Constructive Logic (15-317), Spring2022
 Assignment 2: Harmony

Instructor: Klaas Pruiksma
TAs: Runming Li, Onyekachi Onyeador, Viraj Puri, Xiao Yu

Due: Thursday, Feburary 3, 2022, 11:59 pm

The assignments in this course must be submitted electronically through Gradescope. Written homework PDFs and coding Dcheck files will both go to Gradescope. For this homework, you will be submitting two files:

- hw2.deriv (your natural deduction proofs)
- hw2.pdf (your written solutions)

More Proofs? Deduce that!

Task 1 (10 points). Prove the following theorems using natural deduction logic in Dcheck, using the ND system. Your solution should go in hw2. deriv, and will be automatically graded when you submit to Gradescope. Remember that not A is syntatic sugar for A implies False. You can look at the examples natural deduction proofs on the course website ${ }^{1}$
a. absurdity : $A \wedge \neg A \supset B$
b. sCombinator: $(A \supset B) \supset(A \supset B \supset C) \supset(A \supset C)$
c. deMorgin: $\neg(A \vee B) \supset \neg A \wedge \neg B$
d. deMorgout: $\neg A \wedge \neg B \supset \neg(A \vee B)$
e. contrapositive: $(A \supset B) \supset(\neg B \supset \neg A)$

[^0]
Harmony

Your solutions to the following two tasks should go in hw2.pdf.
Task 2 (11 points). Consider a connective \triangle with the following elimination rules:

(Normally we take the verificationist perspective that introduction rules come first to define a connective, but this time we'll go in the opposite direction.)
a. Come up with a set of zero or more introduction rules for this connective.
b. Show that the connective is locally sound for your choice of introduction rules.
c. Show that the connective is locally complete for your choice of introduction rules.
d. Is it possible to come up with a notational definition $A \triangle B \triangleq$ \qquad so that both your defined introduction rule(s) as well as the elimination rule given above are merely derived rules?

Task 3 (10 points). Consider a connective © defined by the following rules.

a. Is this connective locally sound? If so, provide the local reduction(s); if not, briefly explain why.
b. Is this connective locally complete? If so, provide the local expansion(s); if not, briefly explain why.

Hype for hyps

Consider the following notations for a proofs of $A \supset B \supset A \wedge B$.

Floating Hypothesis Notation
Context Notation

$$
\frac{\overline{\text { A true, } B \text { true } \vdash A \text { true }} \text { hyp } \overline{A \text { true }, B \text { true } \vdash B \text { true }}}{\frac{A \text { true, } B \text { true } \vdash A \wedge B \text { true }}{A \text { true } \vdash B \supset(A \wedge B) \text { true }} \supset I} \stackrel{\vdash}{\vdash A \supset(B \supset(A \wedge B)) \text { true }} \supset I
$$

The Γ notation of hypotheses can be created by slightly modifying the rules of Natural Deduction to carry a context. (A context is a set of hypotheses.)

$$
\begin{aligned}
& \frac{\Gamma \vdash A \text { true } \quad \Gamma \vdash B \text { true }}{\Gamma \vdash A \wedge B \text { true }} \wedge I \quad \frac{\Gamma \vdash A \wedge B \text { true }}{\Gamma \vdash A \text { true }} \wedge E_{1} \quad \frac{\Gamma \vdash A \wedge B \text { true }}{\Gamma \vdash B \text { true }} \wedge E_{2} \\
& \left.\frac{\Gamma \vdash A \text { true }}{\Gamma \vdash A \vee B \text { true }} \vee I_{1} \quad \frac{\Gamma \vdash B \text { true }}{\Gamma \vdash A \vee B \text { true }} \vee I_{2} \quad \Gamma \vdash A \vee B \text { true } \quad \Gamma, A \text { true } \vdash C \text { true } \quad \Gamma, B \text { true } \vdash C \text { true }\right) ~ \Gamma \vdash C \text { true } \quad \vee E \\
& \frac{\Gamma, A \text { true } \vdash B \text { true }}{\Gamma \vdash A \supset B \text { true }} \supset I \quad \frac{\Gamma \vdash A \supset B \text { true } \quad \Gamma \vdash A \text { true }}{\Gamma \vdash B \text { true }} \supset E \\
& \overline{\Gamma \vdash \top \text { true }} \top I \quad \frac{\Gamma \vdash \perp \text { true }}{\Gamma \vdash C \text { true }} \perp E
\end{aligned}
$$

Finally, the hypothesis rule, which allows you to conclude a hypothesis. We view contexts as unordered sets, so the J in this rule need not be written last $\left.\right|^{2}$

$$
\overline{\Gamma, J \vdash J} h y p
$$

Task 4 (4 points). Consider the following proof and write the exact corresponding proof using context notation in Dcheck. Your solution should go in hw2. deriv with a derivation named copyProof. Since this problem focuses on the notations, please don't shorten the proof. For clarification on how to write proofs in context natural deduction in Dcheck, please look at Dcheck documentation ${ }^{3}$.

[^1]Task 5 (4 points). Write derivations using Dcheck for the following judgements, using the NDC system. Your solutions should go in hw2. deriv, and will be automatically graded when you submit to Gradescope.
a. implies: $\cdot \vdash(\neg A \vee B) \supset(A \supset B)$ true \square^{\mid}
b. transitivity: $\cdot \vdash(A \supset B) \supset(B \supset C) \supset(A \supset C)$ true

[^2]
[^0]: ${ }^{1}$ https://www.andrew.cmu.edu/user/kpruiksm/15317s22/example.deriv

[^1]: ${ }^{2}$ In the logic rule sheet we gave, this rule is written as $\frac{J \in \Gamma}{\Gamma \vdash J}$ hyp. It should be clear that those two definitions are equivalent. $\sqrt[3]{\text { https://www.andrew.cmu.edu/user/kpruiksm/15317s22/dcheck.pdf }}$

[^2]: ${ }^{4}$ The other direction is, in fact, not constructively true. Think about it.

