
Constructive Logic (15-317), Spring 2022
Recitation 3: Proofs and Programs & Veri�cations (2022-02-02)
clogic sta�

1 Proofs Are Programs

As discussed previously in lecture, there is a tight correspondence between the structure of a derivation for a constructive
proof and a term in some particular programming language. �is leads to the slogans “proofs are programs” and “propositions
are types”. �e (Curry-Howard-Lambek) correspondence can be �eshed out for the logic we’re studying (intuitionistic
propositional logic)1 by the following table

Propositions Types
A ∧ B A ∗ B
A ∨ B A + B
A ⊃ B A→ B
> 1 (unit)
⊥ 0 (void)

Based on this we can produce a version of our rules from the previous recitation that annotate each proposition step in the
derivation with the program that it constructs. �ose rules are:

M : A N : B

〈M,N〉 : A ∧ B
∧I

M : A ∧ B

fst M : A
∧E1

M : A ∧ B

snd M : B
∧E2

M : A

inl M : A ∨ B
∨I1

N : B

inr N : A ∨ B
∨I2

M : A ∨ B

u : A
u

······

N : C

w : B
w

······

O : C

case M of inl u⇒ N | inr w⇒ O : C
∨Eu,w

u : A
u

······

M : B

fn u⇒M : A ⊃ B
⊃ Iu

M : A ⊃ B N : A

M N : B
⊃ E

〈〉 : >
>I

M : ⊥

abort M : A
⊥E

2 Translation

We now turn to the question of translating proofs to programs and back again. In these notes, we present both for the sake
of accessibility.

Task 1. (A ⊃ B ⊃ C) ⊃ (B ⊃ A ⊃ C)

Task 2. ((A ⊃ B) ∨ (A ⊃ C)) ⊃ A ⊃ (B ∨ C)
1Of course, what makes this correspondence so remarkable is that it extends far beyond this one logic. It is quite robust and extends to almost any

well-behaved logic. It also maps between logic and functional programming and la�ices which are just closed cartesian categories

1

3 Inventing proof terms

Task 3. Let’s consider a new connective t. We’ll give the intro and elim rules and try to come up with constructors,
destructors and reduction rules that make sense.

A true

B true
u

······

⊥ true

A t B true
t I1

A true
u

······

⊥ true
B true

A t B true
t I2

A t B true

A true
u

······

¬B true
v

······

C true

¬A true
u

······

B true
v

······

C true

C true
t E

2

4 Veri�cations and Uses

“Veri�cations” are proofs that proceed upwards from conclusions to premises; this is also known as backward inference or
re�nement-style proof. On the other hand, “uses” are proofs that proceed from premise to conclusion, also known as forward
inference. �e judgment A ↑ stands for veri�cations of A, and the judgment A ↓ stands for uses of A.
�e rules for veri�cations and uses of the conjunction connective are as follows:

A ↑ B ↑
A ∧ B ↑ ∧I

A ∧ B ↓
A ↓

∧E1
A ∧ B ↓

B ↓
∧E2

On this basis, you may think that veri�cations correspond to introduction forms and uses correspond to elimination forms.
�is is not correct, as can be seen from the case of disjunction:

A ↑
A ∨ B ↑

∨I1
B ↑

A ∨ B ↑
∨I2

A ∨ B ↓

A ↓
u

....
C ↑

B ↓
v

....
C ↑

C ↑ ∨Eu,v

Will the elimination rule for implication result have a veri�cation or a use in its conclusion?

A ↓
u

....
B ↑

A ⊃ B ↑ ⊃I
u A ⊃ B ↓ A ↑

B ↓ ⊃E

One dimension along which connectives vary is polarity: some connectives are positive, and some are negative. We cannot
yet make this distinction precise, but some students have already begun to observe it. Later on, we may see that negative
connectives have elimination forms as uses, but positive connectives have elimination forms as veri�cations.

�e calculus of veri�cations and uses has one extra rule which was not visible in the original logic:

A ↓
A ↑
l

Would it be reasonable to add the inverse of the above rule, which concludes A ↓ from A ↑? What would be the consequences
of this?

Task 4. Give a veri�cation for this proposition (A ∨ B) ⊃ (A ∨ B)

Task 5. Give a veri�cation for this proposition (A ⊃ B ⊃ C) ⊃ ((A ∧ B) ⊃ C)

3

	Proofs Are Programs
	Translation
	Inventing proof terms
	Verifications and Uses

