18-100: Intro to Electrical and Computer Engineering

LABOS8: I?C Lab
Writeup Due: Thursday, April 14th, 2022 at 10 PM

Name: K@l/l."\ \j (A../:)

Andrew ID: k‘ 7/ W

How to submit labs:

Download from this file from Canvas and edit it with whatever PDF editor you’re most comfortable with.
Some recommendations from other students and courses that use Gradescope include:

pdfescape.com A web-based PDF editor that works on most, if not all, devices.
Preview Pre-installed default MacOS PDF Editor.
iAnnotate A cross-platform editor for mobile devices (i0S/Android).

If you have difficulties inserting your image into the PDF, simply append them as an extra page to the
END of your lab packet and mark the given box. Do NOT insert between pages.

If you’d prefer not to edit a PDF, you can print the document, write your answers in neatly and scan it
as a PDF. (Note: We do not recommend this as unreadable lab reports will not be graded!). Once you've
completed the lab, upload and submit it to Gradescope.

Note that while you may work with other students on completing the lab, this writeup is to be completed
alone. Do not exchange or copy measurements, plots, code, calculations, or answer in the lab writeup.

Your lab grade will consist of two components:

1. Answers to all lab questions in your lab handout. The questions consist of measurements taken
during the lab activities, calculations on those measurements and questions on the lab material.

2. A demonstration of your working lab circuits and conceptual understanding of the material. These
demos are scheduled on an individual basis with your group TA.

Question: 1 2 3 Total

Points: 15 15 20 50

Score:

18-100 LABOS Spring 2022

Lab Outline

This lab aims to strengthen students’ understanding of the I?C communication protocol by demonstrating
some practical applications of I?C devices.

Sections

1. Introduction to I2C
2. Temperature Sensor
3. T2C-enabled Button

4. OLED Display and Software Libraries

Required Materials

e 1x ADALM2000

e 1x Raspberry Pi Pico

e 1x I2C TMP102 Temperature Sensor
e 1x I2C Button w/ LED

e 1x I?C Sparkfun Display

e 2x JST F-F Cables

e 1x JST Breakout M

e 1x JST Breakout F

18-100 LABOS Spring 2022

Introduction to I2C

The Inter-Integrated Circuit (I2C, “I two C” or “I squared C”) Protocol is a protocol intended to allow
multiple “slave” devices to communicate with one or more “master” devices.

VCC
< Pullup Resistors
SDA
I2C Master
SCL
‘ I2C Slave ‘ I2C Slave ‘ I2C Slave

Figure 1: I?’C Bus Diagram
I2C Hardware

The main benefit of I2C is how it only uses two wires but can have up to 128 different devices on the bus!
The two lines used are called:

SDA Data line, where the bits of data are sent over the bus.

SCL Clock line, keeps everything in sync; tells the devices when to start/stop sending/receiving data.

Each device simply connects its SDC/SCL lines to the rest of the bus. By default both SDA and SCL are
NOT pulled up. Once you properly connect the Raspberry Pi Pico 12C lines to the button or temperature
sensor, SDA and SCL will get pulled up HIGH by pull-up resistors on those external devices. The clock
signal is always generated by the master device; some slave devices may force the clock low at times to
delay the device sending more data (or to require more time to prepare data before the master attempts
to clock it out, called “clock stretching”).

I2C Protocol

Messages are broken up into two types of frame: an address frame, where the master indicates the device
to which the message is being sent, and one or more data frames, which are 8-bit data messages are shared.
Data is placed on the SDA line after SCL goes low, and is sampled after the SCL line goes high.

7 address bits 8 data bits

SDA

Start condition:
SDA goes low before SCL

+ ACK/NACK: A '1"in this position e Stop condition:

* indicates that the addressed . SDA goes high after SCL
peripheral did not respond or
was unable to process the request.

'1" - Controller is requesting data
'0" - Controller is sending data

Figure 2: 1?C Example Message

The different transfer states are explained on the next page.

(©) Carnegie Mellon University Page 2 of 15

18-100 LABOS Spring 2022

Start Condition To initiate the address frame, the master device leaves SCL high and pulls SDA low.
This puts all devices on notice that a transmission is about to start. If two devices wish to take
ownership of the bus at one time, whichever device pulls SDA low first wins the race and gains
control of the bus.

Address Frame The address frame is always first in any new communication sequence. For a 7-bit
address, the address is clocked out most significant bit (MSB) first, followed by a R/W bit indicating
whether this is a read (1) or write (0) operation. The 9th bit of the frame is the NACK/ACK bit.
This is the case for all frames (data or address).

Data Frame After the address frame has been sent, data can begin being transmitted. The master will
simply continue generating clock pulses at a regular interval, and the data will be placed on SDA by
the slave/master devices, depending on whether the R/W bit indicated a read or write operation.
Since, the number of data frames is arbitrary, the stop condition will indicate when all the data is
sent.

Stop Condition Once all the data frames have been sent, the master will generate a stop condition.
Stop conditions are defined by a 0—1 (low to high) transition on SDA after a 0—1 transition on
SCL, with SCL remaining high. During normal data writing operation, the value on SDA should
not change when SCL is high, to avoid false stop conditions.

After each frame the device receiving the data is given control over SDA and will respond with either
ACK (0) or NACK (1) (short for acknowledge/not acknowledge). If the receiving device does not pull the
SDA line low , it can be inferred that the receiving device either did not receive the data or did not know
how to parse the message. In that case, the exchange halts, and it’s up to the master of the system to
decide how to proceed.

RPi Pico I’C Support

The RPi Pico has dedicated pins for I?C. Those pins have built-in pull-up resistors that are
required by the I?C protocol. For the RPi Pico, the I’C pins are GP4 (SDA) and GP5 (SCL).
Usually the device requires two additional pins: the power 3V3 (VCC) and the ground pin (GND).

W Power LusrTo Tx Li2C0SDA] sPioRX | GRO I L vsus |
W Ground [uARTO RX | 12C0SCL | SPI0 CSn | GRI i) 3 INEEE
o / UART (default) 3 38
| 4 37
W aoc | 12c1scL] sPioTx | GP3 J] 36 [ENECIIN
W sPI/SPI (default) JuaRTI X] 12c0 spA | SPIORX | 6 35
B 12/ 12¢ (default) JuaRTIRX] 12coscL | spiocsn | 7 u ==z
GND__ I ki GND | AGND |
| 6 U %2 I
Gp7__Rl} kil GP26
LUARTITX | 12c0SDA | _spiiRx | GP8 RiI] 30
LuaRT1 RX | 12c0scL | spiicsn | GPo 7} L) CP22
|_GND__RE 25 NS
[0 14 277 A
G 15 26 I
lusrToTx | i2c0sDA | spiirx §_GP12 R 25 L
LuarToRX] 12coscL | spiicsn | GP13 BRI E28GRI8) sPi0 scK | 12C1 SDA |
|_cno Rl 23 NS
| i2c1 sDA | spi1sck | GPi4 T E- 6Pz) spiocsn | i2coscL | UARTORX]
Jar 20 EAlGP16 J spioRx] 120 SDA J UARTOTX |

Figure 3: RPi Pico Pin out

(©) Carnegie Mellon University

Page 3 of 15

18-100 LABOS Spring 2022

The devices you’ll use will connect via JST connectors for ease of assembly. On the JST the RED wire
is VCC, the BLACK wire is GND, the blue wire should serve as SDA, and the Yellow wire SCL. You are
given cables with JST on both ends so you can daisy chain several devices in a sequence (some devices
have 2 JST ports so they can be connected in series with a previous and next device).

(a) Male JST Connector (b) JST to Male Jumper Wires (c¢) JST to Female Jumper Wires

Net | JST wire color | RPi Pico Net | RPi Pico Pin Number

SCL Yellow 12C0 SCL / GP5 7
SDA Blue 12C0 SDA / GP4 6
\(¢l¢ Red 3V3(OUT) 36
GND Black GND 3

Table 1: Summary of Connections

RPi Pico Busio Package

The following functions are useful in this lab:

bytearray(n) returns a bytearray of length n
bytearray("Hello World!\n") returns a bytearray containing the string "Hello World!\n"

i2¢c.try_lock() Attempts to acquire the 12C lock, returns a boolean of whether the acquisition was
successful

i2c.unlock() releases the I12C lock

i2c.readfrom_into(address, bytearray) Requests len(bytearray) bytes from the 12C Address
address and saves the data in bytearray

i2c.writeto(address, bytearray) Writes the data in bytearray to the I12C Address address.

i2c.writeto_then readfrom(address, output_bytearray, input_bytearray) Writes the data in
output_bytearray to the I2C Address address then Requests len(bytearray) bytes from the 12C
Address address and saves the data in input_bytearray

(©) Carnegie Mellon University Page 4 of 15

18-100 LABOS Spring 2022

ByteArrays

Byte arrays are a data array of bytes. This is super useful with I12C because it allows use to create arrays
of bytes for the Master to send. An example of how to use them is below

w = bytearray ([0x02]) #converts hexadecimal into bytes

X = bytearray(2) # create an array of 2 bytes which are zero initialized

y = bytearray([1,2,3]) # create an array of 3 bytes with the elements 1, 2, 3
bytearray ("Hello,World!\n") # convert the string "Hello World!\n" into a bytearray
print (x[0]) # access the Oth element of x and print it

print (y[2]) # access the 2nd element of y and print it

O O W N
N
1]

Which will print:

10
2|3

Acquiring the lock (How to read)

In order to communicate on the I12C line, CircuitPython requires that you acquire the 12C lock, this
prevents multiple processes from trying to drive the 12C line at the same time. After you are done using
the I2C line you should release the lock. An example of how to do this is below:

1| def foo():

2 data = bytearray(l) #create a byte array to hold data

3 # Try to acquire the lock

4 while not i2c.trylock():

5 time.sleep(0.1) # if lock acquisition fails, wait 0.1 seconds then try again
6 i2c.readfrom_into (MY_ADDRESS, data) # doing i2c stuff

7 i2c.unlock() # I’m done with the I2C line for now

8 return int(data[0]) # return the Oth element of the array as an int

Starter Code

Find the file Lab8StarterCode . py on canvas and copy paste the contents into the file CIRCUITPY/code . py.
We suggests that you download the contents and open Lab8StarterCode.py using Mu Python since copy
pasting from a web browser can often introduce errors in character encodings with quotation marks (")
or return carriage (\r).

(©) Carnegie Mellon University Page 5 of 15

18-100 LABOS Spring 2022

1. TMP102 Temperature Sensor

The TMP102 is an I?C-enabled temperature sensor. Your goal for this section is to read the temper-
ature data off the device and convert it to a floating point number and print it to the serial monitor.

How the TMP102 Works

The TMP102 has a 16-bit register that contains the current temperature as a 12-bit binary number:

15 | 14131211 10]9[s8]7][6]s5]4a]3]2]1]o0
TEMP[11:0]

r [r [r | [r | r |r]r]r|r]|r]cr

TEMP = raw temperature value, r = read only, Reserved = not used.

Reserved

Figure 5: TMP102 Register Layout

To access this value,

1. Acquire the lock using i2c.trylock() as specified previously
2. Create a 2 byte bytearray variable using bytearray(2)

3. Read in two bytes of data using i2c.readfrom_into(). The Oth byte read will contain the eight
(8) most-significant bits (MSB) and the 1st byte read will contain the four (4) least-significant
bits (LSB) followed by four (4) zeros.

4. Release the lock using i2c.unlock()

5. Combine these two numbers together by shifting the MSB 4 bits to the left (using the left shift
operation (<<)) then ORing it using the bitwise OR operation (|) with the LSB shifted 4 bits to
the right (using the right shift operation (>>)).

In summary: data = (msbs << 4) | (1sbs >> 4)

6. Convert this raw temperature data to Celsius, then return the value. Each bit in raw tempera-
ture value is equivalent to 1/16th of a degree Celsius (1 bit = 0.0625 C). Multiply the raw data
by 0.0625 to get the final temperature value.

1.1 Using the process outlined above, convert the following hex values into the binary register values
and use it to figure out the temperature.

Hex Value Register Value (base-2) Temperature (°C)

0x0000 DDddD? 82000 Db(,

s D000 (00 0 0.5 ¢

vomo 9000 01DH(() 0 A5 ¢

0x1900 ODD\ \UO\OD()D ngL

e)9 °L

(©) Carnegie Mellon University Page 6 of 15

18-100 LABOS Spring 2022

1.2 Connect the temperature sensor to the Raspberry Pi Pico as shown in Figure 3. Using the
starter code provided on Canvas, fill in the readTemp() function. If your code works correctly,
you should see the temperature in Celsius printed out in the Serial Monitor. Make sure you
actually call the method when you test.

©OW 00 ~N O O d W N =

=
(@]

Qbrief read temperature in Celsius as a floating point number
Q@return temperature in Celsius as a floating point number
def readTemp ():

TODO: implement readTemp

while not i2c.try_lock():

time.sleep(0.1)

TODO: put your I2C communication here

i2c.unlock ()

TODO: write temperature calculation here

pass

Paste your code here:

def readTemp():

data = bytearray(2)

TODO: implement readTemp

while not i2c.try_lock():

j time.sleep(0.1)

TODO: put your I2C communication here
i2c.readfrom_into(TMP_ADDR, data)

i2c.unlock()

TODO: write temperature calculation here
printC"hi®)

return (0.0625) * ((data[0@] << 4) | (data[l] >> 4))

Once you confirm your code is working, we’ll connect the ADALM2000’s Logic Analyzer to look at
the I?C messages sent by the Raspberry Pi Pico. We'll use the Digital I/O pins DO and D1 on the
ADALM.

As Figure 6 shows, the pink box is the Ground pin and connects to the GND pin on the qwiic cable.
The red box indicates the Digital I/O pins DO and D1. Connect DO to SCL and D1 to SDA.

(©) Carnegie Mellon University Page 7 of 15

18-100 LABOS Spring 2022

‘v -
e, ", ADALM2000 Pinout
\9‘) \9,/) A %
2. % % %
s Vs % g 2, o
%, %, % % % % % Digital 1/0 [0:7]

A

12 13 14 15

il

- 2 L v-w2 .l 10 8 9 10

[s L W |
11

Figure 6: GND, DO, D1 on ADALM2000

Connect ADALM2000 to your computer and open up Scopy. On the left side menu, select Logic
Analyzer. (You can read up on the Logic Analyzer here: https://wiki.analog.com/university/
tools/m2k/scopy/logicanalyzer) Enable DIOO and DIO1 lines and select the i2¢ decode option.

Set DIO1 to a falling-edge trigger.

(a) Enable DIO0 and DIO1 (b) Setup the I?C Decoder

(©) Carnegie Mellon University Page 8 of 15

18-100 LABOS Spring 2022

Next we’re going to group DI00, DI0O1 and the I2C Decoder. Click the “Group” button and double
click each of the channels (a white border should appear). Then click “Done.” Then, in the 12C
Settings menu, set SCL to 0 and SDA to 1.

Channel Settings

He
ht 25

(a) Selected Group Items (b) Assign Channels in I2C Decoder

Click the gear button on the top-right corner. Adjust the following settings:

Logic Analyzer
Settings
Sample Rate: 5Msps
Nr of Samples: 2k samples
Run Mode: Stream

Click Single. You should see the bit stream like that in Figure 9.

§

< (0000000 00000000 00000000
Q- TR 00) © 6 EETETTTERTO O 60 ETTTTTER®O O

Figure 9: I?C Bit Stream

(©) Carnegie Mellon University Page 9 of 15

18-100 LABOS Spring 2022

1.3 Paste a screenshot of your Logic Analyzer Output. Make sure your output includes all parts of
the message.

2 k Samples at 5 Msps

e | 00000000 00000000 09090000

D s) owocssrs) owors J073

1.4 What do S and P on the logic analyzer refer to?

3¢ Q¥ (\)‘\5 SAQR

1.5 What does the ‘A’ at the end of each frame refer to? Who sends this bit (coordinator or
participant)? What does it mean and what does it indicate about the transmission?

"N A_(,l(/m N\Q){)M‘_ b
IE Siynds 3¢ e fane Wy (LN 0 1 wo

! 1.6 Why is a NACK sent after the last byte?

T DAL @ st bLumwe pare R an
A Sr et et but s ey deg m PN
bope Jrtea 4,

(©) Carnegie Mellon University Page 10 of 15

18-100 LABOS

Spring 2022

2. T2C-Enabled Button

For this section of the lab, we have provided you with a device that contains a button and an LED
connected to a microcontroller which is able to process I?C data. Unlike the the temperature sensor,
we want to be able to read and modify parameters of the button device (specifically the on-board

LED). In order to do this, we’re going to need to access other registers on the device.

Device Registers

The I?C-enabled Button device we’ve provided for this lab actually has 16 different registers! However

for this lab, we’re going to focus on two of them: BUTTON_STATUS and LED_BRIGHTNESS.

ID = 0x00,
FIRMWARE_MINOR
FIRMWARE_MAJOR

LED_BRIGHTNESS

I2C_ADDRESS =

= 0x01,
= 0x02,

BUTTON_STATUS =
INTERRUPT_CONFIG
BUTTON_DEBOUNCE_TIME = 0x05,
PRESSED_QUEUE_STATUS = 0x07,
PRESSED_QUEUE_FRONT = 0x08,
PRESSED_QUEUE_BACK = 0x0C,
CLICKED_QUEUE_STATUS = 0x10,
CLICKED_QUEUE_FRONT = 0Ox11,
CLICKED_QUEUE_BACK = 0x15,

0x03,
= 0x04,

= 0x19,

LED_PULSE_GRANULARITY = Ox1A,
LED_PULSE_CYCLE_TIME = 0x1B,
LED_PULSE_OFF_TIME = 0x1D,

O0x1F

Figure 10: Sparkfun Qwiic Button Register Map

765]4]3 2 1 0
ISPRES BEENCL AVAIL
Reserved
r Irw Irw
r = read only, rw = readable/writable

Figure 11: Button Status Register

Bits 7:3 Reserved, not used.

Bit 2 ISPRES: Button is pressed
0: Button not pressed
1: Button pressed

Bit 1 BEENCL: Button has been clicked (not used in this lab)
Bit 0 AVAIL: Button has been clicked (not used in this lab)

7 |6 | 5[4]3] 2]1]o0

BRIGHT[7:0]

Irw ‘ Irw ‘ Irw ‘ Irw ‘ Irw ‘ Irw ‘ Irw ‘ Irw

Figure 12: Brightness Register

Bits 7:0 BRIGHT: LED brightness
0: LED off
1-254: Brightness levels between off and max
255: LED max brightness

To access these registers, all we have to do is write a byte to the bus with the address of the register
we want to access and then send/request the data we want.

(©) Carnegie Mellon University

Page 11 of 15

18-100 LABOS Spring 2022

2.1 Fill in the readBtnStatus() function. After obtaining your data from the i2c communication,
you’ll need to get Bit 2 from the BUTTON_STATUS register. You can do that by masking the bit
pattern (register_data & 0x04, i.e. bitwise AND the data read from the register with 0x04
(hex for 0000 0100) to clear all the other bits) and return the value as a bool.! Hint: you
will want to use i2c.writeto_then_readfrom() If you’re stuck, reference the functions at the
beginning. What bytearrays should be the input? the output?

1| # G@brief check if the button has been pressed

2|# Q@return whether or not the button has been pressed
3| def readBtnStatus():

4 pass

Paste your code here:

@brief check if the button has been pressed
@return whether or not the button has been pressed
def readBtnStatus():
TODO: 1implement readBtnStatus, remove pass if implemente
while not 1d2c.try_lock():
; time.sleep(0.1)
TODO: put your I2C communication here
data = bytearray(1)
register = bytearray(1)
register[0] = 0x03
i2c.writeto_then_readfrom(BTN_ADDR, register, data)
i2c.unlock()
return bool(data[0] & 0x04)

2.2 Fill in the writeBtnLED() function. For this problem you can simply write the brightness value
to the LED_BRIGHTNESS register. Think about how you can use bytearrays and one line of i2¢
communication code to write reg_addr followed by brightness to the button.

1| # Qbrief set the button LED Brightness

2|# O@param[in] brightness (0-255) desired brightness the button LED
3|# @param[in] reg_addr address to write to

4| def writeBtnLED(brightness, reg_addr):

5 pass

6|}

Paste your code here:

77 # @brief set the button LED Brightness

78 # @param[in] brightness (0-255) desired brightness the button LED
79 # @param[in] reg_addr address to write to

80 def writeBtnLED(brightness, reg_addr):

81 # TODO: <implement writeBtnLED, remove pass if implemented
82 while not i2c.try_lock():

83 : time.sleep(0.1)

84 data = bytearray(2)

85 data[0] = 0x19

86 data[l] = brightness

87 i2c.writeto(BTN_ADDR, data)

88 j2c.unlock()

89 pass

L

'Fun fact: boolean values under-the-hood are actually 8 bit numbers where 0 = false, and anything else = 1! This allows
to simplify our conditionals quite easily!

(©) Carnegie Mellon University Page 12 of 15

18-100 LABOS Spring 2022

2.3 Modify your while(True): loop to turn the LED on (full brightness) whenever the button is
pressed. Do this using your writeBtnLED() /readBtnStatus() functions.
Paste your code here:

lightCounter = 0
while True:
if readBtnStatus() == True:
! writeBtnLED(255, BTN_ADDR)
else:
! writeBtnLED(®, BTN_ADDR)
uncomment this to check which devices are connected
print([hex(i) for i in checkDevices()])
print("It's a lovely {} C today!".format(readTemp()))
led.value = bool(lightCounter % 2)
lightCounter += 1
TODO: you'll want to tune this delay to get more frequent results
time.sleep(0.5) # loop delay

2.4 Using the logic analyzer, paste screenshots for the following scenarios:

i. When the button is not pressed. (You may have to adjust Logic Analyzer settings so that
all data frames are visible.)

| | S G S 5 S S5 S5 G 5 L S S5 S S L 5 | 5 |

3 k Samples at 5 Msps Stop

recons 00000000 00000000 00000000

I2C: Address/data Address write: 6F @ ge Address read: 6F <a>

ii. When the button is pressed.

| | L | S S 1 |

3 k Samples at 5 Msps

reas 00000000 0008080000 00000000

IC: Address/data Address write: 6F Data write: 03 g@ Address read: 6F @b

(©) Carnegie Mellon University Page 13 of 15

18-100 LABOS Spring 2022

3. I?’C LCD Display

For this section of the lab, we have provided you an LCD display with an on-board microcontroller
which is able to process I2C data. Unlike the the temperature sensor and the button, this device uses
a command system. The display has two rows of 16 characters each.

The display will connect to your I2C bus via the Qwiic connector on the back (as shown below).

We can write a line of code like i2¢c.writeto(LCD_ADDR, "sample text\r") to send text to the LCD.
Note that we did not have to prefix the second arguement with the command byte. When we want
to use a built-in command we will prefix our command with the byte 0x7C.

To clear the display we will send the bytes 0x7C (command byte) and the 0x2D (clear display byte).
Again, this can be done with one line of i2¢c communication code and bytearrays.

Another command is to change the backlight color of the LCD. Sending the command byte 0x7C,
then background color command, 0x2B and then three 8-bit values. This will change the backlight
red /green/blue channels based on the 3 values respectively. (for example 0x7C, 0x2B, OxFF, OxFF,
0xFF will turn the backlight to full white)

(©) Carnegie Mellon University Page 14 of 15

i

18-100 LABOS

Spring 2022

3.1 Modify the while(True) at the end of your code to do the following:

i. Print a line text on the first line of the display (can be anything you want, “Hello World,”

“I <3 18100,” etc.) that changes in some way when the button is pressed

ii. Print the current temperature in Celsius (in a similar format print () statement in the starter

code)

Make sure to clear your display before writing new information to it! (i.e. on every while(True)

loop iteration.

Paste your Lab 8 code here (no need to include readTemp(), readBtnStatus() or

writeBtnLED()):

def clearLCD():
TODO: implement clearLCD, remove pass if implemented
arr = bytearray(2)
arr[0] = Ox7C
arr[1] = Ox2D
i2c.writeto(LCD_ADDR, arr)
i2c.unlock()

def printLCD(pressed, temp):
while not i2c.try_lock():
i time.sleep(0.1)

if pressed:
: i2c.writeto(LCD_ADDR, "Hello World")
else:

i2c.writeto(LCD_ADDR, "Bye World")

i2c.unlock()

while True:
clearLCD()
pressed = readBtnStatus()
temp = readTemp()
printLCD(pressed, temp)
time.sleep(0.5)

def setBackLight(r, g, b):
while not i2c.try_lock():
2 time.sleep(0.1)
"""array = bytearray(5)

array[0] = 0x7C
array[1] = 0x2D
array[2] = r
array[3] =

g
array[4] = pnnn
i2c.writeto(LCD_ADDR, [0x7C, 0x2D, r, g,
i2c.unlock()
|

@brief print stuff to the LCD

@param[in pressed - whether the button is pressed or not

@param[in] temp current temperature in Celsius as a floating point numbe
@return whether or not the button has been pressed

b1)

%2c.wr1teto(LCD_ADDR, "The temperature is {}".format(temp)) #print temp regardless

3.2 Be prepared to check off your functioning I?C display circuit.

3.3 Write a function, setBacklightColor () that takes in an address and 3 bytes, red, green, and

blue and changes the color of the display to given RGB value.

(©) Carnegie Mellon University

Page 15 of 15

