
Constructive Logic (15-317), Spring 2022
Recitation 8: Prolog Basics (2022-03-16)
clogic staff

1 Logic programming

You might be familiar with functional and imperative programming. Today we will see yet another
programming paradigm: logic programming. Logic programming can be seen as a fragment of
intuitionistic logic called Horn clauses. A Horn clause is either an atom or a formula of the shape
A1 ∧ ... ∧ An ⊃ H, where H is called the head and A1 ∧ ... ∧ An is the body. In prolog syntax, this is
written as:

h :- a1, a2, ..., an.

Judgement in Prolog is represented as predicates. For example, if I say Alice is a dog, then the
corresponding prolog representation will be

dog(alice).

where dog is a predicate, and alice is an atom1. Another example is Pittsburgh is a city of Pennsylvania,
which can be represented as

city(pittsburgh, pennsylvania).

Judgement with a condition is represented using :-. For example, Alice is Bob’s daughter if Alice is
Clare’s daughter and Clare and Bob are couple can be represented as2

daughter(alice, bob) :-

daughter(alice, clare),

couple(clare, bob).

Let’s step through a simple prolog program to understand how computation (or proof search)
works. Consider the following simple code:

ocean_level(rising).

temperature(extreme).

global_warming(conspiracy) :-

ocean_level(stable),

temperature(normal).

global_warming(real) :-

ocean_level(rising),

temperature(extreme).

1The convention in Prolog is that names that start with a lower case letter (e.g alice) are constants (or atoms), and
names that start with an upper case letter are unification variables

2The convention to refer to the predicate is the name followed by its arity (the number of arguments it takes). For
example, we would say dog/1, city/2, daughter/2.

1

The first thing we could ask Prolog is Is global warming a conspiracy?

?- global_warming(conspiracy).

false.

Prolog said false. Then Is global warming real?

?- global_warming(real).

true.

If we query prolog for global warming(X)3, it will look at the head of all (four) clauses trying to find
one that “matches” (unifies) with the goal. In this case, it finds the clauses in lines 3 and 4. Prolog
will process the options in order, so it will first go to clause in line 3 and unify X with conspiracy,
generating the new goals ocean level(stable) and temperature(normal). A proof-theoretic
interpretation of this step is the following (predicate names are abbreviated for the sake of space):

ol(ris), temp(xtr), ... −→ ol(sta) ol(ris), temp(xtr), ... −→ temp(nml)
ol(ris), temp(xtr), ... −→ ol(sta) ∧ temp(nml) ∧R

X is csp

ol(ris), temp(xtr),gw(csp), ... −→ gw(X) init

ol(ris), temp(xtr), ol(sta) ∧ temp(nml) ⊃ gw(csp), ol(ris) ∧ temp(xtr) ⊃ gw(real) −→ gw(X) ⊃ L

In this derivation, X is a special variable that is unified on initial rules, and this unification propagates
to the next branch if there were occurrences of X there as well. When trying to prove the two open
sequents, or the new goals, prolog will realize that ocean level(stable) or temperature(normal)
are not true... oops, are not in the context nor they are unifiable with any clause head. Time to
backtrack. We know that ∧R is an invertible rule, so no use in backtracking there. We go back to the
choice of clauses (i.e., ⊃ L) and try to use the one on line 4. This time the unification will be X is
real and the new goals ocean level(rising) and temperature(extreme), which can be proved.

As a final note, logic programs hold some resemblance to functional programs in the way programs
are written. You will find that sometimes the clauses used look a lot like the cases you would need
in, say, SML. This kind of programming style is referred to as declarative programming (you write
what your program does as opposed to how it does it).

2 Natural Number

Recall from Heyting arithmetic, we define natural numbers according to the following rules.

z : nat natIz
n : nat
sn : nat natIs

This can be encoded in Prolog as

nat(z).

nat(s(N)) :-

nat(N).

3Here X is a unification variable, meaning that we are trying to find out the possible values for such variable.

2

Task 1. Define plus/3 and mult/3 where plus(M, N, P) satisfies that M + N = P and mult(M, N,
P) satisfies that M * N = P.

plus(z, N, N).

plus(s(M), N, s(P)) :-

plus(M, N, P).

mult(z, N, z).

mult(s(M), N, P) :-

plus(Q, N, P),

mult(M, N, Q).

3 Modes

We often talk about modes in Prolog. Modes are a way of describing how a predicate will be used.
We denote an argument of a predicate with + if that argument is provided to the predicate, and
with - if that argument is outputted by the predicate. A defined Prolog predicate can often work
with many different modes.

Note that not all possible modes work correctly for a given predicate in Prolog. Many predicates
do not work with all arguments moded negatively. For example, given a predicate permutation(L,
P), where L is a list and P is a permutation of L, the mode permutation(-L, -P)will not terminate
because there are infinite pairs (L, P) such that P is a permutation of L.

Take plus/3 as an example. What are correct modes for this predicate? For a starter we could make
the following queries.

?- plus(s(z), z, s(z)).

true.

?- plus(z, z, s(z)).

false.

This would correspond to plus(+M, +N, +P), which returns a binary result true or false. We could
also do the following:

?- plus(s(z), s(s(z)), X).

X = s(s(s(z))).

which corresponds to mode plus(+M, +N, -P). We can push this idea even further:

?- plus(s(z), X, s(s(z))).

X = s(z).

This is effectively minus, which corresponds to mode plus(+M, -N, +P).

Task 2. Prove that plus(+M, -N, +P) is a correct mode.

Task 3. Which modes does multwork correctly with?

Task 4. How might we rewrite mult if we wanted it to work correctly with the mult(+, +, -)
modality?

3

4 Work With Lists

In Prolog, lists are built in similarly to SML. The syntax for pattern matching on a list is [Head |
Tail]. Using this we can implement a variety of programs for manipulating lists.

Consider predicate mem/2, where mem(X, L) represents that X is an element in L. We could imple-
mented it as followed.

mem(X, [Y | Ys]) :-

X = Y.

mem(X, [Y | Ys]) :-

X \= Y,

mem(X, Ys).

The first clause can also be implemented as

mem(X, [X | _]).

Now we can run the queries.

?- mem(a, [b, c, a, d]).

true .

?- mem(a, [b, c, d]).

false.

Task 5. Define listsum(L, N)where L is a nat list, and the sum of all natural numbers in L is N.

listsum([], z).

listsum([X | Xs], N) :-

nat(X),

listsum(Xs, M),

plus(X, M, N).

5 A Complicated Example

Consider Untyped Lambda Calculus defined as followed4.

M ::= x | λx.M | ap(M,N)

We can encode those three constructs in Prolog respectively as v(x), lam(x, m), app(m, n). The
semantics of this language, perhaps unsurprisingly, is defined as

e1 → e′1
ap(e1, e2)→ ap(e′1, e2) ap(λx.e, e2)→ [e2/x]e

We are interested in a predicate eval/2, where eval(E, F) represents that term E evaluates to term
F. We begin by exactly following the rules.

4Untyped Lambda Calculus is so elegant that it only has three construct: variable, function abstraction, and function
application, yet it is equivalent to the Turing Machine, which defines the computability.

4

eval(app(E1,E2), F) :-

eval(E1,E1prime),

eval(app(E1prime,E2), F).

eval(app(lam(X,E),E2),F) :-

subst(E2,X,E,F).

All it remains is to implement subst/4, where subst(E1, X, E, F) represents substituting E1 into
the variable of X in E results in F. How substitution works can be summarized as followed.

• [r/x]x = r

• [r/x]y = y where x , y

• [r/x]ap(e1, e2) = ap([r/x]e1, [r/x]e2)

• [r/x]λx.e = λx.e

• [r/x]λy.e = λy.[r/x]e where x , y

Now we an implemented it:

subst(E,X,v(X),E).

subst(E,X,v(Y),v(Y)) :-

X \= Y.

subst(E,X,app(E1,E2),app(E1prime,E2prime)) :-

subst(E,X,E1,E1prime),

subst(E,X,E2,E2prime).

subst(E,X,lam(X,F),lam(X,F)).

subst(E,X,lam(Y,F),lam(Y,Fprime)) :-

X \= Y,

subst(E,X,F,Fprime).

Now this works almost as intended. However it is still wrong. Consider subst(v(x), y,
lam(x,v(y)), A). Yikes. Then we need to add one more restriction to the last rule of substitution,
which is that variable y is not a free variable in r (the variable y is said to be “fresh” for r). This
would be hard to implement in Prolog though, so we left it as a bonus.

5

	Logic programming
	Natural Number
	Modes
	Work With Lists
	A Complicated Example

