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SUMMARY

Describing nonregular languages
Grammars as finite descriptions of infinite sets
Context-free Grammars and context-free
languages
Derivations and parse trees
Ambiguity
Writing grammars
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GRAMMAR EXAMPLES

Consider L = {anbn | n ≥ 0}
S → aSb

a’s and b’s are generated in the right order and in equal
numbers

S → ε
get rid of any remaining S at the end.
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GRAMMAR EXAMPLES

Consider L = {anbm | m > n ≥ 0}
S → AB
A→ aAb | ε

a’s and b’s are generated in the right order and in equal
numbers, followed by B

B → bB | b
Generate 1 or more (additional) b’s
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GRAMMAR EXAMPLES

L = {anb2n | n ≥ 0}
S → aSbb | ε

L = {an+2bn | n ≥ 1}
S → aaA,
A→ aAb | ab
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GRAMMAR FOR ARITHMETIC EXPRESSIONS

L→ a | b | · · · | z (letters)
D → 0 | · · · | 9 (digits)
V → L | V L | V D (variables)
N → D | N D (positive numbers)
F → V | N | (E) (factors)
T → F | T ∗ F | T/F (terms)
E → T | E + T | E − T (expressions)
E is the start symbol.

Let us generate (v23 + 456) ∗ k23/(a− b ∗ 34) as an
exercise.
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AMBIGUITY

Remember a boy with a flower sees a girl with a
telescope?
We say that a grammar generates a string
ambiguously, if the string has two different parse
trees (not just two different derivations)
A derivation of a string w in a grammar G is a
leftmost derivation if at every step, the leftmost
remaining variable is the one replaced.
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AMBIGUITY

DEFINITION

A string w is derived ambiguously in context-free
grammar G if it has two or more different leftmost
derivations. Grammar G is ambiguous if it generates
some string ambiguously.

Sometimes an ambiguous grammar can be
transformed into an unambiguous grammar for
the same language.
Some context-free grammars can be generated
only by ambiguous grammars. These are known
as inherently ambiguous languages.

L = {aibjck | i = j or j = k}
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GRAMMAR TRANSFORMATIONS

Some types of productions cause problems in
some uses of grammars.
ε-productions: A→ ε

Intermediate sentential forms in a derivation get shorter and
this has computational implications.

Unit productions: A→ B.
Such a rule does not achieve much except for lengthening
the derivation sequence.
There may be inadvertent “infinite loops”: e.g., if A ∗⇒ A
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REMOVING ε-PRODUCTIONS

If ε ∈ L, then we can not do much. S → ε is
needed for this.
For all rules of the type A→ ε and A is not the
start symbol, we proceed as follows:
For occurrence of an A on the right-hand side of a
rule, we add a rule with that occurence deleted.

For a rule like R → uAv , we add the rule R → uv (either u or
v not ε)
For a rule like R → A, we add R → ε, unless we removed
R → ε earlier.
For a rule with multiple occurences of A, we add one rule for
each combination. R → uAvAw would add R → uvAw ,
R → uAvw , and R → uvw .
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REMOVING ε-PRODUCTIONS

Consider
S → ASA | aB
A → B | S
B → b | ε

Add a new start symbol S0
S0 → S
S → ASA | aB
A → B | S
B → b | ε

Remove B → ε
S0 → S
S → ASA | aB | a
A → B | S | ε
B → b

Remove A→ ε
S0 → S
S → ASA | aB | a |

SA | AS | S
A → B | S
B → b
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REMOVING UNIT PRODUCTIONS

To remove a unit rule like A→ B,
We first add to the grammar a rule A→ u whenever B → u is
in the grammar, unless this is a unit rule previously removed.
We then delete A→ B, from the grammar.

We repeat these until we eliminate all unit rules.
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REMOVING UNIT PRODUCTIONS

After ε-rule removal
S0 → S
S → ASA | aB | a | SA | AS | S
A → B | S
B → b

Remove S → S
S0 → S
S → ASA | aB | a | SA | AS
A → B | S
B → b

Remove S0 → S
S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → B | S
B → b
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REMOVING UNIT PRODUCTIONS

After S0 → S removal
S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → B | S
B → b

Remove A→ B
S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → b | S
B → b

Remove A→ S
S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → b | ASA | aB | a | SA | AS
B → b
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CHOMSKY NORMAL FORM

CFGs in certain standard forms are quite useful
for some computational problems.

CHOMSKY NORMAL FORM

A context-free grammar is in Chomsky normal
form(CNF) if every rule is either of the form

A→ BC or A→ a

where a is a terminal and A,B,C are variables –
except B and C may not be the start variable. In
addition, we allow the rule S → ε if necessary.
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CHOMSKY NORMAL FORM

THEOREM

Every context-free language can be generated by a
context-free grammar in Chomksy normal form.

PROOF IDEA

Add a new start variable and the production
S0 → S.
Remove all ε-productions
Remove all unit productions.
Add new variables and rules so that all rules have
the right forms.
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CHOMSKY NORMAL FORM

PROOF

ui below is either a terminal or a variable.
Replace each rule like A→ u1u2 · · · uk where
k ≥ 3, with rules A→ u1A1, A1 → u2A2, · · ·
Ak−2 → uk−1uk

After this stage, all rules have right-hand side of
length either 2 or 1
For each rule like A→ u1u2 where either or both
ui is a terminal, replace ui with the new variable
Ui and add the rule Ui → ui to the grammar.
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CONVERSION TO CHOMSKY NORMAL FORM

Grammar after ε and unit production removal
S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → b | ASA | aB | a | SA | AS
B → b

Remove S0 → ASA and add S0 → AA1 and A1 → SA

Remove S → ASA and add S → AA1 (A1 → SA already added)

Remove A→ ASA and add A→ AA1 (A1 → SA already added)

Replace S0 → aB with S0 → UB and U → a

Replace S → aB with S → UB (U → a already added)

Replace A→ aB with A→ UB (U → a already added)
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CONVERSION TO CHOMSKY NORMAL FORM

Final grammar in Chomsky normal form
S0 → AA1 | UB | a | SA | AS
S → AA1 | UB | a | SA | AS
A → b | AA1 | UB | a | SA | AS

A1 → SA
U → a
B → b
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ANOTHER EXAMPLE

Let’s convert
R = {S → SS,S → aSb,S → bSa,S → ε} to
Chomsky Normal Form.

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 8 SPRING 2011 20 / 33



OTHER INTERESTING FORMS FOR GRAMMARS

If all productions of a grammar are like A→ bB or
A→ b where b is a terminal and B is a variable,
then it is called a right-linear grammar.
If all productions of a grammar are like A→ Bb or
A→ b where b is a terminal and B is a variable,
then it is called a left-linear grammar.
Right-linear grammars generate regular
languages.
Left-linear grammars generate regular languages.
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THE RECOGNITION PROBLEM FOR CFL’S

Given a context-free grammar G and a string
w ∈ Σ∗ how can we tell if w ∈ L(G)?
If w ∈ L(G), what are the possible structures
assigned to w by G?
Different grammars for the same language

will answer the first question the same, but
will assign possibly different structures to strings in the
language.
Consider original and Chomsky Normal Form of some
example grammars earlier!
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THE COCKE-YOUNGER-KASAMI (CYK)
ALGORITHM

The CYK parsing algorithm determines if
w ∈ L(G) for a grammar G in Chomsky Normal
Form

with some extensions, it can also determine possible
structures.
Assume w 6= ε (if so, check if the grammar has the rule
S → ε)
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THE CYK ALGORITHM

Consider w = a1a2 · · · an, ai ∈ Σ

Suppose we could cut up the string into two parts
u = a1a2..ai and v = ai+1ai+2 · · · an

Now suppose A ∗⇒ u and B ∗⇒ v and that S → AB
is a rule.

S

A

a1 ai

B

ai+1 an
← u → ← v →
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THE CYK ALGORITHM

S

A

a1 ai

B

ai+1 an
← u → ← v →

Now we apply the same idea to A and B
recursively.

S

A

C

a1 aj

D

aj+1 ai

B

E

ai+1 ak

F

ak+1 an
← u1 → ← v1 → ← u2 → ← v2 →
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THE CYK ALGORITHM

S

A

C

a1 aj

D

aj+1 ai

B

E

ai+1 ak

F

ak+1 an
← u1 → ← v1 → ← u2 → ← v2 →

What is the problem here?
We do not know what i , j and k are!
No Problem! We can try all possible i ’s, j ’s and
k ′s.
Dynamic programming to the rescue.
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DIGRESSION - DYNAMIC PROGRAMMING

An algorithmic paradigm
Essentially like divide-and-conquer but
subproblems overlap!
Results of subproblem solutions are reusable.
Subproblem results are computed once and then
memoized
Used in solutions to many problems

Length of longest common subsequence
Knapsack
Optimal matrix chain multiplication
Shortest paths in graphs with negative weights
(Bellman-Ford Alg.)
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(BACK TO) THE CYK ALGORITHM

Let w = a1a2 · · · an.
We define

wi,j = ai · · · aj (substring between positions i and j)
Vi,j = {A ∈ V | A ∗⇒ wi,j}(j ≥ i) (all variables which derive
wij )

w ∈ L(G) iff S ∈ V1,n

How do we compute Vi ,j(j ≥ i)?

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 8 SPRING 2011 28 / 33



THE CYK ALGORITHM

How do we compute Vi ,j?
Observe that A ∈ Vi ,i if A→ ai is a rule.

So Vii can easily be computed for 1 ≤ i ≤ n by an inspection
of w and the grammar.

A ∗⇒ wij if
There is a production A→ BC, and
B ∗⇒ wi,k and C ∗⇒ wk+1,j for some k , i ≤ k < j .

So

Vi ,j =
⋃

i≤k<j

{A :| A→ BC and B ∈ Vi ,k and C ∈ Vk+1,j}
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THE CYK ALGORITHM

Vi ,j =
⋃

i≤k<j

{A : A→ BC and B ∈ Vi ,k and C ∈ Vk+1,j}

Compute in the following order:
→

↓ V1,1 V2,2 V3,3 · · · · · · · · · Vn,n
V1,2 V2,3 V3,4 · · · · · · Vn−1,n
V1,3 V2,4 V3,5 · · · Vn−2,n
· · ·
V1,n−1 V2,n
V1,n

For example to compute V2,4 one needs V2,2 and
V3,4, and then V2,3 and V4,4 all of which are
computed earlier!
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THE CYK ALGORITHM

1) for i=1 to n do // Initialization
2) Vi,i = {A | A→ a is a rule and wi,i = a]
3) for j=2 to n do
4) for i=1 to n-j+1 do
5) begin
6) Vi,j = {}; // Set Vi,j to empty set
7) for k=1 to j-1 do
8) Vi,j = Vi,j ∪ {A :| A→ BC is a rule and

B ∈ Vi,k and C ∈ Vk+1,j}

This algorithm has 3 nested loops with the bound for each being
O(n). So the overall time is O(n3).

The size of the grammar factors in as a constant factor as it is
independent of n – the length of the string.

Certain special CFGs have subcubic recognition algorithms.
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THE CYK ALGORITHM IN ACTION

Consider the following grammar in CNF
S → AB
A → BB | a
B → AB | b

The input string is w = aabbb

i → 1 2 3 4 5
a a b b b
{A} {A} {B} {B} {B}
{} {S,B} {A} {A}
{S,B} {A} {S,B}
{A} {S,B}
{S,B}

Since S ∈ V1,5, this string is in L(G).
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THE CYK ALGORITHM IN ACTION

Consider the following grammar in CNF
S → AB
A → BB | a
B → AB | b

Let us see how we compute V2,4

We need to look at V2,2 and V3,4
We need to look at V2,3 and V4,4

i → 1 2 3 4 5
a a b b b
{A} {A} {B} {B} {B}
{} {S,B} {A} {A}
{S,B} {A} {S,B}
{A} {S,B}
{S,B}
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