# Constructive Logic (15-317), Spring2022 Assignment 3: Proofs as Programs + Verifications and Uses 

Instructor: Klaas Pruiksma<br>TAs: Runming Li, Onyekachi Onyeador, Viraj Puri, Xiao Yu<br>Due: Thursday, February 10, 2022, 11:59 pm

The assignments in this course must be submitted electronically through Gradescope. Written homework PDFs and coding Dcheck files will both go to Gradescope. For this homework, submit two files:

- hw3.pdf (your written solutions)
- hw3.deriv (your coding solutions)


## Trees are Programs

Task 1 (18 points). Provide proof terms for the following theorems using the proof-as-program logic. Your solution should go in hw3.pdf.
a. prove deMorgagain: $\neg A \wedge \neg B \supset \neg(A \vee B)$
b. prove toptobottom: $(A \supset \top) \wedge(\perp \supset A)$
c. prove reuse: $((A \supset B) \wedge(A \supset C)) \supset(A \supset B \wedge C)$
d. prove ormap: $((A \vee B) \supset C) \supset(A \supset C) \wedge(B \supset C)$
e. prove curry: $(A \wedge B \supset C) \supset A \supset B \supset C$
f. prove exclusion: $((A \vee B) \wedge \neg A) \supset B$

## I thunk therefore I am

Task 2 ( 8 points). Consider a unary connective $\circ$ defined by the following rules:

$$
\begin{aligned}
& \overline{\top \text { true }} u \\
& \vdots \vdots \\
& \frac{\text { A true }}{\circ A \text { true }} \circ I^{u} \quad \frac{\circ A \text { true } \quad \top \text { true }}{A \text { true }} \circ E
\end{aligned}
$$

1. Can you prove a simple relationship between $A$ true and $\circ A$ true?
2. Using thunk (u.M) as the proof term for the intro rule (aka introduction form), give the appropriate intro rule. for thunk(u.M) : $\circ A$.
3. Using $M \ll N$ as the proof term for the elim rule (aka elimination form), give the appropriate elim rule for $M \ll N: A$.
4. Does o have a reduction rule 1 ? Write out a reduction rule for $\circ$ if one exists. Otherwise, show that no reduction rule is possible.
5. Why might a programming language or programmer want to use thunks in code $?^{2}$
[^0]
## Verifications

Consider the $\&$ connective.


Task 3 (5 points). Give rules for forming the judgments that $\boldsymbol{\&}(A, B, C)$ has a verification and that $\boldsymbol{\&}(A, B, C)$ can be used.

Task 4 ( 4 points). Give a verification for the following proposition in Dcheck, using the vU system.

$$
(\neg P \wedge Q) \supset((P \supset Q) \supset(\neg P \supset \neg Q)) \supset \perp
$$

Your solution should go in hw3. deriv. For clarification on how to write a verifications-and-uses proof, please look at the course website ${ }^{3}$ Note that we use P and Q here to denote atomic propositions.

Task 5 ( 13 points). For each of the following propositions, give a verification-and-uses proof and its corresponding proofs-as-programs term. Your proof should go in hw3. deriv and the proof term should go in hw3.pdf.

1. $\perp \supset \top$
2. $\perp \supset \top$ (Do not use the same verification/proof term as part a. Use a new one.)
3. $(P \supset Q) \supset(\neg Q \supset \neg P)$
4. $(P \supset Q) \supset(Q \supset R) \supset(P \supset R)$
5. $((P \supset R) \wedge(Q \supset R)) \supset((P \vee Q) \supset R)$
[^1]
[^0]:    ${ }^{1}$ Remember that a contraction rule shows how to reduce the elimination form of a connective to a simpler term
    ${ }^{2}$ Any reasonable guess is fine

[^1]:    $\sqrt[3]{ }$ https://www.andrew.cmu.edu/user/kpruiksm/15317s22/example.deriv

