FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

CONTEXT FREE LANGUAGES

Carnegie Mellon University in Qatar

SUMMARY

- Describing nonregular languages
- Grammars as finite descriptions of infinite sets
- Context-free Grammars and context-free languages
- Derivations and parse trees
- Ambiguity
- Writing grammars

GRAMMAR EXAMPLES

- Consider $L = \{a^n b^n \mid n \ge 0\}$
- S
 ightarrow aSb
 - *a*'s and *b*'s are generated in the right order and in equal numbers
- $S \rightarrow \epsilon$
 - get rid of any remaining S at the end.

GRAMMAR EXAMPLES

- Consider $L = \{a^n b^m \mid m > n \ge 0\}$
- S
 ightarrow AB
- $A \rightarrow aAb \mid \epsilon$
 - *a*'s and *b*'s are generated in the right order and in equal numbers, followed by *B*
- $B
 ightarrow bB \mid b$
 - Generate 1 or more (additional) b's

GRAMMAR EXAMPLES

•
$$L = \{a^n b^{2n} \mid n \ge 0\}$$

• $S \rightarrow aSbb \mid \epsilon$
• $L = \{a^{n+2}b^n \mid n \ge 1\}$
• $S \rightarrow aaA$,
• $A \rightarrow aAb \mid ab$

GRAMMAR FOR ARITHMETIC EXPRESSIONS

- $L \rightarrow a \mid b \mid \cdots \mid z$ (letters)
- $D \rightarrow 0 \mid \cdots \mid 9$ (digits)
- $V \rightarrow L \mid V L \mid V D$ (variables)
- $N \rightarrow D \mid N D$ (positive numbers)
- $F \rightarrow V \mid N \mid (E)$ (factors)
- $T \rightarrow F \mid T * F \mid T/F$ (terms)
- $E \rightarrow T \mid E + T \mid E T$ (expressions)

• *E* is the start symbol.

Let us generate (v23 + 456) * k23/(a - b * 34) as an exercise.

AMBIGUITY

- Remember a boy with a flower sees a girl with a telescope?
- We say that a grammar generates a string ambiguously, if the string has two different parse trees (not just two different derivations)
- A derivation of a string *w* in a grammar *G* is a leftmost derivation if at every step, the leftmost remaining variable is the one replaced.

DEFINITION

A string w is derived ambiguously in context-free grammar G if it has two or more different leftmost derivations. Grammar G is ambiguous if it generates some string ambiguously.

- Sometimes an ambiguous grammar can be transformed into an unambiguous grammar for the same language.
- Some context-free grammars can be generated only by ambiguous grammars. These are known as inherently ambiguous languages.

•
$$L = \{a^i b^j c^k \mid i = j \text{ or } j = k\}$$

GRAMMAR TRANSFORMATIONS

- Some types of productions cause problems in some uses of grammars.
- ϵ -productions: $A \rightarrow \epsilon$
 - Intermediate sentential forms in a derivation get shorter and this has computational implications.
- Unit productions: $A \rightarrow B$.
 - Such a rule does not achieve much except for lengthening the derivation sequence.
 - There may be inadvertent "infinite loops": e.g., if $A \stackrel{*}{\Rightarrow} A$

- If *ϵ* ∈ *L*, then we can not do much. *S* → *ϵ* is needed for this.
- For all rules of the type A → e and A is not the start symbol, we proceed as follows:
- For occurrence of an *A* on the right-hand side of a rule, we add a rule with that occurence deleted.
 - For a rule like $R \rightarrow uAv$, we add the rule $R \rightarrow uv$ (either u or v not ϵ)
 - For a rule like $R \to A$, we add $R \to \epsilon$, unless we removed $R \to \epsilon$ earlier.
 - For a rule with multiple occurences of *A*, we add one rule for each combination. *R* → *uAvAw* would add *R* → *uvAw*, *R* → *uAvw*, and *R* → *uvw*.

REMOVING ϵ **-PRODUCTIONS**

- Consider
 - $egin{array}{cccc} S &
 ightarrow & ASA \mid aB \ A &
 ightarrow & B \mid S \end{array}$
 - $B \rightarrow b \mid \epsilon$
- Add a new start symbol S₀
 - $\begin{array}{rrrr} \mathbf{S_0} & \rightarrow & \mathbf{S} \\ S & \rightarrow & ASA \mid aB \\ A & \rightarrow & B \mid S \\ B & \rightarrow & b \mid \epsilon \end{array}$

- Remove $B \rightarrow \epsilon$ $S_0 \rightarrow S$ $S \rightarrow ASA \mid aB \mid a$ $A \rightarrow B \mid S \mid \epsilon$ $B \rightarrow b$
- Remove $A \rightarrow \epsilon$ $S_0 \rightarrow S$ $S \rightarrow ASA \mid aB \mid a \mid$ $SA \mid AS \mid S$ $A \rightarrow B \mid S$ $B \rightarrow b$

REMOVING UNIT PRODUCTIONS

- To remove a unit rule like $A \rightarrow B$,
 - We first add to the grammar a rule A → u whenever B → u is in the grammar, unless this is a unit rule previously removed.
 - We then delete $A \rightarrow B$, from the grammar.

• We repeat these until we eliminate all unit rules.

REMOVING UNIT PRODUCTIONS

After *ϵ*-rule removal

$$\begin{array}{rrrr} S_0 & \rightarrow & S \\ S & \rightarrow & ASA \mid aB \mid a \mid SA \mid AS \mid S \\ A & \rightarrow & B \mid S \\ B & \rightarrow & b \end{array}$$

• Remove $S \rightarrow S$ $S_0 \rightarrow S$ $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$ $A \rightarrow B \mid S$ $B \rightarrow b$

• Remove
$$S_0 \rightarrow S$$

 $S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

REMOVING UNIT PRODUCTIONS

• After
$$S_0 \rightarrow S$$
 removal
 $S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

• Remove $A \rightarrow B$ $S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$ $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$ $A \rightarrow b \mid S$ $B \rightarrow b$

• Remove
$$A \rightarrow S$$

 $S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS$
 $B \rightarrow b$

CHOMSKY NORMAL FORM

• CFGs in certain standard forms are quite useful for some computational problems.

CHOMSKY NORMAL FORM

A context-free grammar is in Chomsky normal form(CNF) if every rule is either of the form

$A \rightarrow BC$ or $A \rightarrow a$

where *a* is a terminal and *A*, *B*, *C* are variables – except *B* and *C* may not be the start variable. In addition, we allow the rule $S \rightarrow \epsilon$ if necessary.

THEOREM

Every context-free language can be generated by a context-free grammar in Chomksy normal form.

PROOF IDEA

- Add a new start variable and the production $\mathcal{S}_0
 ightarrow \mathcal{S}.$
- Remove all ϵ -productions
- Remove all unit productions.
- Add new variables and rules so that all rules have the right forms.

Proof

 u_i below is either a terminal or a variable.

- Replace each rule like $A \rightarrow u_1 u_2 \cdots u_k$ where $k \ge 3$, with rules $A \rightarrow u_1 A_1$, $A_1 \rightarrow u_2 A_2$, $\cdots A_{k-2} \rightarrow u_{k-1} u_k$
- After this stage, all rules have right-hand side of length either 2 or 1
- For each rule like $A \rightarrow u_1 u_2$ where either or both u_i is a terminal, replace u_i with the new variable U_i and add the rule $U_i \rightarrow u_i$ to the grammar.

CONVERSION TO CHOMSKY NORMAL FORM

- Grammar after ϵ and unit production removal
- Remove $S_0
 ightarrow ASA$ and add $S_0
 ightarrow AA_1$ and $A_1
 ightarrow SA$
- Remove $S \rightarrow ASA$ and add $S \rightarrow AA_1$ ($A_1 \rightarrow SA$ already added)
- Remove $A \rightarrow ASA$ and add $A \rightarrow AA_1$ ($A_1 \rightarrow SA$ already added)
- Replace $S_0
 ightarrow aB$ with $S_0
 ightarrow UB$ and U
 ightarrow a
- Replace $S \rightarrow aB$ with $S \rightarrow UB$ ($U \rightarrow a$ already added)
- Replace $A \rightarrow aB$ with $A \rightarrow UB$ ($U \rightarrow a$ already added)

CONVERSION TO CHOMSKY NORMAL FORM

- Final grammar in Chomsky normal form
 - $egin{array}{rcl} S_0 &
 ightarrow & AA_1 \mid UB \mid a \mid SA \mid AS \ S &
 ightarrow & AA_1 \mid UB \mid a \mid SA \mid AS \end{array}$
 - $A \rightarrow b \mid AA_1 \mid UB \mid a \mid SA \mid AS$

$$A_1 o SA$$

$$U \rightarrow a$$

 $B \rightarrow b$

• Let's convert $R = \{S \rightarrow SS, S \rightarrow aSb, S \rightarrow bSa, S \rightarrow \epsilon\}$ to Chomsky Normal Form.

OTHER INTERESTING FORMS FOR GRAMMARS

- If all productions of a grammar are like A → bB or A → b where b is a terminal and B is a variable, then it is called a right-linear grammar.
- If all productions of a grammar are like A → Bb or A → b where b is a terminal and B is a variable, then it is called a left-linear grammar.
- Right-linear grammars generate regular languages.
- Left-linear grammars generate regular languages.

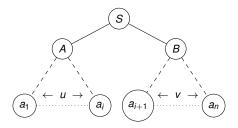
THE RECOGNITION PROBLEM FOR CFL'S

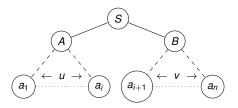
- Given a context-free grammar G and a string w ∈ Σ* how can we tell if w ∈ L(G)?
- If w ∈ L(G), what are the possible structures assigned to w by G?
- Different grammars for the same language
 - will answer the first question the same, but
 - will assign possibly different structures to strings in the language.
 - Consider original and Chomsky Normal Form of some example grammars earlier!

THE COCKE-YOUNGER-KASAMI (CYK) ALGORITHM

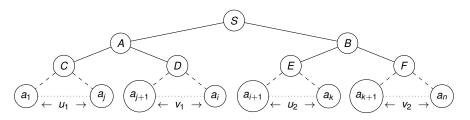
- The CYK parsing algorithm determines if *w* ∈ *L*(*G*) for a grammar *G* in Chomsky Normal Form
 - with some extensions, it can also determine possible structures.
 - Assume $w \neq \epsilon$ (if so, check if the grammar has the rule $S \rightarrow \epsilon$)

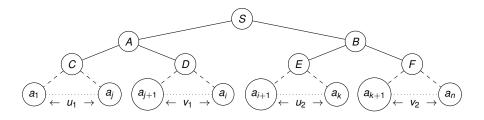
- Consider $w = a_1 a_2 \cdots a_n, a_i \in \Sigma$
- Suppose we could cut up the string into two parts $u = a_1 a_2 ... a_i$ and $v = a_{i+1} a_{i+2} \cdots a_n$
- Now suppose $A \stackrel{*}{\Rightarrow} u$ and $B \stackrel{*}{\Rightarrow} v$ and that $S \rightarrow AB$ is a rule.





• Now we apply the same idea to A and B recursively.





- What is the problem here?
- We do not know what *i*, *j* and *k* are!
- No Problem! We can try all possible i's, j's and k's.
- Dynamic programming to the rescue.

DIGRESSION - DYNAMIC PROGRAMMING

- An algorithmic paradigm
- Essentially like divide-and-conquer but subproblems overlap!
- Results of subproblem solutions are reusable.
- Subproblem results are computed once and then memoized
- Used in solutions to many problems
 - Length of longest common subsequence
 - Knapsack
 - Optimal matrix chain multiplication
 - Shortest paths in graphs with negative weights (Bellman-Ford Alg.)

(BACK TO) THE CYK ALGORITHM

- Let $w = a_1 a_2 \cdots a_n$.
- We define
 - $w_{i,j} = a_i \cdots a_j$ (substring between positions *i* and *j*)
 - $V_{i,j} = \{A \in V \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}(j \ge i)$ (all variables which derive w_{ij})
- $w \in L(G)$ iff $S \in V_{1,n}$
- How do we compute $V_{i,j} (j \ge i)$?

- How do we compute *V_{i,j}*?
- Observe that $A \in V_{i,i}$ if $A \rightarrow a_i$ is a rule.
 - So V_{ii} can easily be computed for 1 ≤ i ≤ n by an inspection of w and the grammar.

•
$$A \stackrel{*}{\Rightarrow} w_{ij}$$
 if
• There is a production $A \rightarrow BC$, and
• $B \stackrel{*}{\Rightarrow} w_{i,k}$ and $C \stackrel{*}{\Rightarrow} w_{k+1,j}$ for some $k, i \le k < j$.
• So

$$V_{i,j} = \bigcup_{i \leq k < j} \{ A : | A \rightarrow BC \text{ and } B \in V_{i,k} \text{ and } C \in V_{k+1,j} \}$$

١

$$V_{i,j} = \bigcup_{i \le k < j} \{ A : A \to BC \text{ and } B \in V_{i,k} \text{ and } C \in V_{k+1,j} \}$$

• Compute in the following order:

• For example to compute *V*_{2,4} one needs *V*_{2,2} and *V*_{3,4}, and then *V*_{2,3} and *V*_{4,4} all of which are computed earlier!

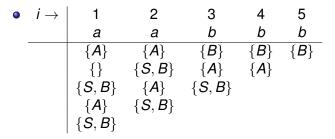
1) for i=1 to n do // Initialization
2)
$$V_{i,i} = \{A \mid A \rightarrow a \text{ is a rule and } w_{i,i} = a\}$$

3) for j=2 to n do
4) for i=1 to n-j+1 do
5) begin
6) $V_{i,j} = \{\};$ // Set $V_{i,j}$ to empty set
7) for k=1 to j-1 do
8) $V_{i,j} = V_{i,j} \cup \{A : \mid A \rightarrow BC \text{ is a rule and} B \in V_{i,k} \text{ and } C \in V_{k+1,j}\}$

- This algorithm has 3 nested loops with the bound for each being O(n). So the overall time is $O(n^3)$.
- The size of the grammar factors in as a constant factor as it is independent of n – the length of the string.
- Certain special CFGs have subcubic recognition algorithms.

THE CYK ALGORITHM IN ACTION

- Consider the following grammar in CNF
 - $S \rightarrow AB$
 - $A \rightarrow BB \mid a$
 - $B \rightarrow AB \mid b$
- The input string is *w* = *aabbb*



• Since $S \in V_{1,5}$, this string is in L(G).

THE CYK ALGORITHM IN ACTION

- Consider the following grammar in CNF
 - $S \rightarrow AB$
 - $A \rightarrow BB \mid a$
 - $B \rightarrow AB \mid b$
- Let us see how we compute $V_{2,4}$
 - We need to look at $V_{2,2}$ and $V_{3,4}$
 - We need to look at $V_{2,3}$ and $V_{4,4}$