
18-100: Intro to Electrical and Computer Engineering

LAB08: I2C Lab
Writeup Due: Thursday, April 14th, 2022 at 10 PM

Name:

Andrew ID:

How to submit labs:

Download from this file from Canvas and edit it with whatever PDF editor you’re most comfortable with.
Some recommendations from other students and courses that use Gradescope include:

pdfescape.com A web-based PDF editor that works on most, if not all, devices.

Preview Pre-installed default MacOS PDF Editor.

iAnnotate A cross-platform editor for mobile devices (iOS/Android).

If you have di�culties inserting your image into the PDF, simply append them as an extra page to the

END of your lab packet and mark the given box. Do NOT insert between pages.

If you’d prefer not to edit a PDF, you can print the document, write your answers in neatly and scan it
as a PDF. (Note: We do not recommend this as unreadable lab reports will not be graded!). Once you’ve
completed the lab, upload and submit it to Gradescope.

Note that while you may work with other students on completing the lab, this writeup is to be completed
alone. Do not exchange or copy measurements, plots, code, calculations, or answer in the lab writeup.

Your lab grade will consist of two components:

1. Answers to all lab questions in your lab handout. The questions consist of measurements taken
during the lab activities, calculations on those measurements and questions on the lab material.

2. A demonstration of your working lab circuits and conceptual understanding of the material. These
demos are scheduled on an individual basis with your group TA.

Question: 1 2 3 Total

Points: 15 15 20 50

Score:

Kevin way
kqw



18-100 LAB08 Spring 2022

Lab Outline

This lab aims to strengthen students’ understanding of the I2C communication protocol by demonstrating
some practical applications of I2C devices.

Sections

1. Introduction to I2C

2. Temperature Sensor

3. I2C-enabled Button

4. OLED Display and Software Libraries

Required Materials

• 1x ADALM2000

• 1x Raspberry Pi Pico

• 1x I2C TMP102 Temperature Sensor

• 1x I2C Button w/ LED

• 1x I2C Sparkfun Display

• 2x JST F-F Cables

• 1x JST Breakout M

• 1x JST Breakout F



18-100 LAB08 Spring 2022

Introduction to I2C
The Inter-Integrated Circuit (I2C, “I two C” or “I squared C”) Protocol is a protocol intended to allow
multiple “slave” devices to communicate with one or more “master” devices.

I2C Master

I2C Slave I2C Slave I2C Slave

SDA

SCL

 Pullup Resistors

VCC

Figure 1: I2C Bus Diagram

I2C Hardware

The main benefit of I2C is how it only uses two wires but can have up to 128 di↵erent devices on the bus!
The two lines used are called:

SDA Data line, where the bits of data are sent over the bus.

SCL Clock line, keeps everything in sync; tells the devices when to start/stop sending/receiving data.

Each device simply connects its SDC/SCL lines to the rest of the bus. By default both SDA and SCL are
NOT pulled up. Once you properly connect the Raspberry Pi Pico I2C lines to the button or temperature
sensor, SDA and SCL will get pulled up HIGH by pull-up resistors on those external devices. The clock
signal is always generated by the master device; some slave devices may force the clock low at times to
delay the device sending more data (or to require more time to prepare data before the master attempts
to clock it out, called “clock stretching”).

I2C Protocol

Messages are broken up into two types of frame: an address frame, where the master indicates the device
to which the message is being sent, and one or more data frames, which are 8-bit data messages are shared.
Data is placed on the SDA line after SCL goes low, and is sampled after the SCL line goes high.

Figure 2: I2C Example Message

The di↵erent transfer states are explained on the next page.

© Carnegie Mellon University Page 2 of 15



18-100 LAB08 Spring 2022

Start Condition To initiate the address frame, the master device leaves SCL high and pulls SDA low.
This puts all devices on notice that a transmission is about to start. If two devices wish to take
ownership of the bus at one time, whichever device pulls SDA low first wins the race and gains
control of the bus.

Address Frame The address frame is always first in any new communication sequence. For a 7-bit
address, the address is clocked out most significant bit (MSB) first, followed by a R/W bit indicating
whether this is a read (1) or write (0) operation. The 9th bit of the frame is the NACK/ACK bit.
This is the case for all frames (data or address).

Data Frame After the address frame has been sent, data can begin being transmitted. The master will
simply continue generating clock pulses at a regular interval, and the data will be placed on SDA by
the slave/master devices, depending on whether the R/W bit indicated a read or write operation.
Since, the number of data frames is arbitrary, the stop condition will indicate when all the data is
sent.

Stop Condition Once all the data frames have been sent, the master will generate a stop condition.
Stop conditions are defined by a 0!1 (low to high) transition on SDA after a 0!1 transition on
SCL, with SCL remaining high. During normal data writing operation, the value on SDA should
not change when SCL is high, to avoid false stop conditions.

After each frame the device receiving the data is given control over SDA and will respond with either
ACK (0) or NACK (1) (short for acknowledge/not acknowledge). If the receiving device does not pull the
SDA line low , it can be inferred that the receiving device either did not receive the data or did not know
how to parse the message. In that case, the exchange halts, and it’s up to the master of the system to
decide how to proceed.

RPi Pico I2C Support

The RPi Pico has dedicated pins for I2C. Those pins have built-in pull-up resistors that are

required by the I
2
C protocol. For the RPi Pico, the I

2
C pins are GP4 (SDA) and GP5 (SCL).

Usually the device requires two additional pins: the power 3V3 (VCC) and the ground pin (GND).

Figure 3: RPi Pico Pin out

© Carnegie Mellon University Page 3 of 15



18-100 LAB08 Spring 2022

The devices you’ll use will connect via JST connectors for ease of assembly. On the JST the RED wire
is VCC, the BLACK wire is GND, the blue wire should serve as SDA, and the Yellow wire SCL. You are
given cables with JST on both ends so you can daisy chain several devices in a sequence (some devices
have 2 JST ports so they can be connected in series with a previous and next device).

(a) Male JST Connector (b) JST to Male Jumper Wires (c) JST to Female Jumper Wires

Net JST wire color RPi Pico Net RPi Pico Pin Number
SCL Yellow I2C0 SCL / GP5 7
SDA Blue I2C0 SDA / GP4 6
VCC Red 3V3(OUT) 36
GND Black GND 3

Table 1: Summary of Connections

RPi Pico Busio Package

The following functions are useful in this lab:

bytearray(n) returns a bytearray of length n

bytearray("Hello World!\n") returns a bytearray containing the string "Hello World!\n"

i2c.try lock() Attempts to acquire the I2C lock, returns a boolean of whether the acquisition was
successful

i2c.unlock() releases the I2C lock

i2c.readfrom into(address, bytearray) Requests len(bytearray) bytes from the I2C Address
address and saves the data in bytearray

i2c.writeto(address, bytearray) Writes the data in bytearray to the I2C Address address.

i2c.writeto then readfrom(address, output bytearray, input bytearray) Writes the data in
output bytearray to the I2C Address address then Requests len(bytearray) bytes from the I2C
Address address and saves the data in input bytearray

© Carnegie Mellon University Page 4 of 15



18-100 LAB08 Spring 2022

ByteArrays

Byte arrays are a data array of bytes. This is super useful with I2C because it allows use to create arrays
of bytes for the Master to send. An example of how to use them is below

1 w = bytearray ([0x02]) #converts hexadecimal into bytes
2 x = bytearray (2) # create an array of 2 bytes which are zero initialized
3 y = bytearray ([1,2,3]) # create an array of 3 bytes with the elements 1, 2, 3
4 z = bytearray("Hello World!\n") # convert the string "Hello World!\n" into a bytearray
5 print(x[0]) # access the 0th element of x and print it
6 print(y[2]) # access the 2nd element of y and print it

Which will print:

1 0
2 3

Acquiring the lock (How to read)

In order to communicate on the I2C line, CircuitPython requires that you acquire the I2C lock, this
prevents multiple processes from trying to drive the I2C line at the same time. After you are done using
the I2C line you should release the lock. An example of how to do this is below:

1 def foo():
2 data = bytearray (1) #create a byte array to hold data
3 # Try to acquire the lock
4 while not i2c.trylock ():
5 time.sleep (0.1) # if lock acquisition fails , wait 0.1 seconds then try again
6 i2c.readfrom_into(MY_ADDRESS , data) # doing i2c stuff
7 i2c.unlock () # I’m done with the I2C line for now
8 return int(data [0]) # return the 0th element of the array as an int

Starter Code

Find the file Lab8StarterCode.py on canvas and copy paste the contents into the file CIRCUITPY/code.py.
We suggests that you download the contents and open Lab8StarterCode.py using Mu Python since copy
pasting from a web browser can often introduce errors in character encodings with quotation marks (")
or return carriage (\r).

© Carnegie Mellon University Page 5 of 15



18-100 LAB08 Spring 2022

1. TMP102 Temperature Sensor

The TMP102 is an I2C-enabled temperature sensor. Your goal for this section is to read the temper-
ature data o↵ the device and convert it to a floating point number and print it to the serial monitor.

How the TMP102 Works

The TMP102 has a 16-bit register that contains the current temperature as a 12-bit binary number:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TEMP[11:0]
Reserved

r r r r r r r r r r r r
TEMP = raw temperature value, r = read only, Reserved = not used.

Figure 5: TMP102 Register Layout

To access this value,

1. Acquire the lock using i2c.trylock() as specified previously

2. Create a 2 byte bytearray variable using bytearray(2)

3. Read in two bytes of data using i2c.readfrom into(). The 0th byte read will contain the eight
(8) most-significant bits (MSB) and the 1st byte read will contain the four (4) least-significant
bits (LSB) followed by four (4) zeros.

4. Release the lock using i2c.unlock()

5. Combine these two numbers together by shifting the MSB 4 bits to the left (using the left shift
operation (<<)) then ORing it using the bitwise OR operation (|) with the LSB shifted 4 bits to
the right (using the right shift operation (>>)).
In summary: data = (msbs << 4) | (lsbs >> 4)

6. Convert this raw temperature data to Celsius, then return the value. Each bit in raw tempera-
ture value is equivalent to 1/16th of a degree Celsius (1 bit = 0.0625 C). Multiply the raw data
by 0.0625 to get the final temperature value.

1.13 pts Using the process outlined above, convert the following hex values into the binary register values
and use it to figure out the temperature.

Hex Value Register Value (base-2) Temperature (°C)

0x0000

0x0080

0x0440

0x1900

0x7FF0

© Carnegie Mellon University Page 6 of 15

000001000000 0°C

000000001000 0.5°C
000001000100 4.15°C
000110010000 25°C

011111111111 1279°C



18-100 LAB08 Spring 2022

1.25 pts Connect the temperature sensor to the Raspberry Pi Pico as shown in Figure 3. Using the
starter code provided on Canvas, fill in the readTemp() function. If your code works correctly,
you should see the temperature in Celsius printed out in the Serial Monitor. Make sure you

actually call the method when you test.

1 # @brief read temperature in Celsius as a floating point number
2 # @return temperature in Celsius as a floating point number
3 def readTemp ():
4 # TODO: implement readTemp
5 while not i2c.try_lock ():
6 time.sleep (0.1)
7 # TODO: put your I2C communication here
8 i2c.unlock ()
9 # TODO: write temperature calculation here
10 pass

Paste your code here:

def readTemp():

Once you confirm your code is working, we’ll connect the ADALM2000’s Logic Analyzer to look at
the I2C messages sent by the Raspberry Pi Pico. We’ll use the Digital I/O pins D0 and D1 on the
ADALM.

As Figure 6 shows, the pink box is the Ground pin and connects to the GND pin on the qwiic cable.
The red box indicates the Digital I/O pins D0 and D1. Connect D0 to SCL and D1 to SDA.

© Carnegie Mellon University Page 7 of 15



18-100 LAB08 Spring 2022

Figure 6: GND, D0, D1 on ADALM2000

Connect ADALM2000 to your computer and open up Scopy. On the left side menu, select Logic

Analyzer. (You can read up on the Logic Analyzer here: https://wiki.analog.com/university/
tools/m2k/scopy/logicanalyzer) Enable DIO0 and DIO1 lines and select the i2c decode option.
Set DIO1 to a falling-edge trigger.

(a) Enable DIO0 and DIO1 (b) Setup the I2C Decoder

© Carnegie Mellon University Page 8 of 15



18-100 LAB08 Spring 2022

Next we’re going to group DIO0, DIO1 and the I2C Decoder. Click the “Group” button and double
click each of the channels (a white border should appear). Then click “Done.” Then, in the I2C
Settings menu, set SCL to 0 and SDA to 1.

(a) Selected Group Items (b) Assign Channels in I2C Decoder

Click the gear button on the top-right corner. Adjust the following settings:

Logic Analyzer

Settings

Sample Rate: 5Msps
Nr of Samples: 2k samples
Run Mode: Stream

Click Single. You should see the bit stream like that in Figure 9.

Figure 9: I2C Bit Stream

© Carnegie Mellon University Page 9 of 15



18-100 LAB08 Spring 2022

1.34 pts Paste a screenshot of your Logic Analyzer Output. Make sure your output includes all parts of
the message.

Paste Screenshot Here

⇤ I have appended the screenshot to the back of my lab writeup

1.41 pts What do S and P on the logic analyzer refer to?

1.52 pts What does the ‘A’ at the end of each frame refer to? Who sends this bit (coordinator or

participant)? What does it mean and what does it indicate about the transmission?

1.61 bonus Why is a NACK sent after the last byte?

© Carnegie Mellon University Page 10 of 15

Sis start , pis stop

The acknowledgement bit

It signals of the frame was received or not

The NACK is set because there is an

address that doesn't exist but is being attempted

to be written to.



18-100 LAB08 Spring 2022

2. I2C-Enabled Button

For this section of the lab, we have provided you with a device that contains a button and an LED
connected to a microcontroller which is able to process I2C data. Unlike the the temperature sensor,
we want to be able to read and modify parameters of the button device (specifically the on-board
LED). In order to do this, we’re going to need to access other registers on the device.

Device Registers

The I2C-enabled Button device we’ve provided for this lab actually has 16 di↵erent registers! However
for this lab, we’re going to focus on two of them: BUTTON STATUS and LED BRIGHTNESS.

ID = 0x00 ,
FIRMWARE_MINOR = 0x01 ,
FIRMWARE_MAJOR = 0x02 ,
BUTTON_STATUS = 0x03 ,
INTERRUPT_CONFIG = 0x04 ,
BUTTON_DEBOUNCE_TIME = 0x05 ,
PRESSED_QUEUE_STATUS = 0x07 ,
PRESSED_QUEUE_FRONT = 0x08 ,
PRESSED_QUEUE_BACK = 0x0C ,
CLICKED_QUEUE_STATUS = 0x10 ,
CLICKED_QUEUE_FRONT = 0x11 ,
CLICKED_QUEUE_BACK = 0x15 ,
LED_BRIGHTNESS = 0x19 ,
LED_PULSE_GRANULARITY = 0x1A ,
LED_PULSE_CYCLE_TIME = 0x1B ,
LED_PULSE_OFF_TIME = 0x1D ,
I2C_ADDRESS = 0x1F

Figure 10: Sparkfun Qwiic Button Register Map

7 6 5 4 3 2 1 0

Reserved
ISPRES BEENCL AVAIL

r rw rw
r = read only, rw = readable/writable

Figure 11: Button Status Register

Bits 7:3 Reserved, not used.

Bit 2 ISPRES: Button is pressed
0: Button not pressed
1: Button pressed

Bit 1 BEENCL: Button has been clicked (not used in this lab)

Bit 0 AVAIL: Button has been clicked (not used in this lab)

7 6 5 4 3 2 1 0

BRIGHT[7:0]

rw rw rw rw rw rw rw rw

Figure 12: Brightness Register
Bits 7:0 BRIGHT: LED brightness

0: LED o↵
1-254: Brightness levels between o↵ and max
255: LED max brightness

To access these registers, all we have to do is write a byte to the bus with the address of the register
we want to access and then send/request the data we want.

© Carnegie Mellon University Page 11 of 15



18-100 LAB08 Spring 2022

2.13 pts Fill in the readBtnStatus() function. After obtaining your data from the i2c communication,
you’ll need to get Bit 2 from the BUTTON STATUS register. You can do that by masking the bit
pattern (register data & 0x04, i.e. bitwise AND the data read from the register with 0x04

(hex for 0000 0100) to clear all the other bits) and return the value as a bool.1 Hint: you

will want to use i2c.writeto then readfrom() If you’re stuck, reference the functions at the

beginning. What bytearrays should be the input? the output?

1 # @brief check if the button has been pressed
2 # @return whether or not the button has been pressed
3 def readBtnStatus ():
4 pass

Paste your code here:

def readBtnStatus():

2.23 pts Fill in the writeBtnLED() function. For this problem you can simply write the brightness value
to the LED BRIGHTNESS register. Think about how you can use bytearrays and one line of i2c
communication code to write reg addr followed by brightness to the button.

1 # @brief set the button LED Brightness
2 # @param[in] brightness (0 -255) desired brightness the button LED
3 # @param[in] reg_addr address to write to
4 def writeBtnLED(brightness , reg_addr ):
5 pass
6 }

Paste your code here:

def writeBtnLED(brightness, reg addr):

1Fun fact: boolean values under-the-hood are actually 8 bit numbers where 0 = false, and anything else = 1! This allows
to simplify our conditionals quite easily!

© Carnegie Mellon University Page 12 of 15



18-100 LAB08 Spring 2022

2.33 pts Modify your while(True): loop to turn the LED on (full brightness) whenever the button is

pressed. Do this using your writeBtnLED()/readBtnStatus() functions.

Paste your code here:

while(True):

2.46 pts Using the logic analyzer, paste screenshots for the following scenarios:

i. When the button is not pressed. (You may have to adjust Logic Analyzer settings so that
all data frames are visible.)

Paste Screenshot Here

⇤ I have appended the screenshot to the back of my lab writeup

ii. When the button is pressed.

Paste Screenshot Here

⇤ I have appended the screenshot to the back of my lab writeup

© Carnegie Mellon University Page 13 of 15



18-100 LAB08 Spring 2022

3. I2C LCD Display

For this section of the lab, we have provided you an LCD display with an on-board microcontroller
which is able to process I2C data. Unlike the the temperature sensor and the button, this device uses
a command system. The display has two rows of 16 characters each.

The display will connect to your I2C bus via the Qwiic connector on the back (as shown below).

We can write a line of code like i2c.writeto(LCD ADDR, "sample text\r") to send text to the LCD.
Note that we did not have to prefix the second arguement with the command byte. When we want
to use a built-in command we will prefix our command with the byte 0x7C.

To clear the display we will send the bytes 0x7C (command byte) and the 0x2D (clear display byte).
Again, this can be done with one line of i2c communication code and bytearrays.

Another command is to change the backlight color of the LCD. Sending the command byte 0x7C,
then background color command, 0x2B and then three 8-bit values. This will change the backlight
red/green/blue channels based on the 3 values respectively. (for example 0x7C, 0x2B, 0xFF, 0xFF,

0xFF will turn the backlight to full white)

© Carnegie Mellon University Page 14 of 15



18-100 LAB08 Spring 2022

3.15 pts Modify the while(True) at the end of your code to do the following:

i. Print a line text on the first line of the display (can be anything you want, “Hello World,”
“I <3 18100,” etc.) that changes in some way when the button is pressed

ii. Print the current temperature in Celsius (in a similar format print() statement in the starter
code)

Make sure to clear your display before writing new information to it! (i.e. on every while(True)

loop iteration.

Paste your Lab 8 code here (no need to include readTemp(), readBtnStatus() or

writeBtnLED()):

3.215 pts Be prepared to check o↵ your functioning I2C display circuit.

3.33 bonus Write a function, setBacklightColor() that takes in an address and 3 bytes, red, green, and
blue and changes the color of the display to given RGB value.

© Carnegie Mellon University Page 15 of 15


