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‘ Attributed graphs

Attributed graph: each node has 1+ properties
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Attributed networks

facebook ¢ B
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‘ Motivating question:

How can we make sense of
node-attributed networks ?
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Attributed networks

facebook ¢ B

Idea is “description-by-parts”:

=
—_ e =

ofile page &

X About

Overview

Work and Education
Places You've Lived
Contact and Basic Info
Family and Relationships

Details About You
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SOCIAL
CIRCLES

How offline relationships influence
online behavior and what it means
for design and marketing
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‘ Research questions:

(1 How to characterize &
measure the quality of ...

(2 How to summarize & ~
interactively explore ...

@ How to characterize differences \_ 2 ~Jo

between classes of ...
... attributed subgraphs?

Scalable Anomaly Ranking of Attributed Neighborhoods SIAM SDM 2016

Discovering Communities and Anomalies in Attributed Graphs:
Interactive Visual Exploration and Summarization ACM TKDD, 2018

Bryan Perozzi and Leman Akoglu
Ties That Bind - Characterizing Classes by Attributes and Social Ties

Aria Rezaei, Bryan Perozzi, Leman Akoglu WWW 2017 Companion

1)
2)

3)
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‘This talk

= Attributed (sub)graphs”®
»Subgraphs [SIAM SDM’16]

0 Summarization [ACM TKDD'18]

o Comparisons [www 17] o

* social circles, communities, egonetworks, ...
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What’s a “good” subgraph anyway?

+ Given an attributed subgraph,
how to quantify its quality?

o Structure-only
= Internal-only
0O average degree
= Boundary-only
0 cut edges
= Internal + Boundary
0 conductance

o Structure + Attributes

Scalable Anomaly Ranking of Attributed Neighborhoods
Bryan Perozzi and Leman Akoglu ~ SIAM SDM 2016.

Carnegie Mellon



Normality (intuition)

= Given an attributed subgraph
how to quantify quality?

0 Internal
= structural density
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Normality (intuition)

= Given an attributed subgraph
how to quantify quality?

0 Internal
= structural density AND
= attribute coherence
« neighborhood “focus”

H N
t1

wine cheese
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Normality (intuition)

= Given an attributed subgraph
how to quantify quality?

0 Internal
= structural density AND
= attribute coherence
« neighborhood “focus”

o Boundary
= structural sparsity, OR
= external separation
< “exoneration”
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'Normality (intuition)

m “exoneration” : by (a) null model, (b) attributes
3::? edges expected, separable by
l/ not surprising  different “focus’

(a) hub effect (b) nelghborhood overlap

= Motivation:
o no good cuts in real-world graphs [Leskovec+ ‘08]
o social circles overlap [McAuley+ "14]

Carnegie Mellon 13



‘ The measure of Normality w

NuII model

f ieCec Qm/ T‘ (1)

. dot-product, or
mtgrnal Kror?e cker's “focus” vector
consistency BB
(I

wine cheese
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‘ The measure of Normality
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The measure of Normality %

= Given an attributed subgraph, can we find the
attribute weights?

N(C) = Aii — 221 sima (X1, X;)
ie(;c, ( J Zm) J @

ki:k .
_ Z 1 min ( 2—mb))szmw(xi,xb)

i€C,bEB
(i,b)EE

s D | 3 (- g, ew ()
1eC,je’,

1#£]
latent ko
- > (1 - min(1, o ) (xi @xb)]
1eC,beB
(i,b)e&
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Optimizing Normality

N=I+FE= Z (Aij — kikj)s(xiaxﬂw)

ieCjeC 2m @
k;ky

- ¥ (1 —min(1, 5—2)) s(xi, Xp| W)

m
i€eC,bEB
(i,b)EE

kik;
rrvb%x WCT- [ Z (Aij — J)S(Xiyxj)

icC,jeC @
kik
— Z 1 — mm b :

max we! - (fq + Xp) @
wC
s.t. lwell, =1, we(f) >0, Vf=1...d

Carnegie Mellon

17



Optimizing Normality %

max wel (X1 +XE)
WC *
S.t. HW(ij — 1, Wc(f) > O, \V/f =1...d

p=1:wc(f) = 1 one attribute /' with largest x

p=2:wc(f) = \/ZXZEQ) — all / with positive x

Normality becomes N = wc' - x = ||x4 ||

Linear in number of attributes!

whenp =1, N € [_17 1] N € l_la ||X-|—||2J Whenp = 2,
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lllustrative examples
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‘ Anomaly detection: Perturbed data

Citeseer Structure Perturbation

Citeseer Attribute Perturbation
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‘ Normality vs Conductance, DBLP

DBLP
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Attribute distribution, DBLP

DBLP

31098 A})i|ewJoN
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6 7
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‘ Summary

A new quality measure for attributed subgraphs

normality considers:
internal + boundary
structure + attributes
subgraph focus

“exoneration’

Automatic inference of focus ¢
via normality maximization
unsupervised
linear in #attributes

Carnegie Mellon
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Paper, code, data

= http://www.perozzi.net/projects/amen/
Bryan Perozzi

Overview Anomaly Ranking of Attributed
S Neighborhoods

» Selected Publications Bryan Perozzi, Leman Akoglu
» Honors and Awards May 9, 2016

» Press Coverage

. . Awards: Best Paper Runner-up, SDM’16!
Publications ? .

Overview

» Conference & Journal

» Workshop & Poster Given a graph with node attributes, what neighborhoods are anomalous? To answer this
question, one needs a quality score that utilizes both structure and attributes. Popular

s soman et DCalable Anomaly Ranking-of Attributed Neighborhoods
attributedGranhs - Byyan Perozzi and Leman Akoglu SIAM SDM 2016.

Carnegie Mellon 25
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‘This talk

= Attributed (sub)graphs”®
0 Subgraphs [SIAM SDM'16]
m) Summarization [ACM TKDD'18]
o Comparisons [www 17] o

* social circles, communities, egonetworks, ...
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Extracting Social Circles

= a GRASP (Greedy Randomized Adaptive
Search Procedure) approach [Feo & Resende "95]

Algorithm 1 EXTRACTATTRIBUTEDSOCIALCIRCLES

Input: G = (V, €&, A), node attribute vectors X, cv, Trmaz, @
Output: set of extracted communities C
1: C:=10
2: for each u € V do
3 fort=1:17,,,, do
4: S := CONSTRUCTION(u, G, ) <]
5: C := C U LOCALSEARCH(S,G) <]
6
7
8

end for
- end for
- return C

o note: one focus attribute per circle

Carnegie Mellon 29



Overview nout grach
O Interactive Visual Analysis T T —rt
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Summarization

= Social circles: what size, quality and focus?
o Attempt: visual summary

size X #nodes
color: ‘focus’
& text: normality

125 circles!

o does not reflect overlap between circles!

Carnegie Mellon 31



Summarization %

= Want a summary (a few circles):
o high normality
o well-“cover” the graph
0 diverse in ‘focus’

UcesCl |y _ o g Uoes A©)

- O‘\K Vs n d

0 < a,B <1 can be interactively adjusted by users

Carnegie Mellon 32



Summarization %

max (g) = 0 DeesNO) L g WUeesCl (), g [Uoes A©)
J & \

|S[=K \ ' | , '

avg. normality coverage diversity

= Provided K, n, d (denominators) fixed, easy
toshowthat f:2° = R, is
0 non-negative
o monotonic: A € B CC, f(A4) < f(B)
0 submodular: foreveryA C B C Cand C € C\B,
F(AU{CY) - f(A) > F(BU{C}) — f(B)
> The “next-best” greedy algorithm: at least 63%

of the objective value 1(-) of the optimum set.
Carnegie Mellon
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Summarization
= surface formed by various parameter
combinations (a, 8,1—a— ) (blue dots)

o (green) square around the “knee”: a good trade-off
between quality, coverage, and diversity

Diversity
o o o
w A~ O
| L L
\
[ ]
®
€«

K fixed to 5

0.4

0.5

0.7 065 ¢g 055 0 Coverage
Normality

0.8 .75
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‘ Interactive Visual Exploration & Summarization
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Circle embedding

0.E Attribute =\ 2-D MDS embedding
B Student/Faculty /7 <£ ;@ .
0.5 . Gender ly"\__ / N p rese rVI n g :

7\
_ B Major U

Bl Minor @ . |Ck M Cl |
Jorm —_~) d?/ St C C — ]. - R
. : z'ac Year o, O;:\J(:) ( k , l) mln( | Ck? ‘ Y |Cl | )
0.2 High School -

E21 %

. Size X #nodes
color: focus

E1l #
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Interaction: Filtering

Filter Panel

Attribute

B student/Faculty
B Gender

™ Major

| Dorm

M Grad Year

Normality

0.5230 1.0000
d D

Size % P

(All)

Carnegie Mellon
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Interaction: Circle summarization
0.6 O

0.4 o
@ Members: 2 4 8 10 12 15 17
Normality: 0.7495

O
. Q O

-0.4

Coverage:
I
-0.6

Diversity:

07 06 05 -04 -03 02 -01 00 01 02 03 04 05 06 07

E1ll

0.2

E21
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Evaluation

Q1) Summarization by visual exploration. Does interac-
tive visualization help users construct effective sum-
maries, as compared to strawman baselines?

Objective Value

 Avg User (No Guidance)

“ Avg User (w/ Guidance) # Algo. “ Baseline (TopS) % Baseline (TopN)

0.9
0.8

0.7
0.6
0.5
0.4
0.3
0.2
0.1

D1 (5) D1(10) D2 (5)

D2 (10)

D3 (5) D3 (10) D4 (5) D4 (10) D5 (5) D5 (10) AVG

Carnegie Mellon
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Evaluation

Q2) How close do the summaries by users without guidance
get to the algorithm results (in terms of normality,

coverage, diversity, and overall objective value)?

140.00

120.00

100.00

80.00

60.00

40.00

20.00

0.00

Percentage (%) of algorithm's N,C,D,0 achieved by each user

Normality

Coverage

Diversity

Objective Value

UUser1
L User 2
O User3
B User 4
W User5

B AVG User

Carnegie Mellon
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Evaluation

Q3) Alternative summarization by algorithmic guidance.

100 O{&Lter) jolbefore) :

How much guidance does our summarization algorithm
provide users to derive alternative summaries and im-

pr0ve over their earlier resull's? . User (w/out & with guidance) vs. algorithm

B No Guidance E With Guidance & Algo.
0.8

0.6

0.4

0.2

Normality Coverage Diversity Objective Value

PERCENT % IMPROVEMENT IN OBJECTIVE VALUE BY EACH USER ON EACH DATA/TASK AFTER ALGORITHMIC GUIDANCE.

|D1(5) D1(10) D2(5 D2(10) D3 (5 D3(10) D4(5 D4(10) D5(5 D5(10) ||

User 1 11259 15644 9953 11431 12989 13058 9220  106.17 170.86  121.08 || 123.37
User 2 91.79  118.14 8756 10286  99.19 11231 9266  100.00 107.39  117.97 || 102.99
User 3 101.60 11295 101.30  120.73 140.15  101.75  85.78 96.60 199.57  142.96 || 120.34
User 4 103.98  104.18 100.85  140.65 103.76 ~ 10594 116.86 12473 110.13  109.13 || 112.02
User 3 117.61 124.02 10270  129.06 169.17 11777 105.06  106.17 113.34  109.65 || 119.45

Avg User || 105.51 123.15 9839 12152 12843  113.67  98.51 106.73 140.26  120.16 || 115.63
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Evaluation

Q4) Efficiency. How long does it take per user on average
to construct (i) a summary without guidance, and (ii)
alternative summary with guidance?

Time (in sec) to summarize
35 ® Without algo. guidance  ® With algo. guidance
13.
263.8 276.6  269.6
234.4230.2 229.44
83.4
D1(5) D1(10) D2(5) D2(10) D3(5) D3(10) D4(5) D4(10) D5(5) D5(10) AVG

Carnegie Mellon
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‘ Summary

= An end-to-end system for sensemaking of
node-attributed networks

.. (3D Interactive Visual Analysis  Input graph
(1, Circle extraction ST,
based on normality | o
(8. Summarization wrt = i wo L=
- quality, ~ 0" o

- coverage, and 1 MOV . Social circle extraction

) dlvers_lty | @) S@marizaﬁon w -
@Interactlve interface for o
- exploration. ¢ S Tes
o o »-«4'( 9%
- . Lo

Discovering Communities and Anomalies in Attributed Graphs: Interactive

Visual Exploration and Summarization Bryan Perozzi and Leman Akoglu
ACM TKDD, 2018
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‘This talk

= Attributed (sub)graphs”®

0 Subgraphs [SIAM SDM'16]

0 Summarization [ACM TKDD'18]
»Comparisons www *17] I o

* social circles, communities, egonetworks, ...
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Comparing attributed (sub)graphs

= Motivating question:

Given a collection of attributed subgraphs
from different classes,

how can we discover the attributes that
characterize their differences?

= Hypothesis: subgraphs from different classes
exhibit different focus attributes

fCrosswords oefies
_ Partying
Tea par.tles Class A Class B Video Games
Gardening
K subgraphs subgraphs /

Carnegie Mellon 46



Problem Sketch

G
W]
[T T .
attributed graph

(@)

class A class B

a a

d
d
a

N =~ B W
D

assignment
& ranking

(d)

class A subgraphs

‘\1@2‘\3

class B subgraphs
81 82

a,a,a,a,a,a,

characterizing subspaces

(c)

Carnegie Mellon
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Characterization Problem: Formal

Given

e p attributed subgraphs g;", g5 ,...,g; from class 1, S T

e n attributed subgraphs ¢g; ,95,...,9, from class 2, ST
from graph G, and attribute vector a € R? for each
node;

Find

e a partitioning of attributes to classes as AT and A,
where ATUA™ = Aand AT NA™ =0,

e focus attributes A" C A" (and respective weights w")
for each subgraph g;", Vi, and

e focus attributes A, C A~ (and respective weights w )
for each subgraph g;i » E

such that

e total quality () of all subgraphs is maximized, where

Q=>"4 a(g1AT) + X7, alg; |A7);

Rank attributes within AT and A~

Carnegie Mellon



Reminder: Normality
= Normality as subgraph quality q:

N =w; . (X + Xx)

. INax N s.t. HWCHP =1,w.(a) >20,Va=1,..,d

Wc
L . .
1 O, w.(a) = 1, one attribute with largest x
L norm | w.(a) = JZ (@) ~ all attributes with positive x
x(i)>0x L

Carnegie Mellon 49



Splitting attributes by class: intuition

Class A

Common Focus Attributes

I 1 1

I

H

Subgraphs

!

Attributes

Class B
Common Focus Attributes
| i1

Subgraphs

1N

Attributes

Carnegie Mellon
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Splitting attributes by class: intuition

= We don’t want attributes that are:
o Relevant or irrelevant to both classes

Highly relevant to both. Not distinguishing.

Irrelevant to both. Not Interesting.

Carnegie Mellon 51



Splitting attributes by class: intuition

= We want attributes that are:
o Relevant to one class & irrelevant to other(s)

A good attribute for class B

A good attribute for class A
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Setting up the objective w

= Given a subset of attributes S, normality of
subgraph g is

N(gIS) = | x(@? = |IxIs]l],

\ a€s

2-norm of x induced attribute weight vector of g
on the attribute subspace
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Setting up the objective w

= Quality of an attribute split is:

1 1 B
emax o [lxlatlil, +2 ) gl

[EST JES™
SuchthatAtTNnA =0

p = number of subgraphs in class +
n = number of subgraphs in class -
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Setting up the objective w

= Quality of an attribute split is:

1 1 B
emax o [lxlatlil, +2 ) gl

[EST JES™
SuchthatAtTNnA =0

- p = number of subgraphs in class +
= Rank attributes by n = number of subgraphs in class -

1 1
re(@) =3 ) x(@ = ) %@

l iest I JES™ |
Normalized contribution Normalized contribution
of a to Class + of a to Class -
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‘ Submodular Welfare Problem w

= Definition:

/Given d items and m players having a monotone\

and submodular utility function (w;) over subsets

of items. Patrtition the d items into m disjoint sets
(13,15, -+, L,) in order to maximize:

w;(1;)
N 2 y

= Our quality function N(g|S) is a monotone and
submodular set function.

C C 1 C
we(le) = N(SWAY) = —= > [lxe[A“)]]:
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Attribute splitting as SWP w

= SWP is NP-hard
= First approx. factor is 2 [Lehmann+, 2001]
= Improved to (1 —1/e) [Vondrik+, 2008]

= No better approximation unless
o P = NP [Khot+, 2008]

o Using exponentially-many value queries
[Mirrokni+, 2008]

- [Vondrak+, 2008] is optimal approximation
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Experiments

= Datasets
o Congress Co-sponsorship Network
o Amazon Co-purchase Network
o DBLP Co-authorship Network

= Baseline (LASSO): L1-Regularized Logistic
Regression
o Positive weights are assigned to class A
o Negative weights are assigned to class B

Carnegie Mellon
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Congress Co-sponsorship

= Bills in Congress
o each bill has a set of sponsors & policy area tag

= Attributed Graph:
o Nodes: congressmen
o Edges: co-sponsoring a bill
o Attributes: policy areas of bills they sponsored:
= National Security and Armed Forces
= Environmental Protection
= Foreign Affairs

» Classes: party affiliation of congressmen

Carnegie Mellon
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Liberal and Conservative Ildeals

Democrats Republicans
health [ I covernment
families N taxation
education [N I =
commerce [ Bl cmployment
housing [N I public works
employment [N I natural resources
emergencies
foreign trade [N
environment [N
criminal law [N Sl immigration
Democrats focus mostly Republicans focus mostly
on social programs on governance and finance
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Focus Over Time

= 13 consecutive congress two-year cycles:

PARTY FOCUS ON

ARMED FORCES War in
War in Iraq
Afghanistan
Bombing
of Iraq

Democrat
Republican

1993 1995 1997 1999 2001 2003 2005 2007
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Amazon.com Co-purchases

Attributed Graph:
= Nodes: Amazon videos

» Edges: being co-purchased together

m Attributes:
o Product genre (Drama, Comedy, etc.)
o Audience age range (e.g., 10-12 years)
o Creators (e.g. Warner Video)

a ...
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Classes: Animation vs. Classic

Classics

Animation
Kids & Family [N S P rforming Arts
3-6 Years [N I Co ey
Age range 7-9 Years IR I I usicals
10-12 Years [} I Or2ma
I 5 '<p<nse

Warner Home [}
Creator Warner Video [} I Viystery
Cartoon Network [} I Classic Comedy
Bible [ B V2 & Pa Kettle
Content Christian Video [l B D<tectives
O urs Bible Stories [} I Romance
L AS SO _ _ Animation Classics
Kids & Family [ | | Drama
Educational [N | | Comedy
Dr. Seuss [N [ ] Performing Arts
7-9 Years [l [ ]Action
Vv Holidays [ [ lWesterns
Franchise -_— Dragon Tales [l [ ] Musicals
names Infantil y familiar [} L I Mystery
Nickelodeon [l [ 1French
I Warner Video [l [ ] Sesame Street
Franklin [l ]| Puppets
63

Carnegie Mellon



Classes: Under 13 vs. Over 13

Attribute weight
goes down as
quality decreases

Ours

<

Under 13 QOver 13
Kids & Family Comedy
Animation [[INEGGINB B Fitness
VHS I B D ocumentary
Clifford [} B Classic Comedy
Action [} B Performing Arts
Adventure [} B Horror
Indiana Jones [} B Vusicals
Dinosaurs [} Bl cible
Cartoon Network [} Bl Christian Video
| Land Before Time [l B Yoga

LASSO

Not much
differentiation

Under 13 Over 13
— Videos for Babies [NNEGEN | | Fithess
Charlie Brown [ [ JInfantil y familiar
Kids & Family [ [ ]Comedy
Magic School Bus [ [ ]Spanish Language
Mary-Kate & Ashley [N [ IMGM Home
For the Whole Family [ [ ]School Days
There Goes A... [N £ IMilitary & War
Rugrats - All Grown Up [N [ ]Drama
Little Bear [N [ |Ballet & Dance
Scooby-Doo [ [ ]Eyewitness
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Characterization vs. Classification

= Regularized linear classifiers (e.g. LASSO)
can find

0 a sparse attribute subspace
0 coefficients for ranking

= How is our work different?

Classifiers focus on confidence
while we focus on support
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Characterization vs. Classification

- I Prob. of belonging to
Confldence classcifais observed]
#(c,a)

#(a)

Support >[Portion of nodes in]

class c exhibiting a

Cfd(c,a) = Pr(cla) =

#(c,a)
#(c)

Sup(c,a) =

Carnegie Mellon
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Characterization vs. Classification

Class
Confidence

CC(ct,a) =Pr(ct|la) — Pr(c”|a)

>| Relative Confidence

Class
Support

CS(c*,a) = Sup(ct,a) — Sup(c—,a)

—>| Relative Support

Classifiers focus on confidence
while we focus on support
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Characterization vs. Classification

—

B Proposed
B LR

Class Support
o
&)

0
Animation Classics Under 13 Over 13 ICASSP ICC

1 .

f]lJI | ILIu[

Animation Classics Under 13 Over 13 ICASSP

Class Confidence
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‘Slides code. data http://www3.cs.stonybrook.edu/
, ’ ~arezaei/project/amen char.html

Characterizing Class Differences in
Attributed Graphs

Aria Rezaei, Bryan Perozzi, Leman Akoglu

Overview
G °|ZSS A sub%raphs g g a, 3,38 3, 35 3 classA class B
BT 1@;\23 N = EEE a a
9 I T S
a, a,
C/%. O T T a,
class B subgraphs [ 1 Tl a,

B* @ 9:. [T T I
B2 .
. assignment
attributed graph characterizing subspaces & ranking

(@) (b) (€) (d)

vTies That Bind - Characterizing Classes by Attributes and
t Social Ties. Aria Rezaei, Bryan Perozzi, Leman Akoglu.
WWW 2017 Companion
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‘This talk

= Attributed (sub)graphs”®
0 Subgraphs [SIAM SDM'16]
0 Summarization [ACM TKDD'18]
o Comparisons [www 17] H o

* social circles, communities, egonetworks, ...
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References, Links to Code&Data:

= Scalable Anomaly Ranking of Attributed Neighborhoods.
Bryan Perozzi and Leman Akoglu. SIAM SDM 2016
hitps://github.com/phanein/amen

= Discovering Communities and Anomalies in Attributed

Graphs: Interactive Visual Exploration and Summarization.

Bryan Perozzi and Leman Akoglu. ACM TKDD, 2018
https://www.dropbox.com/home/Public/iSCAN

= Ties That Bind - Characterizing Classes by Attributes and

Social Ties. Aria Rezaei, Bryan Perozzi, Leman Akoglu.
WWW 2017 Companion
https://github.com/rezaeiaria/AmenChar
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‘ Contact: lakoglu@andrew.cmu.edu
www.andrew.cmu.edu/~lakoglu

Subgraphs Summarization Comparisons
Algorithm Summary Democrats
health [
families NN
education NG
commerce NG
| | housing [N
\ 7 employment [N
‘ ® . : emergencies
‘ ‘ foreign trade [N
o environment [
' criminal law [N
05 0.0 05 Republicans
I ooemment
Normality: _ taxation
—
Coverage: I =mployment
| I public works

Diversity: I natural resources

I congress
I finance
B commerce
Bl immigration

85.71
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