
Constructive Logic (15-317), Spring 2022
Assignment 8: Prolog

Instructor: Klaas Pruiksma
TAs: Runming Li, Onyekachi Onyeador, Viraj Puri, Xiao Yu

Submit to Gradescope by Thursday, March 24, 2022, 11:59 pm

For this homework, you will be submitting both written and coding solutions to Gradescope:

• coloring.pl (your coding solutions to graph coloring)

• infer.pl (your coding solutions to type inference)

• hw.pdf (your written solutions)

1 Mode Checking

For each of the following problems, you will be given a predicate and desired modes for that predicate.
Determine if each mode is well-moded for the given predicate. If so, provide the modes for the other
predicates that are necessary for our predicate to be well-moded and prove that it is well-moded for the
given modes. If not, explain why the desired mode does not work for the given predicate.

For example, consider the following Prolog program for mult. In it, plus(M ,N ,P) holds when
M +N = P .

mult(z, N, z).

mult(s(M), N, Q) :-

mult(M, N, P),

plus(P, N, Q).

In the case that the desired mode is mult(+,+,−), we can prove that this is well-moded by induction
on the structure of the rules that if the values of the first two arguments of mult are known then the third
argument will be known in case the search succeeds, as long as plus(+,+,−) is well-moded.

Clause 1: For the clause mult(z ,N , z), we know z and N from the first and second argument. The
third argument will be z, meaning the clause holds.

Clause 2: For the clause mult(s(M),N ,Q), we know s(M) and N from the first and second arguments
in the clause. This means that we also know M and can apply the induction hypothesis to conclude that
we know Q. Since plus(+,+,−) is well-moded, that means we will know Q, meaning the clause holds.

In the case that the desired mode is mult(−,−,+), we know that it cannot be well-moded because in
the second clause, we would need to show that mult(−,−,−) is also well-moded, which we cannot do.

1

Task 1 (9 points). Consider the following Prolog program for subsetsum. In it, subset(L,S) holds when
S is a subset of L and sum(L,Acc) holds when all the elements in L sum to Acc.

subsetsum(List, Sum, Subset) :-

subset(List, Subset),

sum(Subset, Sum).

a. subsetsum(+,−,+)

b. subsetsum(−,+,−)

c. subsetsum(+,−,−)

Task 2 (9 points). Consider the following Prolog program for mergesort. In it, split(L,L1 ,L2) holds
when L1 concatenated with L2 is a permutation of L and the size of L1 and L2 differ by at most 1 and
merge(L,L1 ,L2) holds when L is the sorted permutation of L1 concatenated with L2.

mergesort([], []).

mergesort([A | []], [A | []]).

mergesort(Unsorted, Sorted) :-

split(Unsorted, UHalf1, UHalf2),

mergesort(UHalf1, SHalf1),

mergesort(UHalf2, SHalf2),

merge(SHalf1, SHalf2, Sorted).

a. mergesort(+,−)

b. mergesort(−,+)

c. mergesort(+,+)

2 Coloring maps

Graph coloring is an interesting problem in graph theory. A graph coloring is an assignment of colors to
each vertex such that no two adjacent vertices have the same color. Of particular interest is a coloring
using a minimum number of colors; this number is called the chromatic number of the graph. The four-
color theorem states that any planar graph1 can be colored using at most four colors. The theorem was
proved in 1976 using a computer program, and has caused much controversy (is a computer proof really
a proof?). It has since been formally verified using the Coq theorem prover in 2005.

As a consequence of this theorem, any map can be colored with at most four colors such that no
adjacent regions have the same color. This is because every map can be represented by a planar graph,
with one vertex for each region, and an edge between two vertices if and only if their corresponding
regions are adjacent.

Consider, for example, Australia’s map in Figure 1. Observe that this map uses more colors than
necessary, although this might make it more visually appealing.

1A graph that can be drawn on the plane with no crossing edges.

2

Figure 1: Australia (more colorful than necessary)

Task 3 (15 points). Implement a predicate color graph(nodes, edges, colors) that associates with the
graph (nodes, edges) all of the valid 4-colorings of the graph. Submit your implementation in a file named
coloring.pl.

The predicate color graph should find all valid colorings via backtracking. For efficiency reasons,
you may prefer to find all valid colorings without repetition, but we will not be checking this. Once all
valid solutions have been found via backtracking, the predicate should fail. You may assume the graph is
finite, and your implementation should satisfy the following requirements:

1. You should define a color/1 predicate with four colors.

2. Assume there are predicates node/1 and edge/2 that each take in atoms.

3. In color graph/3, the first parameter is a list of node/1 terms, the second parameter is a list of
edge/2 terms, and the third parameter is a list of pairs (a,c), which indicates that node(a) is
colored with color(c).

4. The predicate color graph should have mode color graph(+nodes,+edges,−coloring).

5. Given ground inputs for the first two arguments (i.e., nodes and edges), color graph should always
return at least one coloring. (You will not be given an graph that cannot be 4-colored.) If Prolog
is asked to backtrack and generate additional solutions, color graph should return all possible
colorings.

Your solution does not need to be very long. The reference solution is just 19 lines of Prolog, including
the color definitions.

For your convenience, we have provided you with a shell script to test your implementation. You can
invoke it by executing:

$./test_coloring.sh

The test script uses another Prolog file (coloring tests.pl) to test your implementation. It employs
some Prolog features that you have not been taught. We strongly urge you not to use any of those features
in your solution. They are unlikely to help, and are very likely to make your code hard to understand.

3 Type Inference

In Homework 6, you implemented type-checking in SML to check if a given STLC proof term was correct
for a given proposition. This time, we will implement type-inference in Prolog, meaning we will be
producing a valid proposition for a given proof term.

3

Task 4 (22 points). Implement type inference for STLC in Prolog. You must define the predicate
infer(term, prop) that produces a valid proposition for a given proof term, and use the predefined
logical operators in the starter code. Proof terms will be in the form of STLC. Submit your implementation
in a file named infer.pl. Your implementation should satisfy the following requirements:

1. Assume that the predicates and atoms for types are defined and follows:

• atomTy/1, a predicate which takes an atom as a parameter
• unitTy, an atom that represents the unit type
• voidTy, an atom that represents the void type
• times/2, a predicate with both parameters being types
• plus/2, a predicate with both parameters being types
• arrows/2, a predicate with both parameters being types

2. Assume that the predicates and atoms for proof terms are defined as follows:

• var/1, a predicate which takes an atom as a parameter
• unit/0, an atom that represents unit
• tuple/2, a predicate with both parameters being proof terms
• fst/1, a predicate that takes a proof term as a parameter
• snd/1, a predicate that takes a proof term as a parameter
• inl/3, a predicate that takes a proof term as its first parameter and a type as its second and

third
• inr/3, a predicate that takes a proof term as its first parameter and a type as its second and

third
• case/5, a predicate that takes a proof term as its first, third, and fifth parameter and an atom

as the second and fourth parameter
• fn/3, a predicate that takes an atom as its first parameter, a type as its second, and a proof

term as its third
• app/2, a predicate with both parameters being proof terms
• abort/2, a predicate with its first parameter being a proof term and its second parameter being

a type

3. In infer/2, the first parameter is a proof term and the second parameter is a proposition.

4. The predicate infer should have mode infer(+term,−prop).

5. Given ground input for the first argument (i.e., proof term), infer should always return at the most
general proposition for the argument.

6. You will likely need to make use of unify with occurs check/2 to ensure that ill-typed terms are
not given types.

For your convenience, we have provided you with a shell script to test your implementation. You can
invoke it by executing:

$./test_infer.sh

The test script uses another Prolog file (inference tests.pl) to test your implementation. It employs
some Prolog features that you have not been taught. We strongly urge you not to use any of those features
in your solution. They are unlikely to help, and are very likely to make your code hard to understand.

4

	Mode Checking
	Coloring maps
	Type Inference

