
Constructive Logic (15-317), Spring 2022
Assignment 10: Focusing, Chaining, and Saturation

Instructor: Klaas Pruiksima
TAs: Runming Li, Onyekachi Onyeador, Viraj Puri, Xiao Yu

Due: Thursday, April 14, 11:59 pm

The assignments in this course must be submitted electronically through Gradescope. For this
homework, you will be submitting both written pdf files and Dcheck coding files:

• hw10.deriv (your coding solutions)

• hw10.pdf (your written solutions)

The coding portion will use the experimental Dcheck derivation checker. You can find doc-
umentation and examples on the Software page at the course web site (www.andrew.cmu.edu/
user/kpruiksm/15317s22/dcheck.pdf). That document has been updated with information on
preparing focused logic derivations.

1

www.andrew.cmu.edu/user/kpruiksm/15317s22/dcheck.pdf
www.andrew.cmu.edu/user/kpruiksm/15317s22/dcheck.pdf

1 Polarization

Task 1 (5 pts). Consider the following depolarized formula:

((A+ ∨B−)⊃ F)⊃ ((A+ ⊃ F) ∧ (B− ⊃ F))

Come up with two distinct polarizations of the formula, adding shifts in appropriate places.
You do not need to prove them. (This is a written problem. Include your answer in hw10.pdf.)

2 Focusing

Provide derivations of the following Focused Logic judgements using Dcheck syntax. Your sub-
missions for Task 2, 3, and 4 should go in hw10.deriv

Task 2 (5 pts). Define a derivation named task2 that derives:

·; · R−→ ↓((P+ ⊃Q−) ∧− (P+ ⊃R−))⊃ (P+ ⊃ (Q− ∧− R−))

Task 3 (5 pts). Define a derivation named task3 that derives:

·; · R−→ ↓P− ⊃ ↓(↓P− ⊃Q−)⊃ ↓((↓P− ∧+ ↓Q−)⊃R−)⊃R−

Task 4 (5 pts). Define a derivation named task4 that derives:

·; · R−→ ↓(↑P+ ∧− (P+ ⊃ ↑Q+))⊃ ↓((Q+ ∨R+)⊃ ↑R+)⊃ ↑R+

3 Saturation

Consider the following grammar of ground terms representing binary numbers:

n ::= ε | b0(n) | b1(n)

In class, we learned to write forward logic programs using inference rules; a forward logic
programming engine will apply these inference rules until saturation is reached, and then the result
of our program can be read from the saturated proof state. In the tasks that follow, you are free to
introduce any auxiliary predicates that you require. You need to ensure that your rules saturate
when new facts of the indicated form are added to the database.

In the problems that follow, you are required to implement forward logic programs by writing
down systems of inference rules. You may find it useful to experiment with DLV, an implementation
of forward logic programming which can be downloaded here: http://www.dlvsystem.com/dlv/.
DLV can be used to test your ideas on specific cases and quickly determine if they are likely to work;
but it is not required. NOTE: This is a written problem. Include your answers in hw10.pdf.

Task 5 (5 pts). Implement a forward logic program std(n) which derives the atom no iff it is not the
case that n is in standard form. You may assume that n is ground (i.e. containing no variables).

Task 6 (5 pts). Next, implement a forward logic program succ(m,n) which derives no when it is
not the case that m + 1 = n. For the purpose of this exercise, you may assume that m and n are
ground. You may also assume that m and n are in standard form.

2

http://www.dlvsystem.com/dlv/

4 NFAs

4.1 Background

An important construct in the study of Chomsky’s hierarchy of languages is the Deterministic
Finite Automata (DFA), which defines the so-called regular languages. A DFA over a fixed alphabet Σ
can be defined informally1 via the following constructs:

• Q, a set of states.

• q0, an initial state.

• δ : Q× Σ→ Q, a transition function taking a state and a character and returning a new state.

• F : Q→ bool, a function returning true on accepting (or final) states.

A given DFAQ, q0, δ, F , then, accepts a string S = s1s2 . . . sn exactly whenF (δ(δ(. . . δ(q0, s1), . . .), sn))
returns true.

Note that, if viewed as a state machine, a DFA is “in” a unique state at any given time. This is
enforced by the transition function δ being a function from Q× Σ to Q. If we relax this condition,
allowing the transition function to potentially return multiple values, we get a nondeterministic
finite automata (NFA). An NFA, then, accepts if there is any path leading to an accepting state
(more on this later).

4.2 Saturation

The nondeterminism inherent to NFAs make it a good fit for exploring the behavior of a forward
logic program, in which we also act “nondeterministically” if multiple rules can be applied at once.

Consider the following grammar:

Characters C ::= a | b | c
Strings S ::= ε | CS
States Q ::= q0 | q1 | q2 | q3 | q4 | q5

For this problem, we will encode δ and F into the rules and grammar, rather than treating them
as first-class constructions themselves, as it is simpler and requires less setup.

Task 7 (8 pts). Given the following forward logic program, give all predicates of the form accept(S)
present in the “saturated” database obtained from running the program under the following
constraint:

• Predicates of the form acceptFrom(Q,S) are logged only when S has length at most 5.

Your answer should be ordered according to depth-first chaining. Rules are applied in order
of lowest rule number first where applicable. (Again, this is a written problem. Include your
answer in hw10.pdf.)

1“informal” in this context referring to the lack of inference rules for sets, functions, bools, etc.

3

acceptFrom(q0, S)

accept(S)
NFA0

final(Q)

acceptFrom(Q, ε)
NFA1

acceptFrom(q1, S)

acceptFrom(q0, aS)
NFA2

acceptFrom(q2, S)

acceptFrom(q1, bS)
NFA3

acceptFrom(q0, S)

acceptFrom(q2, S)
NFA4

acceptFrom(q3, S)

acceptFrom(q2, S)
NFA5

acceptFrom(q4, S)

acceptFrom(q3, aS)
NFA6

acceptFrom(q5, S)

acceptFrom(q4, cS)
NFA7

acceptFrom(q3, S)

acceptFrom(q5, S)
NFA8

final(q3)
NFA9

final(q0)
NFA10

Hints:

• This NFA recognizes the language (ab)+(ac)∗.

• In this case, there is no “seed” fact. What does that mean for the behavior of this program?

4

	Polarization
	Focusing
	Saturation
	NFAs
	Background
	Saturation

