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1 Introduction

In this lecture, we present a judgmental formulation of classical logic, giv-
ing a proof theory in terms of judgments A ctrue (A is classically true),
A false (A is classically false), and # (Contradiction). We will see how to
prove propositions classically true or false, and that most of these proofs
involve proof by contradiction.

Classical logic is not, however, entirely separate from constructive logic,
and we will make this precise by showing that a constructively provable
proposition is also classically provable, and giving a way to translate clas-
sically provable propositions into constructively provable ones, via double
negation.

Finally, we will present a system of proof terms for this classical proof
theory. Proof terms for the judgment A true will be functional expressions
as usual, while those for the judgment A false will be continuations. An
expression and a continuation of the same type A can be combined to yield
a contradiction. This can be thought of similar to a goto, where we jump to
some continuation with a given expression as argument.

2 What is Classical Logic?

We have briefly discussed classical logic at several points in this course,
primarily with a focus on defining what makes a logic constructive. One
main theme in these discussions is that constructive logic does not believe
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L11.2 Classical Logic

that A ∨ ¬A true is provable for all A, while classical logic does. Thus,
one way to present classical logic is to simply add to our existing rules for
constructive logic the following axiom:

A ∨ ¬A true
LEM

In fact, there are a variety of related rules we could add to our existing sys-
tem to get classical logic, including proof by contradiction, double-negation
elimination, and Peirce’s law:

¬A true
u

...
F true
A true

PBCu
¬¬A true
A true

DNE
((A⊃B)⊃A)⊃A true

Peirce

Each of these can be used to prove the others. For instance, we may prove
LEM using PBCu as follows:

¬(A ∨ ¬A) true
u

¬(A ∨ ¬A) true
u

A true
v

A ∨ ¬A true
∨I1

F true
⊃ E

¬A true
⊃ Iv

A ∨ ¬A true
∨I2

F true
⊃ E

A ∨ ¬A true
PBCu

One interesting observation about this proof is that the only place we use
the classical rule PBCu is at the start (or at the end, depending on your
perspective on proofs). This hints at the idea (which we will make more
precise in section 4.2) that every classically true proposition A can be trans-
lated into a constructively true proposition B such that A and B are clas-
sically equivalent. Of course, if A is not constructively true, then A and B
will not be constructively equivalent.

While adding any of these rules to our logic will make it classical, all
four violate a principle we have set out for rules: a rule should make use
of at most one connective. As is, if we take PBCu to define classical logic,
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Classical Logic L11.3

does this mean that a logic must have falsehood and implication in order
to be classical? If we take LEM instead, does that then mean that we must
have negation and disjunction? Avoiding all of these issues, we will seek
to characterize classical logic without using any connectives at all, instead
working with some new judgements.

3 A Classical Proof Theory

We begin by examining the proposed rule PBCu:

¬A true
u

...
F true
A true

PBCu∗

This rule has three components, each of which will inform one of our new
judgements. First, and most simply, the conclusion is that A is true. We will
use a new judgement A ctrue to denote that A is classically true, in order to
distinguish it from the constructive truth of A true.1

Now looking at the premise of the rule, we see a hypothetical judge-
ment, saying that F true under the hypothesis¬A true. Thinking classically,
we may note that ¬A is true exactly when A is false, and this motivates our
second new judgement A false, stating that the proposition A is classically
false. Finally, F true denotes a contradiction, and we will introduce a new
judgement # for contradiction to capture this. Using these new judgements,
we can write PBCu, now using no connectives:

A false
u

...
#

A ctrue
PBCu

So far, this looks good — we have put the classical rule PBCu solely in
terms of judgements. But what needs to change for our other rules? As
is, we have no way to use a hypothesis A false, no rule that allows us to

1If it is clear that we are working in classical logic, we may just write A true for simplicity.
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L11.4 Classical Logic

conclude contradiction #, and, for that matter, no rules that allow us to
work with the new judgement A ctrue.

One approach would be to take all of our existing rules of constructive
logic and then see what rules we need to add to get a working system.
However, this will end up with many redundant rules, and so we will in-
stead start from the ground up.2

For simplicity of presentation, and because it will be useful later on,
we will use a variant of the notation for natural deduction with contexts.
There, the usual judgement was of the form Γ ` A true, where Γ is a set
of hypotheses of the form B true. We can already see from PBCu that we
will have some assumptions of the form B false as well as B true, and so,
anticipating that, we will work with two contexts, writing Γ ; ∆ ` J . Here,
Γ consists of hypotheses B ctrue, ∆ consists of hypotheses B false, and J
may be A ctrue, A false, or #.

3.1 Contradiction

Rewritten in this notation, the rule PBCu from before becomes

Γ ; ∆, A false ` #

Γ ; ∆ ` A ctrue
T #

If using A false as a hypothesis leads to a contradiction (along with the
existing hypotheses Γ and ∆), then we may conclude A ctrue. Of course,
there is no reason to restrict proof by contradiction to only proving truth —
we can give a dual form of this rule to prove propositions false as well:

Γ, A ctrue ; ∆ ` #

Γ ; ∆ ` A false
F #

These two rules allow us to use proof by contradiction to conclude that a
proposition is true or false.

A key question then arises: How do we prove a contradiction? There
are several approaches we could take here, but we will use the simplest,
saying that we reach a contradiction if we can prove both A ctrue and A false
for some proposition A — clearly, a proposition being both true and false is
unreasonable. Turning this intuition into a rule, we get

Γ ; ∆ ` A ctrue Γ ; ∆ ` A false

Γ ; ∆ ` #
#I

2 The system we present here is due to William Lovas [LC06].
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Observe that if we think of A ctrue as A true, A false as ¬A true, and # as
F true, then: T # is the PBCu rule of classical logic, F # is a special case
of ⊃ I , and #I is a special case of ⊃ E. These new rules are just different
expressions of ideas we already have.3

Now, with the rules surrounding contradiction worked out, we move
on to look at how we can actually prove a proposition true or false.

3.2 Truth and Falsity

Conjunction We will begin by looking at our usual connectives. We al-
ready know what it means for A∧B to be true — precisely that both A and
B are true. This yields the ∧T rule, analogous to the constructive ∧I rule:

Γ ; ∆ ` A ctrue Γ ; ∆ ` B ctrue

Γ ; ∆ ` A ∧B ctrue
∧T

Now, however, not only do we need to have rules to prove that A ∧ B is
true, we also need to be able to prove it false. Again following our intuition
for classical logic, we might conclude that if A is false, then A ∧ B is false,
and likewise if B is false. This leads us to the following rules:

Γ ; ∆ ` A false

Γ ; ∆ ` A ∧B false
∧F1

Γ ; ∆ ` B false

Γ ; ∆ ` A ∧B false
∧F2

At this point, we can prove propositions of the form A ∧ B either true
or false, and we can nearly write some simple proofs. The only thing that
remains is to give the hypothesis rules

Γ, A ctrue ; ∆ ` A ctrue
hypT

Γ ; ∆, A false ` A false
hypF

allowing us to use true or false hypotheses in proofs.

3 We will see a bit later on that identifying A ctrue and A true is not quite the right
approach, but it serves as good intuition here.
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L11.6 Classical Logic

As an example, we can now show that ∧ is commutative:

A ∧B ctrue ; B false ` A ∧B ctrue
hypT

A ∧B ctrue ; B false ` B false
hypF

A ∧B ctrue ; B false ` A ∧B false
∧F2

A ∧B ctrue ; B false ` #
#I

A ∧B ctrue ; · ` B ctrue
T # ...

A ∧B ctrue ; · ` B ∧A ctrue
∧T

We only show the left branch of ∧T here, as the proof is already rather
large, but the right branch is similar.4

The rules for other connectives are similar, with the rule for proving
a connective true matching the constructive introduction rule, and the rule
for proving it false coming from a classical understanding of the connective.

Disjunction For disjunction, for instance, we can prove A ∨ B false only
when both A and B are false, giving us the following set of rules:

Γ ; ∆ ` A ctrue

Γ ; ∆ ` A ∨B ctrue
∨T1

Γ ; ∆ ` B ctrue

Γ ; ∆ ` A ∨B ctrue
∨T2

Γ ; ∆ ` A false Γ ; ∆ ` B false

Γ ; ∆ ` A ∨B false
∨F

Negation Negation (which we will treat as a primitive connective here,
rather than derived from implication and falsity) is even simpler — ¬A is
true when A is false, and false when A is true. Again, we can turn this
simple intuition into correspondingly simple rules:

Γ ; ∆ ` A false

Γ ; ∆ ` ¬A ctrue
¬T

Γ ; ∆ ` A ctrue

Γ ; ∆ ` ¬A false
¬F

With negation and disjunction both having rules, we can now prove the

4 One might observe that here, we used proof by contradiction in order to show that
A ∧ B ctrue ; · ` B ctrue — something that is almost immediate if we use ∧E2. In this
system, however, we are not using elimination rules — we will see in section 4.1 that they
would be redundant, and as we have already observed on several occasions, redundant
rules make proof search harder.
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law of the excluded middle in this classical system:

A ctrue ; A ∨ ¬A false ` A ctrue
hypT

A ctrue ; A ∨ ¬A false ` A ∨ ¬A ctrue
∨T1

A ctrue ; A ∨ ¬A false ` A ∨ ¬A false
hypF

A ctrue ; A ∨ ¬A false ` #
#I

· ; A ∨ ¬A false ` A false
F #

· ; A ∨ ¬A false ` ¬A ctrue
¬T

· ; A ∨ ¬A false ` A ∨ ¬A ctrue
∨T2 ...

· ; A ∨ ¬A false ` #
#I

· ; · ` A ∨ ¬A ctrue
T #

The right branch can be closed simply with

· ; A ∨ ¬A false ` A ∨ ¬A false
hypF

Implication A few connectives remain to address. Implication, just as the
others, can be proven true in the same way classically as constructively. To
prove an implication A ⊃ B false, we again consider the cases for whether
A and B are true or false. If B is true, then the implication is of course
true. Likewise, if A is false, then the implication is true (vacuously). We
see, therefore, that A ⊃ B is false exactly when A is true and B is false.
Turning this intuition into rules, we get

Γ, A ctrue ; ∆ ` B ctrue

Γ ; ∆ ` A ⊃ B ctrue
⊃ T

Γ ; ∆ ` A ctrue Γ ; ∆ ` B false

Γ ; ∆ ` A ⊃ B false
⊃ F

Truth and Falsity Finally, we come to the simplest connectives of truth
and falsity. We can always prove T ctrue and F false, but there is no reason-
able way to prove T false or F ctrue — either would immediately lead us to
a proof of #, showing that our system would be inconsistent. The rules for
these connectives are therefore:

Γ ; ∆ ` T ctrue
TT

Γ ; ∆ ` F false
FF
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At this point, we have all of the necessary rules for classical logic (See
appendix A for a figure containing all of the rules together, as well as for a
figure of the context-free forms of the rules). Now, we will move on to show
how this system relates to the system of natural deduction for constructive
logic that we are more familiar with.

4 Relating Classical and Constructive Logic

There are two key questions when we want to relate different logical sys-
tems, as we have seen when looking at verifications or the sequent calculus:

• Can system A prove everything that system B can?

• Can system B prove everything that system A can?

We already know in this case that there are some classically true proposi-
tions which are not constructively true (e.g. A ∨ ¬A), and so the main goal
remaining is then to show that every constructively true proposition is also
classically true. We can see that the T rules correspond exactly to the I
rules of classical natural deduction, so all that is necessary to show that ev-
ery constructively true proposition is also classically true is to show that
the elimination rules are classically valid.

4.1 Reconstructing elimination rules

An important first step is to consider how we translate an elimination rule
into this system. Let us begin by considering ∧E1:

Γ ` A ∧B true
Γ ` A true

∧E1

A natural translation of this would be

Γ ; · ` A ∧B ctrue

Γ ; · ` A ctrue
?

However, if we look at the context-free form of the rule:

A ∧B true
A true

∧E1
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we see that the context-free classical version of this rule might be

A ∧B ctrue
A ctrue

?

This corresponds to allowing arbitrary hypotheses to be used to prove A ∧
B ctrue, as long as we were entitled to use them to prove A ctrue, and so a
better translation is

Γ ; ∆ ` A ∧B ctrue

Γ ; ∆ ` A ctrue

Now, we want to give a derivation of this rule, meaning we want a
derivation of the conclusion of the rule, in which we are allowed to assume
the premise.

...
Γ ; ∆ ` A ctrue

At this point, most of our rules do not apply — Γ, ∆, and A are all arbitrary,
and cannot be further broken down without additional assumptions about
their structure. We are left with only one rule to use: T #.

...
Γ ; ∆, A false ` #

Γ ; ∆ ` A ctrue
T #

We now reach the most uncertain part of any proof by contradiction: What
proposition is contradictory? We observe that we have A false in the con-
text, so we can easily prove A false, but we have no immediate way to
prove A ctrue, so this is of limited use. However, we can use A false to prove
A∧B false, using∧F1, and we are entitled to assume that Γ ; ∆ ` A∧B ctrue.
We will therefore try to prove that A ∧ B is contradictory (both true and
false).

...
Γ ; ∆, A false ` A ∧B ctrue

Γ ; ∆, A false ` A false
hypF

Γ ; ∆, A false ` A ∧B false
∧F1

Γ ; ∆, A false ` #
#I

Γ ; ∆ ` A ctrue
T #

Now, our remaining proof goal, Γ ; ∆, A false ` A ∧ B ctrue, is nearly our
given premise Γ ; ∆ ` A∧B ctrue, but has an additional hypothesis A false
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available. If we assume weakening (allowing us to add extra hypotheses
without affecting provability), then we are done:

Γ ; ∆ ` A ∧B ctrue

Γ ; ∆, A false ` A ∧B ctrue
weaken

Γ ; ∆, A false ` A false
hypF

Γ ; ∆, A false ` A ∧B false
∧F1

Γ ; ∆, A false ` #
#I

Γ ; ∆ ` A ctrue
T #

Weakening does in fact hold for this system, and can be proven in much
the same way as for constructive sequent calculus.

Theorem 1 (Weakening) If Γ ; ∆ ` J , then for all A,

• Γ, A ctrue ; ∆ ` J with a structurally identical proof.

• Γ ; ∆, A false ` J with a structurally identical proof.

Proof: By induction on the derivation that Γ ; ∆ ` J . At each step, simply
add the new hypothesis, but do not use it. �

Equipped with weakening, we can easily prove the other elimination
rules — in each of them, we set out to prove a contradiction based on
the proposition being eliminated. Disjunction and falsity look slightly dif-
ferent, due to their arbitrary conclusion — in a sense, the correct classical
counterparts of ∨E and FE should conclude arbitrary judgements, rather
than just arbitrary truth judgements.

Falsity For falsity, the proof remains relatively simple, but splits into three
cases depending on what judgment the goal is. We show here the case for
A ]jfalse.

Γ ; ∆ ` F ctrue

Γ, A ctrue ; ∆ ` F ctrue
weaken

Γ, A ctrue ; ∆ ` F false
FF

Γ, A ctrue ; ∆ ` #
#I

Γ ; ∆ ` A false
F #

The case for A ctrue simply uses T # instead of F #, and the case for # skips
the first rule altogether, using #I immediately.
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Disjunction Disjunction is perhaps the most complex case, as the ∨E rule
is our only three-premise rule in constructive natural deduction. However,
our approach is the same as with the other elimination rules.

Γ ` A ∨B true Γ, A true ` C true Γ, B true ` C true

Γ ` C true
∨E

becomes

Γ ; ∆ ` A ∨B ctrue Γ, A ctrue ; ∆ ` J Γ, B ctrue ; ∆ ` J

Γ ; ∆ ` J
?

If J is either A ctrue or A false, we can use T/F #, and we write Γ ; ∆ ; J
for either Γ ; ∆, A false (if J = A ctrue) or Γ, A ctrue ; ∆ (if J = A false).

...
Γ ; ∆ ; J ` #

Γ ; ∆ ` J
T/F #

If J is #, then we can skip this first step, and we will still let Γ ; ∆ ; J denote
Γ ; ∆ (when J = #). In all three cases, then, we can complete the proof by
giving a derivation of Γ ; ∆ ; J ` # from the premises of ∨E. We begin this
derivation by setting up a contradiction at A ∨B:

Γ ; ∆ ` A ∨B ctrue

Γ ; ∆ ; J ` A ∨B ctrue
weaken

...
Γ ; ∆ ; J ` A ∨B false

Γ ; ∆ ; J ` #
#I

The first branch is either already a premise of ∨E (if J = #), or becomes
one with one weakening step. We proceed with the second branch, where
we will apply the ∨F rule and attempt to show that both A and B must be
false (from the hypothesis that J does not hold).

Γ ; ∆ ` A ∨B ctrue

Γ ; ∆ ; J ` A ∨B ctrue
weaken

...
Γ ; ∆ ; J ` A false

...
Γ ; ∆ ; J ` B false

Γ ; ∆ ; J ` A ∨B false
∨F

Γ ; ∆ ; J ` #
#I
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We will focus on the first branch, but the second one can be proven in es-
sentially the same way. At the moment, we know that J does not hold,
and want to show that A false. We also have as a premise of ∨E that
Γ, A ctrue ; ∆ ` J . A natural approach, then, is to set up a contradiction on
J :

Γ ; ∆ ` A ∨B ctrue

Γ ; ∆ ; J ` A ∨B ctrue
weaken

...
Γ, A ctrue ; ∆ ; J ` #

Γ ; ∆ ; J ` A false
F #

...
Γ ; ∆ ; J ` B false

Γ ; ∆ ; J ` A ∨B false
∨F

Γ ; ∆ ; J ` #
#I

Note that if J is itself #, then this branch is already done — Γ, A ctrue ; ∆ ;
J ` # is exactly Γ, A ctrue ; ∆ ` J , one of our premises. Otherwise, we can
set up for a contradiction as planned:

Γ, A ctrue ; ∆ ` J

Γ, A ctrue ; ∆ ; J ` J
weaken

Γ, A ctrue ; ∆ ; J ` J
hyp

Γ, A ctrue ; ∆ ; J ` #
#I

After filling in the remaining branch of the proof, we get a (very long)
derivation of ∨E, and, moreover, versions of it where the conclusion is an
arbitrary J , not just A ctrue.

We will not show the cases for the remaining connectives here, but they
follow a similar pattern. Putting all of these together, we can justify the
following theorem:

Theorem 2 If A1 true, . . . , An true ` A true, then A1 ctrue, . . . , An ctrue ; · `
A ctrue.

In other words, any constructively true proposition is also classically true.

4.2 Double Negation

We know that there are classically true propositions that are not construc-
tively true, with A∨¬A being the standard example. However, we observe
that if we interpret A false as ¬A true, # as F true, and A ctrue as A true,
most of the rules of classical logic are either already rules of constructive

LECTURE NOTES 24 FEB, 2022



Classical Logic L11.13

logic (all of the T rules), are special cases of rules of constructive logic (F #
and #I), or are otherwise derived rules (all of the F rules — more on this
shortly). The one rule that stands out is T #.

Γ true,¬∆ true,¬Atrue ` F true

Γ true,¬∆ true ` A ctrue
T #

Examining T # more closely, we see that interpreting A ctrue as¬¬A true
makes T # a specific instance of ⊃ I . What, then, does this do to the other
classical rules? The F rules are unchanged (other than ⊃ F ) since they do
not mention the Actrue judgement. The T rules no longer correspond so
directly to constructive rules, and would need to be reexamined, but seem
plausible. #I remains a special case of ⊃ E. The remaining odd case is F #:

¬¬Γ true,¬¬Atrue,¬∆ true, ` F true

¬¬Γ true ; ¬∆ true ` ¬A true
F #

This looks suspect at first, but is actually derivable (omitting the unused Γ
and ∆ for simplicity):

¬¬A true ` F true
A true,¬¬A true ` F true

weaken

A true ` ¬¬¬A true
⊃ I

A true,¬A true ` ¬A true
hyp

A true ` ¬¬A true
⊃ I

A true ` F true
⊃ E

` ¬A true
⊃ I

With this translation, then, all three of our contradiction-related rules,
including both forms of proof by contradiction, are constructively derivable.
Since these were the rules that most exemplified classical reasoning, this is
strong evidence that we are on the right path.

False rules The false rules are somewhat simpler to examine than the true
rules, simply because they have fewer negations to unpack. We will look
at a few cases here, again ignoring Γ and ∆ for simplicity.

First, we examine one of the ∧F rules:

` ¬A true

` ¬(A ∧B) true
∧F1
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This rule can be derived as follows:

` ¬A true
A ∧B true ` ¬A true

weaken
A ∧B true ` A ∧B true

hyp

A ∧B true ` A true
∧E1

A ∧B true ` F true
⊃ E

` ¬(A ∧B) true
⊃ I

The other ∧F rule, of course, is similar. Now, looking at ∨F :

` ¬A true ` ¬B true

` ¬(A ∨B) true
∨F

becomes (with some weakening implicit in the derivation)

A ∨B true ` A ∨B true
hyp

` ¬A true A true ` A true
hyp

A true ` F true
⊃ E

` ¬B true B true ` B true
hyp

B true ` F true
⊃ E

A ∨B true ` F true
∨E

` ¬(A ∨B) true
⊃ I

The ¬F rule simply becomes a no-op — both its premise and its conclu-
sion translate to ¬¬A true.

Finally, we consider the ⊃ F rule:

` ¬¬A true ` ¬B true

` ¬(A ⊃ B) true
⊃ F

can be derived as (again leaving some weakening implicit)

` ¬¬A true

` ¬B true
A ⊃ B true ` A ⊃ B true

hyp
A true ` A true

hyp

A ⊃ B true, A true ` B true
⊃ E

A ⊃ B true, A true ` F true
⊃ E

A ⊃ B true ` ¬A true
⊃ I

A ⊃ B true ` F true
⊃ E

` ¬(A ⊃ B) true
⊃ E

The remaining F rule (for falsity) is also derivable, and can be done as
an easy exercise.
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True rules The true rules can be derived in a similar manner to the false
rules, although because each A ctrue is translated with two negations, the
proofs end up much larger. We will look at only a few cases this time, and
will again omit Γ,∆ and implicitly use weakening in order to make proofs
more readable.

The ∨T2 rule after translation becomes

` ¬¬A true

` ¬¬(A ∨B) true
∨T2

As before, we begin trying to derive this rule with⊃ I to remove a negation:

...
¬(A ∨B) true ` F true

` ¬¬(A ∨B) true
⊃ I

Now, we need to prove false, using some of the negations available to us.
The most obvious option is to try to use ¬(A ∨B), by proving A ∨B using
the premise ` ¬¬A true. While this seems (perhaps based on classical
reasoning) likely, it will not work — ¬¬A is insufficiently strong to prove
A ∨ B. Instead, we will use ¬(A ∨ B) to prove ¬A, which we can then
combine with ¬¬A to get F :

` ¬¬A true

¬(A ∨B) true ` ¬(A ∨B) true
hyp

A true ` A true
hyp

A true ` A ∨B true
∨I1

¬(A ∨B) true, A true ` F true
⊃ E

¬(A ∨B) true ` ¬A true
⊃ I

¬(A ∨B) true ` F true
⊃ E

` ¬¬(A ∨B) true
⊃ I

The ⊃ T rule after translation becomes

¬¬A true ` ¬¬B true

` ¬¬(A ⊃ B) true
⊃ T
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This is derivable, but is perhaps the longest of the rules to derive:

D
¬(A ⊃ B) true ` ¬¬¬A true

E
¬(A ⊃ B) true ` ¬¬A true

¬(A ⊃ B) true ` F true
⊃ E

` ¬¬(A ⊃ B) true
⊃ I

where the derivation D is

¬¬A true ` ¬¬B true

¬(A ⊃ B) true ` ¬(A ⊃ B) true
hyp

B true ` B true
hyp

B true ` A ⊃ B true
⊃ I

¬(A ⊃ B) true, B true ` F true
⊃ E

¬(A ⊃ B) true ` ¬B true
⊃ I

¬(A ⊃ B) true,¬¬A true ` F true
⊃ E

¬(A ⊃ B) true ` ¬¬¬A true
⊃ I

and E is

¬(A ⊃ B) true ` ¬(A ⊃ B) true
hyp

¬A true ` ¬A true
hyp

A true ` A true
hyp

¬A true, A true ` F true
⊃ E

¬A true, A true ` B true
FE

¬A true ` A ⊃ B true
⊃ I

¬(A ⊃ B) true,¬A true ` F true
⊃ E

¬(A ⊃ B) true ` ¬¬A true
⊃ I

The remaining T rules are similarly derivable. Notably, ¬T (like ¬F )
is again a no-op, again with both premise and conclusion translating to
¬¬A true.
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Completing all of these cases gives justification for the following theo-
rem:

Theorem 3 Define J¬¬ by:

• (A ctrue)¬¬ = ¬¬A true

• (A false)¬¬ = ¬A true

• #¬¬ = F true

and extend this definition to contexts pointwise. Suppose Γ ; ∆ ` J . Then,
Γ¬¬,∆¬¬ ` J¬¬.

This theorem gives us the other direction of connection between classi-
cal and constructive logic. Not only is every constructively provable propo-
sition classically true as well, but every classically true proposition can be
transformed into a constructively true one that is classically equivalent.
Put differently, every theorem of classical logic is a theorem of constructive
logic as well — we just need to be precise enough about what the theorem
actually is.

References

[LC06] William Lovas and Karl Crary. Structural normalization for classi-
cal natural deduction, 2006.

A Rules for Classical Logic
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Rules for #

Γ ; ∆ ` A ctrue Γ ; ∆ ` A false

Γ ; ∆ ` #
#I

Rules for A ctrue

Γ, A ctrue ; ∆ ` A ctrue
hypT

Γ ; ∆, A false ` #

Γ ; ∆ ` A ctrue
T #

Γ ; ∆ ` A ctrue Γ ; ∆ ` B ctrue

Γ ; ∆ ` A ∧B ctrue
∧T

Γ ; ∆ ` A ctrue

Γ ; ∆ ` A ∨B ctrue
∨T1

Γ ; ∆ ` B ctrue

Γ ; ∆ ` A ∨B ctrue
∨T2

Γ ; ∆ ` A false

Γ ; ∆ ` ¬A ctrue
¬T

Γ, A ctrue ; ∆ ` B ctrue

Γ ; ∆ ` A ⊃ B ctrue
⊃ T

Γ ; ∆ ` T ctrue
TT

Rules for A false

Γ ; ∆, A false ` A false
hypF

Γ, A ctrue ; ∆ ` #

Γ ; ∆ ` A false
F #

Γ ; ∆ ` A false

Γ ; ∆ ` A ∧B false
∧F1

Γ ; ∆ ` B false

Γ ; ∆ ` A ∧B false
∧F2

Γ ; ∆ ` A false Γ ; ∆ ` B false

Γ ; ∆ ` A ∨B false
∨F

Γ ; ∆ ` A ctrue

Γ ; ∆ ` ¬A false
¬F

Γ ; ∆ ` A ctrue Γ ; ∆ ` B false

Γ ; ∆ ` A ⊃ B false
⊃ F

Γ ; ∆ ` F false
FF

Figure 1: Rules for Classical Natural Deduction with Contexts
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Rules for #

A ctrue A false

#
#I

Rules for A ctrue

A false
u

...
#

A ctrue
T #u

A ctrue B ctrue
A ∧B ctrue

∧T
A ctrue

A ∨B ctrue
∨T1

B ctrue
A ∨B ctrue

∨T2

A false

¬A ctrue
¬T

A ctrue
u

...
B ctrue

A ⊃ B ctrue
⊃ T

T ctrue
TT

Rules for A false

A ctrue
u

...
#

Γ ; ∆ ` A false
F #u

A false

A ∧B false
∧F1

B false

A ∧B false
∧F2

A false B false

A ∨B false
∨F

A ctrue

¬A false
¬F

A ctrue B false

A ⊃ B false
⊃ F

F false
FF

Figure 2: Rules for Classical Natural Deduction without Contexts
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