Formal Languages, Automata and COMPUTATION

Context Free Languages

Carnegie Mellon University in Qatar

SUMMARY

- Describing nonregular languages
- Grammars as finite descriptions of infinite sets
- Context-free Grammars and context-free languages
- Derivations and parse trees
- Ambiguity
- Writing grammars

Grammar Examples

- Consider $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- $S \rightarrow a S b$
- a's and b's are generated in the right order and in equal numbers
- $S \rightarrow \epsilon$
- get rid of any remaining S at the end.

Grammar Examples

- Consider $L=\left\{a^{n} b^{m} \mid m>n \geq 0\right\}$
- $S \rightarrow A B$
- $A \rightarrow a A b \mid \epsilon$
- a 's and b 's are generated in the right order and in equal numbers, followed by B
- $B \rightarrow b B \mid b$
- Generate 1 or more (additional) b's

Grammar Examples

$$
\begin{aligned}
& \text { - } L=\left\{a^{n} b^{2 n} \mid n \geq 0\right\} \\
& \text { • } S \rightarrow a S b \mid \epsilon \\
& \text { - } L=\left\{a^{n+2} b^{n} \mid n \geq 1\right\} \\
& \text { • } S \rightarrow a a A, \\
& \bullet A \rightarrow a A b \mid a b
\end{aligned}
$$

Grammar for Arithmetic Expressions

- $L \rightarrow a|b| \cdots \mid z$ (letters)
- $D \rightarrow 0|\cdots| 9$ (digits)
- $V \rightarrow L|V L| V D$ (variables)
- $N \rightarrow D \mid N D$ (positive numbers)
- $F \rightarrow V|N|(E)$ (factors)
- $T \rightarrow F|T * F| T / F$ (terms)
- $E \rightarrow T|E+T| E-T$ (expressions)
- E is the start symbol.

Let us generate $(v 23+456) * k 23 /(a-b * 34)$ as an exercise.

Ambiguity

- Remember a boy with a flower sees a girl with a telescope?
- We say that a grammar generates a string ambiguously, if the string has two different parse trees (not just two different derivations)
- A derivation of a string w in a grammar G is a leftmost derivation if at every step, the leftmost remaining variable is the one replaced.

Ambiguity

DEFINITION

A string w is derived ambiguously in context-free grammar G if it has two or more different leftmost derivations. Grammar G is ambiguous if it generates some string ambiguously.

- Sometimes an ambiguous grammar can be transformed into an unambiguous grammar for the same language.
- Some context-free grammars can be generated only by ambiguous grammars. These are known as inherently ambiguous languages.

$$
\text { - } L=\left\{a^{i} b^{j} c^{k} \mid i=j \text { or } j=k\right\}
$$

Grammar Transformations

- Some types of productions cause problems in some uses of grammars.
- ϵ-productions: $A \rightarrow \epsilon$
- Intermediate sentential forms in a derivation get shorter and this has computational implications.
- Unit productions: $A \rightarrow B$.
- Such a rule does not achieve much except for lengthening the derivation sequence.
- There may be inadvertent "infinite loops": e.g., if $A \stackrel{*}{\Rightarrow} A$

REMOVING ϵ-PRODUCTIONS

- If $\epsilon \in L$, then we can not do much. $S \rightarrow \epsilon$ is needed for this.
- For all rules of the type $A \rightarrow \epsilon$ and A is not the start symbol, we proceed as follows:
- For occurrence of an A on the right-hand side of a rule, we add a rule with that occurence deleted.
- For a rule like $R \rightarrow u A v$, we add the rule $R \rightarrow u v$ (either u or v not ϵ)
- For a rule like $R \rightarrow A$, we add $R \rightarrow \epsilon$, unless we removed $R \rightarrow \epsilon$ earlier.
- For a rule with multiple occurences of A, we add one rule for each combination. $R \rightarrow u A v A w$ would add $R \rightarrow u v A w$, $R \rightarrow u A v w$, and $R \rightarrow u v w$.

REMOVING ϵ-PRODUCTIONS

- Consider
$S \rightarrow A S A \mid a B$
$A \rightarrow B \mid S$
$B \rightarrow b \mid \epsilon$
- Add a new start symbol S_{0}

$$
\begin{aligned}
\mathrm{S}_{0} & \rightarrow \mathrm{~S} \\
S & \rightarrow A S A \mid a B \\
A & \rightarrow B \mid S \\
B & \rightarrow b \mid \epsilon
\end{aligned}
$$

- Remove $B \rightarrow \epsilon$

$$
\begin{aligned}
\mathbf{S}_{\mathbf{0}} & \rightarrow \mathbf{S} \\
S & \rightarrow A S A|a B| \mathbf{a} \\
A & \rightarrow B|S| \epsilon \\
B & \rightarrow b
\end{aligned}
$$

- Remove $A \rightarrow \epsilon$

$\mathbf{S}_{\mathbf{0}}$	$\rightarrow \mathbf{S}$		
S	\rightarrow ASA\|aB	a	
	$\mathbf{S A}\|\mathbf{A S}\| \mathbf{S}$		
B	$\rightarrow B \mid S$		
B	$\rightarrow b$		

 \(S \rightarrow A S A|a B| a \mid\)
 \(A \quad \rightarrow \quad B \mid S\)
 \(B \rightarrow b\)

Removing Unit Productions

- To remove a unit rule like $A \rightarrow B$,
- We first add to the grammar a rule $A \rightarrow u$ whenever $B \rightarrow u$ is in the grammar, unless this is a unit rule previously removed.
- We then delete $A \rightarrow B$, from the grammar.
- We repeat these until we eliminate all unit rules.

Removing Unit Productions

- After ϵ-rule removal

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A S A|a B| a|S A| A S \mid S \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{aligned}
$$

- Remove $S \rightarrow S$
$S_{0} \rightarrow S$
$S \rightarrow A S A|a B| a|S A| A S$
$A \rightarrow B \mid S$
$B \rightarrow b$
- Remove $S_{0} \rightarrow S$
$S_{0} \rightarrow A S A|a B| a|S A| A S$
$S \rightarrow A S A|a B| a|S A| A S$
$A \rightarrow B \mid S$
$B \rightarrow b$

Removing Unit Productions

- After $S_{0} \rightarrow S$ removal

$$
\begin{aligned}
S_{0} & \rightarrow A S A|a B| a|S A| A S \\
S & \rightarrow A S A|a B| a|S A| A S \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{aligned}
$$

- Remove $A \rightarrow B$

$$
\begin{aligned}
S_{0} & \rightarrow A S A|a B| a|S A| A S \\
S & \rightarrow A S A|a B| a|S A| A S \\
A & \rightarrow b \mid S \\
B & \rightarrow b
\end{aligned}
$$

- Remove $A \rightarrow S$

$$
\begin{aligned}
S_{0} & \rightarrow A S A|a B| a|S A| A S \\
S & \rightarrow A S A|a B| a|S A| A S \\
A & \rightarrow b|A S A| a B|a| S A \mid A S \\
B & \rightarrow b
\end{aligned}
$$

Chomsky Normal Form

- CFGs in certain standard forms are quite useful for some computational problems.

CHOMSKY NORMAL FORM

A context-free grammar is in Chomsky normal form(CNF) if every rule is either of the form

$$
A \rightarrow B C \text { or } A \rightarrow a
$$

where a is a terminal and A, B, C are variables except B and C may not be the start variable. In addition, we allow the rule $S \rightarrow \epsilon$ if necessary.

Chomsky Normal Form

THEOREM

Every context-free language can be generated by a context-free grammar in Chomksy normal form.

Proof Idea

- Add a new start variable and the production $S_{0} \rightarrow S$.
- Remove all ϵ-productions
- Remove all unit productions.
- Add new variables and rules so that all rules have the right forms.

Chomsky Normal Form

PROOF

u_{i} below is either a terminal or a variable.

- Replace each rule like $A \rightarrow u_{1} u_{2} \cdots u_{k}$ where $k \geq 3$, with rules $A \rightarrow u_{1} A_{1}, A_{1} \rightarrow u_{2} A_{2}, \cdots$
$A_{k-2} \rightarrow U_{k-1} u_{k}$
- After this stage, all rules have right-hand side of length either 2 or 1
- For each rule like $A \rightarrow u_{1} u_{2}$ where either or both u_{i} is a terminal, replace u_{i} with the new variable U_{i} and add the rule $U_{i} \rightarrow u_{i}$ to the grammar.

Conversion to Chomsky Normal Form

- Grammar after ϵ and unit production removal

$$
\begin{aligned}
S_{0} & \rightarrow A S A|a B| a|S A| A S \\
S & \rightarrow A S A|a B| a|S A| A S \\
A & \rightarrow b|A S A| a B|a| S A \mid A S \\
B & \rightarrow b
\end{aligned}
$$

- Remove $S_{0} \rightarrow A S A$ and add $S_{0} \rightarrow A A_{1}$ and $A_{1} \rightarrow S A$
- Remove $S \rightarrow A S A$ and add $S \rightarrow A A_{1}\left(A_{1} \rightarrow S A\right.$ already added)
- Remove $A \rightarrow A S A$ and add $A \rightarrow A A_{1}\left(A_{1} \rightarrow S A\right.$ already added)
- Replace $S_{0} \rightarrow a B$ with $S_{0} \rightarrow U B$ and $U \rightarrow a$
- Replace $S \rightarrow a B$ with $S \rightarrow U B(U \rightarrow a$ already added)
- Replace $A \rightarrow a B$ with $A \rightarrow U B(U \rightarrow a$ already added)

Conversion to Chomsky Normal Form

- Final grammar in Chomsky normal form

$$
\begin{aligned}
S_{0} & \rightarrow A A_{1}|U B| a|S A| A S \\
S & \rightarrow A A_{1}|U B| a|S A| A S \\
A & \rightarrow b\left|A A_{1}\right| U B|a| S A \mid A S \\
A_{1} & \rightarrow S A \\
U & \rightarrow a \\
B & \rightarrow b
\end{aligned}
$$

ANOTHER EXAMPLE

- Let's convert
$R=\{S \rightarrow S S, S \rightarrow a S b, S \rightarrow b S a, S \rightarrow \epsilon\}$ to Chomsky Normal Form.

Other Interesting Forms for Grammars

- If all productions of a grammar are like $A \rightarrow b B$ or $A \rightarrow b$ where b is a terminal and B is a variable, then it is called a right-linear grammar.
- If all productions of a grammar are like $A \rightarrow B b$ or $A \rightarrow b$ where b is a terminal and B is a variable, then it is called a left-linear grammar.
- Right-linear grammars generate regular languages.
- Left-linear grammars generate regular languages.

The recognition problem for CFL's

- Given a context-free grammar G and a string $w \in \Sigma^{*}$ how can we tell if $w \in L(G)$?
- If $w \in L(G)$, what are the possible structures assigned to w by G ?
- Different grammars for the same language
- will answer the first question the same, but
- will assign possibly different structures to strings in the language.
- Consider original and Chomsky Normal Form of some example grammars earlier!

THE COCKE-YOUNGER-KASAMI (CYK) ALGORITHM

- The CYK parsing algorithm determines if $w \in L(G)$ for a grammar G in Chomsky Normal Form
- with some extensions, it can also determine possible structures.
- Assume $w \neq \epsilon$ (if so, check if the grammar has the rule $S \rightarrow \epsilon$)

The CYK Algorithm

- Consider $w=a_{1} a_{2} \cdots a_{n}, a_{i} \in \Sigma$
- Suppose we could cut up the string into two parts $u=a_{1} a_{2} . . a_{i}$ and $v=a_{i+1} a_{i+2} \cdots a_{n}$
- Now suppose $A \stackrel{*}{\Rightarrow} u$ and $B \stackrel{*}{\Rightarrow} v$ and that $S \rightarrow A B$ is a rule.

The CYK Algorithm

- Now we apply the same idea to A and B recursively.

The CYK Algorithm

- What is the problem here?
- We do not know what i, j and k are!
- No Problem! We can try all possible i's, j's and k^{\prime} s.
- Dynamic programming to the rescue.

DIGRESSION - DyNamic Programming

- An algorithmic paradigm
- Essentially like divide-and-conquer but subproblems overlap!
- Results of subproblem solutions are reusable.
- Subproblem results are computed once and then memoized
- Used in solutions to many problems
- Length of longest common subsequence
- Knapsack
- Optimal matrix chain multiplication
- Shortest paths in graphs with negative weights (Bellman-Ford Alg.)

(Back To) The CYK Algorithm

- Let $w=a_{1} a_{2} \cdots a_{n}$.
- We define
- $w_{i, j}=a_{i} \cdots a_{j}$ (substring between positions i and j)
- $V_{i, j}=\left\{A \in V \mid A \stackrel{*}{\Rightarrow} w_{i, j}\right\}(j \geq i)$ (all variables which derive $w_{i j}$)
- $w \in L(G)$ iff $S \in V_{1, n}$
- How do we compute $V_{i, j}(j \geq i)$?

THE CYK AlgORITHM

- How do we compute $V_{i, j}$?
- Observe that $A \in V_{i, i}$ if $A \rightarrow a_{i}$ is a rule.
- So $V_{i i}$ can easily be computed for $1 \leq i \leq n$ by an inspection of w and the grammar.
- $A \stackrel{*}{\Rightarrow} w_{i j}$ if
- There is a production $A \rightarrow B C$, and
- $B \stackrel{*}{\Rightarrow} w_{i, k}$ and $C \stackrel{*}{\Rightarrow} w_{k+1, j}$ for some $k, i \leq k<j$.
- So

$$
V_{i, j}=\bigcup_{i \leq k<j}\left\{A: \mid A \rightarrow B C \text { and } B \in V_{i, k} \text { and } C \in V_{k+1, j}\right\}
$$

The CYK Algorithm

$$
V_{i, j}=\bigcup_{i \leq k<j}\left\{A: A \rightarrow B C \text { and } B \in V_{i, k} \text { and } C \in V_{k+1, j}\right\}
$$

- Compute in the following order:

$$
\begin{array}{lllllll}
& \vec{v}_{1,1} & V_{2,2} & V_{3,3} & \ldots & \ldots & \ldots \\
v_{1,2} & V_{2,3} & V_{3,4} & \cdots & \ldots & V_{n-n} \\
v_{1,2} & V_{2,4} & V_{3,5} & \cdots & V_{n-2, n} & & \\
v_{1,3} & V_{2,1, n} & & & \\
V_{1, n-1} & V_{2, n} & & & & & \\
V_{1, n} & & & & &
\end{array}
$$

- For example to compute $V_{2,4}$ one needs $V_{2,2}$ and $V_{3,4}$, and then $V_{2,3}$ and $V_{4,4}$ all of which are computed earlier!

The CYK Algorithm

1) for $i=1$ to n do // Initialization
2) $\quad V_{i, i}=\left\{A \mid A \rightarrow a\right.$ is a rule and $\left.w_{i, i}=a\right]$
3) for $j=2$ to n do
4) for $i=1$ to $n-j+1$ do
5)
6)
7)
8)

begin

$$
\begin{aligned}
& V_{i, j}=\{ \} ; / / \text { Set } V_{i, j} \text { to empty set } \\
& \text { for } \mathrm{k}=1 \text { to j-1 do } \\
& \qquad \begin{array}{l}
V_{i, j}=V_{i, j} \cup\{A: \mid A \rightarrow B C \text { is a rule and } \\
\\
\left.B \in V_{i, k} \text { and } C \in V_{k+1, j}\right\}
\end{array}
\end{aligned}
$$

- This algorithm has 3 nested loops with the bound for each being $O(n)$. So the overall time is $O\left(n^{3}\right)$.
- The size of the grammar factors in as a constant factor as it is independent of n - the length of the string.
- Certain special CFGs have subcubic recognition algorithms.

The CYK Algorithm in Action

- Consider the following grammar in CNF
$S \rightarrow A B$
$A \rightarrow B B \mid a$
$B \rightarrow A B \mid b$
- The input string is $w=a a b b b$

\bullet	$1 \rightarrow$	2	3	4	5
	a	a	b	b	b
	$\{A\}$	$\{A\}$	$\{B\}$	$\{B\}$	$\{B\}$
	$\}$	$\{S, B\}$	$\{A\}$	$\{A\}$	
$\{S, B\}$	$\{A\}$	$\{S, B\}$			
$\{A\}$	$\{S, B\}$				
$\{S, B\}$					

- Since $S \in V_{1,5}$, this string is in $L(G)$.

The CYK Algorithm in Action

- Consider the following grammar in CNF
$S \rightarrow A B$
$A \rightarrow B B \mid a$
$B \rightarrow A B \mid b$
- Let us see how we compute $V_{2,4}$
- We need to look at $V_{2,2}$ and $V_{3,4}$
- We need to look at $V_{2,3}$ and $V_{4,4}$

$i \rightarrow$	1	2	3	4	5
	a	a	b	b	b
	$\{A\}$	$\{A\}$	$\{B\}$	$\{B\}$	$\{B\}$
	$\}$	$\{S, B\}$	$\{A\}$	$\{A\}$	
	$\{S, B\}$	$\{A\}$	$\{S, B\}$		
	$\{A\}$	$\{S, B\}$			
	$\{S, B\}$				

