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ABSTRACT
Acoustic motion tracking is an exciting new research area with
promising progress in the last few years. Due to the inherent low
propagation speed in the air, acoustic signals have the unique advan-
tage of fine sensing granularity compared to RF signals. Speakers
and microphones nowadays are pervasively available in devices
surrounding us, such as smartphones and voice-controlled smart
speakers. Though promising, one fundamental issue hindering the
adoption of acoustic-based motion tracking is that the positions of
microphones and speakers inside a device are fixed, which greatly
limits the flexibility of acoustic motion tracking. In this work, we
propose a new modality of acoustic motion tracking using earphones.
Earphone-based tracking mitigates the constraints associated with
traditional smartphone-based tracking. With novel designs and com-
prehensive experiments, we show earphone-based motion tracking
can achieve a great flexibility and a high accuracy at the same time.
We believe this is an important step towards “earable” sensing.

CCS CONCEPTS
• Human-centered computing → Sound-based input / output.
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1 INTRODUCTION
Wireless sensing has been a hot research topic in recent years with
a large range of applications enabled including tracking [33, 40,
46, 62], gesture recognition [10, 42, 49] and vital sign monitor-
ing [52, 59]. Among the wireless signals employed for sensing,
acoustic signals exhibit unique advantages in granularity and ac-
curacy due to the extremely low signal propagation speed in the
air (340 m/s). Recent efforts have pushed the sensing accuracy to
millimeter-level [31, 50]. On the other hand, speakers and micro-
phones are becoming essential components in a lot of daily devices,
such as smartphones, personal computers, smart TVs, and smarts-
peakers (e.g., Amazon Alexa [4] and Google Home [22]).

Promising progress has been achieved in acoustic motion tracking
and the proposed systems can be broadly divided into two categories:
device-free [36, 45, 54, 61] and device-based [33, 50, 60, 63, 64]
Take hand tracking as the example. Device-based tracking requires
the user to hold a device in hand and the hand motion is captured by
tracking the device in the hand. On the other hand, in device-free
tracking, both microphone and speaker are kept static and the signal
reflected from the hand is employed to track the hand movement.
Among these systems, the majority are hosted on smartphones due
to pervasive smartphone usage. For device-free tracking based-on
smartphones, due to the intrinsic nature of relying on weak reflection
signals for tracking, the tracking range is usually limited to less than
one meter. On the other hand, device-based approaches usually have
a larger tracking range. Though promising, several severe issues are
associated with acoustic motion tracking with a smartphone.

The first issue is that the microphones and speakers built in a
smartphone have fixed positions which greatly limits the tracking
flexibility and capability. For device-free motion tracking, the track-
ing area is confined to be very close to the phone and motion tracking
usually only works at the up and down sides but not the left and right
sides of the phone. To mitigate the issues, a lot of systems employ
Arduino [6] or Bela [8] platforms which have some degree of free-
dom to vary the position and number of the microphone/speakers.
However, even for these platforms designed for flexibility, the free-
dom is still limited. The microphones and speakers need to be either
directly connected to the platform, thus restricted within a small area
or connected with messy wires.

https://doi.org/10.1145/3384419.3430730
https://doi.org/10.1145/3384419.3430730
https://doi.org/10.1145/3384419.3430730
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(a) A new HCI tool for smart apps. (b) A flexible contactless tracking. (c) A ’touchable’ screen . (d) A small VR controller.

Figure 1: Application scenarios of earphone-based motion tracking.

The second issue is that the smartphone is still too big to be
held in hand for device-based tracking. In [2, 50, 60], researchers
proposed to write in the air using a smartphone as a “big” pen.
However, people fatigue easily to write in the air using a smartphone.
Furthermore, for fine-grained tracking, the large phone size also
limits the tracking accuracy.

The third issue is that in device-based tracking, the smartphone
is the tracking target (e.g., held in hand and write in the air), the
display function of the smartphone disappears. During the tracking
process, the smartphone may constantly move, preventing the screen
from being clearly visualized. In the VR application, the smartphone
needs to be tucked into the VR glasses, preventing it from being held
in hand for tracking purposes.

In this paper, we present EarphoneTrack, an earphone-based
acoustic motion tracking system. Commercial earphones, including
both wireless and wired earphones, are now becoming more power-
ful and popular. When these earphones are not used for music play
and phone call, we observe exciting opportunities to employ them to
enable new wireless sensing applications. We therefore propose to
include earphones into the ecosystem of acoustic motion tracking.
With small and lightweight earphones, we could extend the track-
ing area from a small region in front of the phone to meters away
with great flexibility as shown in Fig. 1b. For device-based motion
tracking, it is also much more convenient to hold a small earbud in
hand compared to holding a phone. With two earbuds, we can track
two hands simultaneously. With increasing popularity of wireless
earphones such as Airpods Pro, we believe the proposed earphone-
based motion tracking system has a great potential to enable exciting
new applications. We believe this is an important step towards the
era of “earable” sensing.

The basic idea sounds straightforward. However, it is non-trivial
to realize EarphoneTrack due to the following challenges:

• Strong self-interference in wired earphone. Speaker and mi-
crophone in a wired earphone are separated by insulating
material to mitigate interference so people can listen and
speak at the same time. In reality, the insulating layer does
not work perfectly and there is still a signal leakage from the
speaker to microphone. This leakage is very small and is not
an issue for everyday use such as phone calls. However, it
becomes an issue when we employ it for motion tracking. For
everyday use, the volume (signal amplitude) of the earphone
is usually tuned to 25% of the maximum value. However, in
motion tracking, the maximum signal amplitude is adopted.
Furthermore, for motion tracking, the inaudible frequency
band between 16 kHz and 22 kHz is used and this frequency

is much higher than that of human voice (0.5 kHz - 3 kHz).
The amount of leakage is related to signal frequency and am-
plitude. The bad news is that both high frequency and large
volume increase the amount of leakage and thus the leakage
in motion tracking is tens of times larger than that in everyday
use, interfering with the received signal.

• Large frequency offset in wireless earphone. Accurate phase
measurement is the key for motion tracking. For wireless
earphone, we find that there exists a large frequency offset
between the expected signal and the actually generated signal.
For most smartphones, the built-in oscillator is able to gener-
ate a signal with a frequency offset less than 0.001 Hz. This
small frequency offset is negligible for motion tracking. How-
ever, the frequency offset for wireless (Bluetooth) earphone is
usually greater than 0.15 Hz due to the very small oscillator
adopted. For AirPods 2, the offset is as large as 1 Hz. This
large phase offset leads to a large error in motion tracking.

• Narrow bandwidth. Existing acoustic motion tracking sys-
tems employ Frequency Modulated Continuous Wave (FMCW)
chirp signal for accurate range estimate. The tracking per-
formance is linearly related to the bandwidth of the chirp
signal. For smartphone, the inaudible band which can be
utilized for tracking is around 6 kHz (16 kHz - 22 kHz).
This is enough to support highly accurate estimates. How-
ever, this large inaudible band does not exist at most wireless
earphones. Samsung Galaxy Buds+ is able to support only
1 kHz (16 kHz - 17 kHz) band while Apple Airpod 2 can
only support around 0.5 kHz (16 kHz - 16.5 kHz) band. Thus,
traditional chirp-based signal design does not work well for
earphone-based motion tracking.

To tackle the first challenge, we deeply analyze and model the
relationship between the transmitted signal and leaked signal. We
then propose a simple but efficient scheme to eliminate the leaked
interference signal for motion tracking.

To address the issue of frequency offset at wireless earphones,
we propose to compensate the frequency offset induced distance
deviation. If both transceivers are static, the measured distance is
a constant when there is no frequency offset. On the other hand,
the distance varies with time if there exists a frequency offset and
the distance varies linearly if the frequency offset is a constant.
With comprehensive experiments, we find that this frequency offset
does not change within a power on/off cycle of the hardware. We
therefore compensate the frequency offset induced distance deviation
to achieve accurate tracking.
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Figure 2: Benchmark experiments on earphone acoustic components.

To deal with the last challenge, we adopt a single-frequency sinu-
soidal signal rather than a chirp signal for earphone-based motion
tracking. We propose a novel peak/valley based distance measure-
ment scheme for fine-grained tracking. We employ a time window
that contains a fixed number of peaks and valleys for distance mea-
surement. The basic idea is that when there is no relative movement
between the transceiver pair, the time taken to receive the transmitted
sinusoidal signal is exactly the same as the time taken to transmit the
signal. When the receiver moves towards the transmitter, the time
taken to receive the transmitted signal will be shorter than the time
taken to transmit the signal. In this case, the received sinusoidal sig-
nal looks like being compressed in a smaller time window compared
to the transmitted signal. Similarly, when the receiver moves away
from the transmitter, the signal is like being stretched. To accurately
calculate how much the signal is compressed/stretched for distance
measurement, we employ a window with a fixed number of peaks
and valleys to calculate the phase difference between the transceivers
and accordingly convert this phase difference to distance measure-
ment. To further improve the accuracy, we up-sample the received
signal by zero padding and low-pass filtering [3].

Summary of Results. We implement the device-based acoustic
motion tracking system on both smartphone and PC platforms and
evaluate the performance using multiple commercial earphones of
different brands including Apple, Samsung and Sony. The proposed
earable motion tracking system is able to achieve mm-level accuracy.
For 1D, 2D and 3D device-based tracking, EarphoneTrack achieves a
tracking accuracy of 1.1 mm, 1.9 mm and 6.9 mm, respectively. The
results show that the proposed earphone tracking systems achieve a
great flexibility without sacrificing the tracking accuracy. The end-
to-end system latency is around 5 ms, which is small enough for
real-time tracking. You can find the demo video of one 2D tracking
example of our system at: https://youtu.be/3VhBBxCABZ0.

Contribution. To summarize, we made the following main con-
tributions in this work:

(1) We include commercial earphone into the ecosystem of acous-
tic motion tracking to address several limitations of exiting
smartphone-based acoustic motion tracking.

(2) We identify unique challenges associated with earphone motion
tracking and propose solutions to address them, enabling motion
tracking using both wired and wireless earphones.

(3) We implement EarphoneTrack on both Android and Linux plat-
forms. Comprehensive experiments demonstrate the feasibility
and advantages of employing earphones for motion tracking. We
believe this is an important step towards earable sensing.

2 BACKGROUND ON EARPHONES
In this section, we introduce the basics of commercial earphones. We
present the earphone’s internal structure and explain the underlying
mechanisms of the strong self-interference and the frequency offset
associated with earphone-based motion tracking.

2.1 Earphone basics
An earphone is an audio device where the electrical and acoustic sig-
nals are converted to each other. As shown in Fig. 3, it contains two
key components: speaker and microphone. The speaker translates
the electric signals into a corresponding acoustic signal. Specifically,
the electric current exerts a varying force on the diaphragm, causing
it to vibrate, creating sound waves. On the contrary, sound waves hit
a diaphragm to make it vibrate and this vibration is converted into
an electrical signal either through a capacitor or a coil.

In addition to speakers and microphones, for wired earphone, a
plug is used to connect it to devices such as a smartphone. This plug
is replaced with a Bluetooth module for wireless earphone. More
advanced earphones even integrate a variety of sensors into them.
For example, accelerometer is integrated in AirPods Pro [23] and
touch sensor is embedded in Sony WF-1000XM3 [20].

Speaker

Mic

Plug

(a) A wired earphone [7].

Speaker

Mic

(b) A wireless earphone [5].

Figure 3: Acoustic components of an earphone

2.2 The signals transmitted from and received at
the earphone are weaker

We conduct benchmark experiments to compare the signal trans-
mission and reception capabilities of an earphone compared with a
smartphone. We employ an acoustic signal with a frequency in the
range of 16 kHz - 17 kHz, which is supported by most commercial
earphones [24, 26, 27] and is also inaudible for most people [29].
We employ the Relative Sound Pressure Level (RSPL) as the metric
to measure the sound intensity defined as below:

https://youtu.be/3VhBBxCABZ0
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(a) An earphone plug. (b) Longitudinal section view. (c) Cross section view.
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(d) Interfering signal 𝐸 appears
when 𝐼 in the speaker circuit
changes.

Figure 4: The internal structure of a earphone plug

𝑅𝑆𝑃𝐿𝑑𝐵 (𝑥) = 20 log10 (𝐴x) (1)

where 𝐴𝑥 is the amplitude of the received sound signal when the dis-
tance between the microphone and the speaker is 𝑥 . In the first exper-
iment, we employ two wired earphones (Sony MDR-XB75AP [19]
and Philips PRO6105BK [17]), one wireless earphone (Honor Fly-
pods Pro) and the built-in speaker of a smartphone (Huawei P20 [14])
to transmit a single-frequency acoustic signal at 16 kHz. The volume
is set to the maximum value. The receiver is the built-in microphone
of another smartphone (Huawei P20 [14]). The distance between the
speaker and the microphone is increased from 5 𝑐𝑚 to 105 𝑐𝑚. At
each location, we collect sound signal for 5 seconds. The amplitudes
of the received signals are shown in Fig. 2a. We observe that the
sound signal transmitted from an earphone speaker is about 5 dB -
20 dB weaker compared to the sound signal transmitted from the
built-in speaker of a smartphone. We observe similar results with
other smartphones serving as the transmitter including Samsung
Galaxy S7, Huawei Nexus 6p and iPhone 11 Pro.

In the second experiment, we send a 16 kHz sound signal from a
smartphone and employ four different microphones (Huawei P20,
Philips PRO6105BK, Sony MDR-XB75AP and ATH-CK350IS [11])
to receive the signal at a same distance. Fig. 2b shows that the
amplitudes of the received signals at the earphone microphones
are 5 dB - 25 dB smaller than that of the signal received at the
microphone built in the Huawei smartphone.

Compared to the smartphone speaker, people may think the sound
signal emitted from an earphone speaker is more directional. In
the third experiment, we measure the signal strength at different
positions when an earphone speaker (Moshi Mythro [16]) transmits
sound signals. The volume is tuned to its maximum value. The
signal strength heatmap is plotted in Fig. 2c. We can see that the
sound beam has a width around 100◦ which is comparable to the
smartphone speaker.

2.3 Signal leakage associated with wired earphone
In the previous experiments, the speaker and microphone are on two
separate devices. For motion tracking, we usually just use one device
and employ the speaker and microphone on the same earphone
to transmit and receive signals. We find that there exists a strong
signal leakage causing severe interference when a wired earphone is
utilized for motion tracking.

We conduct one experiment to show the effect of this leakage. We
employ the same earphone to transmit and receive signals. Three
different wired earphones are employed in this experiment. We
increase the distance between the speaker and the microphone and

measure the strength of the signal received. As shown in Fig. 5a,
when the distance is increased from 5 cm to 45 cm, the strength
of the received signal does not decrease but surprisingly remains
almost the same. We carefully study this phenomenon and find this
is due to signal leakage. Besides the signal propagated through the
air and received at the microphone, there is a leakage through the
plug from the transmitter to the receiver. What makes it worse is that
this leakage signal is much stronger than the received signal through
the air and thus when the two signals are mixed, the leakage signal
dominates. Therefore, even though the received signal through the
air varies with the transmitter-receiver distance, we are not able to
see the effect as the dominating leakage signal does not change.

Now we explain why this leakage occurs. We start from the
internal structure of the earphone plug. As shown in Fig. 4a, the
plug of a wired earphone contains four metal layers. The four layers
are connected to the microphone, ground, speaker right channel,
speaker left channel, respectively. Adjacent layers are separated by
an insulating layer. The view of longitudinal slice is shown in Fig. 4b
and it contains the circuit structure shown in Fig. 4d. The circuit
structure is composed of four parallel circuits, corresponding to the
metal layer, connected to the microphone, ground, speaker right
channel, and speaker left channel from top to bottom. When there
is a changing current 𝐼 in the circuit connected to the speaker left
or right channel, it will cause changes of the magnetic flux Φ𝐵 in
the closed loop, which consists of the microphone circuits and the
ground circuits, and then generate an induced electromotive force 𝐸
in the microphone circuit. In our context, to generate a sound signal
of a specific frequency at the speaker, an eclectic current of the same
frequency 𝐼 = 𝐴 sin (2𝜋 𝑓 𝑡) is created in the circuit. The strength of
the magnetic field induced by the current flow at a distance of 𝑟 is
expressed as below [30]:

𝑩 =
`0𝐼

2𝜋𝑟
=
𝐴`0 sin (2𝜋 𝑓 𝑡)

2𝜋𝑟
(2)

where `0 is the vacuum permeability, 𝐴 is the current amplitude and
𝑓 is the current frequency. From Maxwell’s equations, the induced
electromotive force 𝐸 is calculated as the changing speed of the the
magnetic flux:

𝑬 = − 𝑑

𝑑𝑡
(𝑩 · 𝑆)

= −𝐴`0
2𝜋𝑟

· 𝑑
𝑑𝑡

(sin(2𝜋 𝑓 𝑡) · 𝑆)

= −𝐴 · 𝑆 · 𝑓 · `0
𝑟

cos(2𝜋 𝑓 𝑡)

(3)
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where 𝑆 is the area the magnetic field goes through. From Eq. 3,
we can see that the amplitude of the leaked signal is not just linearly
related to the original signal’s amplitude but also the the frequency.
The higher frequency, the stronger leakage. Compared to MUSIC
play and phone call, we employ a much higher frequency signal for
motion tracking. Therefore, this leakage issue is more severe. We
measure the signal leakage by increasing the signal frequency and
the results are plotted in Fig. 5b. The strength of the leaked signal
increases with frequency as expected. However, we observe when
the frequency approaches 15 kHz, the leakage gradually saturates.
This is because when the signal frequency increases, the impedance
also increases, attenuating the signal leakage.

2.4 Frequency Offset in wireless earphones
Due to the small size of earphones, the oscillator adopted is not as
accurate as that used in smartphones. Therefore, there is a frequency
offset between the expected signal and the actually generated signal.
A small frequency offset has almost no effect on music listening
but it is a big issue for fine-grained motion tracking. For a 16 kHz
signal, a 1 Hz frequency offset can cause a tracking error of 2.125 cm
(Δ𝑓
𝑓
𝑐𝑡) in one second. We find that most of the smartphones and

wired earphones have very small frequency offsets which can be
neglected. However, the frequency offsets of wireless earphones
are significantly larger. We measure the frequency offsets when
a 16 kHz signal is transmitted using three wireless earphones as
well as a smartphone. The results are shown in Fig. 6a. We can
see that the frequency offset of the smartphone is very close to
0. On the other hand, the frequency offsets of Honor Flypods Pro
and Samsung Galaxy Buds+ are in the range of 0.1 Hz - 0.2 Hz.
Surprisingly, Apple Airpods 2 has a much larger frequency offset
which is around 1.8 Hz. We also notice that the frequency offset is a
fixed value in each power on/off cycle. This means as long as we do
not power restart the hardware, the frequency offset does not change.
This observation is also demonstrated in 6b. We can see strictly
linear tracking errors with respect to time for Samsung and Honor
earphones, indicating constant phase offsets. The slope corresponds
to the magnitude of the frequency offset and Apple earphone has a
much larger frequency offset.

3 SYSTEM OVERVIEW
EarphoneTrack is an earphone-based motion tracking system. It em-
ploys commercial earphones to transmit and receive inaudible acous-
tic signals for motion tracking without any hardware modification.
Band-pass filters are used to remove the background noise and also

separate received signals from different speakers transmitting using
different frequencies. To accurately measure the distance using an
earphone, strong leakage needs to be removed for wired earphones.
Different from smartphone-based acoustic tracking which employs
chirp-based signal, a single frequency sinusoidal signal is employed
in earphone tracking. For wireless earphone, the frequency offset
induced range deviation needs to be compensated to obtain accurate
distance measurements. By combining the distance measurements
and the geometric relationships between the microphone and the
speakers, EarphoneTrack is capable of tracking target motions in 3D
at a high accuracy. Fig. 7 shows the overall system architecture con-
sisting of four modules: i) Self-interference (leakage) cancellation;
ii) Distance measurement; iii) Frequency offset compensation and
iv) 1D/2D/3D target tracking.

Self-
interference 
Cancellation

Frequency
Offset

Compensation

Bandpass 
Filter

Wired
Earphone

Bluetooth
Earphone

1D/2D/3D 
Target

Tracking
Distance 

Measurement

Figure 7: System architecture of EarphoneTrack.

4 SELF-INTERFERENCE CANCELLATION
The received signal 𝑆𝑟 (𝑡) consists of two parts. One part is through
air propagation 𝑆𝑎 (𝑡) and the other part is the leakage 𝑆𝑙 (𝑡) as
described in Sec. 2.3. Only the air-propagation part contains the
target tracking information and the leakage needs to be removed.
Based on the theoretical analysis described in Sec. 2.3, we know
that the leaked signal has the same frequency as the transmitted
signal but a shifted phase and an amplitude attenuation. If the phase
shift and amplitude attenuation are constants, we can measure them
beforehand and estimate the leakage based on the frequency of
transmitted signal.

4.1 Measuring signal amplitude and phase
Each sample of the received signal contains two pieces of informa-
tion: phase and amplitude. We can thus express the signal sample as
𝑉 = 𝐴 sin𝜙 , where 𝜙 is the phase and 𝐴 is the amplitude. However,
what is retrieved from the audio device is just𝑉 and we do not know
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𝜙 and 𝐴. To obtain the value for 𝜙 and 𝐴, we need another equation
containing these two variables. For this purpose, we get the 90◦ shift
of the received signal,𝑉 ′ = 𝐴 cos𝜙 , through Hilbert Transform [39].
The amplitude 𝐴 can then be calculated as:

𝐴 =

√
(𝐴 sin𝜙)2 + (𝐴 cos𝜙)2 (4)

and 𝜙 calculated as:

𝜙 = arctan
(
𝐴 sin𝜙
𝐴 cos𝜙

)
(5)

4.2 Eliminating the leaked signal
When the transmitted signal is a single-frequency sinusoidal signal,
the leaked signal can be expressed as:

𝑆𝑙 (𝑡) = 𝐴′ sin
(
2𝜋 𝑓 𝑡 + 𝜙 ′) (6)

where 𝐴′ is the amplitude, 𝜙 ′ is the phase shift with respect to the
transmitted signal and 𝑓 is the signal frequency which is the same
as the that of the transmitted signal. To measure the amplitude and
phase information of the leaked signal, we keep the distance be-
tween the microphone and the speaker as far as possible to minimize
the strength of the signal arriving at the microphone through the
air. We further employ soundproof material to attenuate the signal
propagation through the air. With these two measures, the signal
component through the air 𝑆𝑎 (𝑡) is small enough to be neglected
and the received signal is just the leakage component. By applying
Equation 4, we can obtain the amplitude 𝐴′ of the leaked signal and
estimate the phase shift 𝜙 ′ by comparing the difference between the
phase of the leaked signal and the phase of the transmitted signal.
The signal leakage is quite stable and thus this measurement process
is a one-time effort. Once the leakage is measured, we can remove it
from the received signals to obtain clean 𝑆𝑎 (𝑡) for tracking. Fig. 8
shows the remaining clean signal after eliminating the leakage.
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Clean signal

Figure 8: The clean signal after leakage elimination.

5 MOVEMENT DISTANCE MEASUREMENT
5.1 Phase-based Distance Measurement
In wireless communication, the Doppler effect is a well-known
phenomenon where the frequency of the received signal slightly
changes when the transmitter/receiver moves [34]. Based on the
frequency change, we can obtain the speed of the receiver relative to
the transmitter as:

𝑣 =
Δ𝑓

𝑓
𝑐 (7)

where 𝑓 denotes the frequency of the transmitted signal, Δ𝑓 is the
frequency shift due to the Doppler Effect, and 𝑐 is the signal prop-
agation speed in air. In theory, 𝑣 can be estimated by accurately

measuring the frequency shift Δ𝑓 . Unfortunately, it is not easy to
accurately estimate Δ𝑓 to meet the requirement for tracking using
traditional frequency analysis schemes such as Fast Fourier Trans-
form (FFT). FFT can present us the average frequency within a time
window but it cannot capture the instantaneous frequency at each
timestamp. Thus, the FFT-based schemes only offer coarse-grained
tracking accuracy [42, 60]. For fine-grained tracking, existing sys-
tems [31, 54, 61, 63] mostly measure the phase change, and convert
the phase change into the moving distance:

Δ𝑑 =
Δ𝜙

2𝜋
_ (8)

A phase change of 2𝜋 corresponds to a distance change of one
wavelength _ (_ = 2 cm for a 16 kHz acoustic signal). With a phase
resolution of 0.1𝜋 , the distance estimation resolution is 1𝑚𝑚, which
is fine enough for most tracking applications.

5.2 Compression & stretching of signal waves
As shown in Fig. 9a, the speaker transmits a sinusoidal signal and
the microphone receives the signal. When both transmitter and re-
ceiver are static, the time period taken for signal transmission at
the transmitter is exactly the same as the time period taken for sig-
nal reception at the receiver. If the receiver remains static and the
transmitter moves towards the receiver as shown in Fig. 9b, the time
period taken for signal transmission is larger than the time period
taken for signal reception. In this case, if we compare the received
signal with the transmitted signal, the received sinusoidal wave is
compressed because the same signal is now contained in a smaller
time window. The transmitter displacement (Δ𝑑) can be calculated
as (𝑡1 − 𝑡2) × 𝑐 where 𝑐 is the signal propagation speed in the air.
In contrast, if the transmitter moves away from the receiver, the
time period taken for reception is larger than that for transmission
as shown in Fig. 9c. In this case, the received signal is stretched
compared to the transmitted signal.

5.3 Dynamic Time Window based on the number
of local extreme points

As we employ a single-frequency signal (sinusoidal wave) in our
design, the phases of the transmitted signal and received signal
are both time variant. Therefore, the phase change (Δ𝜙) in Eq. 8
is calculated as the difference of the phase change at the received
signal and the transmitted signal:

Δ𝜙 = Δ𝜙𝑟 − Δ𝜙𝑡 (9)

Note that the phase change of the transmitted signal Δ𝜙𝑡 can be easily
obtained by multiplying the carrier frequency with the time interval.
What needs to be estimated is the phase change of the received signal
Δ𝜙𝑟 . Δ𝜙𝑟 can be calculated as the phase difference of the received
signal samples at the beginning and ending of the time window as
Δ𝜙𝑟 = 𝜙𝑖 − 𝜙 𝑗 . When transmitter or receiver moves, the length of
the LoS path changes and accordingly the phase difference Δ𝜙𝑟 of
the received LoS signal varies.

Most of the acoustic tracking systems [31, 54, 63] adopt Fixed
Time Window (FTW) containing a fixed number of sample points
as the smallest data segment to calculate phase change. In order to
obtain the accumulative phase change Δ𝜙𝑟 between the starting and
ending sample points, FTW solutions need to calculate the phase
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(a) The transmission time and reception time of
the same signal are the same when the speaker
and microphone are relatively stationary.

(b) The time required to receive the signal is com-
pressed when the speaker moves towards the mi-
crophone.

(c) The time required to receive the signal is
stretched when the speaker moves away from the mi-
crophone.

Figure 9: Relationship between moving distance and signal compression or stretching

values of each sample points and unwrap them. In our design, the
transmitted signal is a single-frequency sinusoidal signal. To measure
the phase value of each sample point, existing approaches first obtain
the In-phase (I) and Quadrature (Q) components of the signal and
then calculate the phase 𝜙 by arctan (𝐼/𝑄). Such processing either
needs to obtain the 90◦ shift of the received signal using Hilbert
Transform, or needs to multiply the received signal with a given
signal and pass the mixed signal through a low-pass filter [54],
which induces a relative high computational overhead.

For sinusoidal wave, the phase change is 𝜋 between two adjacent
local extreme points (i.e., peak and valley). We only use the phase
difference between the starting and ending sample points for dis-
placement calculation. Based on this, we employ the Dynamic Time
Window (DTW) scheme to calculate the movement distance of each
segment by making sure the beginning and ending sample points of
the window are both local extreme points. Compared with FTW, our
DTW scheme selects a data segment containing a fixed number of
local extreme points rather than a fixed number of sample points to
calculate the phase change. If we assume each window contains 𝐿
local extreme points, the phase change of the signal of each window
can be simply calculated as:

Δ𝜙𝑟 = 𝐿𝜋 (10)

The computational cost of this calculation is very low compared with
the traditional phase measurement method based on FTW because
we do not need to process the signal with Hilbert transform and
unwrapping but just counting the number of local extreme points.

As explained in Sec. 5.2, the signal wave can be compressed or
stretched based on the relative movement direction of the transceiver
pair. When the signal wave is compressed, for the same amount
of local extreme points, the time window is smaller, indicating a
decreasing distance between the transceiver pair.

5.4 Peak/Valley-based Distance Measurement
When there is a relative movement between the transmitter and re-
ceiver, the sinusoidal signal received will be compressed or stretched.
By measuring how much the signal wave is compressed or stretched,
we can obtain the moving distance. Specifically, the movement dis-
tance (displacement) can be calculated as the difference of the time
taken for signal transmission and reception multiplied by the signal
propagation speed. However, it is non-trivial to accurately obtain the
time difference. In this section, we present our peak/valley-based
method to obtain the phase difference.

We estimate the phase change of the received signal Δ𝜙𝑟 in a
window containing 𝐿 peak/valleys using Eq.10. However, the sam-
pling rates of commercial devices are not high enough to make sure
the starting/ending samples are close enough to the local extreme
points. For example, with a typical 48 kHz sampling rate, we only
have three sample points per cycle for 16 kHz signals. In this case,
the starting/ending samples can be far away from the local extreme
points, and there exists a big error if we apply Eq. 10 for phase cal-
culation at the receiver. To make the sample points close to the local
extreme points, we upsample the received signal by zero padding
and low-pass filtering [3]. For example, after 8 times upsampling,
the maximum phase measurement error is reduced from 2𝜋

3 to 2𝜋
3×8

and the corresponding distance measurement error is 0.885 mm.
Suppose that the upsampling factor is 𝑀 , the sampling rate is 𝐹𝑠 ,

and the time window which containing 𝐿 peak/valleys at the receiver
side contains 𝑁 sampling points. Since the transmitted signal is a
sinusoidal signal with frequency 𝑓0, the phase change Δ𝜙𝑡 can be
expressed as:

Δ𝜙𝑡 = 2𝜋 𝑓0𝑡 = 2𝜋 𝑓0
𝑁

𝐹𝑠𝑀
(11)

Putting Eq. 9, Eq. 10 and Eq. 11 into Eq. 8, we can estimate the
movement distance in the current time window as:

Δ𝑑 =
Δ𝜙𝑟 − Δ𝜙𝑡

2𝜋
𝑐

𝑓0
= 𝑐

(
𝐿

2𝑓0
− 𝑁

𝐹𝑠𝑀

)
(12)

where 𝑐 is the speed of sound. From Eq. 12, we can estimate the
moving distance of the target based on the number of sampling
points 𝑁 contained in the time window. Note that all other variables
are known and N is the only unknown parameter we need to obtain
for this distance calculation. Note that if the received sinusoidal
wave is compressed, a smaller 𝑁 value will be obtained and if the
received wave is stretched, a larger 𝑁 value will be obtained.

As shown in Fig. 10, when the parameter settings are as follows:
𝐹𝑠 = 48 𝑘𝐻𝑧, 𝑀 = 4, 𝑓0 = 16000 𝐻𝑧, 𝐿 = 4 and 𝑐 = 340 𝑚/𝑠,
we show a received signal wave and its corresponding estimated
transmitted signal wave. We have 𝑁 = 20 sample points in the time
window and the calculated movement distance is 7.1 mm, indicating
that the received signal wave is compressed. We could also easily
infer that 𝑁 = 24 means that there is no relative movement between
the transmitter and receiver.

6 TARGET TRACKING
In this section, we first describe how to track an earbud based on the
distance measurement scheme presented in Sec. 5. Then, we present
the time synchronization issue in 2D/3D tracking and our solution.
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Figure 10: Moving distance calculation

6.1 Tracking earbuds
We can achieve multi-target tracking in 1D/2D/3D using commercial
earphones. Without loss of generality, we take 3D tracking of a
single earbud as an example to introduce our method.

As shown in Fig. 12, 𝐴, 𝐵 and 𝐶 are positions of the three mi-
crophones, respectively. 𝐵 is located at the origin (O) of the 3D
coordinate system X-Y-Z. 𝐴 is located on axis 𝑂𝑍 and 𝐶 is located
on axis 𝑂𝑋 and thus 𝐴𝐵 ⊥ 𝐵𝐶. Now a speaker is moved in this 3D
coordinate system. Assuming 𝑆𝑖−1 is the position of the speaker at
time 𝑖 − 1, we can obtain the new speaker position 𝑆𝑖 after a small
time interval (e.g, 5 ms) at time 𝑖 using a distance approximate cal-
culation. Note that for a small time interval, the movement distance
|−−−−→𝑆𝑖−1𝑆𝑖 | is very small. As shown in Fig. 11, when |−−−−→𝑆𝑖−1𝑆𝑖 | is very
small and |−−−−→𝑆𝑖−1𝐴| is large, angle 𝛾 is close to 0 and thus:

|−−→𝐴𝑆𝑖 | ≈ |−−→𝐴𝑆𝑖 | cos𝛾 = |
−−−→
𝐴𝑆𝑖

′ |. (13)

We can then approximate |−−→𝐴𝑆𝑖 | as |−−−−→𝐴𝑆𝑖−1 | − |
−−−−−→
𝑆𝑖−1𝑆𝑖 ′ |.

Si-1

Si

A

When γ ≈ 0， 𝐴𝑆𝑖 ≈ 𝐴𝑆𝑖 cos γ = 𝐴𝑆𝑖-1   
𝑆𝑖-1 

𝑆′𝑖

A Si

Figure 11: Distance approximate.

We represent the speaker moving distances towards the three mi-
crophones from time 𝑖−1 to time 𝑖 as Δ𝑑𝐴, Δ𝑑𝐵 and Δ𝑑𝐶 respectively.
Then the distances between the speaker and the three microphones
can be expressed as below:



���−−→𝐴𝑆𝑖 ��� = ���−−−−→𝐴𝑆𝑖−1
��� − Δ𝑑𝐴���−−→𝐵𝑆𝑖 ��� = ���−−−−→𝐵𝑆𝑖−1
��� − Δ𝑑𝐵���−−→𝐶𝑆𝑖 ��� = ���−−−−→𝐶𝑆𝑖−1
��� − Δ𝑑𝐶

(14)

Finally, the position 𝑆𝑖 in the 3D coordination system (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) can
be estimated as: 

𝑥𝑖 =

���−−→𝑆𝑖𝐵��� cos𝛼
𝑧𝑖 =

���−−→𝑆𝑖𝐵��� cos 𝛽
𝑦𝑖 =

√���−−→𝑆𝑖𝐵���2 − 𝑥2
𝑖
− 𝑧2

𝑖

(15)

where 
cos𝛼 =

���−−→𝐵𝐶 ���2+���−−→𝑆𝑖𝐵���2−���−−→𝑆𝑖𝐶 ���2
2
���−−→𝐵𝐶 ������−−→𝑆𝑖𝐵���

cos 𝛽 =

���−−→𝐴𝐵���2+���−−→𝑆𝑖𝐵���2−���−−→𝑆𝑖𝐴���2
2
���−−→𝐴𝐵������−−→𝑆𝑖𝐵���

(16)
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Figure 12: Position update of 3D tracking.

Similarly, we can measure 𝑆0𝐴, 𝑆0𝐵 and 𝑆0𝐶, and calculate the
initial position 𝑆0 (𝑥0, 𝑦0, 𝑧0) using Eq. 15.

6.2 Time synchronization
To accurately measure the phase change, we adopt a moving time
window that contains a fixed number of peaks/valleys instead of
a fixed number of sampling points. Note that due to movement,
the signal wave can be compressed or stretched, so a fixed number
of peaks/valleys means the time period of the window varies. The
windows with varying time periods introduce a time asynchronous
problem in our system. The problem is illustrated in Fig. 14. As
the window size depends on the relative movement between the
transmitter and receiver, thus, the window sizes are different at the
three microphones. If we employ time windows of the different sizes
for tracking, errors are introduced at those parts windows are not
overlapping. To address this issue, when we combine the distance
information from multiple microphones, we make sure the windows
are fully aligned. If one window (𝑊𝐴𝑖 ) is smaller than the other (𝑊𝐵𝑖 ),
we will append part of the next window (𝑊𝐴𝑖+1 ) to window (𝑊𝐴𝑖 ) to
fully align it with (𝑊𝐵𝑖 ) and the two windows now are of exactly the
same size.

7 FREQUENCY SHIFT COMPENSATION
For wireless earphones, we notice that there exists a frequency shift
between the expected signal and the actually transmitted signal,
causing a cumulative distance measurement error. We find that the
frequency shift is linearly related to the frequency of the generated
signal i.e., a signal at frequency 𝑓 ′0 = (1 + 𝛼) 𝑓0 is actually generated
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Figure 13: Experiment setup
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Figure 14: Time asynchronous.

when we try to generate a signal at frequency 𝑓0. Without loss of
generality, we assume 𝛼 > 0. Fortunately, the frequency shift coeffi-
cient 𝛼 is stable in each power ON/OFF cycle of the device. Based
on Eq. 12, the movement distance is zero if the number of sampling
points 𝑁 in a moving window containing 𝐿 extreme points satisfies
the following equation:

𝑁 =
𝐹𝑠 · 𝐿
2𝑓0

(17)

When this condition is satisfied, we term the 𝑁 value as 𝑁𝑏𝑎𝑠𝑒 .
Using 𝑁𝑏𝑎𝑠𝑒 , Eq. 12 can be rewritten as:

𝑑 = 𝑐
Δ𝑁

𝐹𝑠
= 𝑐

𝑁𝑏𝑎𝑠𝑒 − 𝑁

𝐹𝑠
(18)

When there is a frequency shift, the actual number of base sam-
pling points we obtain is 𝑁 ′

𝑏𝑎𝑠𝑒
= 𝐹𝑠 · 𝐿/2𝑓 ′0 which is different

from the the expected 𝑁𝑏𝑎𝑠𝑒 . From our experiments, we know that
frequency shift is usually less than 2 Hz, and thus the difference
between 𝑁𝑏𝑎𝑠𝑒 and 𝑁 ′

𝑏𝑎𝑠𝑒
is a small value (usually less than 0.1)

rather than an integer. Thus, we cumulate such frequency shift over
multiple (P) windows to have one sample shift:

𝑁𝑏𝑎𝑠𝑒 − 𝑁 ′
𝑏𝑎𝑠𝑒

=
𝐹𝑠 · 𝐿
2

( 1
𝑓0

− 1
𝑓 ′0

) ≈ 1
𝑃
, 𝑃 ∈ Z (19)

𝑃 × (𝑁𝑏𝑎𝑠𝑒 − 𝑁 ′
𝑏𝑎𝑠𝑒

) ≈ 1 (20)

For one sample shift, the distance error is Δ𝑑 = −𝑐/𝐹𝑠 and we can
compensate this error out.

8 SYSTEM EVALUATION
8.1 Implementation
We implement EarphoneTrack on both Android smartphones and PC.
On the Android platform, we develop an App that emits 16 kHz sine
wave signal through a connected wireless earphone and receives the

signal through the build-in microphones at a sampling rate of 96 kHz.
The App performs signal processing and displays the movement
trajectory on the screen in real time. To balance the latency and
tracking accuracy, we choose a data segment size containing 360
extreme points and 𝑀 = 4 as the upsampling factor. We conduct
wireless earphone tracking on this platform using Huawei P20 and
Samsung Galaxy Buds+. The experiment setup is shown in Fig. 13a.
Note that the Android platform can support 1D and 2D tracking
with both wireless and wired earphones. Due to the space limit, we
only present the 1D tracking result using the Andriod platform with
a wireless earphone and present 2D/3D tracking results using the
earphone-PC combination.

On the Android platform, we also implement the well-known
LLAP [54] system to showcase the device-free tracking performance
of our system with earphones. The experiment setup is shown in
Fig. 13d. We put two speakers and a microphone of a wired earphone
(Sony MDR-XB75AP) side by side toward a same direction. The
two speakers transmit 16 kHz sinusoidal waves and the microphone
captures the signals reflected back from the user’s finger to track the
finger movement. We also implement our system on PC platform.
For 1D tracking, one wired earphone suffices. However, as the mi-
crophone and speaker on the same wired earphone are connected
by a fixed-length wire, we are not able to separate them far enough
to evaluate the effect of microphone-speaker distance on tracking
accuracy. Thus, we equip the laptop Lenovo Thinkpad P1 Gen2 [15]
with another sound card and connect two wired earphones on the
same laptop for tracking. We employ one Sony MDR-XB75AP ear-
phone and one Philips PRO6105BK earphone to show the tracking
performance. A speaker of the Sony earphone transmits a 16 kHz
sine wave while the microphone on the Philips earphone receives the
signal and sends it to PC for processing. For 2D tracking, as shown
in Fig. 13b, a single wired earphone Mythro Earbuds is used to trans-
mit and receive signals at the same time, and we need to address the
self-interference issue (Sec. 4). The two speakers emit 16 kHz and
18 kHz sine signals respectively and the signals are received at the
microphone and sent to the PC for processing. The PC analyzes the
audio signal to track the 2D location of the microphone in real time.

In the 2D tracking example, we track the microphone of the ear-
phone. In 3D-tracking, we track the speaker of a wireless earphone.
For 3D tracking, three microphones are needed and we employ
two built-in microphones on top of the Lenovo Thinkpad P1 Gen2
screen and an external microphone on a wired earphone Philips
PRO6105BK, which are shown in Fig. 13c.

We employ an HONOR FlyPods Pro wireless earphone to emit
18 kHz sine wave signals to be tracked in 3D space in real time.
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Figure 15: 1D Tracking Performance

For 16 kHz and 18 kHz signals, we employ time windows with 320
extreme points and 360 extreme points respectively. The sampling
rate and upsampling factor are the same as the Android platform.

8.2 1D Tracking
Overall performance: We first evaluate 1D distance tracking on
two different platforms. In this experiment, we vary the initial dis-
tance between the microphone and the speaker. The result of the
Android platform is shown in Fig. 15a. We move the wireless ear-
phone towards the microphone for a displacement of 20 cm. For
each distance, we repeat the experiments 20 times. The results show
that the median error is under 4 mm when the speaker-mic sepa-
ration distance is less than 0.5 m, and increases to 1 cm when the
separation is 1.8 m. The 1D tracking results of PC with a wired
earphone is shown in Fig. 15b. The cumulative error is well below
2 mm when the separation is less than 2 m. From these results, we
can see that the second platform (PC & Wired earphone) achieves
higher accuracy than the first one (Smartphone & wireless earphone).
One reason is that it is difficult to obtain the very precise position
of the microphone inside the smartphone and this factor brings in
some errors. Also for wireless earphone, even the frequency shift is
compensated, there are still residual errors.

Impact of upsampling factor 𝑀: We evaluate the impact of the
upsampling factor and the results are shown in Fig. 15c. For 96 kHz
sampling rate with no upsampling, the average cumulative error for
tracking a 20 cm movement is 2.2 mm. The average error for 2 and
4 times upsampling is decreased to 1.3 mm and 1.1 mm respectively.
Compared with no upsampling, an upsampling factor of 4 is able to
reduce the error by 50%.

Impact of earphone diversity: We further evaluate our system
using different earphones, including four wired earphones [11, 16,
17, 19] and three wireless earphone [12, 21, 23]. We move each
earphone for a distance of 20 cm and repeat each experiment 50
times. The results are shown in Fig. 15d. For all four wired earphones,

the 75-percentile errors are below 2 mm. The 75-percentile errors for
Honor Flypods Pro and Samsung Galaxy Buds+ are below 4.5 mm.
For Honor Flypod Pro, its median error is 1.9 mm, which is the best
among the 3 wireless earphones. Surprisingly, the Apple Airpods
2 performs not so well due to its weak capability to transmit high
frequency sound (at 16 kHz, the signal strength from Airpod 2 is just
1/3 of that from Samsung) and a larger frequency shift (Sec. 2.4).

Comparison with the state-of-the-arts: We do not compare the
performance of our system with the chirp-based approaches because
the large frequency band is not available with earphones and it is
thus not fair to compare the chirp-based systems with our single-
frequency-based system. We compare the achieved performance with
Vernier [63], another approach based on single frequency signal. We
re-implement Vernier and compare its tracking accuracy with our
system using the same devices and exactly the same setup. The
Cumulative Distribution Function (CDF) plot of the tracking error
for a movement of 20 cm is shown in Fig. 15e. The median error of
EarphoneTrack is 1.1 mm and 90-percentile error is 2 mm, while
that of Vernier are 4 mm and 7.7 mm respectively.

Device-free tracking: We compare the performance of device-
free tracking between earphones and smartphones. We move a plastic
card 10 cm away from the microphone for a displacement of 10 cm
and repeat the experiment 50 times. The CDF plots of tracking errors
are shown in Fig. 15f. The median error is 4.3 mm and 5 mm for
earphone and smartphone, respectively. The achieved accuracies
are comparable. However, we note that due to weaker signals, the
earphone can hardly track an object further than 30 cm away while
the smartphone can support a tracking range up to 50 cm.

8.3 2D Tracking
Overall performance: We now evaluate the tracking accuracy in
2D case. In this experiment, we ask five volunteers to draw a 10 cm
× 10 cm square ten times by holding the microphone of the wired
earphone. The start position of microphone is 30 cm away from the
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Figure 16: 2D Tracking Performance

speaker. Fig. 16b shows the trajectory of one drawing example and
Fig. 16a shows the CDF of the tracking error for all the volunteers.
The median error is 1.9 mm and the 90-th percentile error is 4.6 mm.

Impact of environment diversity: We evaluate the robustness
of our system in different environments for 2D tracking. The first
one is an empty table with no other objects. For the second envi-
ronment, we put books and bottles on the table and these items
are 10 - 15 cm away from the speaker and microphone. For the
third environment, we further ask two volunteers to walk around
near the table (about 50 𝑐𝑚 from the device) continuously to create
multipath reflections. The three different environments have low,
medium and rich multipath, respectively. We ask five volunteers to
draw a 10 cm × 10 cm square five times in each environment. The
results are shown in Fig. 16c. The median error are 2.1 mm, 2.5 mm
and 3.5 mm respectively for the three environments. These results
show that with more multipath, the tracking accuracy does decrease.
However, as the reflection signals are much weaker than the LoS
signal, the performance is not affected much.

Impact of ambient sound noise: To evaluate the robustness of
the proposed system against ambient sound noise, We evaluate the
2D tracking performance in four different environments with dif-
ferent levels of sound noise, including a restaurant, a laboratory, a
meeting room and a shopping mall. Fig. 16d shows the tracking
error in these environments. We do not observe a significant differ-
ence among the four environments. We believe this is because the
frequencies of the ambient noise are much lower than the frequency
adopted for tracking and thus the ambient noise has little effect on
the performance of EarphoneTrack.

Fine-grained drawing: Fig. 16f and 16h show two more com-
plex 2D drawing samples using EarphoneTrack. We can see that
the drawn rabbit and hat match the ground-truths very well. These
results show that the accuracy achieved by EarphoneTrack in real
time is fine enough to enable a lot of HCI applications. Compared
with other acoustic motion tracking schemes [33, 50, 60, 63], our
system based on earphones can achieve similar accuracy and exhibits
unique advantages on flexibility.

Impact of user diversity: We further evaluate the robustness of
our system across different users. We ask six users to draw a 10 cm ×
10 cm square five times. The median errors for different users are in
the range of 1.5 mm - 4 mm. We believe the performance difference
can be due to different drawing speeds among users. Another reason
is that some users do not follow the square template precisely during
the drawing process.

8.4 3D Tracking
For 3D tracking, we measure the tracking accuracy by drawing a
square in the 3D space. The ground-truth is a 5 cm × 5 cm square
at the height of 4.5 cm. The coordinate of the three microphones
in Fig. 17b are (−30, 0, 5), (−30, 0,−5), (−30, 8,−5) cm respectively.
We ask a user to draw a square 100 times. Fig. 17b shows the
trajectory of one drawing example and Fig. 17a shows the CDF plot
of the tracking error. The 50-th percentile error is 6.9 mm, which is
slightly larger than 2D case because of a higher degree of freedom.
Fig. 17c and 17d show the drawing examples of a spire and a circle
in 3D space. These results demonstrate that EarphoneTrack could
enable accurate 3D motion tracking.

9 DISCUSSIONS
Microphones Bluetooth earphones: Surprisingly, most commer-
cial wireless earphones are not able to receive sound signals of
a frequency above 10 kHz. So wireless earphones in our tracking
modality only act as the signal generator and additional microphones
are required for signal reception.

Sensing/tracking range: Limited by the signal strength, Ear-
phoneTrack can support accurate tracking when the distance between
the speaker and microphone is less than 1.5 m. When the distance is
larger than 1.5 m, the tracking accuracy degrades significantly. In
addition, for 2D tracking using one wired earphone, the distance is
also constrained by the length of the cable between the speaker and
microphone. Therefore, EarphoneTrack is more suitable for motion
tracking in a small area, such as drawing on a table.
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10 RELATED WORK
We discuss the literature most related to our work below:

Acoustic-based tracking: Recently, quite a few acoustic-based
tracking schemes [33, 36, 38, 41, 45, 50, 54, 57, 60, 61, 63, 64]
have been proposed. BeepBeep [38] accurately estimates the prop-
agation time of sound signal after removing the indeterministic la-
tency caused by hardware and software. SwordFight [64] optimizes
BeepBeep [38] and makes it applicable to real-time mobile games.
These systems can achieve a cm-level accuracy, which is still coarse.
CAT [33] and MilliSonic [50] employ Frequency Modulated Contin-
uous Waveform (FMCW) signals to address multipath interference
and estimate the propagation delay. These systems are able to achieve
real-time tracking at a higher accuracy. However, the FMCW-based
schemes require a relatively large bandwidth which is not available
at earphones. Based on the Doppler shift, AAMouse [60] can track a
smartphone at an accuracy of 1.4 cm. However, AAMouse [60] can
only work reliably for a short interval (i.e., less than 5 seconds) due
to the accumulation of errors. The closest literature to our work is
Venier [63], which achieves real-time motion tracking with an error
less than 4 mm. PAMT [31] defines Multipath Effect Ration (MER)
as a metric to evaluate the impact of multipath fading on the signal
at different frequencies, and selects ‘clean’ signals to estimate the
moving distance. The measurement errors of PAMT are 2 mm and 4
mm in 1-D and 2-D scenarios. To achieve this performance, PAMT
requires extra hardware and the computational cost is high. FingerIO
[36], LLAP [54], Strata [61] and Vskin [45] are latest device-free
motion tracking systems focusing on smartphone-based tracking.

Non-acoustic tracking: Besides acoustic signals, a lot of Ra-
dio Frequency (RF) signals are employed for sensing. Vision-based
and the IMU-based systems are also popular. RF signals have been
widely used for localization and tracking [1, 46, 48, 51, 53, 56,
58]. ArrayTrack [56] achieves a 30 cm indoor location accuracy.
WiTrack [1] can track the target through a wall using the FMCW sig-
nal. Widraw [46] enables hand-free drawing in the air. Tagoram [58]
proposes the Differential Augmented Hologram (DAH) scheme and
can track the target at a mm-level accuracy. MilliBack [55] develops

a backscatter-based handwriting tracking system in 2D using cus-
tomized hardware. In addition to RF-based schemes, vision-based
schemes are also proposed to track motion using cameras or light
sensors [13, 28, 62]. OKuli achieves a location accuracy of 7 mm us-
ing one LED emitter and two photodetectors. The Sony PlayStation
VR [28] system employs a separate camera to tracking LED markers
on the headset and controllers. Despite being accurate enough for
motion tracking, these systems are sensitive to lighting conditions
and the performance degrades sharply in the presence of strong
ambient light. Inertial Measurement Unit (IMU) based schemes
[9, 25, 44] are only applicable to coarse-grained tracking because
the IMU measurements are very coarse due to gravity pollution, mag-
netic interference and inherent sensor noise [44]. Acoustic-based
schemes are more appropriate for fine-grained motion tracking.

Sensing based on earable devices: Earable device with sensors
can serve as a physiological parameter monitor. In a recent work [37],
a smart earable device integrated with an infrared sensor is used to
detect the body temperature. Salustek [18] can detect vital signs with
a conventional earphones. Earable RCC [47] develops a chewing-
counting measurement device that provides real-time visualization
of chewing movements and the number of chews. Another recent
work [35] can recognize human activities such as nodding, shaking,
walking, stepping up, speaking and so on, using earable devices
with a 6-axis inertial measurement unit and a microphone. Earable
devices are also used for human-computer interaction. Headphone
Taps [32] detects tapping on the earphone shell by using the speakers
as sensors. [43] designs an earable device with biosignal sensors
and uses it as a controller for applications such as automatic music
select, tactile communication, and automatic metadata annotation.

11 CONCLUSIONS
In this paper, we present EarphoneTrack, the first earphone-based
motion tracking system, which can track users’ motions in real
time at a mm-level accuracy. We believe earphone tracking is a
promising new acoustic tracking modality which has a great potential
to enable a large range of applications. We propose solutions to
address several unique challenges associated with earphone motion
tracking and implement EarphoneTrack on commodity hardware.
Comprehensive experiments demonstrate the feasibility and great
flexibility of employing earphones for fine-grained motion tracking.
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