
Constructive Logic (15-317), Spring 2022
Assignment 6: Classical Logic and Type Checking

Instructor: Klaas Pruiksma
TAs: Runming Li, Onyekachi Onyeador, Viraj Puri, Xiao Yu

Due: Submit to Gradescope by Thursday March 3, 11:59 pm

This assignment contains both coding and written portions. Written PDFs, Dcheck code files,
and SML code files will both go to Gradescope. The written is required to be typeset. We recommend
using LATEX but other suitable tools are also acceptable.

• hw6.deriv (your coding solutions to classical logic)

• handin.zip (your coding solutions to type checking)

• hw6.pdf (your written solutions)

The coding portion will use the experimental Dcheck derivation checker. You can find docu-
mentation and examples on the Software page at the course web site (https://www.andrew.cmu.
edu/user/kpruiksm/15317s22/dcheck.pdf).

1

https://www.andrew.cmu.edu/user/kpruiksm/15317s22/dcheck.pdf
https://www.andrew.cmu.edu/user/kpruiksm/15317s22/dcheck.pdf

1 DeMorgan’s Revenge

Provide derivations of the following Classical Logic judgements using Dcheck syntax in system CL.

Task 1 (6 points). Define a derivation named task1 that derives:

¬(A ∧B)⊃ (¬A ∨ ¬B) true

Task 2 (6 points). Define a derivation named task2 that derives:

(A⊃B)⊃ (¬A ∨B) true

Note that neither of these are constructively true in general.

2 Classical or Constructive

We observe that anything true in constructive logic is also true in classical logic, but not vice versa.
Both of the following judgements are classically true, but are they constructively true as well? State
in hw6.pdf whether or not they are constructively true. Then provide derivations in classical logic
using Dcheck syntax in hw6.deriv.

Task 3 (6 points). Define a derivation named task3 in system CL that derives:

(A⊃ ¬A)⊃ ¬A true

Task 4 (6 points). Define a derivation named task4 in system CL that derives:

((A⊃B)⊃A)⊃A true

3 Classical Quantifiers

We can extend classical logic with universal and existential quantifiers by adding the following
truth and falsity rules:

[a : τ]....
A(a) true

∀x:τ. A(x) true
∀T a

t : τ A(t) false

∀x:τ. A(x) false
∀F

t : τ A(t) true

∃x:τ. A(x) true
∃T

[a : τ]....
A(a) false

∃x:τ. A(x) false
∃F a

Note the duality between the ∀ and ∃.

2

Task 5 (10 pts). Using these rules, show that the usual elimination rules for the universal and the
existential quantifier are derivable. For reference, those rules are:

t : τ ∀x:τ. C(x) true

C(t) true
∀E

∃x:τ. A(x) true

[a : τ] [A(a) true]u....
C true

C true
∃Ea,u

4 Type Checking

A Dcheck Extension

In Fall 2022 semester, you become a Clogic TA. You notice that the Dcheck autograder the course
uses does not support a proof term system, but there is no reason why it can’t! In order to save
yourself hours of tedious manual grading, you decide to implement a proof term checker yourself.

Task 6 (66 points). Your goal is to implement the function check : exp -> prop -> bool that
returns true if the proof term (represented as type exp) is a correct proof of the proposition (repre-
sented as type prop), and false otherwise. This function should be implemented in dist/checker/SimpleLC Checker.sml.
Proof terms are in the form of simply typed lambda calculus (STLC), the specification can be found
below.

abstract syntax concrete syntax ML datatype description
typ τ ::= A A AtomTy AA base type

| unit unit UnitTy unit type
| void void VoidTy empty type
| τ1 × τ2 t1 * t2 Times (t1, t2) product type
| τ1 + τ2 t1 + t2 Plus (t1, t2) sum type
| τ1 → τ2 t1 -> t2 Arrows (t1, t2) function type

exp e ::= x x Variable "x" variable
| 〈〉 () Unit unit
| 〈e1, e2〉 (e1, e2) Tuple (e1, e2) tuple
| fst(e) fst e First e first tuple element
| snd(e) snd e Second e second tuple element
| inlτ1+τ2(e) inl e into t1 + t2 Inl (e, (t1, t2)) left injection
| inrτ1+τ2(e) inr e into t1 + t2 Inr (e, (t1, t2)) right injection
| case(e;x1.e1, x2.e2) case e of Case (e, case expression

inl x1 => e1 ("x1", e1),

| inr x2 => e2 ("x2", e2))

| λ(x : τ).e fn (x : t) => e Lambda (("x", t), e) lambda function
| e1 e2 e1 e2 Apply (e1, e2) function application
| abortτ (e) abort e into t Abort (e, t) abort

3

The specification for propositions can be found below.

abstract syntax concrete syntax ML datatype description
prop p ::= A A Atom AA atomic proposition

| > T True truth
| ⊥ F False falsity
| p1 ∧ p2 P1 /\\ P2 And (p1, p2) conjunction
| p1 ∨ p2 P1 \\/ P2 Or (p1, p2) disjunction
| p1 ⊃ p2 P1 => P2 Imp (p1, p2) implication
| ¬p ~P Not p negation

Abstract syntax is the notation we use in the inference rules. Concrete syntax is the notation we
use when writing test cases. ML datatype is the underlying implementation of those constructs,
which can be found at slc/SimpleLC.sml.

Hints and notes:

• One theme of this course is viewing propositions as types. This is because we observed a
correspondence between propositions and types. For example, conjunction corresponds to
product type in STLC; disjunction corresponds to sum type in STLC. For this problem, it
may be helpful to implement some helper functions trans : prop -> typ, which translates a
proposition into the corresponding type, and typecheck : exp -> typ -> bool, which is a
type checking algorithm in STLC (based on the typing rules in the appendix). This approach
is not the only one, however.

• To test your implementation, run smlnj -m sources.cm in the dist directory, and use the
utility functions in the structure Top. Below is a simple example.

- Top.check "fn (x : A) => x" "A => A";

true

val it = () : unit

More examples can be found in checker/examples.txt. You should always come up with
your own test cases. You are also encouraged to share your interesting test cases on piazza.

• Note that the language we use here explicitly annotates types for injections, function abstrac-
tions, and abort. While these types can in principle be inferred, including them in the syntax
of the language simplifies typechecking. Later in the course, we may discuss bidirectional
type checking, which allows these annotations to be removed.

• There are two scenarios where the function should return false. First, when the proof term is
not well typed. For example, checking fn (x : A) => x x should return false no matter
what the proposition is. Second, when the proof term is well typed, but does not prove
the given proposition. For example, checking fn (x : unit) => x against A => A should
return false (the correct type is unit => unit).

• You will likely find Ctx structure, which defines a dictionary with string as the key, helpful
for managing contexts of variables and their types. The signature for this structure can be
found at cmlib/dict.sig.

4

• Since the check function returns a boolean, which only has two possible outcomes, a constant
function that always returns true will pass many test cases. As such, the score will not be
directly proportional to the number of test cases passed.

• While the autograder will grade this problem out of 100, the result will be scaled down
(linearly) to 66 points.

• When you submit, run make, which generates handin.zip. Submit that file to Gradescope.

Typing Rules for STLC

x : τ ∈ Γ

Γ ` x : τ
(VAR)

Γ ` 〈〉 : unit
(UNIT)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2
(TUP)

Γ ` e : τ1 × τ2
Γ ` fst(e) : τ1

(FST)

Γ ` e : τ1 × τ2
Γ ` snd(e) : τ2

(SND)
Γ ` e : τ1

Γ ` inlτ1+τ2(e) : τ1 + τ2
(INL)

Γ ` e : τ2

Γ ` inrτ1+τ2(e) : τ1 + τ2
(INR)

Γ ` e : void

Γ ` abortτ (e) : τ
(ABORT)

Γ ` e : τ1 + τ2 Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case(e;x1.e1, x2.e2) : τ
(CASE)

Γ, x : τ1 ` e : τ2

Γ ` λ(x : τ1).e : τ1 → τ2
(ABS)

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
(APP)

5

	DeMorgan's Revenge
	Classical or Constructive
	Classical Quantifiers
	Type Checking

