FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

PUSHDOWN AUTOMATA

PUSHDOWN AUTOMATA

- Pushdown automata (PDA) are abstract automata that accept all context-free languages.
- PDAs are essentially NFAs with an additional infinite stack memory.
 - (Or NFAs are PDAs with no additional memory!)

PUSHDOWN AUTOMATA

- Input is read left-to-right
- Control has finite memory (NFA)
- State transition depends on input and top of stack
- Control can push and pop symbols to/from the infinite stack

PUSHDOWN AUTOMATA – INFORMAL

- Let's look at $L = \{a^n b^n \mid n \ge 0\}$
- How can we use a stack to recognize $w \in L$?
 - Push a special bottom of stack symbol \$ to the stack
 - As long as you are seeing a's in the input, push an a onto the stack.
 - While there are b's in the input AND there is a corresponding a on the top of the stack, pop a from the stack
 - If at any point there is no a on the stack (hence you encounter \$), you should reject the string – not enough a's!
 - If at the end of w, the top of the stack is NOT \$ reject the string not enough b's.
 - Otherwise accept the string.

PUSHDOWN AUTOMATA – INFORMAL

• How can we use a PDA to recognize

$$\mathbf{L} = \{ \mathbf{w} \mid n_{\mathbf{a}}(\mathbf{w}) = n_{\mathbf{b}}(\mathbf{w}) \}$$

- Remember how we argued that the grammar generates such strings
 - Keep track of the difference of counts
- We do something similar but using the stack.
 - Push a special bottom of stack symbol \$ to the stack
 - An *a* in the input "cancels" a *b* on the top of the stack, otherwise pushes an *a*
 - A *b* in the input "cancels" an *a* on the top of the stack, otherwise pushes a *b*
 - At the end nothing should be left on the stack except for the \$, if not reject.

PUSHDOWN AUTOMATA – FORMAL DEFINITION

- We have two alphabets Σ for symbols of the input string and Γ for symbols for the stack. They need not be disjoint.
- Define $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$ and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$
- A pushdown automaton is a 6-tuple (Q, Σ, Γ, δ, q₀, F) where Q, Σ, Γ, and F are finite sets, and
 - Q is the set of states
 - Σ is the input alphabet, Γ is the stack alphabet
 - δ: Q × Σ_ε × Γ_ε → P(Q × Γ_ε) is the state transition function. (P(S)is the power set of S. Earlier we used 2^S.)
 - $q_0 \in Q$ is the start state, and
 - $F \subseteq Q$ is the set of final or accepting states.

COMPUTATION ON A PDA

- A PDA computes as follows:
 - Input *w* can be written as *w* = *w*₁*w*₂ ··· *w_m* where each *w_i* ∈ Σ_ε. So some *w_i* can be ε.
 - There is a sequence of states $r_0, r_1, \cdots, r_m, r_i \in Q$.
 - There is a sequence of strings s₀, s₁, · · · , s_m, s_i ∈ Γ*. These represent sequences of stack contents along an accepting branch of *M*'s computation.
- $r_0 = q_0$ and $s_0 = \epsilon$.
- $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a), i = 0, 1, \cdots, m-1$
- *a* is popped, *b* is pushed, *t* is the rest of the stack.

•
$$s_i = at$$
 and $s_{i+1} = bt$ for some $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma^*$

*r*_m ∈ *F*

• PDA for
$$L = \{a^n b^n \mid n \ge 0\}$$

•
$$\Sigma = \{a, b\}, \Gamma = \{0, \$\}$$

• \$ keeps track of the "bottom" of the stack

- PDA for $L = \{ww^R \mid w \in \{0, 1\}^*\}$
- Palindromes: See

http://norvig.com/palindrome.html for
interesting examples:

- A 17,826 word palindrome starts and ends as:
 - A man, a plan, a cameo, Zena, Bird, Mocha, Prowel, a rave, Uganda, Wait, a lobola, Argo, Goto, Koser, Ihab, Udall, a revocation, Ebarta, Muscat, eyes, Rehm, a cession, Udella, E-boat, OAS, a mirage, IPBM, a caress, Etam, ..., a lobo, Lati, a wadna, Guevara, Lew, Orpah, Comdr, Ibanez, OEM, a canal, Panama

• Let's construct a PDA for $L = \{w \mid n_a(w) = n_b(w)\}$

PDA SHORTHANDS

• It is usually better and more succinct to represent a series of PDA transitions using a shorthand

PDAs AND CFGs

• PDAs and CFGs are equivalent in power: they both describe context-free languages.

THEOREM

A language is context free if and only if some pushdown automaton recognizes it.

PDAs AND CFGs

LEMMA

If a language is context free, then some pushdown automaton recognizes it.

PROOF IDEA If A is a CFL, then it has a CFG G for generating it. Convert the CFG to an equivalent PDA.

• Each rule maps to a transition.

CFGs to PDAs

- We simulate the leftmost derivation of a string using a 3-state PDA with $Q = \{q_{start}, q_{loop}, q_{accept}\}$
- One transition from q_{start} pushes the start symbol S onto the stack (along with \$).
- Transitions from *q_{loop}* simulate either a rule expansion, or matching an input symbol.
 - $\delta(q_{loop}, \epsilon, A) = \{(q_{loop}, w) \mid A \to w \text{ is a production in } G\}$
 - If the top of the stack is *A*, nondeterministically expand it in all possible ways.
 - $\delta(q_{loop}, a, a) = \{(q_{loop}, \epsilon)\}, \text{ for all } a \in \Sigma.$
 - If the input symbol matches the top of the stack, consume the input and pop the stack.
- One transition takes the PDA from *q*_{loop} to *q*_{accept} when \$ is seen on the stack.

CFGs to PDAs

CFG TO PDA EXAMPLE

- Let's convert the following grammar for $L = \{w \mid n_a(w) = n_b(w)\}.$
 - S
 ightarrow aSb
 - $S \rightarrow bSa$
 - $S \rightarrow SS$
 - $S \rightarrow \epsilon$