Formal Languages, Automata and Computation

Pushdown Automata

Pushdown Automata

- Pushdown automata (PDA) are abstract automata that accept all context-free languages.
- PDAs are essentially NFAs with an additional infinite stack memory.
- (Or NFAs are PDAs with no additional memory!)

Pushdown Automata

- Input is read left-to-right
- Control has finite memory (NFA)
- State transition depends on input and top of stack
- Control can push and pop symbols to/from the infinite stack

Pushdown Automata - Informal

- Let's look at $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- How can we use a stack to recognize $w \in L$?
(1) Push a special bottom of stack symbol \$ to the stack
(2) As long as you are seeing a's in the input, push an a onto the stack.
(3) While there are b 's in the input AND there is a corresponding a on the top of the stack, pop a from the stack
(4) If at any point there is no a on the stack (hence you encounter \$), you should reject the string - not enough a's!
(5) If at the end of w, the top of the stack is NOT \$ reject the string - not enough b's.
(0) Otherwise accept the string.

Pushdown Automata - Informal

- How can we use a PDA to recognize
$L=\left\{w \mid n_{a}(w)=n_{b}(w)\right\}$
- Remember how we argued that the grammar generates such strings
- Keep track of the difference of counts
- We do something similar but using the stack.
- Push a special bottom of stack symbol \$ to the stack
- An a in the input "cancels" a b on the top of the stack, otherwise pushes an a
- A b in the input "cancels" an a on the top of the stack, otherwise pushes a b
- At the end nothing should be left on the stack except for the \$, if not reject.

Pushdown Automata -Formal Definition

- We have two alphabets Σ for symbols of the input string and Γ for symbols for the stack. They need not be disjoint.
- Define $\Sigma_{\epsilon}=\Sigma \cup\{\epsilon\}$ and $\Gamma_{\epsilon}=\Gamma \cup\{\epsilon\}$
- A pushdown automaton is a 6-tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ where Q, Σ, Γ, and F are finite sets, and
- Q is the set of states
- Σ is the input alphabet, Γ is the stack alphabet
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \rightarrow \mathcal{P}\left(Q \times \Gamma_{\epsilon}\right)$ is the state transition function. $\left(\mathcal{P}(S)\right.$ is the power set of S. Earlier we used 2^{S}.)
- $q_{0} \in Q$ is the start state, and
- $F \subseteq Q$ is the set of final or accepting states.

Computation on a PDA

- A PDA computes as follows:
- Input w can be written as $w=w_{1} w_{2} \cdots w_{m}$ where each $w_{i} \in \Sigma_{\epsilon}$. So some w_{i} can be ϵ.
- There is a sequence of states $r_{0}, r_{1}, \cdots, r_{m}, r_{i} \in Q$.
- There is a sequence of strings $s_{0}, s_{1}, \cdots, s_{m}, s_{i} \in \Gamma^{*}$. These represent sequences of stack contents along an accepting branch of M's computation.
- $r_{0}=q_{0}$ and $s_{0}=\epsilon$.
- $\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right), i=0,1, \cdots, m-1$
- a is popped, b is pushed, t is the rest of the stack.
- $s_{i}=a t$ and $s_{i+1}=b t$ for some $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma^{*}$
- $r_{m} \in F$

Example PDA

- PDA for $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- $\Sigma=\{a, b\}, \Gamma=\{0, \$\}$
- \$ keeps track of the "bottom" of the stack

Example PDA

- PDA for $L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$
- Palindromes: See
http://norvig.com/palindrome.html for interesting examples:
- A 17,826 word palindrome starts and ends as:
- A man, a plan, a cameo, Zena, Bird, Mocha, Prowel, a rave, Uganda, Wait, a lobola, Argo, Goto, Koser, Ihab, Udall, a revocation, Ebarta, Muscat, eyes, Rehm, a cession, Udella, E-boat, OAS, a mirage, IPBM, a caress, Etam,, a lobo, Lati, a wadna, Guevara, Lew, Orpah, Comdr, Ibanez, OEM, a canal, Panama

Example PDA

- PDA for $L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$
- $\Sigma=\{0,1\}, \Gamma=\{0,1, \$\} \quad 1, \epsilon \rightarrow 1$

Example PDA

- Let's construct a PDA for

$$
L=\left\{w \mid n_{a}(w)=n_{b}(w)\right\}
$$

PDA Shorthands

- It is usually better and more succinct to represent a series of PDA transitions using a shorthand

PDAs AND CFGs

- PDAs and CFGs are equivalent in power: they both describe context-free languages.

THEOREM

A language is context free if and only if some pushdown automaton recognizes it.

PDAs and CFGs

Lemma
 If a language is context free, then some pushdown automaton recognizes it.

PROOF IDEA
If A is a CFL, then it has a CFG G for generating it. Convert the CFG to an equivalent PDA.

- Each rule maps to a transition.

CFGs to PDAs

- We simulate the leftmost derivation of a string using a 3 -state PDA with $Q=\left\{q_{\text {start }}, q_{l o o p}, q_{\text {accept }}\right\}$
- One transition from $q_{\text {start }}$ pushes the start symbol S onto the stack (along with \$).
- Transitions from $q_{l o o p}$ simulate either a rule expansion, or matching an input symbol.
- $\delta\left(q_{\text {loop }}, \epsilon, A\right)=\left\{\left(q_{\text {loop }}, w\right) \mid A \rightarrow w\right.$ is a production in $\left.G\right\}$
- If the top of the stack is A, nondeterministically expand it in all possible ways.
- $\delta\left(q_{\text {loop }}, a, a\right)=\left\{\left(q_{\text {loop }}, \epsilon\right)\right\}$, for all $a \in \Sigma$.
- If the input symbol matches the top of the stack, consume the input and pop the stack.
- One transition takes the PDA from $q_{l o o p}$ to $q_{\text {accept }}$ when $\$$ is seen on the stack.

CFGs to PDAs

for each $a \in \Sigma, a, a \rightarrow \epsilon \longrightarrow$ Gloop $\longrightarrow, A \rightarrow w$ for rule $A \rightarrow w$
q_{2}

CFG to PDA Example

- Let's convert the following grammar for $L=\left\{w \mid n_{a}(w)=n_{b}(w)\right\}$.
- $S \rightarrow a S b$
- $S \rightarrow b S a$
- $S \rightarrow S S$
- $S \rightarrow \epsilon$

