
Constructive Logic (15-317), Spring 2022
Assignment 11: Modal, Linear, and Ordered Logic

Instructor: Klaas Pruiksma
TAs: Runming Li, Onyekachi Onyeador, Viraj Puri, Xiao Yu

Due: Thursday, April 28, 11:59 pm

The assignments in this course must be submitted electronically through Gradescope. For this
homework, you will be submitting both written pdf files and Dcheck coding files:

• hw.deriv (your coding solutions)

• hw.pdf (your written solutions)

The coding portion will use the experimental Dcheck derivation checker. You can find docu-
mentation and examples on the Software page at the course web site (https://www.andrew.cmu.
edu/user/kpruiksm/15317s22/dcheck.pdf).
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1 Fun with Modal Logic

Task 1 (20 pts). Provide derivations for the following Modal Logic judgements using Dcheck syntax.
Derivation names are given in the starter code.

1. 2T true

2. 2A⊃3¬A⊃3F true

3. (2A ∧2B)⊃2(A ∧B) true

4. 3(2A ∧3(A⊃B))⊃3B true

5. 323A⊃3A true

2 Practicing Linear Logic

Task 2 (16 pts). Provide derivations for the following Linear Logic judgements using Dcheck syntax.
Derivation names are given in the starter code.

1. `̀ (A ( B ( C) ( (A⊗B ( C) true

2. `̀ (((A⊗>) N (B ⊗>)) ( C) ( (A ( B ( C) true

3. `̀ ((A ( C)⊕ (B ( C)) ( (A N B) ( C true

4. `̀ ((A ( 0)⊕ (B ( 0)) ( (A⊗B) ( 0 true

3 Linear Harmony

Just like we did in the beginning of the course, we can check a local correctness condition for the
rules of linear natural deduction: proof-theoretic harmony.1 Hint: exhibiting local reductions and
expansions in linear logic is subtle: you must be sure to not constrain the contexts ∆ in your local
reductions and expansions any more than is warranted by the rules of linear logic.

Remark 1 (Linear substitution principle). When exhibiting local reductions and expansions, you
will need to use substitutions [D/u]E . These are governed by the linear substitution principle, which
states:

If
D

Γ `̀ A true and
E

Γ′, u : A true `̀ B true, then
[D/u]E

Γ,Γ′ `̀ B true.

You must ensure that your resulting derivations have correct contexts.

Task 3 (10 pts). Verify that tensor ⊗ satisfies local soundness and completeness.

Task 4 (10 pts). Verify that that 1 satisfies local soundness and completeness.
1Harmony is a necessary condition for the correctness of rules, but not a sufficient condition.
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Task 5 (10 pts). Verify that > satisfies local soundness and completeness.

The relevant rules are:

∆ `̀ A true ∆′ `̀ B true
∆,∆′ `̀ A⊗B true

⊗I
∆ `̀ A⊗B true ∆′, u : A true, v : B true `̀ C true

∆,∆′ `̀ C true
⊗Eu,v

· `̀ 1 true 1I
∆ `̀ 1 true ∆′ `̀ C true

∆,∆′ `̀ C true 1E
∆ `̀ > true >I

4 Applications

In class, we looked at Blocks World, an example of encoding state in linear logic. Blocks World is a
class of scenarios in which there is a table, some number of blocks which can be stacked on top of
each other, and a robotic arm which can pick up and move blocks. The following atomic predicates
are used:

1. empty means that the robotic arm’s hand is empty.

2. holds(x) means that the robotic arm’s hand is holding x.

3. clear(x) means that the block x does not have anything on top of it.

4. on(x, y) means that the block x is directly on top of the block y.

5. on table(x) means that the block x is sitting directly on the table.

The possible state transitions for Blocks World are given by the following axioms:

1. ∀x, y. empty ⊗ clear(x)⊗ on(x, y) ( holds(x)⊗ clear(y)

2. ∀x.empty ⊗ clear(x)⊗ on table(x) ( holds(x)

3. ∀x, y. holds(x)⊗ clear(y) ( empty ⊗ on(x, y)⊗ clear(x)

4. ∀x. holds(x) ( empty ⊗ on table(x)⊗ clear(x)

Task 6 (10 pts). So far we have assumed that the table is infinitely broad and can therefore accomo-
date any number of blocks. Now consider the case that the table in fact only has a finite number
of spaces for blocks on it, and modify the axioms of Blocks World above in order to preserve
this invariant.

You should use an atomic predicate space, which represents one open horizontal space on the
table. A correct solution to this task will not depend on the size of the table.

Task 7 (10 pts). Consider the following Blocks World scenario:
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Write a formula in linear logic which expresses this configuration, assuming that four blocks
can fit directly on the table.

5 Ordered Logic

In ordered natural deduction, we had the following elimination rule for the under connective:

A A \B
B

\E

In the ordered sequent calculus, however, we had the following left rule:

Ω =⇒ A ΩL B ΩR =⇒ C

ΩL Ω (A \B) ΩR =⇒ C
\L

We could also have tried another version of the left rule, which we will call \L′, which more
closer mirrored the natural deduction elimination form:

ΩL B ΩR =⇒ C

ΩL A (A \B) ΩR =⇒ C
\L′

Task 8 (10 pts). Assuming cut, show that these two versions of the left rule are equivalent. That is,
show that \L′ is a derived rule for the sequent calculus which has just \L, and show that \L is a
derived rule for the sequent calculus which has just \L′.

Task 9 (10 pts). As is the case with many seemingly sensible rules, the new left rule \L′ will actually
destroy the logical character of the sequent calculus. In particular, the version of sequent calculus
with \L′ and without \L does not enjoy the admissibility of cut, and thence does not validate the
cut elimination theorem.

Demonstrate a counterexample to cut elimination in the calculus with \L′; to be precise, this
should be a sequent Γ =⇒ C for some specific Γ and specific C which can be proved with cut but
has no cut-free proof.

6 Subsingleton Logic

Consider the encoding of binary numbers in ordered inference where the proposition b0 represents
a 0 bit, b1 represents a 1 bit, and $ represents the the end of a binary string; in this encoding, we
represent the binary number 1101 with the ordered state $ b1 b0 b1 b1.
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Task 10 (10 pts). Use ordered inference rules to encode a procedure that decides whether a binary
string contains an even or odd number of 1-bits in it.

Specifically, introducing a new atomic proposition par together with rules such that when ~A is

the encoding of a binary string in standard form, one can derive
~A par

$ b0
iff the string ~A has an even

number of 1-bits, and one can derive
~A par

$ b1
iff ~A has an odd number of 1-bits.

You may freely introduce any auxiliary propositions and rules that you require.

Task 11 (10 pts). Rewrite your solution to the previous task in the form of a well-typed ordered
concurrent program in the subsingleton fragment. You may freely make any definitions you require,
including recursive definitions of session types and concurrent programs.

Your solution should include the definition of a type of bit strings bits , together with a program
par that has the type bits ` par : bits .
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