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�As long as our brain is a mystery, the universe, the re�ection
of the structure of the brain will also be a mystery.� Santiago
Ramón y Cajal

1



1 Abstract

The human brain has long been an object of great scienti�c interest. We revel
at the immense capabilities that our highly evolved brains possess and wonder
at how the brain functions, how vision is interpreted, how consciousness arises
etc, all of which neuroscience deals with to a great extent. Recent advances in
neuro science and computer science have brought to the fore-front an exciting
research area of Brain Networks. The fundamental idea giving rise to this area
being that the brain can be thought of as composed of several simple elements
that give rise to complex patterns like consciousness[6]. Thus the brain can be
modeled as a network which admits the brain to network analysis. Over the
years, network science has evolved to a great extent and is now in a position to
analyze real world networks. Emergence of massive data, faster algorithms and
the ubiquity of networks have contributed to this. We investigate sex di�erences
in brain networks across males and females in this project. We outline some
of the di�erences in brain networks across sexes. We also use some of these
discriminative features for the related classi�cation problem �Can we classify
a human connectome (brain network) to belong to one of the sexes ? � and
using a simple decision tree as well as a support vector machine for the above
classi�cation tasks. The rest of the document motivates the problem, describes
our research methods and experiments and then presents our �ndings. We then
conclude by interpreting our results and discussing future work.

2 Motivation

One of the over arching idea currently in brain research is the idea that it is
crucial to study the connections in the brain to gain deeper insight into the
functioning of the brain. This is an exciting research area resulting from the
con�uence of neuroscience and network science whch promises us great insight
into the workings of the brain. Perhaps one of the most important projects ,
analogous to the Human Genome Project in 2005 is the Human Connectome
Project that was kicked o� in 2009. The human connectome project which aims
to map the brain's connectivity across regions can help understand diseases like
schizphrenia, Alzheimer's disease. It is to be noted that analyzing the human
connectome is far more challenging in terms of scale ( it has more than a billion
more connections than the letters in a genome)[7]. While the human connectome
project is still an ongoing project , exciting initial results have been obtained
by analyzing connectomes. A visualization Some important results include the
small world property of brain networks, the presence of a rich club of hubs.
Noting the larger goal outlined above, one of the research problems that seeks
investigation is that of sex di�erences in brain networks and what they imply
in a biological setting. We investigate this problem in our project. We de�ne
the problem precisely as follows:

1. What di�erences in brain network (connectome structure) do both the
sexes exhibit ?
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2. Would these discriminative features admit to classi�cation of connectomes
based on sexes ?

We now discuss related work related to sex di�erences in the next section.

3 Related Work

There are two main approaches to the above problem of identifying discrimi-
native features of the connectome. The �rst approach would be to look for a
subgraph structures (also called a signal sub-graph) which are discriminative
and build a classi�er based on this. This approach has been described in detail
by Joshua Vogelstein et.al[1]. This model has been shown to perform better than
other standard graph classi�cation techniques like graph k-NN[1]. The second
approach is to identify discriminative network measures (either global or local)
and use standard machine learning techniques for classi�cation. Julio.N.Duarte
etal[2] analyzed connectome structure to help identify sex and kinship di�er-
ences. They con�rmed the small node nature of brain networks, and also out-
lined structural di�erences in brain networks in terms of network measures like
communicability , edge betweenness centrality which improved the classi�cation
rate to around 93% accuracy(based on sex for their data sets). This was mostly
done at a global scale(topological scale) with a data set of 303 individuals.

In our project, we are investigating structural di�erences on a di�erent data
set and also look at how both discriminative network measures can be used to
classify connectomes according to sex.

4 Experiments and Data Set

The data set consists of connectome data for 114 individuals( 50 of them being of
1 sex and 64 of the other, Mean age: 21 years). Each sample is a brain network
on 70 nodes(where each node represents a particular brain region , and each
weighted edge represents density of �bers between those regions(strength of their
connections).Each sample is represented as a weighted undirected graph and is
thus represented as a sparse strictly upper triangular matrix.Each sample or
connectome is assigned a label (0 or 1) thus identifying what sex the connectome
belongs to. The data set also contains labels for other interesting features like
extraversion, neurotic-ism, agree-ability etc. These labels would be interesting
for a regression task. For all the experiments, we denote the sex with label 0
as Sex 0 and the sex with label 1 as Sex 1 respectively. A sample network is
shown below:

We now seek to identify discriminative network measures for sex classi�ca-
tion. We now brie�y outline our experimental method and research technique
below
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Figure 1: Sample Brain Network Visualized

4.1 Preprocessing the data set

Note that each connectome is represented as a weighted undirected graph(that is
symmetric and hence strictly upper triangular). Since each weight of the edge
represents the density of �bres between those regions, it is crucial that such
connectome data be normalized between the range [0,1]. This is because the
number of �bres detected by scanner varies from individual to individual. The
authors in [2] also point out that there exists an inherent bias in tractography
for a given cortical region that depends on the volume of the region, number
of �bre crossings etc. However they also point out that there is no unique
way of normalizing this data. They do however outline di�erent normalization
schemes(based purely on topological measures) which we brie�y high-light below
as it is crucial to understand the interpretation of a normalization scheme:

• Global Normalization: This essentially divides each edge weight by the
total weight of all the edges in the connectome, e�ectively normalizing
�bre count between each pair of regions by the total number of �bres.

wij =
aij∑
ij aij

(1)

where wij represents the normalized �bre count(edge weight) and aij represents
the raw edge weight between region i and region j.However this scheme leads
to biased weights because it does not account for the fact that some regions are
expected to have higher number of �bres and also that if the area of the cortical
region is larger , more �bres would be counted.

• Geometric Mean based normalization:This scheme divides the �bre count
between each pair of edge by the geometric mean of the number of �bres
leaving region i or region j. This normalization is based on the assumption
that it assumes that each pair of brain regions has the same total number
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of �bres. This normalization is claimed to work correctly globally and on
a large sample sizes.

wij =
aij√∑

i aij
∑

j aij
(2)

• Row Mean Based Normalization: This scheme just divides each edge's
�bre count by the total number of �bres incident on that node. More
formally:

wij =
aij∑
j aij

(3)

The above normalization scheme has a very interesting interpretation: It
can be viewed as the probablity of a connection between regions i and
regions j given that there are

∑
j aij �bres emanating from region i. It

is worthwhile to note that this indeed provides us valuable information
regarding the di�erences in connectivity between cortical regions. Even
though a set of �bres leave a particular region i, only a subset of them are
used for the connection to region j. This model also implies that wij 6= wji

thus making the resulting graph a weighted directed graph.

We decided to use the Row Mean Based Normalization as it captures valuable
information about the connectivity di�erences and believe it models the brain
more accurately.

Secondly, in order to reduce the e�ect of mean brain size di�erences between
males and females, the authors highlighted that one must normalize the above
by the maximum weight so that max(wij) = 1

4.2 Network Measures

We then calculated the following network measures(We used the Brain Connec-
tivity Toolbox [5]to calculate the measures below):

1. Local Weighted Clustering Coe�cient

2. Local E�ciency

3. Degree distribution

4. Edge Between-ness centrality

5. Participation Coe�cient of each node

For all the node-based measures, we calculate the mean measure across all sub-
jects of the class.

We then analyzed the data for di�erences in the mean measures across
classes(sexes). To establish statistical signi�cance of a di�erence, we decided
to use a boot strapping approach. This approach is suited very well for our
project as we have a small sample size and boot strapping allows us to test out
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Algorithm 1 Boot-strapping algorithm to establish statistical signi�cance

Assume we have 2 independent sample sets (these correspond to samples of both
the sexes)
Observed Sample Set 1 is of size n :{xobs1, xobs2, xobs3 . . . xobsn} and has mean
µxobs

Observed Sample Set 2 of size m : {yobs1, yobs2, yobs3 . . . yobsm} and has mean
µyobs

Observed Di�erence in the sample mean is t∗obs = µxobs − µyobs

We need to see if the above di�erence is statistically signi�cant at a pre-
determined level of signi�cance α
Hypothesis:

• Null Hypothesis(H0): Both samples are from the same population

• Alternative hypothesis(H1): Both samples are from di�erent population
and µx > µy

1. Merge the 2 sample sets into 1 sample set of size (m+ n)
2. Draw a boot strap sample , with replacement of size (m+n) from the above
merged set
3. Calculate the mean of the �rst n observations and set it to µx∗
4. Calculate the mean of the remaining m observations and set it to µy∗
5. Calculate the test statistic t∗ = µx∗ − µy∗
6. Repeat steps 2,3,4,5 B times and obtain B values of the test statistic.
7. The p-value is then given by:

p− value = NumberOfT imes(t∗ > tobs∗)
B

(4)

8. Reject the null hypothesis if p− value < α

hypothesis by creating a large enough sample through repeated sampling. Sec-
ondly it has the added advantage that no assumption on the sample distribution
is made.

We outline the boot strapping algorithm (in Algorithm 1[8]) :

5 Results

5.1 Analysis of the mean edge connectivity

We found the average (mean) weight of each edge for each class (by averaging
over all subjects belonging to a class) to identify any edge weights di�erences
among sexes. The heat map (Figure 1) shows the di�erences in the mean edge
weights for each edge between Sex 0 and Sex 1.

We note the following di�erences:
1. We �nd strong connections from Node 48 and Node 63 to Node 55 ,in

6



Figure 2: Mean Edge Connectivity Di�erences between Sex 0 and Sex 1

one of the sexes.
2. We also note a particularly dominant edge between Node 33 and Node

68 in one of the sexes.
While we do not have labelings for the brain regions represented by the

nodes, we speculate that the particularly dominant edge is between 2 hemi-
spheres. This is based on the observation that the labelings given to connec-
tome nodes (based on tractography)tend to be divided into 2 classes(based on
hemisphere) perhaps Nodes 1-35 belong to the left hemisphere and Nodes 36
to Node 70 belong to the right hemisphere. Thus we hypothesize that one of
the sexes has a particularly dominant edge across hemispheres which could be
discriminative.

We will elaborate more on Node 55's role as we present other measures as
well.

5.2 Analysis of the Mean Clustering Coe�cient and Local

E�ciency

We analyzed the mean clustering coe�cient of each node and present our �nd-
ings (across sexes) below(Figure 2).

We note that mean clustering coe�cient of Node 55 in Sex 0 is higher than
that in Sex 1. We hypthesize that this di�erence is statistically sigini�cant.

In order to rule out the e�ects of outliers (as the mean is in�uenced by
outliers) we also looked the median(instead of the mean).We again note that
indeed
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Figure 3: Mean local clustering coe�cient

Node 55's clustering coe�cient is higher in Sex 0 than in Sex 1 bolstering
our hypothesis.

Figure 4: Median of Clustering Coe�cient

The observed sample di�erence is 0.0175
To establish statistical signi�cance of this di�erence, we used the boot-
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strapping procedure with a signi�cance level of α = 0.05 and B = 3000. We
show a histogram of the test-value's obtained on one run of boot-strapping al-
gorithm. We note that the number of times the test statistic was greater than
the observed sample mean is very small. The p-values we obtained are provided
as well. We also note that the distribution looks almost normal which is inline
with our intuition as we expect that the distribution of the di�erences in sample
means to be normally distributed.

Figure 5: Histogram of test statistic on Boot strapping

Table 1: The p-values obtained by the boot-strapping procedure
Run p-value

1 1.0000e-03
2 0.0013
3 6.6667e-04
4 0.0013
5 0.0020

Thus we establish statistical signi�cance in the di�erence between mean
clustering coe�cient of Node 55 between the sexes at a signi�cance level of
0.05.

To gain more insight, we ranked the brain regions according to their mean
clustering coe�cients for both males and females, in the form of a Pareto Chart.

A Pareto Chart represents the ranking of nodes according to the clustering
coe�cient in decreasing order. The straight line depicts the cumulative total of
the values.

We clearly observe the di�erence in the rankings of the nodes across the
sexes(especially that of Node 55). We believe it would be interesting to under-
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Figure 6: Pareto Chart for the Clustering Coe�cient of Node 55 (Sex 0)

stand if these di�erences in rankings can be explained biologically and if they
have any biological signi�cance.

It would also be useful to look at the Cumulative Distribution Function of
Node 55's clustering coe�cient across sexes.The individual histograms (which
are also represented by the CDF) are shown as well.

The CDF shows that the clustering coe�cients are in general lower in Sex
1 than in Sex 0. About 40% of the subjects in Sex 0 have a clustering coe�-
cient less than 0.06 while about 70% of the subjects in Sex 1 have a clustering
coe�cient less than 0.06

We also note that Node 55 also shows higher e�ciency in Sex 0 than in Sex 1.
It is also to be noted that there are other regions that also manifest di�erences
although we highighted only the largest ones. The e�ciency is a measure of
network integration. A high e�ciency indicates that pair's of nodes on average
have short communication distances and can be reached in a few steps. The
local e�ciency is just the e�ciency calculated over the local neighborhood of
that node.

5.3 Analysis of the Edge Between-ness centrality

In the brain network of 70 nodes, we represent all the edges by a number ob-
tained its position in the column major order of edges. Thus there are 4900
edges. Our analysis of edge-betweenness centrality across di�erent sexes indi-
cate that there is one edge (namely edge no: 841) which is discriminative across
sexes. The �gure below shows the mean edge between-ness centrality of each
edge (for Sex 0 and Sex 1) (we show only a small range instead of all 4900)
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Figure 7: Pareto Chart for the Clustering Coe�cient of Node 55 (Sex 1)

Figure 8: CDF of clustering coe�cient of Node 55(Blue: Sex 0 , Red: Sex 1)
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Figure 9: Histogram of Clustering Coe�cient of Node 55 in Sex 0

Figure 10: Histogram of the clustering coe�cient for Node 55 for subjects of
Sex:1
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Figure 11: Mean local e�ciency of each node

whil

Figure 12: Visualization of ranking of nodes according to Clustering Coe�cient
: Sex 0
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Figure 13: Visualization of ranking of nodes according to Clustering Coe�cient:
Sex 1

Figure 14: Mean Edge Between-ness centrality for each edge
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5.4 Analysis of Participation Coe�cient:

The participation coe�cient is a measure based on modularity. It represents the
diversity of inter-modular connections of a given node. Intuitively the partici-
pation coe�cient of a node is close to one if it's links are uniformly distributed
across all modules and 0 if all its links are within its own module. A node with
a high participation coe�cient thus represents a connector hub in the brain.
We then decided to investigate whether Node 55 which was most discriminative
was a hub. We note that although there is a di�erence in the participation co-
e�cient in Node 55 among the sexes, we see that there are other nodes having
higher participation coe�cients thus indicating that Node 55 is unlikely to be
a connector hub. We however note that although the clustering coe�cient of
Node 55 is higher in Sex 0 than in Sex 1, the participation coe�cient is lower in
Sex 0 than in Sex 1. This seems to indicate that the brain region corresponding
to Node 55 connects closely with its neighbors (is densely clustered) with its
own module in one of the sexes(namely Sex 0).

Figure 15: Participation Coe�cient of each region

Having established di�erences in network measures , across sexes, we now
cherry pick a set of features and use these features to train and evaluate a
classi�er which we will discuss in the next section.

5.5 Classi�cation

We used the features obtained from previous analysis and trained 2 simple
classi�ers on them. We decided to use Decision Trees to get an understanding
of the best split and is very simple to use. We also trained a support vector
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Figure 16: Decision Tree Best Split on Node 55's clustering coe�cient alone

machine classi�er with a linear kernel on this classi�cation task. We evaluated
our classi�er using a 10-fold cross-validation. We describe both of these below
separately:

5.5.1 Decision Trees

We decided to investigate the best split obtained when using clustering coe�-
cient of Node 55 alone as a feature. Based on the analysis if clustering coe�cient,
we would expect the decision tree to use a point at around 0.06. To avoid over
�tting, we ensured the decision tree will always have a minimum of 10 elements
in the leaf nodes. The decision tree indeed reported the best split at around
that value. The best split was found to be around 0.0619. The 'error' �eld
represents the Gini Coe�cient[4] before the split. This con�rms our intuition
that the best split would be around 0.06.

We tried various combinations of features to assess the best set of features
which results in optimal accuracy. We outline them below:

Network Measure Best Feature Set Accuracy

Clustering Coe�cient Nodes 25, 55, 68 0.68(±0.04)
Edge Between-ness Centrality Edge: 841 0.68(±0.06)

Participation Coe�cient Nodes 18,61 0.68(±0.1)

5.5.2 Support Vector Machines

We evaluated how a simple support vector machine with a linear kernel performs
on this classi�cation based on cherry-picked features. We outline our results
below(the best feature set):
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Network Measure Best Feature Set Accuracy

Clustering Coe�cient Nodes 20, 55 0.68(±0.05)
Edge Between-ness Centrality Edge: 841 0.58(±0.05)

Participation Coe�cient Nodes 18,61, 68 0.73(±0.05)
We note that both classi�ers report comparable accuracies with our cherry-

picked features. It would be useful to evaluate the classi�er on a larger data set
to get better accuracy bounds.

6 Future Work

It would be useful to understand the biological signi�cance of these di�erences
(which we have not investigated in this project). It would also be important
to test on larger data sets as the data set we used was small and we may not
have enough power of the test to identify discriminative features which require
a higher power of resolution. It would also be useful to establish statistical
signi�cance of the features we identi�ed as discriminative(perhaps by a boot
strapping procedure).

It would also be useful to investigate the use of motif's and discriminative
sub graphs(sub graphs which occur frequently and are discriminative) for clas-
si�cation. One could also extend the above analysis to explore di�erences in
math talent, agree-ability , neurotic-ism etc.

7 Conclusion

We just summarize our results succinctly here :

• We have shown that there exists sex di�erences in network measures like
clustering coe�cients, edge between-ness centralities and participation co-
e�cient.

• We have also shown these di�erences perform moderately well on classi�-
cation and these few set of features boost accuracy.
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