set of boundary nodes, which reside outside the circle but
have at least one edge to some node in C. The normality score
for a given community C is defined as
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is the degree and xi is the length-d = |A| attribute
vector of node i. simw(xi,xj) = w
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(xi � xj) defines a
weighted dot product similarity between two nodes. Intuitively,
term (1) captures internal connectivity2 and attribute-similarity
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1) Exploratory and Interactive Summarization: Our first
challenge is to visualize all the extracted communities in a
fashion that can help the user to explore them and build their
own summary by selecting a representative subset effectively
and efficiently. For summarization purposes, the visualization
should help the user quickly grasp the size, normality, and the
focus attribute of each community. In addition, the amount
of overlap between the communities should be presented in
an effective way, since the user would want to avoid select-
ing largely overlapping communities in order to efficiently
increase the coverage with a few communities.

To this end, our idea is to visualize each community as a
circle in 2-d as shown in Fig. 5. Each circle is colored by its
focus attribute and circle size is proportional to community
size. Hovering over each circle displays the exact size, nor-
mality, and community members. Importantly, the higher the
overlap between two communities, the closer the center points
of corresponding circles are placed. We define the distance
between two communities C

k

and C
l
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and compute the R⇥R distances between all pairs of extracted
communities. Multi-Dimensional Scaling (MDS) is used to
find a 2-d embedding of the communities such that the pair-
wise distances as defined above are preserved in the Euclidean
space as much as possible. As such, largely overlapping as well
as nested communities are clustered in the display. The user
can then aim to select large circles that are spread out in the
2-d embedding in order to most effectively increase coverage.

Fig. 5 shows 7 (highlighted) circles selected by the user.
Each time a user selects (or de-selects) a circle to be included
in (or excluded from) the summary, quantities of interest—
normality, coverage, diversity—are displayed in (blue) bar
plots as in Fig. 7 (bottom left). Red vertical lines show the
values before the last selection; which, in the figure, increased
normality, decreased coverage, and did not change diversity.

Fig. 5. Community Exploration Panel. Users can view, select and de-select
circles for summarization, and be displayed the avg. normality, coverage, and
diversity of their current summary (best in color).

2) Filtering: While searching for circles to select for their
summary, the user may want to focus on communities with
certain properties. As such, we introduce a panel for filtering
communities by focus attribute, normality, and size, as shown
in Fig. 6. The user can click on the attribute names of interest,
use a horizontal slider to specify a range for normality, as well
as check/uncheck size values to display only the communities
that meet all specified criteria in the mid-panel (Fig. 5).

Fig. 6. Filtering (by attribute, normality, and size) Panel.

3) Algorithm-Guided Human-in-the-loop Summariza-
tion: Finally, we integrate a panel that enables the user to
display the output from our summarization algorithm. To do
so, the user enters their choice for K, and any two of the
weights for normality, coverage, and diversity from drop-down
lists (upon which the third remaining weight is automatically
set so that their sum is 1) as shown in Fig. 7 (top right). Upon
user input, K algorithm-selected circles are displayed to the
user in a separate plot (top left), along with the quantities of
interest (bottom right). This output is likely to guide the user
in revising their own summary (Fig. 5), toward an alternative
and/or better summary than the algorithm’s (w.r.t. objective
value, recall that the greedy algorithm is not exact).

Fig. 7. Algorithmic Summary Panel. Users (top right) input desired K and
weights for quantities of interets, and be displayed (top left) algorithm-selected
communities, and (bottom right) algorithmic summary results.

30 



Summarization 

Powered by TCPDF (www.tcpdf.org)

(a) edge & node views of an attributed graph (b) graph layout visualization (c) community view

Fig. 1. Sensemaking of attributed graphs is challenging with traditional means. (a) Table view for edge relations and node attributes—does not provide much
insight, (b) Graph visualization with layout algorithm—a “hairball” (!), and (c) Community view—there are too many, possibly overlapping and potentially
redundant communities of varying quality that do not provide a succinct summary of the network. (size: proportional to number of community members,
color: representative/characterizing attribute (e.g., high school), numbers inside circles: quality score, see §III).

we deconstruct the network into its building blocks, i.e. com-
munities (or social circles1) of various characteristics such as
college friends, co-workers, etc. We then design an interactive
interface that enables users to efficiently explore, characterize,
and build various alternative summaries of the network via
a few essential communities that make up its backbone. Our
main contributions are as follows:

1) We introduce a new community extraction approach
for attributed graphs, to decompose an input network
into the social circles that its nodes form. Our goal is to
enable the user to view the network in alternative ways,
therefore, we extract a list of overlapping and nested
communities of varying size, quality, and characteristics.

2) We next formulate a summarization task with a multi-
criteria objective, which automatically selects a subset of
the communities that (i) cover the entire graph well, are
(ii) high quality and (iii) diverse in their characteristics.
Users get to adjust which aspect of the summarization
they want to focus on: coverage, quality, or diversity; to
obtain various alternative summaries.

3) We also design and build an interactive visualization
interface that presents the communities to a user in an
interpretable, user-friendly fashion. The user can explore
all the communities (from step 1), and interactively de-
vise their own characterizing summaries. Users can also
collaborate with the machine, where they can analyze
various algorithm-generated summaries (from step 2)
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4) Our data and code are open-sourced at https://www.
dropbox.com/home/Public/nansense for reproducibility
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Our work differs from prior work in multiple key aspects. It
is one of few work on sensemaking of attributed networks. Our
emphasis is on communities and yet we do not solely propose
a community extraction algorithm. We seek concise, repre-
sentative summaries of the communities, and aim to facilitate
alternative summaries of the network for exploratory tasks.
We further introduce an interactive system for end-users to
analyze the communities, explore and build summaries. While
there exist disjoint related effort (in community extraction,

1Words {community, social circle, cluster} are used interchangeably in text.

summarization, and interactive visualization), none of those
works attempt to build a single framework that unify all three
tasks. NANSENSE is unique in being a concerted effort that
provides an end-to-end analytics approach to sensemaking of
node-attributed networks.

II. DATA AND OVERVIEW

A. Data Description
A direct realization of attributed social networks is the

Facebook networks of 100 colleges and universities from
September 2005, first studied in [38]. These networks include
only the intra-school friendship links.

The school networks are attributed; in which nodes exhibit
7 categorical attributes: student/faculty flag, gender,

major, 2nd major/minor (if applicable), dorm,

graduation year, high school.
The number of nodes among the networks range from

769 to 41554, and edges from 16656 to 1590655. In our
experiments, we consider one particular university, with 6637
students/faculty and 249967 undirected friendship edges. Fur-
ther, we focus on the individual egonetworks, defined per node
as its direct neighbors and all the connections among them.
Average number of nodes per egonetwork in this graph is 75.3,
with the largest one containing 840 nodes.

Our goal is to characterize the egonetwork of a given node
to make sense of the kind of social circles s/he lives in.

B. A 10K-Feet View
Before we dive into the details of the inner-workings of

our approach, we illustrate the end-product in Figure 2, which
shows the interactive exploration and visualization interface
presented to a user. It contains three main panels, the filtering
panel (left), the community exploration panel (middle), and
algorithmic-summary panel (right).

Middle panel is the primary community exploration view,
which shows all the social circles of an input egonetwork
identified by our community extraction algorithm. In this view
social circles are shown with circles, with size proportional to
the number of nodes they contain. Color indicates the primary
attribute that characterizes a circle (e.g., major), referred as the
focus attribute [32]. Circles are positioned in 2-d such that the
more they overlap, the closer they are placed to each other.
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different focus attribute around the seed node every time we
run the (non-deterministic) construction step. Intuitively, those
different subgraphs correspond to various communities that the
seed node u may be belonging to in the social network. To
enable finding those multiple communities a node belongs to,
we search around each node T

max

= 10 times.
After construction, a local search algorithm as shown in

Algorithm 3 looks for a subgraph with higher normality by
making local addition/deletion operations. To this end, it starts
by looking for a node to remove inside the current subgraph
for increased normality (lines 2-5) (recall that, the constructed
subgraph has no nodes at the boundary the addition of which
increases normality). If no such node exists, local search
returns (line 6) and otherwise deletes the node with the maxi-
mum improvement (line 7). It then moves on to adding nodes
at the boundary that maximally increase normality, until no
such nodes can be found (lines 8-15). Local search alternates
between deletion and addition steps until convergence.

Algorithm Remarks. Our community extraction algo-
rithm simply looks for various communities each and every
node belongs to. As such, it identifies potentially overlap-
ping communities with varying focus attribute. The search
is completely decentralized; two loops in Algorithm 1 can
be fully parallelized; that is, each run on each node can be
done independently. Time complexity for each run of the
construction and local search is proportional to the size of
the community extracted, i.e. sublinear in the size of the input
graph. Finally, the algorithm is guaranteed to converge since
each deletion or addition step is taken as long as it does not
decrease the normality score, which has an upper bound of 1.

B. Step 2. Algorithmic Summarization
1) Motivation: Our community extraction algorithm is a

local one, that aims to identify communities around each node
in the input graph. While its non-global and decentralized
nature allows for a parallel implementation, it is likely to out-
put many communities that overlap in varying degrees. From
exploratory perspective, analyzing a long list of communities
is challenging, especially when they share common members.
Therefore, we next formulate a summarization scheme that
identifies only a small number of communities that well
represent the input network.

To motivate with a concrete example, consider once again
the student with 220 friends from Fig. 1. Our extraction
algorithm finds 125 communities in this egonetwork, as shown
in Fig. 1 (c), with average size 9.42 and average normality
0.48. One way to summarize those communities is to look at
their size, normality, and focus attribute distribution. To this
end, we show in Fig. 3 the normality and size for communities
of each distinct focus. Labels on the x-axis are of the form
attribute index:attribute value (number of

communities with this <attribute:value> focus).
For example, the algorithm finds 3 communities with attribute
3 (major) and value 139 (anonymized). While one can spot
various large communities around certain focus attributes, it
is hard to quickly describe the make-up of this egonetwork.

Fig. 3. Normality and size distribution (shown with boxplots) of communities
per specific attribute:value focus as extracted by Algo. 1.

When we filter out those with size and normality below the
average, we obtain 25 communities. However, three issues
remain: (1) filtering based on average is arbitrary, (2) the
summary is not succinct as there are still many communities
above the average, and (3) the distributional summary does
not reflect the extent of overlap between the communities.

2) Formulation: To address these issues, we formulate a
summarization task with the objective of selecting a user-
specified number of communities that (1) are high quality (in
our case, high normality), (2) cover the input graph well (such
that most nodes are represented in the summary), and (3) are
diverse in their focus (cover the attribute space well).

More formally, let C = {C1, . . . , CR

} denote the set of
communities returned by Algorithm 1, and K be the number
of communities to be selected for the summary S. Let N(C
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), i = {1, . . . , R}, respectively denote the normality
and the focus attribute index for each community in C.
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erage is defined as the number of unique nodes in the union of
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Similarly, diversity of a subset of communities is the num-
ber of unique attributes they focus on divided by the total
number of attributes in G, i.e. diversity(C
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Our goal is then to identify K out of R communities such

that a weighted combination of (1) average normality, (2)
coverage, and (3) diversity is maximized:
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Note that all three quantities—average normality, coverage,
and diversity—are in the same scale and take values in [0, 1].
The respective weights are user-specified and sum to 1; where
0  ↵,�  1. The user can adjust those weights to put more
or less importance on quality, coverage or attribute diversity
in the summary, for which we build an interactive interface
(to be described in the next section).
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= 10 times.
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Algorithm 3 looks for a subgraph with higher normality by
making local addition/deletion operations. To this end, it starts
by looking for a node to remove inside the current subgraph
for increased normality (lines 2-5) (recall that, the constructed
subgraph has no nodes at the boundary the addition of which
increases normality). If no such node exists, local search
returns (line 6) and otherwise deletes the node with the maxi-
mum improvement (line 7). It then moves on to adding nodes
at the boundary that maximally increase normality, until no
such nodes can be found (lines 8-15). Local search alternates
between deletion and addition steps until convergence.

Algorithm Remarks. Our community extraction algo-
rithm simply looks for various communities each and every
node belongs to. As such, it identifies potentially overlap-
ping communities with varying focus attribute. The search
is completely decentralized; two loops in Algorithm 1 can
be fully parallelized; that is, each run on each node can be
done independently. Time complexity for each run of the
construction and local search is proportional to the size of
the community extracted, i.e. sublinear in the size of the input
graph. Finally, the algorithm is guaranteed to converge since
each deletion or addition step is taken as long as it does not
decrease the normality score, which has an upper bound of 1.
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1) Motivation: Our community extraction algorithm is a

local one, that aims to identify communities around each node
in the input graph. While its non-global and decentralized
nature allows for a parallel implementation, it is likely to out-
put many communities that overlap in varying degrees. From
exploratory perspective, analyzing a long list of communities
is challenging, especially when they share common members.
Therefore, we next formulate a summarization scheme that
identifies only a small number of communities that well
represent the input network.

To motivate with a concrete example, consider once again
the student with 220 friends from Fig. 1. Our extraction
algorithm finds 125 communities in this egonetwork, as shown
in Fig. 1 (c), with average size 9.42 and average normality
0.48. One way to summarize those communities is to look at
their size, normality, and focus attribute distribution. To this
end, we show in Fig. 3 the normality and size for communities
of each distinct focus. Labels on the x-axis are of the form
attribute index:attribute value (number of

communities with this <attribute:value> focus).
For example, the algorithm finds 3 communities with attribute
3 (major) and value 139 (anonymized). While one can spot
various large communities around certain focus attributes, it
is hard to quickly describe the make-up of this egonetwork.

Fig. 3. Normality and size distribution (shown with boxplots) of communities
per specific attribute:value focus as extracted by Algo. 1.

When we filter out those with size and normality below the
average, we obtain 25 communities. However, three issues
remain: (1) filtering based on average is arbitrary, (2) the
summary is not succinct as there are still many communities
above the average, and (3) the distributional summary does
not reflect the extent of overlap between the communities.

2) Formulation: To address these issues, we formulate a
summarization task with the objective of selecting a user-
specified number of communities that (1) are high quality (in
our case, high normality), (2) cover the input graph well (such
that most nodes are represented in the summary), and (3) are
diverse in their focus (cover the attribute space well).

More formally, let C = {C1, . . . , CR

} denote the set of
communities returned by Algorithm 1, and K be the number
of communities to be selected for the summary S. Let N(C
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and the focus attribute index for each community in C.
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number of attributes in G, i.e. diversity(C
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Our goal is then to identify K out of R communities such

that a weighted combination of (1) average normality, (2)
coverage, and (3) diversity is maximized:
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Note that all three quantities—average normality, coverage,
and diversity—are in the same scale and take values in [0, 1].
The respective weights are user-specified and sum to 1; where
0  ↵,�  1. The user can adjust those weights to put more
or less importance on quality, coverage or attribute diversity
in the summary, for which we build an interactive interface
(to be described in the next section).
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different focus attribute around the seed node every time we
run the (non-deterministic) construction step. Intuitively, those
different subgraphs correspond to various communities that the
seed node u may be belonging to in the social network. To
enable finding those multiple communities a node belongs to,
we search around each node T

max

= 10 times.
After construction, a local search algorithm as shown in

Algorithm 3 looks for a subgraph with higher normality by
making local addition/deletion operations. To this end, it starts
by looking for a node to remove inside the current subgraph
for increased normality (lines 2-5) (recall that, the constructed
subgraph has no nodes at the boundary the addition of which
increases normality). If no such node exists, local search
returns (line 6) and otherwise deletes the node with the maxi-
mum improvement (line 7). It then moves on to adding nodes
at the boundary that maximally increase normality, until no
such nodes can be found (lines 8-15). Local search alternates
between deletion and addition steps until convergence.

Algorithm Remarks. Our community extraction algo-
rithm simply looks for various communities each and every
node belongs to. As such, it identifies potentially overlap-
ping communities with varying focus attribute. The search
is completely decentralized; two loops in Algorithm 1 can
be fully parallelized; that is, each run on each node can be
done independently. Time complexity for each run of the
construction and local search is proportional to the size of
the community extracted, i.e. sublinear in the size of the input
graph. Finally, the algorithm is guaranteed to converge since
each deletion or addition step is taken as long as it does not
decrease the normality score, which has an upper bound of 1.

B. Step 2. Algorithmic Summarization
1) Motivation: Our community extraction algorithm is a

local one, that aims to identify communities around each node
in the input graph. While its non-global and decentralized
nature allows for a parallel implementation, it is likely to out-
put many communities that overlap in varying degrees. From
exploratory perspective, analyzing a long list of communities
is challenging, especially when they share common members.
Therefore, we next formulate a summarization scheme that
identifies only a small number of communities that well
represent the input network.

To motivate with a concrete example, consider once again
the student with 220 friends from Fig. 1. Our extraction
algorithm finds 125 communities in this egonetwork, as shown
in Fig. 1 (c), with average size 9.42 and average normality
0.48. One way to summarize those communities is to look at
their size, normality, and focus attribute distribution. To this
end, we show in Fig. 3 the normality and size for communities
of each distinct focus. Labels on the x-axis are of the form
attribute index:attribute value (number of

communities with this <attribute:value> focus).
For example, the algorithm finds 3 communities with attribute
3 (major) and value 139 (anonymized). While one can spot
various large communities around certain focus attributes, it
is hard to quickly describe the make-up of this egonetwork.

Fig. 3. Normality and size distribution (shown with boxplots) of communities
per specific attribute:value focus as extracted by Algo. 1.

When we filter out those with size and normality below the
average, we obtain 25 communities. However, three issues
remain: (1) filtering based on average is arbitrary, (2) the
summary is not succinct as there are still many communities
above the average, and (3) the distributional summary does
not reflect the extent of overlap between the communities.

2) Formulation: To address these issues, we formulate a
summarization task with the objective of selecting a user-
specified number of communities that (1) are high quality (in
our case, high normality), (2) cover the input graph well (such
that most nodes are represented in the summary), and (3) are
diverse in their focus (cover the attribute space well).

More formally, let C = {C1, . . . , CR
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Our goal is then to identify K out of R communities such

that a weighted combination of (1) average normality, (2)
coverage, and (3) diversity is maximized:
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Note that all three quantities—average normality, coverage,
and diversity—are in the same scale and take values in [0, 1].
The respective weights are user-specified and sum to 1; where
0  ↵,�  1. The user can adjust those weights to put more
or less importance on quality, coverage or attribute diversity
in the summary, for which we build an interactive interface
(to be described in the next section).
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Algorithm 3 looks for a subgraph with higher normality by
making local addition/deletion operations. To this end, it starts
by looking for a node to remove inside the current subgraph
for increased normality (lines 2-5) (recall that, the constructed
subgraph has no nodes at the boundary the addition of which
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mum improvement (line 7). It then moves on to adding nodes
at the boundary that maximally increase normality, until no
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rithm simply looks for various communities each and every
node belongs to. As such, it identifies potentially overlap-
ping communities with varying focus attribute. The search
is completely decentralized; two loops in Algorithm 1 can
be fully parallelized; that is, each run on each node can be
done independently. Time complexity for each run of the
construction and local search is proportional to the size of
the community extracted, i.e. sublinear in the size of the input
graph. Finally, the algorithm is guaranteed to converge since
each deletion or addition step is taken as long as it does not
decrease the normality score, which has an upper bound of 1.
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nature allows for a parallel implementation, it is likely to out-
put many communities that overlap in varying degrees. From
exploratory perspective, analyzing a long list of communities
is challenging, especially when they share common members.
Therefore, we next formulate a summarization scheme that
identifies only a small number of communities that well
represent the input network.

To motivate with a concrete example, consider once again
the student with 220 friends from Fig. 1. Our extraction
algorithm finds 125 communities in this egonetwork, as shown
in Fig. 1 (c), with average size 9.42 and average normality
0.48. One way to summarize those communities is to look at
their size, normality, and focus attribute distribution. To this
end, we show in Fig. 3 the normality and size for communities
of each distinct focus. Labels on the x-axis are of the form
attribute index:attribute value (number of
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For example, the algorithm finds 3 communities with attribute
3 (major) and value 139 (anonymized). While one can spot
various large communities around certain focus attributes, it
is hard to quickly describe the make-up of this egonetwork.
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average, we obtain 25 communities. However, three issues
remain: (1) filtering based on average is arbitrary, (2) the
summary is not succinct as there are still many communities
above the average, and (3) the distributional summary does
not reflect the extent of overlap between the communities.

2) Formulation: To address these issues, we formulate a
summarization task with the objective of selecting a user-
specified number of communities that (1) are high quality (in
our case, high normality), (2) cover the input graph well (such
that most nodes are represented in the summary), and (3) are
diverse in their focus (cover the attribute space well).
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3) Subset Selection Algorithm: Summarization is essen-
tially a subset selection problem for function maximization.
In general, it is a hard combinatorial problem as there is a
large number of possible subsets even with the cardinality
constraint, i.e. when subset size is fixed (in our case, to K).

Fortunately, our objective function f(·) exhibits three key
properties that enable us to use a greedy selection algo-
rithm with an approximation guarantee. In particular, provided
K,n, d (denominators) are fixed, it is easy to show that our
set function f : 2
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! R+ is

i. non-negative; since all three quantities of interest take
values in [0, 1] and the respective weights are non-
negative and sum to 1.

ii. monotonic; since for every A ✓ B ✓ C, f(A)  f(B).
That is, adding more communities to a set cannot
decrease the numerators; i.e., total normality, number
of covered nodes and number of covered attributes.

iii. and submodular; since for every A ✓ B ✓ C and
C 2 C\B, f(A[ {C})� f(A) � f(B [ {C})� f(B) .
That is, adding a community C to a smaller set can
increase the function value at least as much as adding
it to its superset. Specifically, C 2 C\B would increase
the total normality equally for A and B due to the ad-
ditive definition, but can increase the node and attribute
coverage more for A than B since B already covers at
least the same nodes and attributes as A.

The greedy algorithm by Nemhauser et al. [39] starts with
empty set S0. In iteration k, it adds the element (in our case,
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In other words, the simple greedy search heuristic achieves
at least 63% of the objective value of the optimum set.

The figure below illustrates the results achieved by our
subset selection algorithm on one of the egonets for K = 5.
The (blue) circles show avg. normality, coverage, and diversity
values for various (↵,�, 1�↵��) triples, and the (red) star at
the corner depicts the highest values across all combinations.
Results around the “knee” of the surface formed by various
parameter combinations provide a good trade-off between the
quantities of interest; e.g., the (green) square.

We also run our summarization/subset selection algorithm
on the 125 communities extracted from the egonet of the stu-
dent with 220 friends from Fig. 1. For ease of 2-d illustration,
we set the weight on diversity to 0, in other words ↵+� = 1.
Fig. 4 shows the node coverage versus total normality3 for
various K = {5, 10, . . . , 30}, where symbols on each curve
depict the values for varying (↵, �) pairs.

Fig. 4. Total normality versus coverage for various K (different curves) and
varying (↵, �) weights for normality and coverage (corresponding to symbols
on each curve) as obtained by our subset selection algorithm.

Notice the “knee” in all the curves where coverage can only
be slightly increased for increasing � but normality decays
sharply as ↵ decreases. As such, points right around the “knee”
provide a good trade-off between coverage and normality. For
K = 5, the summary at the “knee” corresponds to ↵ = � =

0.5 and includes the following communities:

size |C| normality N(C) focus attribute A(C)

1 10 0.9510 dorm

2 15 0.8207 dorm

3 22 0.8275 major

4 53 0.7200 major

5 57 0.6754 gender

This summary is easy to comprehend by humans and repre-
sents more than 66% of the nodes in the egonetwork. Increas-
ing K does not quite improve the coverage of the summary
without compromising the average normality considerably.

C. Step 3. Interactive Visualization and Human-in-the-loop
Summarization

Step 3 ties the previous two components together, enabling
users to explore and interact with the output of the community
extraction and summarization steps. Specifically, we introduce
a new graphical interface (GI)4 for users to visualize the
communities from Step 1 (§III-A), build their own summaries
by interactively exploring and selecting communities, as well
as analyze algorithmic summaries for various K, ↵, and �
from Step 2 (§III-B). We describe the design ideas for the
three main components of our GI as follows.

3In subset selection we use the average normality, however, we plot the
(unnormalized) total normality to avoid overplotting curves for different K.

4Designed and developed in Tableau, www.tableau.com
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at least 63% of the objective value of the optimum set.

The figure below illustrates the results achieved by our
subset selection algorithm on one of the egonets for K = 5.
The (blue) circles show avg. normality, coverage, and diversity
values for various (↵,�, 1�↵��) triples, and the (red) star at
the corner depicts the highest values across all combinations.
Results around the “knee” of the surface formed by various
parameter combinations provide a good trade-off between the
quantities of interest; e.g., the (green) square.
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dent with 220 friends from Fig. 1. For ease of 2-d illustration,
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sents more than 66% of the nodes in the egonetwork. Increas-
ing K does not quite improve the coverage of the summary
without compromising the average normality considerably.

C. Step 3. Interactive Visualization and Human-in-the-loop
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users to explore and interact with the output of the community
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by interactively exploring and selecting communities, as well
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The figure below illustrates the results achieved by our
subset selection algorithm on one of the egonets for K = 5.
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values for various (↵,�, 1�↵��) triples, and the (red) star at
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depict the values for varying (↵, �) pairs.

Fig. 4. Total normality versus coverage for various K (different curves) and
varying (↵, �) weights for normality and coverage (corresponding to symbols
on each curve) as obtained by our subset selection algorithm.

Notice the “knee” in all the curves where coverage can only
be slightly increased for increasing � but normality decays
sharply as ↵ decreases. As such, points right around the “knee”
provide a good trade-off between coverage and normality. For
K = 5, the summary at the “knee” corresponds to ↵ = � =

0.5 and includes the following communities:

size |C| normality N(C) focus attribute A(C)

1 10 0.9510 dorm

2 15 0.8207 dorm

3 22 0.8275 major

4 53 0.7200 major

5 57 0.6754 gender
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without compromising the average normality considerably.
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Summarization

Step 3 ties the previous two components together, enabling
users to explore and interact with the output of the community
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at least 63% of the objective value of the optimum set.

The figure below illustrates the results achieved by our
subset selection algorithm on one of the egonets for K = 5.
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values for various (↵,�, 1�↵��) triples, and the (red) star at
the corner depicts the highest values across all combinations.
Results around the “knee” of the surface formed by various
parameter combinations provide a good trade-off between the
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This summary is easy to comprehend by humans and repre-
sents more than 66% of the nodes in the egonetwork. Increas-
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without compromising the average normality considerably.
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Summarization

Step 3 ties the previous two components together, enabling
users to explore and interact with the output of the community
extraction and summarization steps. Specifically, we introduce
a new graphical interface (GI)4 for users to visualize the
communities from Step 1 (§III-A), build their own summaries
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In general, it is a hard combinatorial problem as there is a
large number of possible subsets even with the cardinality
constraint, i.e. when subset size is fixed (in our case, to K).

Fortunately, our objective function f(·) exhibits three key
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In other words, the simple greedy search heuristic achieves
at least 63% of the objective value of the optimum set.

The figure below illustrates the results achieved by our
subset selection algorithm on one of the egonets for K = 5.
The (blue) circles show avg. normality, coverage, and diversity
values for various (↵,�, 1�↵��) triples, and the (red) star at
the corner depicts the highest values across all combinations.
Results around the “knee” of the surface formed by various
parameter combinations provide a good trade-off between the
quantities of interest; e.g., the (green) square.

We also run our summarization/subset selection algorithm
on the 125 communities extracted from the egonet of the stu-
dent with 220 friends from Fig. 1. For ease of 2-d illustration,
we set the weight on diversity to 0, in other words ↵+� = 1.
Fig. 4 shows the node coverage versus total normality3 for
various K = {5, 10, . . . , 30}, where symbols on each curve
depict the values for varying (↵, �) pairs.
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sharply as ↵ decreases. As such, points right around the “knee”
provide a good trade-off between coverage and normality. For
K = 5, the summary at the “knee” corresponds to ↵ = � =

0.5 and includes the following communities:

size |C| normality N(C) focus attribute A(C)

1 10 0.9510 dorm

2 15 0.8207 dorm

3 22 0.8275 major

4 53 0.7200 major

5 57 0.6754 gender

This summary is easy to comprehend by humans and repre-
sents more than 66% of the nodes in the egonetwork. Increas-
ing K does not quite improve the coverage of the summary
without compromising the average normality considerably.

C. Step 3. Interactive Visualization and Human-in-the-loop
Summarization

Step 3 ties the previous two components together, enabling
users to explore and interact with the output of the community
extraction and summarization steps. Specifically, we introduce
a new graphical interface (GI)4 for users to visualize the
communities from Step 1 (§III-A), build their own summaries
by interactively exploring and selecting communities, as well
as analyze algorithmic summaries for various K, ↵, and �
from Step 2 (§III-B). We describe the design ideas for the
three main components of our GI as follows.

3In subset selection we use the average normality, however, we plot the
(unnormalized) total normality to avoid overplotting curves for different K.

4Designed and developed in Tableau, www.tableau.com

3) Subset Selection Algorithm: Summarization is essen-
tially a subset selection problem for function maximization.
In general, it is a hard combinatorial problem as there is a
large number of possible subsets even with the cardinality
constraint, i.e. when subset size is fixed (in our case, to K).

Fortunately, our objective function f(·) exhibits three key
properties that enable us to use a greedy selection algo-
rithm with an approximation guarantee. In particular, provided
K,n, d (denominators) are fixed, it is easy to show that our
set function f : 2

C
! R+ is

i. non-negative; since all three quantities of interest take
values in [0, 1] and the respective weights are non-
negative and sum to 1.

ii. monotonic; since for every A ✓ B ✓ C, f(A)  f(B).
That is, adding more communities to a set cannot
decrease the numerators; i.e., total normality, number
of covered nodes and number of covered attributes.

iii. and submodular; since for every A ✓ B ✓ C and
C 2 C\B, f(A[ {C})� f(A) � f(B [ {C})� f(B) .
That is, adding a community C to a smaller set can
increase the function value at least as much as adding
it to its superset. Specifically, C 2 C\B would increase
the total normality equally for A and B due to the ad-
ditive definition, but can increase the node and attribute
coverage more for A than B since B already covers at
least the same nodes and attributes as A.

The greedy algorithm by Nemhauser et al. [39] starts with
empty set S0. In iteration k, it adds the element (in our case,
community) that maximizes the incremental improvement in
function value �

f
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In other words, the simple greedy search heuristic achieves
at least 63% of the objective value of the optimum set.

The figure below illustrates the results achieved by our
subset selection algorithm on one of the egonets for K = 5.
The (blue) circles show avg. normality, coverage, and diversity
values for various (↵,�, 1�↵��) triples, and the (red) star at
the corner depicts the highest values across all combinations.
Results around the “knee” of the surface formed by various
parameter combinations provide a good trade-off between the
quantities of interest; e.g., the (green) square.

We also run our summarization/subset selection algorithm
on the 125 communities extracted from the egonet of the stu-
dent with 220 friends from Fig. 1. For ease of 2-d illustration,
we set the weight on diversity to 0, in other words ↵+� = 1.
Fig. 4 shows the node coverage versus total normality3 for
various K = {5, 10, . . . , 30}, where symbols on each curve
depict the values for varying (↵, �) pairs.

Fig. 4. Total normality versus coverage for various K (different curves) and
varying (↵, �) weights for normality and coverage (corresponding to symbols
on each curve) as obtained by our subset selection algorithm.

Notice the “knee” in all the curves where coverage can only
be slightly increased for increasing � but normality decays
sharply as ↵ decreases. As such, points right around the “knee”
provide a good trade-off between coverage and normality. For
K = 5, the summary at the “knee” corresponds to ↵ = � =

0.5 and includes the following communities:

size |C| normality N(C) focus attribute A(C)

1 10 0.9510 dorm

2 15 0.8207 dorm

3 22 0.8275 major

4 53 0.7200 major

5 57 0.6754 gender

This summary is easy to comprehend by humans and repre-
sents more than 66% of the nodes in the egonetwork. Increas-
ing K does not quite improve the coverage of the summary
without compromising the average normality considerably.

C. Step 3. Interactive Visualization and Human-in-the-loop
Summarization

Step 3 ties the previous two components together, enabling
users to explore and interact with the output of the community
extraction and summarization steps. Specifically, we introduce
a new graphical interface (GI)4 for users to visualize the
communities from Step 1 (§III-A), build their own summaries
by interactively exploring and selecting communities, as well
as analyze algorithmic summaries for various K, ↵, and �
from Step 2 (§III-B). We describe the design ideas for the
three main components of our GI as follows.

3In subset selection we use the average normality, however, we plot the
(unnormalized) total normality to avoid overplotting curves for different K.

4Designed and developed in Tableau, www.tableau.com
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(a) edge & node views of an attributed graph (b) graph layout visualization (c) community view

Fig. 1. Sensemaking of attributed graphs is challenging with traditional means. (a) Table view for edge relations and node attributes—does not provide much
insight, (b) Graph visualization with layout algorithm—a “hairball” (!), and (c) Community view—there are too many, possibly overlapping and potentially
redundant communities of varying quality that do not provide a succinct summary of the network. (size: proportional to number of community members,
color: representative/characterizing attribute (e.g., high school), numbers inside circles: quality score, see §III).

we deconstruct the network into its building blocks, i.e. com-
munities (or social circles1) of various characteristics such as
college friends, co-workers, etc. We then design an interactive
interface that enables users to efficiently explore, characterize,
and build various alternative summaries of the network via
a few essential communities that make up its backbone. Our
main contributions are as follows:

1) We introduce a new community extraction approach
for attributed graphs, to decompose an input network
into the social circles that its nodes form. Our goal is to
enable the user to view the network in alternative ways,
therefore, we extract a list of overlapping and nested
communities of varying size, quality, and characteristics.

2) We next formulate a summarization task with a multi-
criteria objective, which automatically selects a subset of
the communities that (i) cover the entire graph well, are
(ii) high quality and (iii) diverse in their characteristics.
Users get to adjust which aspect of the summarization
they want to focus on: coverage, quality, or diversity; to
obtain various alternative summaries.

3) We also design and build an interactive visualization
interface that presents the communities to a user in an
interpretable, user-friendly fashion. The user can explore
all the communities (from step 1), and interactively de-
vise their own characterizing summaries. Users can also
collaborate with the machine, where they can analyze
various algorithm-generated summaries (from step 2)
and build on them to devise new alternatives.

4) Our data and code are open-sourced at https://www.
dropbox.com/home/Public/nansense for reproducibility
and future research.

Our work differs from prior work in multiple key aspects. It
is one of few work on sensemaking of attributed networks. Our
emphasis is on communities and yet we do not solely propose
a community extraction algorithm. We seek concise, repre-
sentative summaries of the communities, and aim to facilitate
alternative summaries of the network for exploratory tasks.
We further introduce an interactive system for end-users to
analyze the communities, explore and build summaries. While
there exist disjoint related effort (in community extraction,

1Words {community, social circle, cluster} are used interchangeably in text.

summarization, and interactive visualization), none of those
works attempt to build a single framework that unify all three
tasks. NANSENSE is unique in being a concerted effort that
provides an end-to-end analytics approach to sensemaking of
node-attributed networks.

II. DATA AND OVERVIEW

A. Data Description
A direct realization of attributed social networks is the

Facebook networks of 100 colleges and universities from
September 2005, first studied in [38]. These networks include
only the intra-school friendship links.

The school networks are attributed; in which nodes exhibit
7 categorical attributes: student/faculty flag, gender,

major, 2nd major/minor (if applicable), dorm,

graduation year, high school.
The number of nodes among the networks range from

769 to 41554, and edges from 16656 to 1590655. In our
experiments, we consider one particular university, with 6637
students/faculty and 249967 undirected friendship edges. Fur-
ther, we focus on the individual egonetworks, defined per node
as its direct neighbors and all the connections among them.
Average number of nodes per egonetwork in this graph is 75.3,
with the largest one containing 840 nodes.

Our goal is to characterize the egonetwork of a given node
to make sense of the kind of social circles s/he lives in.

B. A 10K-Feet View
Before we dive into the details of the inner-workings of

our approach, we illustrate the end-product in Figure 2, which
shows the interactive exploration and visualization interface
presented to a user. It contains three main panels, the filtering
panel (left), the community exploration panel (middle), and
algorithmic-summary panel (right).

Middle panel is the primary community exploration view,
which shows all the social circles of an input egonetwork
identified by our community extraction algorithm. In this view
social circles are shown with circles, with size proportional to
the number of nodes they contain. Color indicates the primary
attribute that characterizes a circle (e.g., major), referred as the
focus attribute [32]. Circles are positioned in 2-d such that the
more they overlap, the closer they are placed to each other.

Overview 

Fig. 2. Main interactive visualization interface with 3 panels: (middle) Community Exploration, (left) Filtering, and (right) Algorithmic Summary.

This helps the user to quickly identify overlapping/redundant
ones, as well as observe the distribution of social circles by
size and characterizing attributes. Hovering over each circle
displays (on-demand) its size, list of members, as well as its
quality (a score named normality, see §III).

Left panel is for filtering, where the user can selectively
view in the middle panel only the circles of certain focus
attribute(s), size(s), and those within certain quality range.

Right and the final panel is the summary view, which
displays K circles as selected by our summarization algorithm
such that a weighted combination of circle quality, network
coverage, and attribute diversity is maximized. K and the
respective weights for those quantities are input by the user
(top right). Average normality, egonet coverage, and attribute
diversity of the summary is displayed (bottom right). The user
can also devise their own summary by selecting (through a
click) the circles they would like to include in the summary,
and can use the algorithmic summary for guidance. This
enables users to explore and build alternative summaries.

III. SENSEMAKING OF NODE-ATTRIBUTED NETWORKS

NANSENSE consists of the three main steps below. We
present the details of each step in the following subsections.

1) Deconstruction, or extraction of overlapping attributed
communities;

2) Summarization, or selecting a subset of representative
communities that are high quality, diverse in their at-
tributes, and cover the input graph well;

3) Interactive Visualization, or presenting the user with
a concise list and summary of communities, and help
them explore and interact with all other communities
and devise alternative summaries.

A. Step 1. Deconstruction
Our goal is to follow a divide-and-conquer approach to

summarizing large graphs. As such, we will aim to decompose
a given network into its building blocks. For social networks,
the building blocks are the communities, or the social circles.

1) Quantifying Community Quality: In this work we
adopt a measure of quality for attributed communities, called
normality [32], which enables us (1) to extract communities
from the input graph independently in parallel using local
search algorithms, and (2) rank attributes by their contribution
to the quality of each community.

For an attributed graph G = (V, E ,A), with n nodes in V ,
m edges in E , d node-attributes in A, and adjacency matrix
A where A

ij

= 1 8(i, j) 2 E and 0 o.w., let C denote a
community or circle (subset of nodes) in G. We denote by B
the set of boundary nodes, which reside outside the circle but
have at least one edge to some node in C. The normality score
for a given community C is defined as
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weighted dot product similarity between two nodes. Intuitively,
term (1) captures internal connectivity2 and attribute-similarity
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1) Exploratory and Interactive Summarization: Our first
challenge is to visualize all the extracted communities in a
fashion that can help the user to explore them and build their
own summary by selecting a representative subset effectively
and efficiently. For summarization purposes, the visualization
should help the user quickly grasp the size, normality, and the
focus attribute of each community. In addition, the amount
of overlap between the communities should be presented in
an effective way, since the user would want to avoid select-
ing largely overlapping communities in order to efficiently
increase the coverage with a few communities.

To this end, our idea is to visualize each community as a
circle in 2-d as shown in Fig. 5. Each circle is colored by its
focus attribute and circle size is proportional to community
size. Hovering over each circle displays the exact size, nor-
mality, and community members. Importantly, the higher the
overlap between two communities, the closer the center points
of corresponding circles are placed. We define the distance
between two communities C

k

and C
l

as
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and compute the R⇥R distances between all pairs of extracted
communities. Multi-Dimensional Scaling (MDS) is used to
find a 2-d embedding of the communities such that the pair-
wise distances as defined above are preserved in the Euclidean
space as much as possible. As such, largely overlapping as well
as nested communities are clustered in the display. The user
can then aim to select large circles that are spread out in the
2-d embedding in order to most effectively increase coverage.

Fig. 5 shows 7 (highlighted) circles selected by the user.
Each time a user selects (or de-selects) a circle to be included
in (or excluded from) the summary, quantities of interest—
normality, coverage, diversity—are displayed in (blue) bar
plots as in Fig. 7 (bottom left). Red vertical lines show the
values before the last selection; which, in the figure, increased
normality, decreased coverage, and did not change diversity.

Fig. 5. Community Exploration Panel. Users can view, select and de-select
circles for summarization, and be displayed the avg. normality, coverage, and
diversity of their current summary (best in color).

2) Filtering: While searching for circles to select for their
summary, the user may want to focus on communities with
certain properties. As such, we introduce a panel for filtering
communities by focus attribute, normality, and size, as shown
in Fig. 6. The user can click on the attribute names of interest,
use a horizontal slider to specify a range for normality, as well
as check/uncheck size values to display only the communities
that meet all specified criteria in the mid-panel (Fig. 5).

Fig. 6. Filtering (by attribute, normality, and size) Panel.

3) Algorithm-Guided Human-in-the-loop Summariza-
tion: Finally, we integrate a panel that enables the user to
display the output from our summarization algorithm. To do
so, the user enters their choice for K, and any two of the
weights for normality, coverage, and diversity from drop-down
lists (upon which the third remaining weight is automatically
set so that their sum is 1) as shown in Fig. 7 (top right). Upon
user input, K algorithm-selected circles are displayed to the
user in a separate plot (top left), along with the quantities of
interest (bottom right). This output is likely to guide the user
in revising their own summary (Fig. 5), toward an alternative
and/or better summary than the algorithm’s (w.r.t. objective
value, recall that the greedy algorithm is not exact).

Fig. 7. Algorithmic Summary Panel. Users (top right) input desired K and
weights for quantities of interets, and be displayed (top left) algorithm-selected
communities, and (bottom right) algorithmic summary results.
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Fig. 2. Main interactive visualization interface with 3 panels: (middle) Community Exploration, (left) Filtering, and (right) Algorithmic Summary.

This helps the user to quickly identify overlapping/redundant
ones, as well as observe the distribution of social circles by
size and characterizing attributes. Hovering over each circle
displays (on-demand) its size, list of members, as well as its
quality (a score named normality, see §III).

Left panel is for filtering, where the user can selectively
view in the middle panel only the circles of certain focus
attribute(s), size(s), and those within certain quality range.

Right and the final panel is the summary view, which
displays K circles as selected by our summarization algorithm
such that a weighted combination of circle quality, network
coverage, and attribute diversity is maximized. K and the
respective weights for those quantities are input by the user
(top right). Average normality, egonet coverage, and attribute
diversity of the summary is displayed (bottom right). The user
can also devise their own summary by selecting (through a
click) the circles they would like to include in the summary,
and can use the algorithmic summary for guidance. This
enables users to explore and build alternative summaries.

III. SENSEMAKING OF NODE-ATTRIBUTED NETWORKS

NANSENSE consists of the three main steps below. We
present the details of each step in the following subsections.

1) Deconstruction, or extraction of overlapping attributed
communities;

2) Summarization, or selecting a subset of representative
communities that are high quality, diverse in their at-
tributes, and cover the input graph well;

3) Interactive Visualization, or presenting the user with
a concise list and summary of communities, and help
them explore and interact with all other communities
and devise alternative summaries.

A. Step 1. Deconstruction
Our goal is to follow a divide-and-conquer approach to

summarizing large graphs. As such, we will aim to decompose
a given network into its building blocks. For social networks,
the building blocks are the communities, or the social circles.

1) Quantifying Community Quality: In this work we
adopt a measure of quality for attributed communities, called
normality [32], which enables us (1) to extract communities
from the input graph independently in parallel using local
search algorithms, and (2) rank attributes by their contribution
to the quality of each community.

For an attributed graph G = (V, E ,A), with n nodes in V ,
m edges in E , d node-attributes in A, and adjacency matrix
A where A

ij

= 1 8(i, j) 2 E and 0 o.w., let C denote a
community or circle (subset of nodes) in G. We denote by B
the set of boundary nodes, which reside outside the circle but
have at least one edge to some node in C. The normality score
for a given community C is defined as

N(C) =
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is the degree and xi is the length-d = |A| attribute
vector of node i. simw(xi,xj) = w
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(xi � xj) defines a
weighted dot product similarity between two nodes. Intuitively,
term (1) captures internal connectivity2 and attribute-similarity
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1) Exploratory and Interactive Summarization: Our first
challenge is to visualize all the extracted communities in a
fashion that can help the user to explore them and build their
own summary by selecting a representative subset effectively
and efficiently. For summarization purposes, the visualization
should help the user quickly grasp the size, normality, and the
focus attribute of each community. In addition, the amount
of overlap between the communities should be presented in
an effective way, since the user would want to avoid select-
ing largely overlapping communities in order to efficiently
increase the coverage with a few communities.

To this end, our idea is to visualize each community as a
circle in 2-d as shown in Fig. 5. Each circle is colored by its
focus attribute and circle size is proportional to community
size. Hovering over each circle displays the exact size, nor-
mality, and community members. Importantly, the higher the
overlap between two communities, the closer the center points
of corresponding circles are placed. We define the distance
between two communities C
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and C
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as
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and compute the R⇥R distances between all pairs of extracted
communities. Multi-Dimensional Scaling (MDS) is used to
find a 2-d embedding of the communities such that the pair-
wise distances as defined above are preserved in the Euclidean
space as much as possible. As such, largely overlapping as well
as nested communities are clustered in the display. The user
can then aim to select large circles that are spread out in the
2-d embedding in order to most effectively increase coverage.

Fig. 5 shows 7 (highlighted) circles selected by the user.
Each time a user selects (or de-selects) a circle to be included
in (or excluded from) the summary, quantities of interest—
normality, coverage, diversity—are displayed in (blue) bar
plots as in Fig. 7 (bottom left). Red vertical lines show the
values before the last selection; which, in the figure, increased
normality, decreased coverage, and did not change diversity.

Fig. 5. Community Exploration Panel. Users can view, select and de-select
circles for summarization, and be displayed the avg. normality, coverage, and
diversity of their current summary (best in color).

2) Filtering: While searching for circles to select for their
summary, the user may want to focus on communities with
certain properties. As such, we introduce a panel for filtering
communities by focus attribute, normality, and size, as shown
in Fig. 6. The user can click on the attribute names of interest,
use a horizontal slider to specify a range for normality, as well
as check/uncheck size values to display only the communities
that meet all specified criteria in the mid-panel (Fig. 5).

Fig. 6. Filtering (by attribute, normality, and size) Panel.

3) Algorithm-Guided Human-in-the-loop Summariza-
tion: Finally, we integrate a panel that enables the user to
display the output from our summarization algorithm. To do
so, the user enters their choice for K, and any two of the
weights for normality, coverage, and diversity from drop-down
lists (upon which the third remaining weight is automatically
set so that their sum is 1) as shown in Fig. 7 (top right). Upon
user input, K algorithm-selected circles are displayed to the
user in a separate plot (top left), along with the quantities of
interest (bottom right). This output is likely to guide the user
in revising their own summary (Fig. 5), toward an alternative
and/or better summary than the algorithm’s (w.r.t. objective
value, recall that the greedy algorithm is not exact).

Fig. 7. Algorithmic Summary Panel. Users (top right) input desired K and
weights for quantities of interets, and be displayed (top left) algorithm-selected
communities, and (bottom right) algorithmic summary results.
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1) Exploratory and Interactive Summarization: Our first
challenge is to visualize all the extracted communities in a
fashion that can help the user to explore them and build their
own summary by selecting a representative subset effectively
and efficiently. For summarization purposes, the visualization
should help the user quickly grasp the size, normality, and the
focus attribute of each community. In addition, the amount
of overlap between the communities should be presented in
an effective way, since the user would want to avoid select-
ing largely overlapping communities in order to efficiently
increase the coverage with a few communities.

To this end, our idea is to visualize each community as a
circle in 2-d as shown in Fig. 5. Each circle is colored by its
focus attribute and circle size is proportional to community
size. Hovering over each circle displays the exact size, nor-
mality, and community members. Importantly, the higher the
overlap between two communities, the closer the center points
of corresponding circles are placed. We define the distance
between two communities C
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and compute the R⇥R distances between all pairs of extracted
communities. Multi-Dimensional Scaling (MDS) is used to
find a 2-d embedding of the communities such that the pair-
wise distances as defined above are preserved in the Euclidean
space as much as possible. As such, largely overlapping as well
as nested communities are clustered in the display. The user
can then aim to select large circles that are spread out in the
2-d embedding in order to most effectively increase coverage.

Fig. 5 shows 7 (highlighted) circles selected by the user.
Each time a user selects (or de-selects) a circle to be included
in (or excluded from) the summary, quantities of interest—
normality, coverage, diversity—are displayed in (blue) bar
plots as in Fig. 7 (bottom left). Red vertical lines show the
values before the last selection; which, in the figure, increased
normality, decreased coverage, and did not change diversity.

Fig. 5. Community Exploration Panel. Users can view, select and de-select
circles for summarization, and be displayed the avg. normality, coverage, and
diversity of their current summary (best in color).

2) Filtering: While searching for circles to select for their
summary, the user may want to focus on communities with
certain properties. As such, we introduce a panel for filtering
communities by focus attribute, normality, and size, as shown
in Fig. 6. The user can click on the attribute names of interest,
use a horizontal slider to specify a range for normality, as well
as check/uncheck size values to display only the communities
that meet all specified criteria in the mid-panel (Fig. 5).

Fig. 6. Filtering (by attribute, normality, and size) Panel.

3) Algorithm-Guided Human-in-the-loop Summariza-
tion: Finally, we integrate a panel that enables the user to
display the output from our summarization algorithm. To do
so, the user enters their choice for K, and any two of the
weights for normality, coverage, and diversity from drop-down
lists (upon which the third remaining weight is automatically
set so that their sum is 1) as shown in Fig. 7 (top right). Upon
user input, K algorithm-selected circles are displayed to the
user in a separate plot (top left), along with the quantities of
interest (bottom right). This output is likely to guide the user
in revising their own summary (Fig. 5), toward an alternative
and/or better summary than the algorithm’s (w.r.t. objective
value, recall that the greedy algorithm is not exact).

Fig. 7. Algorithmic Summary Panel. Users (top right) input desired K and
weights for quantities of interets, and be displayed (top left) algorithm-selected
communities, and (bottom right) algorithmic summary results.

1) Exploratory and Interactive Summarization: Our first
challenge is to visualize all the extracted communities in a
fashion that can help the user to explore them and build their
own summary by selecting a representative subset effectively
and efficiently. For summarization purposes, the visualization
should help the user quickly grasp the size, normality, and the
focus attribute of each community. In addition, the amount
of overlap between the communities should be presented in
an effective way, since the user would want to avoid select-
ing largely overlapping communities in order to efficiently
increase the coverage with a few communities.

To this end, our idea is to visualize each community as a
circle in 2-d as shown in Fig. 5. Each circle is colored by its
focus attribute and circle size is proportional to community
size. Hovering over each circle displays the exact size, nor-
mality, and community members. Importantly, the higher the
overlap between two communities, the closer the center points
of corresponding circles are placed. We define the distance
between two communities C
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and compute the R⇥R distances between all pairs of extracted
communities. Multi-Dimensional Scaling (MDS) is used to
find a 2-d embedding of the communities such that the pair-
wise distances as defined above are preserved in the Euclidean
space as much as possible. As such, largely overlapping as well
as nested communities are clustered in the display. The user
can then aim to select large circles that are spread out in the
2-d embedding in order to most effectively increase coverage.

Fig. 5 shows 7 (highlighted) circles selected by the user.
Each time a user selects (or de-selects) a circle to be included
in (or excluded from) the summary, quantities of interest—
normality, coverage, diversity—are displayed in (blue) bar
plots as in Fig. 7 (bottom left). Red vertical lines show the
values before the last selection; which, in the figure, increased
normality, decreased coverage, and did not change diversity.

Fig. 5. Community Exploration Panel. Users can view, select and de-select
circles for summarization, and be displayed the avg. normality, coverage, and
diversity of their current summary (best in color).

2) Filtering: While searching for circles to select for their
summary, the user may want to focus on communities with
certain properties. As such, we introduce a panel for filtering
communities by focus attribute, normality, and size, as shown
in Fig. 6. The user can click on the attribute names of interest,
use a horizontal slider to specify a range for normality, as well
as check/uncheck size values to display only the communities
that meet all specified criteria in the mid-panel (Fig. 5).

Fig. 6. Filtering (by attribute, normality, and size) Panel.

3) Algorithm-Guided Human-in-the-loop Summariza-
tion: Finally, we integrate a panel that enables the user to
display the output from our summarization algorithm. To do
so, the user enters their choice for K, and any two of the
weights for normality, coverage, and diversity from drop-down
lists (upon which the third remaining weight is automatically
set so that their sum is 1) as shown in Fig. 7 (top right). Upon
user input, K algorithm-selected circles are displayed to the
user in a separate plot (top left), along with the quantities of
interest (bottom right). This output is likely to guide the user
in revising their own summary (Fig. 5), toward an alternative
and/or better summary than the algorithm’s (w.r.t. objective
value, recall that the greedy algorithm is not exact).

Fig. 7. Algorithmic Summary Panel. Users (top right) input desired K and
weights for quantities of interets, and be displayed (top left) algorithm-selected
communities, and (bottom right) algorithmic summary results.
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Interaction: Circle summarization 

1) Exploratory and Interactive Summarization: Our first
challenge is to visualize all the extracted communities in a
fashion that can help the user to explore them and build their
own summary by selecting a representative subset effectively
and efficiently. For summarization purposes, the visualization
should help the user quickly grasp the size, normality, and the
focus attribute of each community. In addition, the amount
of overlap between the communities should be presented in
an effective way, since the user would want to avoid select-
ing largely overlapping communities in order to efficiently
increase the coverage with a few communities.

To this end, our idea is to visualize each community as a
circle in 2-d as shown in Fig. 5. Each circle is colored by its
focus attribute and circle size is proportional to community
size. Hovering over each circle displays the exact size, nor-
mality, and community members. Importantly, the higher the
overlap between two communities, the closer the center points
of corresponding circles are placed. We define the distance
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find a 2-d embedding of the communities such that the pair-
wise distances as defined above are preserved in the Euclidean
space as much as possible. As such, largely overlapping as well
as nested communities are clustered in the display. The user
can then aim to select large circles that are spread out in the
2-d embedding in order to most effectively increase coverage.

Fig. 5 shows 7 (highlighted) circles selected by the user.
Each time a user selects (or de-selects) a circle to be included
in (or excluded from) the summary, quantities of interest—
normality, coverage, diversity—are displayed in (blue) bar
plots as in Fig. 7 (bottom left). Red vertical lines show the
values before the last selection; which, in the figure, increased
normality, decreased coverage, and did not change diversity.
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diversity of their current summary (best in color).

2) Filtering: While searching for circles to select for their
summary, the user may want to focus on communities with
certain properties. As such, we introduce a panel for filtering
communities by focus attribute, normality, and size, as shown
in Fig. 6. The user can click on the attribute names of interest,
use a horizontal slider to specify a range for normality, as well
as check/uncheck size values to display only the communities
that meet all specified criteria in the mid-panel (Fig. 5).

Fig. 6. Filtering (by attribute, normality, and size) Panel.

3) Algorithm-Guided Human-in-the-loop Summariza-
tion: Finally, we integrate a panel that enables the user to
display the output from our summarization algorithm. To do
so, the user enters their choice for K, and any two of the
weights for normality, coverage, and diversity from drop-down
lists (upon which the third remaining weight is automatically
set so that their sum is 1) as shown in Fig. 7 (top right). Upon
user input, K algorithm-selected circles are displayed to the
user in a separate plot (top left), along with the quantities of
interest (bottom right). This output is likely to guide the user
in revising their own summary (Fig. 5), toward an alternative
and/or better summary than the algorithm’s (w.r.t. objective
value, recall that the greedy algorithm is not exact).

Fig. 7. Algorithmic Summary Panel. Users (top right) input desired K and
weights for quantities of interets, and be displayed (top left) algorithm-selected
communities, and (bottom right) algorithmic summary results.

1) Exploratory and Interactive Summarization: Our first
challenge is to visualize all the extracted communities in a
fashion that can help the user to explore them and build their
own summary by selecting a representative subset effectively
and efficiently. For summarization purposes, the visualization
should help the user quickly grasp the size, normality, and the
focus attribute of each community. In addition, the amount
of overlap between the communities should be presented in
an effective way, since the user would want to avoid select-
ing largely overlapping communities in order to efficiently
increase the coverage with a few communities.

To this end, our idea is to visualize each community as a
circle in 2-d as shown in Fig. 5. Each circle is colored by its
focus attribute and circle size is proportional to community
size. Hovering over each circle displays the exact size, nor-
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and compute the R⇥R distances between all pairs of extracted
communities. Multi-Dimensional Scaling (MDS) is used to
find a 2-d embedding of the communities such that the pair-
wise distances as defined above are preserved in the Euclidean
space as much as possible. As such, largely overlapping as well
as nested communities are clustered in the display. The user
can then aim to select large circles that are spread out in the
2-d embedding in order to most effectively increase coverage.

Fig. 5 shows 7 (highlighted) circles selected by the user.
Each time a user selects (or de-selects) a circle to be included
in (or excluded from) the summary, quantities of interest—
normality, coverage, diversity—are displayed in (blue) bar
plots as in Fig. 7 (bottom left). Red vertical lines show the
values before the last selection; which, in the figure, increased
normality, decreased coverage, and did not change diversity.

Fig. 5. Community Exploration Panel. Users can view, select and de-select
circles for summarization, and be displayed the avg. normality, coverage, and
diversity of their current summary (best in color).

2) Filtering: While searching for circles to select for their
summary, the user may want to focus on communities with
certain properties. As such, we introduce a panel for filtering
communities by focus attribute, normality, and size, as shown
in Fig. 6. The user can click on the attribute names of interest,
use a horizontal slider to specify a range for normality, as well
as check/uncheck size values to display only the communities
that meet all specified criteria in the mid-panel (Fig. 5).

Fig. 6. Filtering (by attribute, normality, and size) Panel.

3) Algorithm-Guided Human-in-the-loop Summariza-
tion: Finally, we integrate a panel that enables the user to
display the output from our summarization algorithm. To do
so, the user enters their choice for K, and any two of the
weights for normality, coverage, and diversity from drop-down
lists (upon which the third remaining weight is automatically
set so that their sum is 1) as shown in Fig. 7 (top right). Upon
user input, K algorithm-selected circles are displayed to the
user in a separate plot (top left), along with the quantities of
interest (bottom right). This output is likely to guide the user
in revising their own summary (Fig. 5), toward an alternative
and/or better summary than the algorithm’s (w.r.t. objective
value, recall that the greedy algorithm is not exact).

Fig. 7. Algorithmic Summary Panel. Users (top right) input desired K and
weights for quantities of interets, and be displayed (top left) algorithm-selected
communities, and (bottom right) algorithmic summary results.
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Evaluation 

IV. USER STUDY

A. Experiment Setup
To evaluate the usability of our proposed approach in terms

of effectiveness (i.e., quality of summaries) and efficiency (i.e.,
time to summarize), we conduct a user study with 5 graduate
student participants. Each participant is to analyze commu-
nities from 5 different egonetworks (datasets D1, . . . ,D5),
with varying size n = {54, 106, 144, 208, 251}, and build a
representative summary containing K = {5, 10} communities.

The set-up is as follows. Each user is first shown Panels
1 and 2 in Fig. 2, Community Exploration and Filtering
panels respectively, and asked to interactively select K = 5

communities with a goal to achieve as high objective value as
possible while giving equal importance to normality, coverage,
and diversity (in other words, assuming ↵ = � =

1
3 ). Each

user is then asked to make K = 10 selections, keeping ↵ and
� same as before. Users are shown D1, . . . ,D5 consecutively
in the same order. We record the (1) avg. normality, coverage,
diversity achieved by respective summarization tasks, and (2)
time taken to construct each summary (in seconds) per user.

Next, the panels are cleared and datasets D1, . . . ,D5 are
shown to each user one by one once again, where this time
Panel 3 displaying the algorithm-generated summary is also
shown (for the corresponding dataset and K; ↵ = � =

1
3 ).

Each user is then asked to build an alternative summary to the
algorithm’s, ideally with equally-high objective value, where
they could use the algorithm output as guidance. Again, the
three quantities of interest as well as time-to-summarize are
recorded for each alternative summarization task.

Overall, we conduct 100 summarization tasks—using 5
participants ⇥ 5 datasets ⇥ 2 different K ⇥ 2 different settings
(with and without algorithmic guidance).

B. Experiment Results
Through our user study, we answer four main questions Q1

through Q4 that we present in this section.

Q1) Summarization by visual exploration. Does interac-
tive visualization help users construct effective sum-
maries, as compared to strawman baselines?

Our goal is to understand if the users can achieve high
values for normality, coverage, and diversity by using our
interactive interface to construct their summaries. For com-
parison, we consider two simple baselines; TopS and TopN,
which respectively select K communities with the largest size
and largest normality.

Fig. 8 shows the quantities achieved on average across users
for each dataset and (K) along with those by the baselines.
As expected, TopN achieves high normality but poor coverage
and TopS gives high coverage but inferior normality. The avg.
user finds a well-balanced trade-off between the quantities. In
Fig. 9, we show the objective value (weighted sum) achieved
under each setting and on average overall. The avg. user
outperforms TopS in all and TopN in most cases, with
28.7% and 10.8% relative improvement over these baselines
respectively on average (right-most bars).

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

D1"(5)" D1"(10)" D2"(5)" D2"(10)" D3"(5)" D3"(10)" D4"(5)" D4"(10)" D5"(5)" D5"(10)"

Normality*

Avg"User"(No"Guidance)" Baseline"(TopS)" Baseline"(TopN)"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"

D1"(5)" D1"(10)" D2"(5)" D2"(10)" D3"(5)" D3"(10)" D4"(5)" D4"(10)" D5"(5)" D5"(10)"

Coverage(

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"

D1"(5)" D1"(10)" D2"(5)" D2"(10)" D3"(5)" D3"(10)" D4"(5)" D4"(10)" D5"(5)" D5"(10)"

Diversity)

Fig. 8. Average user vs. strawman baselines. (from top to bottom) normality,
coverage, and diversity across summarization tasks <dataset>(K).

Q2) How close do the summaries by users without guidance

get to the algorithm results (in terms of normality,
coverage, diversity, and overall objective value)?

Next we aim to understand how the user outcomes compare
to those of our summarization algorithm. If the quantities of
interest are comparable to the algorithm’s, we would conclude
that the visual interface is quite useful to the users.

To this end, we compute 100q
user

q

algo

where q correspond to
individual quantities {N,C,D,O} for normality, coverage,
diversity, and overall objective value, respectively. The main
finding from Fig. 10 is that the users tend to put most emphasis
on coverage, and less on normality and diversity. On average,
users achieve 115.3% of algorithm’s coverage and ⇡80% of
the normality and coverage. Overall, they reach 85% of the
algorithm’s overall objective value.
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Fig. 10. Percentage normality, coverage, diversity, and overall objective value
of the algorithm’s as achieved by each user and the avg. user (avg’ed across
datasets and (K)).

Q3) Alternative summarization by algorithmic guidance.
How much guidance does our summarization algorithm
provide users to derive alternative summaries and im-
prove over their earlier results?
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Fig. 9. Objective values achieved by various approaches across summarization tasks <dataset>(K) for ↵ = � = 1
3 .

TABLE I
PERCENT % IMPROVEMENT IN OBJECTIVE VALUE BY EACH USER ON EACH DATA/TASK AFTER ALGORITHMIC GUIDANCE.

D1 (5) D1 (10) D2 (5) D2 (10) D3 (5) D3 (10) D4 (5) D4 (10) D5 (5) D5 (10)
User 1 112.59 156.44 99.53 114.31 129.89 130.58 92.20 106.17 170.86 121.08 123.37
User 2 91.79 118.14 87.56 102.86 99.19 112.31 92.66 100.00 107.39 117.97 102.99
User 3 101.60 112.95 101.30 120.73 140.15 101.75 85.78 96.60 199.57 142.96 120.34
User 4 103.98 104.18 100.85 140.65 103.76 105.94 116.86 124.73 110.13 109.13 112.02
User 5 117.61 124.02 102.70 129.06 169.17 117.77 105.06 106.17 113.34 109.65 119.45
Avg User 105.51 123.15 98.39 121.52 128.43 113.67 98.51 106.73 140.26 120.16 115.63

Next we investigate the effect of the algorithmic guid-
ance on user’s summarization behavior and performance. As
shown in Fig. 11, we find that the users tend to construct
alternative summaries with significantly higher normality and
diversity than before, and decrease their emphasis on coverage.
The guidance helps them obtain (alternative) summaries with
higher objective value, which are also nearly as good as the
algorithm’s on average (also see Fig. 9 per task).

Table I lists the percentage objective value of their earlier
results’ (without guidance) as achieved after algorithmic guid-
ance. That is, we compute 100 O

(after)
user

/O
(before)
user

, for each
user and the avg. user per summarization task. We find that
users improve their objective value by 102–124%, with an
average of 115.63% across tasks.
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Fig. 11. Comparison of users without and with algorithmic guidance to the
algorithm results (avg’ed across users and datasets (K).

Q4) Efficiency. How long does it take per user on average
to construct (i) a summary without guidance, and (ii)
alternative summary with guidance?

Finally we aim to understand how long users take to build
their summaries without guidance, and how their efficiency is
affected when they are presented with the algorithm results.

Fig. 12 shows that the avg. users spends anywhere from 2.5
to 5 minutes to build a summary without guidance. The longest
time is on D1 (K = 5), which is the very first dataset/task
presented to each user, which can be seen as the warm-up
period. Overall (AVG) is 3.8 minutes across tasks.
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Fig. 12. Time (in seconds) that an average user takes to construct a summary
without guidance (blue) and with algorithmic guidance (orange) on each
summarization task.

When algorithm results per task are also shown to the users,
their summarization time drops considerably, to around 3
minutes on average. This is mainly for two reasons. Obviously,
the users search for circles similar to those selected by the
algorithm. A less obvious reason is that the users consider the
algorithm results as upper bound, and stop as soon as they
build an alternative summary that yields close values (earlier,
when the users did not have a “bar” to reach, they were less
sure about when to stop).

Remarks. In summary, we find that our visualization
interface helps users to construct summaries effectively and
efficiently. Their summaries achieve a good trade-off between
the quantities of interest, and reach better objective values
than simple baselines. Without guidance, the users tend to
put most emphasis on coverage, which they tend to correct
for normality and diversity when they are provided with
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Evaluation 

IV. USER STUDY

A. Experiment Setup
To evaluate the usability of our proposed approach in terms

of effectiveness (i.e., quality of summaries) and efficiency (i.e.,
time to summarize), we conduct a user study with 5 graduate
student participants. Each participant is to analyze commu-
nities from 5 different egonetworks (datasets D1, . . . ,D5),
with varying size n = {54, 106, 144, 208, 251}, and build a
representative summary containing K = {5, 10} communities.

The set-up is as follows. Each user is first shown Panels
1 and 2 in Fig. 2, Community Exploration and Filtering
panels respectively, and asked to interactively select K = 5

communities with a goal to achieve as high objective value as
possible while giving equal importance to normality, coverage,
and diversity (in other words, assuming ↵ = � =

1
3 ). Each

user is then asked to make K = 10 selections, keeping ↵ and
� same as before. Users are shown D1, . . . ,D5 consecutively
in the same order. We record the (1) avg. normality, coverage,
diversity achieved by respective summarization tasks, and (2)
time taken to construct each summary (in seconds) per user.

Next, the panels are cleared and datasets D1, . . . ,D5 are
shown to each user one by one once again, where this time
Panel 3 displaying the algorithm-generated summary is also
shown (for the corresponding dataset and K; ↵ = � =

1
3 ).

Each user is then asked to build an alternative summary to the
algorithm’s, ideally with equally-high objective value, where
they could use the algorithm output as guidance. Again, the
three quantities of interest as well as time-to-summarize are
recorded for each alternative summarization task.

Overall, we conduct 100 summarization tasks—using 5
participants ⇥ 5 datasets ⇥ 2 different K ⇥ 2 different settings
(with and without algorithmic guidance).

B. Experiment Results
Through our user study, we answer four main questions Q1

through Q4 that we present in this section.

Q1) Summarization by visual exploration. Does interac-
tive visualization help users construct effective sum-
maries, as compared to strawman baselines?

Our goal is to understand if the users can achieve high
values for normality, coverage, and diversity by using our
interactive interface to construct their summaries. For com-
parison, we consider two simple baselines; TopS and TopN,
which respectively select K communities with the largest size
and largest normality.

Fig. 8 shows the quantities achieved on average across users
for each dataset and (K) along with those by the baselines.
As expected, TopN achieves high normality but poor coverage
and TopS gives high coverage but inferior normality. The avg.
user finds a well-balanced trade-off between the quantities. In
Fig. 9, we show the objective value (weighted sum) achieved
under each setting and on average overall. The avg. user
outperforms TopS in all and TopN in most cases, with
28.7% and 10.8% relative improvement over these baselines
respectively on average (right-most bars).
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Fig. 8. Average user vs. strawman baselines. (from top to bottom) normality,
coverage, and diversity across summarization tasks <dataset>(K).

Q2) How close do the summaries by users without guidance

get to the algorithm results (in terms of normality,
coverage, diversity, and overall objective value)?

Next we aim to understand how the user outcomes compare
to those of our summarization algorithm. If the quantities of
interest are comparable to the algorithm’s, we would conclude
that the visual interface is quite useful to the users.

To this end, we compute 100q
user

q

algo

where q correspond to
individual quantities {N,C,D,O} for normality, coverage,
diversity, and overall objective value, respectively. The main
finding from Fig. 10 is that the users tend to put most emphasis
on coverage, and less on normality and diversity. On average,
users achieve 115.3% of algorithm’s coverage and ⇡80% of
the normality and coverage. Overall, they reach 85% of the
algorithm’s overall objective value.
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of the algorithm’s as achieved by each user and the avg. user (avg’ed across
datasets and (K)).

Q3) Alternative summarization by algorithmic guidance.
How much guidance does our summarization algorithm
provide users to derive alternative summaries and im-
prove over their earlier results?

IV. USER STUDY

A. Experiment Setup
To evaluate the usability of our proposed approach in terms

of effectiveness (i.e., quality of summaries) and efficiency (i.e.,
time to summarize), we conduct a user study with 5 graduate
student participants. Each participant is to analyze commu-
nities from 5 different egonetworks (datasets D1, . . . ,D5),
with varying size n = {54, 106, 144, 208, 251}, and build a
representative summary containing K = {5, 10} communities.

The set-up is as follows. Each user is first shown Panels
1 and 2 in Fig. 2, Community Exploration and Filtering
panels respectively, and asked to interactively select K = 5

communities with a goal to achieve as high objective value as
possible while giving equal importance to normality, coverage,
and diversity (in other words, assuming ↵ = � =

1
3 ). Each

user is then asked to make K = 10 selections, keeping ↵ and
� same as before. Users are shown D1, . . . ,D5 consecutively
in the same order. We record the (1) avg. normality, coverage,
diversity achieved by respective summarization tasks, and (2)
time taken to construct each summary (in seconds) per user.

Next, the panels are cleared and datasets D1, . . . ,D5 are
shown to each user one by one once again, where this time
Panel 3 displaying the algorithm-generated summary is also
shown (for the corresponding dataset and K; ↵ = � =

1
3 ).

Each user is then asked to build an alternative summary to the
algorithm’s, ideally with equally-high objective value, where
they could use the algorithm output as guidance. Again, the
three quantities of interest as well as time-to-summarize are
recorded for each alternative summarization task.

Overall, we conduct 100 summarization tasks—using 5
participants ⇥ 5 datasets ⇥ 2 different K ⇥ 2 different settings
(with and without algorithmic guidance).

B. Experiment Results
Through our user study, we answer four main questions Q1

through Q4 that we present in this section.

Q1) Summarization by visual exploration. Does interac-
tive visualization help users construct effective sum-
maries, as compared to strawman baselines?

Our goal is to understand if the users can achieve high
values for normality, coverage, and diversity by using our
interactive interface to construct their summaries. For com-
parison, we consider two simple baselines; TopS and TopN,
which respectively select K communities with the largest size
and largest normality.

Fig. 8 shows the quantities achieved on average across users
for each dataset and (K) along with those by the baselines.
As expected, TopN achieves high normality but poor coverage
and TopS gives high coverage but inferior normality. The avg.
user finds a well-balanced trade-off between the quantities. In
Fig. 9, we show the objective value (weighted sum) achieved
under each setting and on average overall. The avg. user
outperforms TopS in all and TopN in most cases, with
28.7% and 10.8% relative improvement over these baselines
respectively on average (right-most bars).
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Fig. 8. Average user vs. strawman baselines. (from top to bottom) normality,
coverage, and diversity across summarization tasks <dataset>(K).

Q2) How close do the summaries by users without guidance

get to the algorithm results (in terms of normality,
coverage, diversity, and overall objective value)?

Next we aim to understand how the user outcomes compare
to those of our summarization algorithm. If the quantities of
interest are comparable to the algorithm’s, we would conclude
that the visual interface is quite useful to the users.

To this end, we compute 100q
user

q

algo

where q correspond to
individual quantities {N,C,D,O} for normality, coverage,
diversity, and overall objective value, respectively. The main
finding from Fig. 10 is that the users tend to put most emphasis
on coverage, and less on normality and diversity. On average,
users achieve 115.3% of algorithm’s coverage and ⇡80% of
the normality and coverage. Overall, they reach 85% of the
algorithm’s overall objective value.
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Fig. 10. Percentage normality, coverage, diversity, and overall objective value
of the algorithm’s as achieved by each user and the avg. user (avg’ed across
datasets and (K)).

Q3) Alternative summarization by algorithmic guidance.
How much guidance does our summarization algorithm
provide users to derive alternative summaries and im-
prove over their earlier results?
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TABLE I
PERCENT % IMPROVEMENT IN OBJECTIVE VALUE BY EACH USER ON EACH DATA/TASK AFTER ALGORITHMIC GUIDANCE.

D1 (5) D1 (10) D2 (5) D2 (10) D3 (5) D3 (10) D4 (5) D4 (10) D5 (5) D5 (10)
User 1 112.59 156.44 99.53 114.31 129.89 130.58 92.20 106.17 170.86 121.08 123.37
User 2 91.79 118.14 87.56 102.86 99.19 112.31 92.66 100.00 107.39 117.97 102.99
User 3 101.60 112.95 101.30 120.73 140.15 101.75 85.78 96.60 199.57 142.96 120.34
User 4 103.98 104.18 100.85 140.65 103.76 105.94 116.86 124.73 110.13 109.13 112.02
User 5 117.61 124.02 102.70 129.06 169.17 117.77 105.06 106.17 113.34 109.65 119.45
Avg User 105.51 123.15 98.39 121.52 128.43 113.67 98.51 106.73 140.26 120.16 115.63

Next we investigate the effect of the algorithmic guid-
ance on user’s summarization behavior and performance. As
shown in Fig. 11, we find that the users tend to construct
alternative summaries with significantly higher normality and
diversity than before, and decrease their emphasis on coverage.
The guidance helps them obtain (alternative) summaries with
higher objective value, which are also nearly as good as the
algorithm’s on average (also see Fig. 9 per task).

Table I lists the percentage objective value of their earlier
results’ (without guidance) as achieved after algorithmic guid-
ance. That is, we compute 100 O

(after)
user

/O
(before)
user

, for each
user and the avg. user per summarization task. We find that
users improve their objective value by 102–124%, with an
average of 115.63% across tasks.
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Fig. 11. Comparison of users without and with algorithmic guidance to the
algorithm results (avg’ed across users and datasets (K).

Q4) Efficiency. How long does it take per user on average
to construct (i) a summary without guidance, and (ii)
alternative summary with guidance?

Finally we aim to understand how long users take to build
their summaries without guidance, and how their efficiency is
affected when they are presented with the algorithm results.

Fig. 12 shows that the avg. users spends anywhere from 2.5
to 5 minutes to build a summary without guidance. The longest
time is on D1 (K = 5), which is the very first dataset/task
presented to each user, which can be seen as the warm-up
period. Overall (AVG) is 3.8 minutes across tasks.
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Fig. 12. Time (in seconds) that an average user takes to construct a summary
without guidance (blue) and with algorithmic guidance (orange) on each
summarization task.

When algorithm results per task are also shown to the users,
their summarization time drops considerably, to around 3
minutes on average. This is mainly for two reasons. Obviously,
the users search for circles similar to those selected by the
algorithm. A less obvious reason is that the users consider the
algorithm results as upper bound, and stop as soon as they
build an alternative summary that yields close values (earlier,
when the users did not have a “bar” to reach, they were less
sure about when to stop).

Remarks. In summary, we find that our visualization
interface helps users to construct summaries effectively and
efficiently. Their summaries achieve a good trade-off between
the quantities of interest, and reach better objective values
than simple baselines. Without guidance, the users tend to
put most emphasis on coverage, which they tend to correct
for normality and diversity when they are provided with
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User 1 112.59 156.44 99.53 114.31 129.89 130.58 92.20 106.17 170.86 121.08 123.37
User 2 91.79 118.14 87.56 102.86 99.19 112.31 92.66 100.00 107.39 117.97 102.99
User 3 101.60 112.95 101.30 120.73 140.15 101.75 85.78 96.60 199.57 142.96 120.34
User 4 103.98 104.18 100.85 140.65 103.76 105.94 116.86 124.73 110.13 109.13 112.02
User 5 117.61 124.02 102.70 129.06 169.17 117.77 105.06 106.17 113.34 109.65 119.45
Avg User 105.51 123.15 98.39 121.52 128.43 113.67 98.51 106.73 140.26 120.16 115.63

Next we investigate the effect of the algorithmic guid-
ance on user’s summarization behavior and performance. As
shown in Fig. 11, we find that the users tend to construct
alternative summaries with significantly higher normality and
diversity than before, and decrease their emphasis on coverage.
The guidance helps them obtain (alternative) summaries with
higher objective value, which are also nearly as good as the
algorithm’s on average (also see Fig. 9 per task).

Table I lists the percentage objective value of their earlier
results’ (without guidance) as achieved after algorithmic guid-
ance. That is, we compute 100 O

(after)
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/O
(before)
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, for each
user and the avg. user per summarization task. We find that
users improve their objective value by 102–124%, with an
average of 115.63% across tasks.

0"

0.2"

0.4"

0.6"

0.8"

1"

Normality" Coverage" Diversity" Objec<ve"Value"

User%(w/out%&%with%guidance)%vs.%algorithm%

No"Guidance" With"Guidance" Algo."

Fig. 11. Comparison of users without and with algorithmic guidance to the
algorithm results (avg’ed across users and datasets (K).

Q4) Efficiency. How long does it take per user on average
to construct (i) a summary without guidance, and (ii)
alternative summary with guidance?

Finally we aim to understand how long users take to build
their summaries without guidance, and how their efficiency is
affected when they are presented with the algorithm results.

Fig. 12 shows that the avg. users spends anywhere from 2.5
to 5 minutes to build a summary without guidance. The longest
time is on D1 (K = 5), which is the very first dataset/task
presented to each user, which can be seen as the warm-up
period. Overall (AVG) is 3.8 minutes across tasks.
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When algorithm results per task are also shown to the users,
their summarization time drops considerably, to around 3
minutes on average. This is mainly for two reasons. Obviously,
the users search for circles similar to those selected by the
algorithm. A less obvious reason is that the users consider the
algorithm results as upper bound, and stop as soon as they
build an alternative summary that yields close values (earlier,
when the users did not have a “bar” to reach, they were less
sure about when to stop).

Remarks. In summary, we find that our visualization
interface helps users to construct summaries effectively and
efficiently. Their summaries achieve a good trade-off between
the quantities of interest, and reach better objective values
than simple baselines. Without guidance, the users tend to
put most emphasis on coverage, which they tend to correct
for normality and diversity when they are provided with
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D1 (5) D1 (10) D2 (5) D2 (10) D3 (5) D3 (10) D4 (5) D4 (10) D5 (5) D5 (10)
User 1 112.59 156.44 99.53 114.31 129.89 130.58 92.20 106.17 170.86 121.08 123.37
User 2 91.79 118.14 87.56 102.86 99.19 112.31 92.66 100.00 107.39 117.97 102.99
User 3 101.60 112.95 101.30 120.73 140.15 101.75 85.78 96.60 199.57 142.96 120.34
User 4 103.98 104.18 100.85 140.65 103.76 105.94 116.86 124.73 110.13 109.13 112.02
User 5 117.61 124.02 102.70 129.06 169.17 117.77 105.06 106.17 113.34 109.65 119.45
Avg User 105.51 123.15 98.39 121.52 128.43 113.67 98.51 106.73 140.26 120.16 115.63

Next we investigate the effect of the algorithmic guid-
ance on user’s summarization behavior and performance. As
shown in Fig. 11, we find that the users tend to construct
alternative summaries with significantly higher normality and
diversity than before, and decrease their emphasis on coverage.
The guidance helps them obtain (alternative) summaries with
higher objective value, which are also nearly as good as the
algorithm’s on average (also see Fig. 9 per task).

Table I lists the percentage objective value of their earlier
results’ (without guidance) as achieved after algorithmic guid-
ance. That is, we compute 100 O

(after)
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user

, for each
user and the avg. user per summarization task. We find that
users improve their objective value by 102–124%, with an
average of 115.63% across tasks.
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Fig. 11. Comparison of users without and with algorithmic guidance to the
algorithm results (avg’ed across users and datasets (K).

Q4) Efficiency. How long does it take per user on average
to construct (i) a summary without guidance, and (ii)
alternative summary with guidance?

Finally we aim to understand how long users take to build
their summaries without guidance, and how their efficiency is
affected when they are presented with the algorithm results.

Fig. 12 shows that the avg. users spends anywhere from 2.5
to 5 minutes to build a summary without guidance. The longest
time is on D1 (K = 5), which is the very first dataset/task
presented to each user, which can be seen as the warm-up
period. Overall (AVG) is 3.8 minutes across tasks.
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Fig. 12. Time (in seconds) that an average user takes to construct a summary
without guidance (blue) and with algorithmic guidance (orange) on each
summarization task.

When algorithm results per task are also shown to the users,
their summarization time drops considerably, to around 3
minutes on average. This is mainly for two reasons. Obviously,
the users search for circles similar to those selected by the
algorithm. A less obvious reason is that the users consider the
algorithm results as upper bound, and stop as soon as they
build an alternative summary that yields close values (earlier,
when the users did not have a “bar” to reach, they were less
sure about when to stop).

Remarks. In summary, we find that our visualization
interface helps users to construct summaries effectively and
efficiently. Their summaries achieve a good trade-off between
the quantities of interest, and reach better objective values
than simple baselines. Without guidance, the users tend to
put most emphasis on coverage, which they tend to correct
for normality and diversity when they are provided with

IV. USER STUDY

A. Experiment Setup
To evaluate the usability of our proposed approach in terms

of effectiveness (i.e., quality of summaries) and efficiency (i.e.,
time to summarize), we conduct a user study with 5 graduate
student participants. Each participant is to analyze commu-
nities from 5 different egonetworks (datasets D1, . . . ,D5),
with varying size n = {54, 106, 144, 208, 251}, and build a
representative summary containing K = {5, 10} communities.

The set-up is as follows. Each user is first shown Panels
1 and 2 in Fig. 2, Community Exploration and Filtering
panels respectively, and asked to interactively select K = 5

communities with a goal to achieve as high objective value as
possible while giving equal importance to normality, coverage,
and diversity (in other words, assuming ↵ = � =

1
3 ). Each

user is then asked to make K = 10 selections, keeping ↵ and
� same as before. Users are shown D1, . . . ,D5 consecutively
in the same order. We record the (1) avg. normality, coverage,
diversity achieved by respective summarization tasks, and (2)
time taken to construct each summary (in seconds) per user.

Next, the panels are cleared and datasets D1, . . . ,D5 are
shown to each user one by one once again, where this time
Panel 3 displaying the algorithm-generated summary is also
shown (for the corresponding dataset and K; ↵ = � =

1
3 ).

Each user is then asked to build an alternative summary to the
algorithm’s, ideally with equally-high objective value, where
they could use the algorithm output as guidance. Again, the
three quantities of interest as well as time-to-summarize are
recorded for each alternative summarization task.

Overall, we conduct 100 summarization tasks—using 5
participants ⇥ 5 datasets ⇥ 2 different K ⇥ 2 different settings
(with and without algorithmic guidance).

B. Experiment Results
Through our user study, we answer four main questions Q1

through Q4 that we present in this section.

Q1) Summarization by visual exploration. Does interac-
tive visualization help users construct effective sum-
maries, as compared to strawman baselines?

Our goal is to understand if the users can achieve high
values for normality, coverage, and diversity by using our
interactive interface to construct their summaries. For com-
parison, we consider two simple baselines; TopS and TopN,
which respectively select K communities with the largest size
and largest normality.

Fig. 8 shows the quantities achieved on average across users
for each dataset and (K) along with those by the baselines.
As expected, TopN achieves high normality but poor coverage
and TopS gives high coverage but inferior normality. The avg.
user finds a well-balanced trade-off between the quantities. In
Fig. 9, we show the objective value (weighted sum) achieved
under each setting and on average overall. The avg. user
outperforms TopS in all and TopN in most cases, with
28.7% and 10.8% relative improvement over these baselines
respectively on average (right-most bars).
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Fig. 8. Average user vs. strawman baselines. (from top to bottom) normality,
coverage, and diversity across summarization tasks <dataset>(K).

Q2) How close do the summaries by users without guidance

get to the algorithm results (in terms of normality,
coverage, diversity, and overall objective value)?

Next we aim to understand how the user outcomes compare
to those of our summarization algorithm. If the quantities of
interest are comparable to the algorithm’s, we would conclude
that the visual interface is quite useful to the users.

To this end, we compute 100q
user

q

algo

where q correspond to
individual quantities {N,C,D,O} for normality, coverage,
diversity, and overall objective value, respectively. The main
finding from Fig. 10 is that the users tend to put most emphasis
on coverage, and less on normality and diversity. On average,
users achieve 115.3% of algorithm’s coverage and ⇡80% of
the normality and coverage. Overall, they reach 85% of the
algorithm’s overall objective value.
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Fig. 10. Percentage normality, coverage, diversity, and overall objective value
of the algorithm’s as achieved by each user and the avg. user (avg’ed across
datasets and (K)).

Q3) Alternative summarization by algorithmic guidance.
How much guidance does our summarization algorithm
provide users to derive alternative summaries and im-
prove over their earlier results?
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Next we investigate the effect of the algorithmic guid-
ance on user’s summarization behavior and performance. As
shown in Fig. 11, we find that the users tend to construct
alternative summaries with significantly higher normality and
diversity than before, and decrease their emphasis on coverage.
The guidance helps them obtain (alternative) summaries with
higher objective value, which are also nearly as good as the
algorithm’s on average (also see Fig. 9 per task).

Table I lists the percentage objective value of their earlier
results’ (without guidance) as achieved after algorithmic guid-
ance. That is, we compute 100 O

(after)
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, for each
user and the avg. user per summarization task. We find that
users improve their objective value by 102–124%, with an
average of 115.63% across tasks.
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Q4) Efficiency. How long does it take per user on average
to construct (i) a summary without guidance, and (ii)
alternative summary with guidance?

Finally we aim to understand how long users take to build
their summaries without guidance, and how their efficiency is
affected when they are presented with the algorithm results.

Fig. 12 shows that the avg. users spends anywhere from 2.5
to 5 minutes to build a summary without guidance. The longest
time is on D1 (K = 5), which is the very first dataset/task
presented to each user, which can be seen as the warm-up
period. Overall (AVG) is 3.8 minutes across tasks.
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without guidance (blue) and with algorithmic guidance (orange) on each
summarization task.

When algorithm results per task are also shown to the users,
their summarization time drops considerably, to around 3
minutes on average. This is mainly for two reasons. Obviously,
the users search for circles similar to those selected by the
algorithm. A less obvious reason is that the users consider the
algorithm results as upper bound, and stop as soon as they
build an alternative summary that yields close values (earlier,
when the users did not have a “bar” to reach, they were less
sure about when to stop).

Remarks. In summary, we find that our visualization
interface helps users to construct summaries effectively and
efficiently. Their summaries achieve a good trade-off between
the quantities of interest, and reach better objective values
than simple baselines. Without guidance, the users tend to
put most emphasis on coverage, which they tend to correct
for normality and diversity when they are provided with
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TABLE I
PERCENT % IMPROVEMENT IN OBJECTIVE VALUE BY EACH USER ON EACH DATA/TASK AFTER ALGORITHMIC GUIDANCE.

D1 (5) D1 (10) D2 (5) D2 (10) D3 (5) D3 (10) D4 (5) D4 (10) D5 (5) D5 (10)
User 1 112.59 156.44 99.53 114.31 129.89 130.58 92.20 106.17 170.86 121.08 123.37
User 2 91.79 118.14 87.56 102.86 99.19 112.31 92.66 100.00 107.39 117.97 102.99
User 3 101.60 112.95 101.30 120.73 140.15 101.75 85.78 96.60 199.57 142.96 120.34
User 4 103.98 104.18 100.85 140.65 103.76 105.94 116.86 124.73 110.13 109.13 112.02
User 5 117.61 124.02 102.70 129.06 169.17 117.77 105.06 106.17 113.34 109.65 119.45
Avg User 105.51 123.15 98.39 121.52 128.43 113.67 98.51 106.73 140.26 120.16 115.63

Next we investigate the effect of the algorithmic guid-
ance on user’s summarization behavior and performance. As
shown in Fig. 11, we find that the users tend to construct
alternative summaries with significantly higher normality and
diversity than before, and decrease their emphasis on coverage.
The guidance helps them obtain (alternative) summaries with
higher objective value, which are also nearly as good as the
algorithm’s on average (also see Fig. 9 per task).

Table I lists the percentage objective value of their earlier
results’ (without guidance) as achieved after algorithmic guid-
ance. That is, we compute 100 O

(after)
user

/O
(before)
user

, for each
user and the avg. user per summarization task. We find that
users improve their objective value by 102–124%, with an
average of 115.63% across tasks.
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Q4) Efficiency. How long does it take per user on average
to construct (i) a summary without guidance, and (ii)
alternative summary with guidance?

Finally we aim to understand how long users take to build
their summaries without guidance, and how their efficiency is
affected when they are presented with the algorithm results.

Fig. 12 shows that the avg. users spends anywhere from 2.5
to 5 minutes to build a summary without guidance. The longest
time is on D1 (K = 5), which is the very first dataset/task
presented to each user, which can be seen as the warm-up
period. Overall (AVG) is 3.8 minutes across tasks.
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When algorithm results per task are also shown to the users,
their summarization time drops considerably, to around 3
minutes on average. This is mainly for two reasons. Obviously,
the users search for circles similar to those selected by the
algorithm. A less obvious reason is that the users consider the
algorithm results as upper bound, and stop as soon as they
build an alternative summary that yields close values (earlier,
when the users did not have a “bar” to reach, they were less
sure about when to stop).

Remarks. In summary, we find that our visualization
interface helps users to construct summaries effectively and
efficiently. Their summaries achieve a good trade-off between
the quantities of interest, and reach better objective values
than simple baselines. Without guidance, the users tend to
put most emphasis on coverage, which they tend to correct
for normality and diversity when they are provided with
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n  Hypothesis: subgraphs from different classes 
exhibit different focus attributes
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Figure 1: Problem sketch on toy data. Given (b) node-attributed subgraphs (or (a) nodes around which we extract subgraphs)
from di↵erent classes (A and B), we find (c) the characterizing subspace (i.e., the focus attributes and respective weights) for
each subgraph, and (d) split and rank the attributes for characterizing and comparing the classes.

A vast body of methods for community detection has been
proposed for both simple [4, 8, 16, 26, 36] as well as at-
tributed graphs [2, 12, 13, 15, 23, 25, 28, 33, 37]. Those are
primarily concerned with extracting disjoint or overlapping
groups of nodes, while optimizing some graph clustering ob-
jective. Our problem is considerably di↵erent. Unlike them,
our goal is to understand the di↵erences between distinct
classes of subgraphs (or communities) through the attributes
that characterize them, not to extract better ones.

Similar studies have been done in characterizing and com-
paring the social media use of di↵erent classes of subjects.
For example, features from a user’s social media interactions
have been shown to predict demographic information such
as gender [5], age [31, 29], occupation [30], location [9, 18],
and income [10]. More nuanced traits have also been pre-
dicted about individuals, such as personality [32], or mental
illness [6]. However, these studies tend to focus solely on
text attributes and do not consider broader levels of social
interactions in a network.

A recent work in the same lines with ours is by DellaPosta
et al. [7], which studied network e↵ects for explaining how
political ideology becomes linked to lifestyles, such as “latte
liberals” and “bird-hunting conservatives”. Their simulated
models reveal strong indications for influences operating be-
tween individuals in political “echo chambers” rather than
within individuals, demonstrating evidence toward “one is
the company they keep”, i.e., that social ties matter.

In this work, we analyze the di↵erences between individu-
als from di↵erent classes. Unlike previous work which has fo-
cused primarily on the individual’s attributes (mostly text),
we use local communities around individual nodes in ad-
dition to attributes to characterize them. Specifically, our
contributions include the following:

• We introduce the general characterization problem for
a given collection of attributed subgraphs from di↵er-
ent classes—which leverages both the structure of so-
cial ties as well as the attributes. Our formulation
entails partitioning the attributes into as many groups
as the number of classes, while maximizing the total
attributed quality score of the input subgraphs (§3).

• We show that our attribute-to-class assignment prob-
lem is NP-hard and an optimal (1�1/e)-approximation
algorithm exists (§4.1). We also propose two di↵erent
faster heuristics that are linear-time in the number of
attributes and subgraphs (§4.2).

• Through extensive experiments, we compare the per-
formance of the algorithms, present findings that agree
with human intuition on real-world scenarios from 3
datasets, and demonstrate that our characterization

approach is better suited to sense-making than dis-
criminative classification approaches (§5).

2. PROBLEM DEFINITION
In this section, we introduce the notation used through-

out text and present the formal problem definition. An
attributed graph G = (V,E,A) is a graph with node set
V , undirected edges E ✓ V ⇥ V , and a set of attributes
A = {a1, . . . ad} associated with every node, where a

i

2 <

d

denotes the d-dimensional attribute vector for node i. In
this work we consider real-valued and binary attributes. A
categorical attribute can be transformed to binary through
one-hot encoding.
Given a collection of attributed subgraphs from c classes,

our aim is to split the attributes in A into c disjoint groups
such that the total quality score Q of all the subgraphs based
on function q(·) and their assigned attributes is maximized.
Here we use the normality measure [27] for q(·), which can
be replaced with any other measure of interest that can uti-
lize both graph structure and attributes in general.
Our problem statement is given for two classes as follows

for simplicity, which can be generalized to multiple classes.

Definition 1 (Characterization Problem).

Given

• p attributed subgraphs g+1 , g+2 , . . . , g+p from class 1,

• n attributed subgraphs g�1 , g�2 , . . . , g�n from class 2,
from graph G, and attribute vector a 2 <

d for each
node;

Find

• a partitioning of attributes to classes as A+ and A�,
where A+

[A� = A and A+
\A� = ;,

• focus attributes A+
i ✓ A+ (and respective weightsw+

i )
for each subgraph g+i , 8i, and

• focus attributes A�
j ✓ A� (and respective weightsw�

j )

for each subgraph g�j , 8j;

such that

• total quality Q of all subgraphs is maximized, where
Q =

Pp
i=1 q(g+i |A+) +

Pn
j=1 q(g�j |A�);

Rank attributes within A+ and A�.

The above problem contains three subproblems, in par-
ticular, (P1) how to measure the quality of an attributed
subgraph, (P2) how to find the focus attributes (and their
weights) of a given subgraph, and (P3) how to assign and
rank the attributes for di↵erent classes so as to maximize

(d)

assignment
& ranking

(c)

gA1

a1 a2 a3 a4 a5 a6

gA2

gA3

gB1

gB2

(b)

gA1 gA2 gA3

gB1 gB2

(a)

class A class B
a5

a6

a3

a4

a1

a2

characterizing subspaces

class A subgraphs

class B subgraphs

attributed graph

G

Figure 1: Problem sketch on toy data. Given (b) node-attributed subgraphs (or (a) nodes around which we extract subgraphs)
from di↵erent classes (A and B), we find (c) the characterizing subspace (i.e., the focus attributes and respective weights) for
each subgraph, and (d) split and rank the attributes for characterizing and comparing the classes.

A vast body of methods for community detection has been
proposed for both simple [4, 8, 16, 26, 36] as well as at-
tributed graphs [2, 12, 13, 15, 23, 25, 28, 33, 37]. Those are
primarily concerned with extracting disjoint or overlapping
groups of nodes, while optimizing some graph clustering ob-
jective. Our problem is considerably di↵erent. Unlike them,
our goal is to understand the di↵erences between distinct
classes of subgraphs (or communities) through the attributes
that characterize them, not to extract better ones.

Similar studies have been done in characterizing and com-
paring the social media use of di↵erent classes of subjects.
For example, features from a user’s social media interactions
have been shown to predict demographic information such
as gender [5], age [31, 29], occupation [30], location [9, 18],
and income [10]. More nuanced traits have also been pre-
dicted about individuals, such as personality [32], or mental
illness [6]. However, these studies tend to focus solely on
text attributes and do not consider broader levels of social
interactions in a network.

A recent work in the same lines with ours is by DellaPosta
et al. [7], which studied network e↵ects for explaining how
political ideology becomes linked to lifestyles, such as “latte
liberals” and “bird-hunting conservatives”. Their simulated
models reveal strong indications for influences operating be-
tween individuals in political “echo chambers” rather than
within individuals, demonstrating evidence toward “one is
the company they keep”, i.e., that social ties matter.

In this work, we analyze the di↵erences between individu-
als from di↵erent classes. Unlike previous work which has fo-
cused primarily on the individual’s attributes (mostly text),
we use local communities around individual nodes in ad-
dition to attributes to characterize them. Specifically, our
contributions include the following:

• We introduce the general characterization problem for
a given collection of attributed subgraphs from di↵er-
ent classes—which leverages both the structure of so-
cial ties as well as the attributes. Our formulation
entails partitioning the attributes into as many groups
as the number of classes, while maximizing the total
attributed quality score of the input subgraphs (§3).

• We show that our attribute-to-class assignment prob-
lem is NP-hard and an optimal (1�1/e)-approximation
algorithm exists (§4.1). We also propose two di↵erent
faster heuristics that are linear-time in the number of
attributes and subgraphs (§4.2).

• Through extensive experiments, we compare the per-
formance of the algorithms, present findings that agree
with human intuition on real-world scenarios from 3
datasets, and demonstrate that our characterization

approach is better suited to sense-making than dis-
criminative classification approaches (§5).

2. PROBLEM DEFINITION
In this section, we introduce the notation used through-

out text and present the formal problem definition. An
attributed graph G = (V,E,A) is a graph with node set
V , undirected edges E ✓ V ⇥ V , and a set of attributes
A = {a1, . . . ad} associated with every node, where a
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2 <
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denotes the d-dimensional attribute vector for node i. In
this work we consider real-valued and binary attributes. A
categorical attribute can be transformed to binary through
one-hot encoding.
Given a collection of attributed subgraphs from c classes,

our aim is to split the attributes in A into c disjoint groups
such that the total quality score Q of all the subgraphs based
on function q(·) and their assigned attributes is maximized.
Here we use the normality measure [27] for q(·), which can
be replaced with any other measure of interest that can uti-
lize both graph structure and attributes in general.
Our problem statement is given for two classes as follows

for simplicity, which can be generalized to multiple classes.

Definition 1 (Characterization Problem).

Given

• p attributed subgraphs g+1 , g+2 , . . . , g+p from class 1,

• n attributed subgraphs g�1 , g�2 , . . . , g�n from class 2,
from graph G, and attribute vector a 2 <

d for each
node;

Find

• a partitioning of attributes to classes as A+ and A�,
where A+
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• focus attributes A+
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for each subgraph g+i , 8i, and
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such that

• total quality Q of all subgraphs is maximized, where
Q =
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i=1 q(g+i |A+) +

Pn
j=1 q(g�j |A�);

Rank attributes within A+ and A�.

The above problem contains three subproblems, in par-
ticular, (P1) how to measure the quality of an attributed
subgraph, (P2) how to find the focus attributes (and their
weights) of a given subgraph, and (P3) how to assign and
rank the attributes for di↵erent classes so as to maximize
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Figure 1: Problem sketch on toy data. Given (b) node-attributed subgraphs (or (a) nodes around which we extract subgraphs)
from di↵erent classes (A and B), we find (c) the characterizing subspace (i.e., the focus attributes and respective weights) for
each subgraph, and (d) split and rank the attributes for characterizing and comparing the classes.

A vast body of methods for community detection has been
proposed for both simple [4, 8, 16, 26, 36] as well as at-
tributed graphs [2, 12, 13, 15, 23, 25, 28, 33, 37]. Those are
primarily concerned with extracting disjoint or overlapping
groups of nodes, while optimizing some graph clustering ob-
jective. Our problem is considerably di↵erent. Unlike them,
our goal is to understand the di↵erences between distinct
classes of subgraphs (or communities) through the attributes
that characterize them, not to extract better ones.

Similar studies have been done in characterizing and com-
paring the social media use of di↵erent classes of subjects.
For example, features from a user’s social media interactions
have been shown to predict demographic information such
as gender [5], age [31, 29], occupation [30], location [9, 18],
and income [10]. More nuanced traits have also been pre-
dicted about individuals, such as personality [32], or mental
illness [6]. However, these studies tend to focus solely on
text attributes and do not consider broader levels of social
interactions in a network.

A recent work in the same lines with ours is by DellaPosta
et al. [7], which studied network e↵ects for explaining how
political ideology becomes linked to lifestyles, such as “latte
liberals” and “bird-hunting conservatives”. Their simulated
models reveal strong indications for influences operating be-
tween individuals in political “echo chambers” rather than
within individuals, demonstrating evidence toward “one is
the company they keep”, i.e., that social ties matter.

In this work, we analyze the di↵erences between individu-
als from di↵erent classes. Unlike previous work which has fo-
cused primarily on the individual’s attributes (mostly text),
we use local communities around individual nodes in ad-
dition to attributes to characterize them. Specifically, our
contributions include the following:

• We introduce the general characterization problem for
a given collection of attributed subgraphs from di↵er-
ent classes—which leverages both the structure of so-
cial ties as well as the attributes. Our formulation
entails partitioning the attributes into as many groups
as the number of classes, while maximizing the total
attributed quality score of the input subgraphs (§3).

• We show that our attribute-to-class assignment prob-
lem is NP-hard and an optimal (1�1/e)-approximation
algorithm exists (§4.1). We also propose two di↵erent
faster heuristics that are linear-time in the number of
attributes and subgraphs (§4.2).

• Through extensive experiments, we compare the per-
formance of the algorithms, present findings that agree
with human intuition on real-world scenarios from 3
datasets, and demonstrate that our characterization

approach is better suited to sense-making than dis-
criminative classification approaches (§5).
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denotes the d-dimensional attribute vector for node i. In
this work we consider real-valued and binary attributes. A
categorical attribute can be transformed to binary through
one-hot encoding.
Given a collection of attributed subgraphs from c classes,

our aim is to split the attributes in A into c disjoint groups
such that the total quality score Q of all the subgraphs based
on function q(·) and their assigned attributes is maximized.
Here we use the normality measure [27] for q(·), which can
be replaced with any other measure of interest that can uti-
lize both graph structure and attributes in general.
Our problem statement is given for two classes as follows

for simplicity, which can be generalized to multiple classes.

Definition 1 (Characterization Problem).

Given

• p attributed subgraphs g+1 , g+2 , . . . , g+p from class 1,
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A vast body of methods for community detection has been
proposed for both simple [4, 8, 16, 26, 36] as well as at-
tributed graphs [2, 12, 13, 15, 23, 25, 28, 33, 37]. Those are
primarily concerned with extracting disjoint or overlapping
groups of nodes, while optimizing some graph clustering ob-
jective. Our problem is considerably di↵erent. Unlike them,
our goal is to understand the di↵erences between distinct
classes of subgraphs (or communities) through the attributes
that characterize them, not to extract better ones.

Similar studies have been done in characterizing and com-
paring the social media use of di↵erent classes of subjects.
For example, features from a user’s social media interactions
have been shown to predict demographic information such
as gender [5], age [31, 29], occupation [30], location [9, 18],
and income [10]. More nuanced traits have also been pre-
dicted about individuals, such as personality [32], or mental
illness [6]. However, these studies tend to focus solely on
text attributes and do not consider broader levels of social
interactions in a network.

A recent work in the same lines with ours is by DellaPosta
et al. [7], which studied network e↵ects for explaining how
political ideology becomes linked to lifestyles, such as “latte
liberals” and “bird-hunting conservatives”. Their simulated
models reveal strong indications for influences operating be-
tween individuals in political “echo chambers” rather than
within individuals, demonstrating evidence toward “one is
the company they keep”, i.e., that social ties matter.

In this work, we analyze the di↵erences between individu-
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we use local communities around individual nodes in ad-
dition to attributes to characterize them. Specifically, our
contributions include the following:

• We introduce the general characterization problem for
a given collection of attributed subgraphs from di↵er-
ent classes—which leverages both the structure of so-
cial ties as well as the attributes. Our formulation
entails partitioning the attributes into as many groups
as the number of classes, while maximizing the total
attributed quality score of the input subgraphs (§3).

• We show that our attribute-to-class assignment prob-
lem is NP-hard and an optimal (1�1/e)-approximation
algorithm exists (§4.1). We also propose two di↵erent
faster heuristics that are linear-time in the number of
attributes and subgraphs (§4.2).

• Through extensive experiments, we compare the per-
formance of the algorithms, present findings that agree
with human intuition on real-world scenarios from 3
datasets, and demonstrate that our characterization
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• n attributed subgraphs g�1 , g�2 , . . . , g�n from class 2,
from graph G, and attribute vector a 2 <

d for each
node;

Find

• a partitioning of attributes to classes as A+ and A�,
where A+

[A� = A and A+
\A� = ;,

• focus attributes A+
i ✓ A+ (and respective weightsw+

i )
for each subgraph g+i , 8i, and

• focus attributes A�
j ✓ A� (and respective weightsw�

j )

for each subgraph g�j , 8j;

such that

• total quality Q of all subgraphs is maximized, where
Q =

Pp
i=1 q(g+i |A+) +

Pn
j=1 q(g�j |A�);

Rank attributes within A+ and A�.

The above problem contains three subproblems, in par-
ticular, (P1) how to measure the quality of an attributed
subgraph, (P2) how to find the focus attributes (and their
weights) of a given subgraph, and (P3) how to assign and
rank the attributes for di↵erent classes so as to maximize
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Figure 1: Problem sketch on toy data. Given (b) node-attributed subgraphs (or (a) nodes around which we extract subgraphs)
from di↵erent classes (A and B), we find (c) the characterizing subspace (i.e., the focus attributes and respective weights) for
each subgraph, and (d) split and rank the attributes for characterizing and comparing the classes.

A vast body of methods for community detection has been
proposed for both simple [4, 8, 16, 26, 36] as well as at-
tributed graphs [2, 12, 13, 15, 23, 25, 28, 33, 37]. Those are
primarily concerned with extracting disjoint or overlapping
groups of nodes, while optimizing some graph clustering ob-
jective. Our problem is considerably di↵erent. Unlike them,
our goal is to understand the di↵erences between distinct
classes of subgraphs (or communities) through the attributes
that characterize them, not to extract better ones.

Similar studies have been done in characterizing and com-
paring the social media use of di↵erent classes of subjects.
For example, features from a user’s social media interactions
have been shown to predict demographic information such
as gender [5], age [31, 29], occupation [30], location [9, 18],
and income [10]. More nuanced traits have also been pre-
dicted about individuals, such as personality [32], or mental
illness [6]. However, these studies tend to focus solely on
text attributes and do not consider broader levels of social
interactions in a network.

A recent work in the same lines with ours is by DellaPosta
et al. [7], which studied network e↵ects for explaining how
political ideology becomes linked to lifestyles, such as “latte
liberals” and “bird-hunting conservatives”. Their simulated
models reveal strong indications for influences operating be-
tween individuals in political “echo chambers” rather than
within individuals, demonstrating evidence toward “one is
the company they keep”, i.e., that social ties matter.

In this work, we analyze the di↵erences between individu-
als from di↵erent classes. Unlike previous work which has fo-
cused primarily on the individual’s attributes (mostly text),
we use local communities around individual nodes in ad-
dition to attributes to characterize them. Specifically, our
contributions include the following:

• We introduce the general characterization problem for
a given collection of attributed subgraphs from di↵er-
ent classes—which leverages both the structure of so-
cial ties as well as the attributes. Our formulation
entails partitioning the attributes into as many groups
as the number of classes, while maximizing the total
attributed quality score of the input subgraphs (§3).

• We show that our attribute-to-class assignment prob-
lem is NP-hard and an optimal (1�1/e)-approximation
algorithm exists (§4.1). We also propose two di↵erent
faster heuristics that are linear-time in the number of
attributes and subgraphs (§4.2).

• Through extensive experiments, we compare the per-
formance of the algorithms, present findings that agree
with human intuition on real-world scenarios from 3
datasets, and demonstrate that our characterization

approach is better suited to sense-making than dis-
criminative classification approaches (§5).

2. PROBLEM DEFINITION
In this section, we introduce the notation used through-

out text and present the formal problem definition. An
attributed graph G = (V,E,A) is a graph with node set
V , undirected edges E ✓ V ⇥ V , and a set of attributes
A = {a1, . . . ad} associated with every node, where a

i

2 <

d

denotes the d-dimensional attribute vector for node i. In
this work we consider real-valued and binary attributes. A
categorical attribute can be transformed to binary through
one-hot encoding.
Given a collection of attributed subgraphs from c classes,

our aim is to split the attributes in A into c disjoint groups
such that the total quality score Q of all the subgraphs based
on function q(·) and their assigned attributes is maximized.
Here we use the normality measure [27] for q(·), which can
be replaced with any other measure of interest that can uti-
lize both graph structure and attributes in general.
Our problem statement is given for two classes as follows

for simplicity, which can be generalized to multiple classes.

Definition 1 (Characterization Problem).

Given

• p attributed subgraphs g+1 , g+2 , . . . , g+p from class 1,

• n attributed subgraphs g�1 , g�2 , . . . , g�n from class 2,
from graph G, and attribute vector a 2 <

d for each
node;

Find

• a partitioning of attributes to classes as A+ and A�,
where A+

[A� = A and A+
\A� = ;,

• focus attributes A+
i ✓ A+ (and respective weightsw+

i )
for each subgraph g+i , 8i, and

• focus attributes A�
j ✓ A� (and respective weightsw�

j )

for each subgraph g�j , 8j;

such that

• total quality Q of all subgraphs is maximized, where
Q =

Pp
i=1 q(g+i |A+) +

Pn
j=1 q(g�j |A�);

Rank attributes within A+ and A�.

The above problem contains three subproblems, in par-
ticular, (P1) how to measure the quality of an attributed
subgraph, (P2) how to find the focus attributes (and their
weights) of a given subgraph, and (P3) how to assign and
rank the attributes for di↵erent classes so as to maximize

total quality. In practice, classes focus on a small set of
attributes. Further, our ranking of the attributes ensures
those irrelevant to both classes and those common between
them are ranked lower and only a few of the most di↵er-
entiating attributes stand out. Figure 1 shows an example
for our problem for 5 subgraphs from 2 classes, where 6 at-
tributes are split into two and ranked for characterizing and
comparing the classes.

In the next section, we address the subproblems in the
given order above, in §3.1 through §3.3 respectively, to build
up a solution for our main problem statement.

3. FORMULATION
3.1 Quantifying Quality

To infer the characterizing subspace for a given subgraph,
we use a measure of subgraph quality. The idea is to find
the attribute subspace and respective weights that maximize
the quality of each subgraph. In this work, we use the nor-

mality measure [27], which not only utilizes both subgraph
structure as well as attributes, but also quantifies both in-
ternal and external connectivity of the subgraph.

For a given subgraph g, its normality N(g) is given as
in Eq. (1), where W is the adjacency matrix, ki is node i’s
degree, sim(·) is the similarity function of attribute vectors
weighted by w

g

, e is the number of edges, and B(g) denotes
the nodes at the boundary of the subgraph (for isolated sub-
graphs, B(g) is empty). The two terms in (1) respectively
quantify g internally and externally: many, surprising, and
highly similar connections inside g increase internal qual-
ity, whereas if such edges are at the boundary, they decrease
external quality. For technical details of normality, see [27].
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One can handle highly heterogeneous attributes simply by
choosing the right sim(·) function. Also note that aI and
aX are vectors that can be directly computed from data.
Attributes with large non-zero weights in w

g

are called the
focus attributes of subgraph g.

3.2 Discovering Characterizing Subspaces
For a subgraph we can use Eq. (1) to compute its nor-

mality provided w

g

, the weights for the (focus) attributes.
However the focus is often latent and hard to guess without
prior knowledge, especially in high dimensions where nodes
are associated with a long list of attributes. Even if the focus
is known apriori, it is hard to manually assign weights.

Instead, we infer the attribute weight vector for a given
subgraph, so as to maximize its normality score. In other
words, we leverage normality as an objective function to
infer the best w

g

for a given g. This objective is written as

max.
w

g

w

g

T
· (aI + aX)

s.t. kw

g

kp = 1, w

g

(a) � 0, 8a = 1 . . . d (2)

Note that w
g

is normalized to its p-norm to restrain the so-
lution space. We also introduce non-negativity constraint on

the weights to facilitate their interpretation. In the following
we let x̂ = (aI + aX), where x̂(a) 2 [�1, 1].
If one uses kw

g

kp=1, or the L1 norm, the solution picks
the single attribute with the largest x̂ entry as the focus.
That is, w

g

(a) = 1 where max(x̂) = x̂(a) and 0 otherwise.
This can be interpreted as the most important attribute that
characterizes the subgraph. Note that x̂ may contain only
negative entries, in which case the largest negative entry is
selected, and the subgraph is deemed as low quality.
If there are multiple attributes that can increase normal-

ity, we can also select all the attributes with positive entries
in x̂ as the subgraph focus. The weights of these attributes,
however, should be proportional to the magnitude of their
x̂ values. This is exactly what kw

g

kp=2, or the L2 norm
yields. It is shown (see [27]) that under p = 2,

w

g

(a) =
x̂(a)qP

x̂(i)>0 x̂(i)
2
, (3)

where x̂(a) > 0 and 0 otherwise, such that w

g

is unit-
normalized. The normality score of subgraph g then be-
comes N(g) = w

g

T
· x̂ =

P
x̂(a)>0

x̂(a)
pP

x̂(i)>0 x̂(i)2
x̂(a) =

qP
x̂(i)>0 x̂(i)2 = kx̂+k2, i.e., the 2-norm of x̂ induced on

the attributes with positive x̂ entries.

3.3 Identifying Class Differences

3.3.1 Splitting attributes between classes

In this last part we return to our main problem statement,
where we seek to split the attribute space between di↵erent
classes so as to be able to identify their di↵erences. We aim
to obtain such an assignment of attributes with a goal to
maximize the total quality (i.e., normality) of all the sub-
graphs from both classes. This ensures that the subgraphs
are still characterized well, even under the constraint that
the attributes are not shared across classes.
Let S

+ = {g+1 , . . . , g+p } and S

� = {g�1 , . . . , g�n } denote
the sets of all subgraphs in class 1 and class 2, respectively,
where each subgraph is now associated with a d-dimensional
non-negative vector x. This is the same as the x̂ vector
introduced in §3.2, except that all the negative entries are set
to zero. Recall that the entries of x̂ depict the contribution
of each attribute to the quality of the subgraph. Therefore,
we can drop the negative entries (recall that the optimization
in (2) selects only the positive entries, if any).2

The goal is then to find two disjoint attribute groups A+

and A�, A+
[A� = A and A+

\A� = ;, such that the to-
tal quality of all subgraphs is maximized (see problem state-
ment in §2). Given a set of selected attributes S, the quality
of a subgraph g can be written as

N(g|S) =

sX

a2S

x(a)2 = kx[S]k2 (4)

i.e., the 2-norm of x induced on the attribute subspace.
Therefore, the overall problem can be (re)formulated as

max.
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2There may be subgraphs for which x̂ contains only negative
entries. We exclude such subgraphs from the study of discovering
class di↵erences, as they are deemed low quality.
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given order above, in §3.1 through §3.3 respectively, to build
up a solution for our main problem statement.
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To infer the characterizing subspace for a given subgraph,
we use a measure of subgraph quality. The idea is to find
the attribute subspace and respective weights that maximize
the quality of each subgraph. In this work, we use the nor-

mality measure [27], which not only utilizes both subgraph
structure as well as attributes, but also quantifies both in-
ternal and external connectivity of the subgraph.

For a given subgraph g, its normality N(g) is given as
in Eq. (1), where W is the adjacency matrix, ki is node i’s
degree, sim(·) is the similarity function of attribute vectors
weighted by w
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, e is the number of edges, and B(g) denotes
the nodes at the boundary of the subgraph (for isolated sub-
graphs, B(g) is empty). The two terms in (1) respectively
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highly similar connections inside g increase internal qual-
ity, whereas if such edges are at the boundary, they decrease
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choosing the right sim(·) function. Also note that aI and
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focus attributes of subgraph g.
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For a subgraph we can use Eq. (1) to compute its nor-
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, the weights for the (focus) attributes.
However the focus is often latent and hard to guess without
prior knowledge, especially in high dimensions where nodes
are associated with a long list of attributes. Even if the focus
is known apriori, it is hard to manually assign weights.

Instead, we infer the attribute weight vector for a given
subgraph, so as to maximize its normality score. In other
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3.3 Identifying Class Differences
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In this last part we return to our main problem statement,
where we seek to split the attribute space between di↵erent
classes so as to be able to identify their di↵erences. We aim
to obtain such an assignment of attributes with a goal to
maximize the total quality (i.e., normality) of all the sub-
graphs from both classes. This ensures that the subgraphs
are still characterized well, even under the constraint that
the attributes are not shared across classes.
Let S
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the sets of all subgraphs in class 1 and class 2, respectively,
where each subgraph is now associated with a d-dimensional
non-negative vector x. This is the same as the x̂ vector
introduced in §3.2, except that all the negative entries are set
to zero. Recall that the entries of x̂ depict the contribution
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Reminder: Normality
n  Normality as subgraph quality q:
Normality
� Normality’s formula

𝑁 = 𝑤𝑐𝑇. ( ෝ𝑥𝐼 + ෞ𝑥𝑋)

Aria Rezaei Characterizing Classes by Attributes and Social Ties

max
𝑤𝑐

N

𝑤𝑐 𝑎 = 1, one attribute with largest x

𝑤𝑐 𝑎 = 𝑥 𝑎

σ𝑥 𝑖 >0 𝑥 𝑖 2
, all attributes with positive x

𝐿1 norm

𝐿2 norm

s.t. 𝑤𝑐 𝑝 = 1,𝑤𝑐 𝑎 ≥ 0, ∀𝑎 = 1,… , 𝑑
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Splitting attributes by class: intuition 
Class A 

Phase 3 – Splitting Attributes

Aria Rezaei Characterizing Classes by Attributes and Social Ties

� Putting together vectors of all subgraphs
� We have a matrix of attribute weights for each class

Attributes

S
ub

gr
ap

hs

Common Focus Attributes

Attributes
S

ub
gr

ap
hs

Common Focus Attributes

Class B 
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Splitting attributes by class: intuition
n  We don’t want attributes that are:

q  Relevant or irrelevant to both classes

Phase 3 – Splitting Attributes (Cont’d)

� Idea:
� We don’t want attributes that are:

� Relevant or irrelevant to both classes

Aria Rezaei Characterizing Classes by Attributes and Social Ties

Highly relevant to both. Not distinguishing.

Irrelevant to both. Not Interesting.
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Splitting attributes by class: intuition
n  We want attributes that are:

q  Relevant to one class & irrelevant to other(s)

Phase 3 – Splitting Attributes (Cont’d)

� Idea:
� we want attributes that are:

� Relevant to one class and irrelevant to the other.

Aria Rezaei Characterizing Classes by Attributes and Social Ties

A good attribute for class B

A good attribute for class A

52 



Setting up the objective
n  Given a subset of attributes S, normality of 

subgraph g is

Objective Function

� Given a subset of attributes 𝑆
� Quality of a subgraph 𝑔 is:

Aria Rezaei Characterizing Classes by Attributes and Social Ties

𝑁 𝑔 𝑆 = ෍
𝑎∈𝑆

𝑥 𝑎 2 = 𝑥 𝑆 2

2-norm  of 𝑥 induced
on the attribute subspace

attribute weight vector of 𝑔
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Objective Function (Cont’d)
� The quality of a separation will be:

Aria Rezaei Characterizing Classes by Attributes and Social Ties

max
𝐴+⊆𝐴,𝐴−⊆𝐴

1
𝑝
෍
𝑖∈𝑆+

𝑥𝑖 𝐴+ 2 +
1
𝑛
෍
𝑗∈𝑆−

𝑥𝑗 𝐴−
2

Such that 𝐴+ ∩ 𝐴− = ∅

𝑝 = number of subgraphs in class +
𝑛 = number of subgraphs in class -

Setting up the objective
n  Quality of an attribute split is:

Objective Function (Cont’d)
� The quality of a separation will be:

Aria Rezaei Characterizing Classes by Attributes and Social Ties

max
𝐴+⊆𝐴,𝐴−⊆𝐴

1
𝑝
෍
𝑖∈𝑆+

𝑥𝑖 𝐴+ 2 +
1
𝑛
෍
𝑗∈𝑆−

𝑥𝑗 𝐴−
2

Such that 𝐴+ ∩ 𝐴− = ∅

𝑝 = number of subgraphs in class +
𝑛 = number of subgraphs in class -
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Objective Function (Cont’d)
� The quality of a separation will be:

Aria Rezaei Characterizing Classes by Attributes and Social Ties

max
𝐴+⊆𝐴,𝐴−⊆𝐴

1
𝑝
෍
𝑖∈𝑆+

𝑥𝑖 𝐴+ 2 +
1
𝑛
෍
𝑗∈𝑆−

𝑥𝑗 𝐴−
2

Such that 𝐴+ ∩ 𝐴− = ∅

𝑝 = number of subgraphs in class +
𝑛 = number of subgraphs in class -

Setting up the objective
n  Quality of an attribute split is:

n  Rank attributes by 

Objective Function (Cont’d)
� The quality of a separation will be:

Aria Rezaei Characterizing Classes by Attributes and Social Ties

max
𝐴+⊆𝐴,𝐴−⊆𝐴

1
𝑝
෍
𝑖∈𝑆+

𝑥𝑖 𝐴+ 2 +
1
𝑛
෍
𝑗∈𝑆−

𝑥𝑗 𝐴−
2

Such that 𝐴+ ∩ 𝐴− = ∅

𝑝 = number of subgraphs in class +
𝑛 = number of subgraphs in class -

Phase 4 – Ranking Attributes
� How characterizing is an attribute?

� Compared to other attributes selected for a class
� Relative Contribution Score (RC):

Aria Rezaei Characterizing Classes by Attributes and Social Ties

𝑟𝑐 𝑎 =
1
𝑝
෍
𝑖∈𝑆+

𝑥𝑖 𝑎 −
1
𝑛
෍
𝑗∈𝑆−

𝑥𝑗(𝑎)

Normalized contribution
of 𝑎 to Class +

Normalized contribution
of 𝑎 to Class -

Phase 4 – Ranking Attributes
� How characterizing is an attribute?

� Compared to other attributes selected for a class
� Relative Contribution Score (RC):

Aria Rezaei Characterizing Classes by Attributes and Social Ties

𝑟𝑐 𝑎 =
1
𝑝
෍
𝑖∈𝑆+

𝑥𝑖 𝑎 −
1
𝑛
෍
𝑗∈𝑆−

𝑥𝑗(𝑎)

Normalized contribution
of 𝑎 to Class +

Normalized contribution
of 𝑎 to Class -
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Submodular Welfare Problem
n   Definition:

n   
 

Submodular Welfare Problem (SWP)
� Definition:

� Our quality function 𝑁 𝑔 𝑆 is a monotone and 
submodular set function.

Aria Rezaei Characterizing Classes by Attributes and Social Ties

Given d items and m players having a monotone
and submodular utility function (𝑤𝑖) over subsets 
of items. Partition the d items into m disjoint sets 

(𝐼1, 𝐼2,⋯ , 𝐼𝑚) in order to maximize:

෍
𝑖=1

𝑚

𝑤𝑖( 𝐼𝑖)

Submodular Welfare Problem (SWP)
� Definition:

� Our quality function 𝑁 𝑔 𝑆 is a monotone and 
submodular set function.

Aria Rezaei Characterizing Classes by Attributes and Social Ties

Given d items and m players having a monotone
and submodular utility function (𝑤𝑖) over subsets 
of items. Partition the d items into m disjoint sets 

(𝐼1, 𝐼2,⋯ , 𝐼𝑚) in order to maximize:

෍
𝑖=1

𝑚

𝑤𝑖( 𝐼𝑖)

Note that we normalize the terms by the number of sub-
graphs in each class to handle class imbalance. We also
emphasize that our objective in (5) is di↵erent from a clas-
sification problem in two key ways. First, we work with x

vectors that embed information on subgraph connectivity
as well as focus attributes rather than the original attribute
vectors a’s. Second, our objective embraces characteriza-
tion and aims to find a partitioning of attributes that maxi-
mizes total quality, which is di↵erent from finding a decision
boundary that minimizes classification loss as in discrimi-
native approaches (See §5).

3.3.2 Ranking attributes

A solution to (5) (next section) provides a partitioning
of the attributes into two groups. We can analyze the spe-
cific attributes assigned to classes to characterize their dif-
ferences. Since this is an exploratory task, analyzing a large
number of attributes would be infeasible. For easier inter-
pretation, we need a ranking of the attributes.

One could think of using
P

i2S(c) N(gi|a 2 A(c)) for scor-
ing each attribute a. This however does not reflect the di↵er-
entiating power but only the importance of a for class c. We
want both important and di↵erentiating attributes to rank
higher as they truly characterize the di↵erence between sub-
graphs of the two classes. Specifically, some attributes may
exhibit positive x entries for a particular class, however very
small values, indicating only slight relevance. We may also
have some attributes that exhibit large positive x entries,
however for both classes. While relevant, such attributes are
non-di↵erentiating and would be uninformative for our task.

To get rid of only slightly relevant or non-di↵erentiating
attributes and obtain a sparse solution, we define a relative
contribution score rc(·) for each attribute a as

rc(a) =
1
p

X

i2S+

xi(a)�
1
n

X

j2S�

xj(a) (6)

which is the di↵erence between a’s contribution alone to the
average quality of subgraphs in class 1 and class 2. We then
rank the attributes within each class by their rc values.

4. ALGORITHMS
4.1 Optimal Approximation

It is easy to show that our quality function N(g|S) =
kx[S]k2 in Eq. (4) is a monotone submodular set function
with respect to S for non-negative x. That is, the quality of
a subgraph increases monotonically with increasing set size
S. In addition, the increase follows the diminishing returns
property known in economics, i.e., adding a new attribute a
to a set S increases the function less than adding the same
attribute to its smaller subset S0; N(g|a [ S) � N(g|S) 

N(g|a [ S0)�N(g|S0), S0
✓ S ✓ A.

Under this setting, we find that our problem in (5) can be
stated as an instance of the Submodular Welfare Problem
(SWP), which is defined as follows.

Definition 2 (Submodular Welfare Problem).

Given d items and m players having monotone submodular
utility functions wi : 2[d] ! <+, find a partitioning of
the d items into m disjoint sets I1, I2, . . . , Im in order to
maximize

Pm
i=1 wi(Ii).

In our formulation items map to the attributes for d = |A|,
whereas players correspond to the classes, in the simplest

case for m = 2. In addition, the utility function is written
for each class c 2 {+,�} as

wc(Ic) = N(S(c)
|A(c)) =

1

n(c)

X

k2S(c)

kxk[A
(c)]k2 (7)

which is the average normality scores of subgraphs S be-
longing to class c. As k · k2 is a monotone and submodular
function, so is N(S(c)) since the sum of submodular func-
tions is also submodular [21]. Note that although we focus
on two classes in this work, the SWP is defined more gen-
erally for m players, i.e., classes. As such, it is easy to
generalize our problem to more classes following the same
solutions introduced for the SWP.
The SWP is first studied by Lehmann et al. [19], who

proposed a simple on-line greedy algorithm that gives a 1/2-
approximation for this problem. Later, Vondrák proposed
an improved (1� 1/e)-approximation solution [35]. Khot et
al. showed that the SWP cannot be approximated to a fac-
tor better than 1� 1/e, unless P = NP [17]. Mirrokni et al.
further proved that a better than (1 � 1/e)-approximation
would require exponentially many value queries, regardless
of P = NP [24]. As such, Vondrák’s solution is the opti-
mal approximation algorithm for the SWP, which we use to
solve our problem in (5). The solution uses a multilinear
extension to relax the subset optimization into a numerical
optimization problem such that advanced optimization tech-
niques, in particular a continuous greedy algorithm, can be
applied. The continuous solution is then rounded to obtain
a near-optimal set with the aforementioned guarantee [35].

4.2 Faster Heuristics

4.2.1 Pre-normalized weights

For the formulation shown in (5), we unit-normalize the
attribute weights as in Eq. (3), only based on a selected

subset S: w

g

(a) = x(a)
pP

a2S x(a)2
. This normalization yields

the quality function N(g|S) =
qP

a2S x(a)2, and requires

that S is given/known. A way to simplify this function is

to fix the attribute weights at w
g

(a) = x(a)
pP

a2A x(a)2
, i.e., to

normalize them based on all the (known) positive attributes
in A rather than a (unknown) subset. This way the attribute
weights can be pre-computed and do not depend on the to-
be-selected attribute subsets. The simplified version of the
maximization in (5) is then written as

max.
A+✓A,A�✓A

1
p

X

i2S+

X

a2A+

xi(a)
2

Di
+

1
n

X

j2S�

X

a2A�

xj(a)
2

Dj

such that A+
\A� = ; (8)

where the denominator Di =
qP

a2A xi(a)2 = kxik2,

which can now be treated as constant as it does not depend
on A+ (same for Dj).

The simplified function N(g|S) =
kx[S]k22
kxk2

is now a mono-
tone modular function with respect to S. The contribution
of a particular new attribute to the quality of a subgraph
does not any more depend on the other attributes that are
already in the selected set. That is, N(g|a [ S)�N(g|S) =

N(g|a [ S0)�N(g|S0) = x(a)2

kxk2
, 8S, S0

✓ A.
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Attribute splitting as SWP
n  SWP is NP-hard
n  First approx. factor is ½ [Lehmann+, 2001]
n  Improved to        [               +, 2008] 
n  No better approximation unless

q  P = NP [Khot+, 2008]
q  Using exponentially-many value queries 

[Mirrokni+, 2008]

à [               +, 2008] is optimal approximation

SWP History
� It’s known to be NP-hard.
� First approx. factor is ½. [Lehman+, 2001]

� Improved to (1 − 1/𝑒) [Vondrak+, 08]

� No better results unless:
� P = NP [Khot+, 08]
� Using exponentially many value queries

[Mirrokni+, 08]
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Note that we normalize the terms by the number of sub-
graphs in each class to handle class imbalance. We also
emphasize that our objective in (5) is di↵erent from a clas-
sification problem in two key ways. First, we work with x

vectors that embed information on subgraph connectivity
as well as focus attributes rather than the original attribute
vectors a’s. Second, our objective embraces characteriza-
tion and aims to find a partitioning of attributes that maxi-
mizes total quality, which is di↵erent from finding a decision
boundary that minimizes classification loss as in discrimi-
native approaches (See §5).

3.3.2 Ranking attributes

A solution to (5) (next section) provides a partitioning
of the attributes into two groups. We can analyze the spe-
cific attributes assigned to classes to characterize their dif-
ferences. Since this is an exploratory task, analyzing a large
number of attributes would be infeasible. For easier inter-
pretation, we need a ranking of the attributes.

One could think of using
P

i2S(c) N(gi|a 2 A(c)) for scor-
ing each attribute a. This however does not reflect the di↵er-
entiating power but only the importance of a for class c. We
want both important and di↵erentiating attributes to rank
higher as they truly characterize the di↵erence between sub-
graphs of the two classes. Specifically, some attributes may
exhibit positive x entries for a particular class, however very
small values, indicating only slight relevance. We may also
have some attributes that exhibit large positive x entries,
however for both classes. While relevant, such attributes are
non-di↵erentiating and would be uninformative for our task.

To get rid of only slightly relevant or non-di↵erentiating
attributes and obtain a sparse solution, we define a relative
contribution score rc(·) for each attribute a as

rc(a) =
1
p

X

i2S+

xi(a)�
1
n

X

j2S�

xj(a) (6)

which is the di↵erence between a’s contribution alone to the
average quality of subgraphs in class 1 and class 2. We then
rank the attributes within each class by their rc values.

4. ALGORITHMS
4.1 Optimal Approximation

It is easy to show that our quality function N(g|S) =
kx[S]k2 in Eq. (4) is a monotone submodular set function
with respect to S for non-negative x. That is, the quality of
a subgraph increases monotonically with increasing set size
S. In addition, the increase follows the diminishing returns
property known in economics, i.e., adding a new attribute a
to a set S increases the function less than adding the same
attribute to its smaller subset S0; N(g|a [ S) � N(g|S) 

N(g|a [ S0)�N(g|S0), S0
✓ S ✓ A.

Under this setting, we find that our problem in (5) can be
stated as an instance of the Submodular Welfare Problem
(SWP), which is defined as follows.

Definition 2 (Submodular Welfare Problem).

Given d items and m players having monotone submodular
utility functions wi : 2[d] ! <+, find a partitioning of
the d items into m disjoint sets I1, I2, . . . , Im in order to
maximize

Pm
i=1 wi(Ii).

In our formulation items map to the attributes for d = |A|,
whereas players correspond to the classes, in the simplest

case for m = 2. In addition, the utility function is written
for each class c 2 {+,�} as

wc(Ic) = N(S(c)
|A(c)) =

1

n(c)

X

k2S(c)

kxk[A
(c)]k2 (7)

which is the average normality scores of subgraphs S be-
longing to class c. As k · k2 is a monotone and submodular
function, so is N(S(c)) since the sum of submodular func-
tions is also submodular [21]. Note that although we focus
on two classes in this work, the SWP is defined more gen-
erally for m players, i.e., classes. As such, it is easy to
generalize our problem to more classes following the same
solutions introduced for the SWP.
The SWP is first studied by Lehmann et al. [19], who

proposed a simple on-line greedy algorithm that gives a 1/2-
approximation for this problem. Later, Vondrák proposed
an improved (1� 1/e)-approximation solution [35]. Khot et
al. showed that the SWP cannot be approximated to a fac-
tor better than 1� 1/e, unless P = NP [17]. Mirrokni et al.
further proved that a better than (1 � 1/e)-approximation
would require exponentially many value queries, regardless
of P = NP [24]. As such, Vondrák’s solution is the opti-
mal approximation algorithm for the SWP, which we use to
solve our problem in (5). The solution uses a multilinear
extension to relax the subset optimization into a numerical
optimization problem such that advanced optimization tech-
niques, in particular a continuous greedy algorithm, can be
applied. The continuous solution is then rounded to obtain
a near-optimal set with the aforementioned guarantee [35].

4.2 Faster Heuristics

4.2.1 Pre-normalized weights

For the formulation shown in (5), we unit-normalize the
attribute weights as in Eq. (3), only based on a selected

subset S: w

g

(a) = x(a)
pP

a2S x(a)2
. This normalization yields

the quality function N(g|S) =
qP

a2S x(a)2, and requires

that S is given/known. A way to simplify this function is

to fix the attribute weights at w
g

(a) = x(a)
pP

a2A x(a)2
, i.e., to

normalize them based on all the (known) positive attributes
in A rather than a (unknown) subset. This way the attribute
weights can be pre-computed and do not depend on the to-
be-selected attribute subsets. The simplified version of the
maximization in (5) is then written as

max.
A+✓A,A�✓A

1
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X

i2S+

X

a2A+

xi(a)
2
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+
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xj(a)
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such that A+
\A� = ; (8)

where the denominator Di =
qP

a2A xi(a)2 = kxik2,

which can now be treated as constant as it does not depend
on A+ (same for Dj).

The simplified function N(g|S) =
kx[S]k22
kxk2

is now a mono-
tone modular function with respect to S. The contribution
of a particular new attribute to the quality of a subgraph
does not any more depend on the other attributes that are
already in the selected set. That is, N(g|a [ S)�N(g|S) =

N(g|a [ S0)�N(g|S0) = x(a)2

kxk2
, 8S, S0

✓ A.

Note that we normalize the terms by the number of sub-
graphs in each class to handle class imbalance. We also
emphasize that our objective in (5) is di↵erent from a clas-
sification problem in two key ways. First, we work with x

vectors that embed information on subgraph connectivity
as well as focus attributes rather than the original attribute
vectors a’s. Second, our objective embraces characteriza-
tion and aims to find a partitioning of attributes that maxi-
mizes total quality, which is di↵erent from finding a decision
boundary that minimizes classification loss as in discrimi-
native approaches (See §5).

3.3.2 Ranking attributes

A solution to (5) (next section) provides a partitioning
of the attributes into two groups. We can analyze the spe-
cific attributes assigned to classes to characterize their dif-
ferences. Since this is an exploratory task, analyzing a large
number of attributes would be infeasible. For easier inter-
pretation, we need a ranking of the attributes.

One could think of using
P

i2S(c) N(gi|a 2 A(c)) for scor-
ing each attribute a. This however does not reflect the di↵er-
entiating power but only the importance of a for class c. We
want both important and di↵erentiating attributes to rank
higher as they truly characterize the di↵erence between sub-
graphs of the two classes. Specifically, some attributes may
exhibit positive x entries for a particular class, however very
small values, indicating only slight relevance. We may also
have some attributes that exhibit large positive x entries,
however for both classes. While relevant, such attributes are
non-di↵erentiating and would be uninformative for our task.

To get rid of only slightly relevant or non-di↵erentiating
attributes and obtain a sparse solution, we define a relative
contribution score rc(·) for each attribute a as

rc(a) =
1
p

X

i2S+

xi(a)�
1
n

X

j2S�

xj(a) (6)

which is the di↵erence between a’s contribution alone to the
average quality of subgraphs in class 1 and class 2. We then
rank the attributes within each class by their rc values.

4. ALGORITHMS
4.1 Optimal Approximation

It is easy to show that our quality function N(g|S) =
kx[S]k2 in Eq. (4) is a monotone submodular set function
with respect to S for non-negative x. That is, the quality of
a subgraph increases monotonically with increasing set size
S. In addition, the increase follows the diminishing returns
property known in economics, i.e., adding a new attribute a
to a set S increases the function less than adding the same
attribute to its smaller subset S0; N(g|a [ S) � N(g|S) 

N(g|a [ S0)�N(g|S0), S0
✓ S ✓ A.

Under this setting, we find that our problem in (5) can be
stated as an instance of the Submodular Welfare Problem
(SWP), which is defined as follows.

Definition 2 (Submodular Welfare Problem).

Given d items and m players having monotone submodular
utility functions wi : 2[d] ! <+, find a partitioning of
the d items into m disjoint sets I1, I2, . . . , Im in order to
maximize

Pm
i=1 wi(Ii).

In our formulation items map to the attributes for d = |A|,
whereas players correspond to the classes, in the simplest

case for m = 2. In addition, the utility function is written
for each class c 2 {+,�} as

wc(Ic) = N(S(c)
|A(c)) =

1

n(c)

X

k2S(c)

kxk[A
(c)]k2 (7)

which is the average normality scores of subgraphs S be-
longing to class c. As k · k2 is a monotone and submodular
function, so is N(S(c)) since the sum of submodular func-
tions is also submodular [21]. Note that although we focus
on two classes in this work, the SWP is defined more gen-
erally for m players, i.e., classes. As such, it is easy to
generalize our problem to more classes following the same
solutions introduced for the SWP.
The SWP is first studied by Lehmann et al. [19], who

proposed a simple on-line greedy algorithm that gives a 1/2-
approximation for this problem. Later, Vondrák proposed
an improved (1� 1/e)-approximation solution [35]. Khot et
al. showed that the SWP cannot be approximated to a fac-
tor better than 1� 1/e, unless P = NP [17]. Mirrokni et al.
further proved that a better than (1 � 1/e)-approximation
would require exponentially many value queries, regardless
of P = NP [24]. As such, Vondrák’s solution is the opti-
mal approximation algorithm for the SWP, which we use to
solve our problem in (5). The solution uses a multilinear
extension to relax the subset optimization into a numerical
optimization problem such that advanced optimization tech-
niques, in particular a continuous greedy algorithm, can be
applied. The continuous solution is then rounded to obtain
a near-optimal set with the aforementioned guarantee [35].

4.2 Faster Heuristics

4.2.1 Pre-normalized weights

For the formulation shown in (5), we unit-normalize the
attribute weights as in Eq. (3), only based on a selected

subset S: w

g

(a) = x(a)
pP

a2S x(a)2
. This normalization yields

the quality function N(g|S) =
qP

a2S x(a)2, and requires

that S is given/known. A way to simplify this function is

to fix the attribute weights at w
g

(a) = x(a)
pP

a2A x(a)2
, i.e., to

normalize them based on all the (known) positive attributes
in A rather than a (unknown) subset. This way the attribute
weights can be pre-computed and do not depend on the to-
be-selected attribute subsets. The simplified version of the
maximization in (5) is then written as

max.
A+✓A,A�✓A
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where the denominator Di =
qP

a2A xi(a)2 = kxik2,

which can now be treated as constant as it does not depend
on A+ (same for Dj).

The simplified function N(g|S) =
kx[S]k22
kxk2

is now a mono-
tone modular function with respect to S. The contribution
of a particular new attribute to the quality of a subgraph
does not any more depend on the other attributes that are
already in the selected set. That is, N(g|a [ S)�N(g|S) =

N(g|a [ S0)�N(g|S0) = x(a)2
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Experiments
n  Datasets

q  Congress Co-sponsorship Network
q  Amazon Co-purchase Network
q  DBLP Co-authorship Network

n  Baseline (LASSO): L1-Regularized Logistic 
Regression
q  Positive weights are assigned to class A
q  Negative weights are assigned to class B
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Congress Co-sponsorship
n  Bills in Congress

q  each bill has a set of sponsors & policy area tag
n  Attributed Graph:

q  Nodes: congressmen
q  Edges: co-sponsoring a bill
q  Attributes: policy areas of bills they sponsored:

n  National Security and Armed Forces
n  Environmental Protection
n  Foreign Affairs
n  …

n  Classes: party affiliation of congressmen
59 



Liberal and Conservative Ideals

Conservative vs. Liberal Ideas
Focus attributes reveal the contrast between

Liberal and Conservative ideas

Aria Rezaei Characterizing Classes by Attributes and Social Ties

Democrats focus mostly
on social programs

Republicans focus mostly
on governance and finance
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Focus Over Time
n  13 consecutive congress two-year cycles:

Top-50 (out of 1000) attributes from each of both classes
yield 64.78% of the maximum objective value.

While it may appear that Simplified performs as well as
SWA, we can show that under certain conditions where the
diminishing returns property of submodular problems plays
a major role, it becomes inferior to SWA. To show such a
setting, we design an experiment where the x(a) values of an
attribute a are drawn uniformly from [P, 1] for class 1, and
from [0, 1�P ] for class 2 as we decrease P from 0.95 to 0.05.
Note that as the ranges (and hence the variance) of the val-
ues increase, the expected value of every attribute remains
higher for class 1. The results are shown in Figure 2 (right).
For large P , the values for class 1 are significantly larger
and both algorithms assign all attributes to class 1. As the
ranges start overlapping and the expected values get closer,
Simplified continues to assign all attributes to class 1 (with
higher expected value) even though the marginal increase to
the objective value decreases significantly as we go on due to
diminishing returns. As the variance gets even larger, Sim-
plified again performs similar to SWA as it starts assign-
ing some attributes to class 2 due to the random variation.
Arguably, it is unlikely to encounter this setting in real-
world datasets, where there exist many similarly-distributed
attributes for su�ciently di↵erent classes of subgraphs.

Computational performance. Finally, we compare the
proposed algorithms in terms of their running time and scal-
ability, as the number of attributes grows. Figure 3 shows
runtime in seconds for d = {50, 100, . . . , 1000}. We note that
all the algorithms scale near-linearly. SWA has the largest
slope with increasing d, while finishing under 8 seconds for
d = 1000 and p = n = 100 subgraphs from two classes. The
scalability of Top-k depends on k which decreases with in-
creasing k. Simplified heuristic lies in the bottom and is
reliably one of our fastest methods.
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Top-5
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Figure 3: Running time (seconds) with increasing number
of attributes. All algorithms scale near-linearly with d.

Overall, SWA and Simplified work best on all datasets.
Simplified can be parallelized easily, as each attribute is
processed independently. For massive datasets, one can also
fall back to Top-k, which is capable of identifying the few
key attributes for characterization.

5.2 Analysis on Real-world Datasets
For real-world data analysis we consider attributed graphs

where nodes are assigned class labels. We study the class dif-
ferences of nodes by the “company that they keep”. That is,
we characterize each node with a local community surround-

Democrats Republicans

Figure 4: Top 10 attributes in ranked order for Democrats
and Republicans in Congress. Characterizing attributes re-
veal the contrast between liberal and conservative ideas.

1993 1995 1997 1999 2001 2003 2005 2007

Democrat
Republican

Bombing
of Iraq

War in
Afghanistan

War in
Iraq

PARTY FOCUS ON
ARMED FORCES

Figure 5: Change of focus on attribute “National Security
and Armed Forces” among Democrats and Republicans. We
observe increased interest by Republicans in time of war.

ing them, using the local community extraction algorithm of
Andersen et al. [3]. One can also use ego-networks, where a
node is grouped with all its immediate neighbors.
We report the top-10 attributes by relative contribution in

(6) per class side by side for comparison. To be precise,
we randomly sample 90% of our subgraphs 100 times and
present the average relative contribution (bars) and standard
deviation (error bars) so as to ensure that our results are not
an artifact of the subgraphs at hand.
We experiment with 3 real-world attributed networks: (i)

bill co-sponsorships of Congressmen [11], (ii) co-purchase
network of Amazon videos [20], and (iii) DBLP co-
authorship network. We describe the individual datasets
and present our findings next.

Congress. We consider 8 co-sponsorship networks from the
103rd Congress to 110th. The nodes are congressmen. An
edge depicts co-sponsorship of a bill by two congressmen,
and the edge weight is the number of times two nodes spon-
sored a bill together. Each bill is assigned a phrase that
describes its subject, with a total of 32 such phrases. We
mirror these bill subjects to their sponsors to create node
attributes. The networks are highly dense, so we remove
low-weighted edges such that the size of the giant connected
component maintains more than 95% of its original size.
Figure 4 presents the top-ranking attributes among two

classes, Democrats and Republicans (averaged over 8 con-
gresses in the dataset). As expected, Democrats have a lib-
eral agenda centered upon social and environmental pro-
grams, while Republicans mainly focus on regulating gov-
ernment, immigration and financial issues.
Since the Congress dataset is temporal, we can also ex-

plore how the focus of the two parties changes on a partic-
ular subject over time. A clear example of this is bills on
“National Security and Armed Forces”. Figure 5 shows the
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Amazon.com Co-purchases
Attributed Graph:
n  Nodes: Amazon videos
n  Edges: being co-purchased together
n  Attributes: 

q  Product genre (Drama, Comedy, etc.)
q  Audience age range (e.g., 10-12 years)
q  Creators (e.g. Warner Video)
q  … 
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Classes: Animation vs. Classic Query: Animation vs. Classic

Aria Rezaei Characterizing Classes by Attributes and Social Ties

Ours
LASSO

Franchise
names

Age range

Creator

Content
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Classes: Under 13 vs. Over 13Query: Under 13 vs. Over 13
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Ours
LASSO

Attribute weight
goes down as 

quality decreases

Not much
differentiation
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Characterization vs. Classification
n  Regularized linear classifiers (e.g. LASSO) 

can find
q  a sparse attribute subspace
q  coefficients for ranking

n  How is our work different?
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Characterization vs. ClassificationClass Support and Confidence
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Confidence

Support

𝐶𝑓𝑑 𝑐, 𝑎 = Pr 𝑐 𝑎 =
# 𝑐, 𝑎
# 𝑎

𝑆𝑢𝑝 𝑐, 𝑎 =
# 𝑐, 𝑎
# 𝑐

Prob. of belonging to
class 𝑐 if 𝑎 is observed

Portion of nodes in
class 𝑐 exhibiting 𝑎
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Characterization vs. Classification
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Characterization vs. ClassificationProposed Method vs. LR
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Slides, code, data http://www3.cs.stonybrook.edu/
~arezaei/project/amen_char.html
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Ties That Bind - Characterizing Classes by Attributes and 
Social Ties. Aria Rezaei, Bryan Perozzi, Leman Akoglu.                             
WWW 2017 Companion 



This talk 
n  Attributed (sub)graphs*

q  Subgraphs
q  Summarization
q  Comparisons 

* social circles, communities, egonetworks, …

[SIAM SDM’16] 

[ACM TKDD’18] 

[WWW ’17] 
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n  Discovering Communities and Anomalies in Attributed 
Graphs: Interactive Visual Exploration and Summarization.          
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n  Ties That Bind - Characterizing Classes by Attributes and 
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Communities and Anomalies in A�ributed Graphs: Interactive Exploration and Summarization • 39:19

Fig. 6. Community Exploration Panel. Users can view, select and de-select circles for summarization, and be displayed the
avg. normality, coverage, and diversity of their current summary (best in color).

since the user would want to avoid selecting largely overlapping communities in order to e�ciently increase the
coverage with a few communities.

To this end, our idea is to visualize each community as a circle in 2-d as shown in Figure 6. Each circle is colored
by its focus a�ribute and circle size is proportional to community size. Hovering over each circle displays the
exact size, normality, and community members. Importantly, the higher the overlap between two communities,
the closer the center points of corresponding circles are placed. We de�ne the distance between two communities
Ck and Cl as

dist (Ck ,Cl ) = 1 � |Ck \Cl |
min( |Ck |, |Cl |)

,

and compute the R ⇥R distances between all pairs of extracted communities. Multi-Dimensional Scaling (MDS) is
used to �nd a 2-d embedding of the communities such that the pairwise distances as de�ned above are preserved
in the Euclidean space as much as possible. As such, largely overlapping as well as nested communities are
clustered in the display. �e user can then aim to select large circles that are spread out in the 2-d embedding in
order to most e�ectively increase coverage.

Figure 6 shows 7 (highlighted) circles selected by the user. Each time a user selects (or de-selects) a circle to be
included in (or excluded from) the summary, quantities of interest—normality, coverage, diversity—are displayed
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Communities and Anomalies in A�ributed Graphs: Interactive Exploration and Summarization • 39:21

Fig. 8. Algorithmic Summary Panel. Users (top right) input desired K and weights for quantities of interets, and be displayed
(top le�) algorithm-selected communities, and (bo�om right) algorithmic summary results.

7 EXPERIMENTS
We evaluate our normality measure and algorithm using several real-world graphs. We �rst analyze the ranking
behavior of our measure in detail, and study the high quality communities and the type of anomalies we �nd.
Next, we evaluate the performance of AMEN in detecting anomalous communities where we inject anomalies
in our graphs by perturbing the high quality communities. We further compare to the following existing
measures and methods: average degree density [12], cut ratio [79], conductance [5], Flake-ODF [21], OddBall
[2], A�ribute-Weighted Normalized Cut (AW-NCut) [28], and SODA [29]. All but AW-NCut and SODA are
structural approaches and ignore the a�ributes. Finally, we conduct user studies to evaluate the usability of our
summarization and visualization approaches in terms of e�ectiveness (i.e., quality of summaries) and e�ciency
(i.e., time to summarize).
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1) Exploratory and Interactive Summarization: Our first
challenge is to visualize all the extracted communities in a
fashion that can help the user to explore them and build their
own summary by selecting a representative subset effectively
and efficiently. For summarization purposes, the visualization
should help the user quickly grasp the size, normality, and the
focus attribute of each community. In addition, the amount
of overlap between the communities should be presented in
an effective way, since the user would want to avoid select-
ing largely overlapping communities in order to efficiently
increase the coverage with a few communities.

To this end, our idea is to visualize each community as a
circle in 2-d as shown in Fig. 5. Each circle is colored by its
focus attribute and circle size is proportional to community
size. Hovering over each circle displays the exact size, nor-
mality, and community members. Importantly, the higher the
overlap between two communities, the closer the center points
of corresponding circles are placed. We define the distance
between two communities C

k

and C
l

as

dist(C
k

, C
l

) = 1�

|C
k

\ C
l

|
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and compute the R⇥R distances between all pairs of extracted
communities. Multi-Dimensional Scaling (MDS) is used to
find a 2-d embedding of the communities such that the pair-
wise distances as defined above are preserved in the Euclidean
space as much as possible. As such, largely overlapping as well
as nested communities are clustered in the display. The user
can then aim to select large circles that are spread out in the
2-d embedding in order to most effectively increase coverage.

Fig. 5 shows 7 (highlighted) circles selected by the user.
Each time a user selects (or de-selects) a circle to be included
in (or excluded from) the summary, quantities of interest—
normality, coverage, diversity—are displayed in (blue) bar
plots as in Fig. 7 (bottom left). Red vertical lines show the
values before the last selection; which, in the figure, increased
normality, decreased coverage, and did not change diversity.

Fig. 5. Community Exploration Panel. Users can view, select and de-select
circles for summarization, and be displayed the avg. normality, coverage, and
diversity of their current summary (best in color).

2) Filtering: While searching for circles to select for their
summary, the user may want to focus on communities with
certain properties. As such, we introduce a panel for filtering
communities by focus attribute, normality, and size, as shown
in Fig. 6. The user can click on the attribute names of interest,
use a horizontal slider to specify a range for normality, as well
as check/uncheck size values to display only the communities
that meet all specified criteria in the mid-panel (Fig. 5).

Fig. 6. Filtering (by attribute, normality, and size) Panel.

3) Algorithm-Guided Human-in-the-loop Summariza-
tion: Finally, we integrate a panel that enables the user to
display the output from our summarization algorithm. To do
so, the user enters their choice for K, and any two of the
weights for normality, coverage, and diversity from drop-down
lists (upon which the third remaining weight is automatically
set so that their sum is 1) as shown in Fig. 7 (top right). Upon
user input, K algorithm-selected circles are displayed to the
user in a separate plot (top left), along with the quantities of
interest (bottom right). This output is likely to guide the user
in revising their own summary (Fig. 5), toward an alternative
and/or better summary than the algorithm’s (w.r.t. objective
value, recall that the greedy algorithm is not exact).

Fig. 7. Algorithmic Summary Panel. Users (top right) input desired K and
weights for quantities of interets, and be displayed (top left) algorithm-selected
communities, and (bottom right) algorithmic summary results.


