Constructive Logic (15-317), Spring 2022
Recitation 4: Quantifiers and Heyting Arithmetic (2022-02-09)
clogic staff

1 OQuantifiers

Up to now, we have been vague about what, exactly, our atomic propositions A are representing. In order to discuss
quantification, however, we need to be precise over what, exactly, we are quantifying over. We do this via a new judgment
t : T, where 7 is some to-be-defined type. Oftentimes, we are interested in some particular type, like the type of natural
numbers or the type of Turing Machines, but the meaning of the 4 and V connectives are independent of this.

The rules for verifying these are as follows:

a:A
A(E:l) T . Vx:1.A(x) | t:t
Vx: 1. A(x) T vl At)] vE
it A"
t:t AB®T dx: 1. A(x) | C:T .
T A@] c1 A"

By now, you should be comfortable with erasing the arrows to recover the rules defining these connectives for natural
deduction. The intuition for these rules should be straightforward — to prove that some proposition A(x) is true for all x : 7,
we should be able to derive A(c) true for some arbitrary c : 7. Similarly, we can introduce an existential by demonstrating
some object satisfying the proposition.

Eliminating foralls is similarly simple. To eliminate an existential, however, we must do a little more work. If we have
dx : 7. A(x), then we may not assume anything else about the witness! It must be an object of type 7, and also that it satisfies
A(x), but any other properties must be abstracted out, to be replaced with an arbitrary object with the known properties.

2 Examples with quantifiers

Consider predicates A(x) and B(x) which depend on x : 7.

Task 1. Show Yx : 7. A(x) A B(x) D Vx: 7. A(x) A Vx : T. B(x) true.

Vx : 1. A(x) A B(x) true P TR VE Vx : 1. A(x) A B(x) true P U:T VE
A(u) A B(u) true A(v) A B(0) true
AEq AEp
Solution 1: A(u) true A(v) true |
Vx: 1. A(x) true " Vx : 1. B(x) true /\IU

Vx: 7. A(x) AVx: 7. B(x) true »
Vx:7.A(x) AB(x) D Vx:1.A(x) AVx: 7. B(x) true -

Next, let A(x,) be a formula with two variables x : T and y : 0.

Task 2. Show that you can “swap” an existential and universal. Do a verification proof. To prove this, show that Jx : T.Vy :

0.A(x,y) DYy :0.dx : T.A(x,).

Solution 2: o
Vx:0.A(x,d) | c:o

AGd) L vE
d:t A@@T$
Ay:t.Vx:0.Alx,y) | " dy:t. Alc,y) T io
dy:t. Alc,y) T vIe A%
Vx:o0.dy:t. A(x,y) T o

Jy:t.Vx:0.Alx,y)) D (Vx:0.dy: 1. Alx,) T

3 Heyting Arithmetic

Now that we have fully explored the surrounding machinery, let’s try and look at a more sophisticated system of logic.
— U
x:nat C(x) true

n: nat C(0) true C(S x) true

XU
C(n) true natk

The other was the rule of primitive recursion, which introduces a new term constructor R for each type t:

xX:nat r:7T

n:nat fo: 71 ts: T
R(n, tg,x.r.ts5): 1

natE*”

Its behaviour is captured by the following reduction rules:

R(O, to,x. r. ts) —R to,
R(S ', tg,x.1.ts) =g [R(', to, x. 7. t5)[r][n" [x] ts.

These rules R indicate that R describes a recursive function “R(n)” on the first parameter, with value ty when n = 0, and
value [R(n")/r][n’/x]ts when n = S n’. This motivates the more readable schema of primitive recursion, where we define the
function (call it “f” to avoid confusion) f by cases:

f(0) = to,
f(S x) = ts(x, f(x)).

We can recover the recursor version of the definition as follows:

f = (fnn = R(n, to, x.r.ts(x,1))).

3.1 All of the rules in one place!

Here are all of the Heyting arithmetic rules.

natly X . nat

0 : nat s X : nat natls

y:nat C(y) true

x:nat C(0) true C(s y) true

yu
C(x) true natk
_ X =y true
0:0true_100 sXx=sytrue 5
0=sxtrue _ sx =0 true _ sx=sytrue_E
C true 05 C true 50 x=ytrue 55
RO, fo, xrds) Srfo R R b, xrts) =r [R(r, fo xrds)lnjxlts % 18
A(x) true x =Ry A(y) true x =Ry
A(y) true =r Er A(x) true =k B2

3.2 Working with these ideas

Task 3. The judgmental form of the principle of induction can be used to show the following more traditional formulation
that uses universal quantification:

Vn : nat. C(0) D (Vx : nat. C(x) > C(S x)) D C(n) true.

Solution 3:

Vx : nat. C(x) D C(S x) Y ¥ nat

C) > CS) Bt Y
n: nat C(0) " C(Sx) . ~E
Cn)] natE™
(Vx:nat.Cx) > CSx) o Clm) '
C(0) > (Yx : nat. C(x) o C(S x)) > C(n) = "

Vn : nat. C(0) D (Vx : nat. C(x) D C(S x)) D C(n)

Task 4. (BONUS) Prove
V¥n:nat.R(n,0,x.r.S (Sr)) = R(n,n,x.r.Sr) true

You may assume for the purposes of this proof that R(n,S y, x.r.S r) =r R(S (R(n, y, x.r.S r))) (note that while they are
equivalent, neither side actually reduces to the other).

Furthermore, although this is not a rule, assume you may step underneath successors, as if you have a rule =g [*with the
premise x =g Y and conclusion S x =g S v.

Solution 4: (BONUS) Let the following section be called X:

0=0 true oo R(0,0,x.r.5 (S5 1)) =Rr 0 true zR IEO N
R(0,0,x..S (S)) = 0 true R=2 R0,0,xrS1) =R 0 true <0
=g E2

R(0,0,x.r.5 (Sr)) = R(0,0,x.r.S r) true

Let the following section be called Y:

R(y,0,xr.S(Sr)) =R(y,y,x.r.Sr) true " _q
S(R(y,0,xr.5(5M) =S R(y, y,x.rS1)) true > ; L
S(S(R(y,0,xr.5(51) =S (S Ry, y,xr.Sr)) true > R(Sy,0,xr.5(S7) =r S (S R(y,0,xr.5(Sr))) true * ;
R(Sy,0,xr.5(S7) =S (S (R(y, y, x.1-S 1))) TR 52

Let the following section be called Z:

RS y,y,xr.Sr) =r S (R(y,y,x.r.S 1)) true =rls

Y S(R(Sy,y,xrSn) =r S (S (Ry,y,xrSr)) true k1
RS y,0,xr.5(S1)) =S (R(Sy,y,x.r.Sr)) true =R L2 RS y,Sy,xrSr)=r SRS y,y,xr.Sr)) true
RS y,0,xr.5(Sr))=R(Sy,Sy,xrSr) true

*

given

=R E>

The full proof is then:

a:nat X Z
R(a,0,x.r.S (Sr)) = R(a,a,x.r.Sr) true
Vn :nat.R(n,0,x.r.S (Sr)) = R(n,n, x.r.Sr) true

natEY"

n

	Quantifiers
	Examples with quantifiers
	Heyting Arithmetic
	All of the rules in one place!
	Working with these ideas

