Constructive Logic (15-317), Spring 2022
Recitation 14: Session Types and Review

Recall from lecture that we translated a finite-state transducer which compressed runs of b into
single instances of b into an ordered program in two different ways — first as an ordered forward
logic program, then as a concurrent program in the subsingleton fragment of ordered logic. We
will look here at some further examples of this type.

Task 1. Write a transducer over the alphabet a, b which produces ab for every occurrence of ab in
the input and erases all other symbols.

1. Present it in the form of ordered inference rules (for a forward ordered logic program).

2. Present it in the form of a well-typed concurrent program in the subsingleton fragment of
ordered logic.

Solution 1: Reading strings from left-to-right, with an end-of-string symbol $. e.g. this program
can be run on the string babb by starting in the state go ba b b $:

qo a gob 9%
qa o qo $

M Cllb []1$

Jo abqo $

If we instead read strings from right to left, starting in the state $ b a b b q¢ for the string babb,
we instead can give the following forward ordered logic program:

a qo b qo $ q0
q0 0 $

aq b ST
qoab qo $

To implement this transducer as a concurrent program, we define a process for each state. In
this example, we will read the string from right-to-left, as in the second forward logic program
above. Itis, of course, possible to present a program that reads the string from left to right, instead,
although this also means changing how exactly a string is represented as a process (or as a sequence
of messages).

string + Qo : string

Qo =caseL (a = Qo
b=
|$=RS$; <
)

string + Qq : string
Q1 =caseL (a=>Rb;

R.a;

Qo
|b= Qo
|$=RS$; &
)

Task 2. Reconsider the transducers for compressing runs of b’s, given here as a set of ordered
inference rules. We present here the version without an explicit final state.

a 90 bqo $ 40
do a g1 b $

aq bq $q
qoa q $

In our encoding as a program Qp of type string + Qo : string we treated letters as messages and
states as processes. No explicit representation of the final state is necessary with the rules above.

Define a dual encoding where symbols of the alphabet and endmarkers are represented pro-
cesses and states as messages.

1.

Define an appropriate type state so that state + P, : state where P, is the process representation
for the alphabet symbol a.

For each symbol a of the transducer alphabet, define the process P,.

Give the type of the process Pg representing the endmarker $. It may make sense to represent
a final state with an explicit message, but you may also find it simpler not to.

Define the process Pg for the endmarker.
Define the initial configuration for the string babb and initial state qo.

Describe the final configuration for the given example string and initial state (once the
program has run to completion).

. Consider how to compose two transducers encoded in this form. How does this compare to

the composition of transducers in the original encoding given in lecture (via cut)?

Solution 2: Note that this is one solution, but that others may be possible.

1.

state = &{qo : state, q; : state}. You may notice that this type has no base case — it represents
an infinite stream of states. This will simplify composing transducers, but again, is far from
the only solution.

state + P, : state

P, =caseR (g0 = L.q0 ; P
lg1 = L.go; Pa
)

state + Py, : state

Py =caseR (g0 = L.q1; Py
lg1 = Lg1; <

)

3. state v Pg : state
Pg = caseR (g0 = Ps
| q1 = P$
)

4, P$ Pb Pa Pb Pb (LC]() ; (—))
5. Pg P, P, Py

6. To compose transducers in this form is a fairly involved task — the state type needs to be
modified to account for both transducers’ states, and each process Py needs to handle both
types of state. Once this is done, we can simply send a sequence of the initial states of the
transducers to the collection of processes representing the string, which is relatively easy, but
there is a substantial amount of work involved in modifying all of the processes for symbols.

The approach used in lecture, by contrast, composes with minimal work — the processes for
states for a transducer can remain the same, the type of strings can remain the same, and all
we need to do is cut two processes together, feeding the output of one as input to the other.

1 Review

You should ask any questions you may have about the material of this course, either as preparation
for the final, or for general interest. Below is a high-level list of the topics covered in the course,
which you might expect to see come up to some extent on the final exam.

1. Proof Theory:

e Natural Deduction
e Harmony

Verifications and Uses

Proof terms

Sequent Calculus
Cut and Identity

e Proof normalization/cut elimination
2. Proof Search:

e Reduced Sequent Calculus
e Inversion and the inversion calculus G4IP

e Logic Programming

Prolog

Backwards Chaining

Forwards Chaining and Forwards Logic Programming

Focusing

3. Other logics and extensions to constructive logic:

Quantifiers

Heyting Arithmetic

Classical Logic
Modal Logic

Linear Logic

Ordered Logic

Ordered/Linear Logic proofs as concurrent programs

(Forward) Ordered/Linear Logic Programs

	Review

