Constructive Logic (15-317), Spring 2022 Recitation 14: Session Types and Review

Recall from lecture that we translated a finite-state transducer which compressed runs of *b* into single instances of *b* into an ordered program in two different ways — first as an ordered forward logic program, then as a concurrent program in the subsingleton fragment of ordered logic. We will look here at some further examples of this type.

Task 1. Write a transducer over the alphabet *a*, *b* which produces *ab* for every occurrence of *ab* in the input and erases all other symbols.

- 1. Present it in the form of ordered inference rules (for a forward ordered logic program).
- 2. Present it in the form of a well-typed concurrent program in the subsingleton fragment of ordered logic.

Task 2. Reconsider the transducers for compressing runs of *b*'s, given here as a set of ordered inference rules. We present here the version without an explicit final state.

$\frac{a q_0}{q_0 a}$	$\frac{b q_0}{q_1 b}$	$\frac{\$ q_0}{\$}$
$\frac{a q_1}{q_0 a}$	$\frac{b q_1}{q_1}$	$\frac{\$ q_1}{\$}$

In our encoding as a program Q_0 of type *string* $\vdash Q_0$: *string* we treated letters as messages and states as processes. No explicit representation of the final state is necessary with the rules above.

Define a dual encoding where symbols of the alphabet and endmarkers are represented processes and states as messages.

- 1. Define an appropriate type *state* so that *state* $\vdash P_a$: *state* where P_a is the process representation for the alphabet symbol *a*.
- 2. For each symbol a of the transducer alphabet, define the process P_a .
- 3. Give the type of the process *P*^{\$} representing the endmarker \$. It may make sense to represent a final state with an explicit message, but you may also find it simpler not to.
- 4. Define the process $P_{\$}$ for the endmarker.
- 5. Define the initial configuration for the string *babb* and initial state q_0 .
- 6. Describe the final configuration for the given example string and initial state (once the program has run to completion).
- 7. Consider how to compose two transducers encoded in this form. How does this compare to the composition of transducers in the original encoding given in lecture (via cut)?

1 Review

You should ask any questions you may have about the material of this course, either as preparation for the final, or for general interest. Below is a high-level list of the topics covered in the course, which you might expect to see come up to some extent on the final exam.

- 1. Proof Theory:
 - Natural Deduction
 - Harmony
 - Verifications and Uses
 - Proof terms
 - Sequent Calculus
 - Cut and Identity
 - Proof normalization/cut elimination
- 2. Proof Search:
 - Reduced Sequent Calculus
 - Inversion and the inversion calculus G4IP
 - Logic Programming
 - Prolog
 - Backwards Chaining
 - Forwards Chaining and Forwards Logic Programming
 - Focusing
- 3. Other logics and extensions to constructive logic:
 - Quantifiers
 - Heyting Arithmetic
 - Classical Logic
 - Modal Logic
 - Linear Logic
 - Ordered Logic
 - Ordered/Linear Logic proofs as concurrent programs
 - (Forward) Ordered/Linear Logic Programs