Formal Languages, Automata and Computation

Identifying Nonregular languages

Pumping Lemma

Carnegie Mellon University in Qatar

SUMMARY

- DFAs to Regular Expressions
- Minimizing DFA's
- Closure Properties
- Decision Properties

Identifying Nonregular Languages

- Given language L how can we check if it is not a regular language ?
- The answer is not obvious.
- Not being able to design a DFA does not constitute a proof!

The Pigeonhole Principle

- If there are n pigeons and m holes and $n>m$, then at least one hole has >1 pigeons.

- What do pigeons have to do with regular languages?

The Pigeonhole Principle

- Consider the DFA

- With strings a, $a a$ or $a a b$, no state is repeated
- With strings aabb, bbaa, abbabb or abbbabbabb, a state is repeated
- In fact, for any ω where $|\omega| \geq 4$, some state has to repeat? Why?

The Pigeonhole Principle

- When traversing the DFA with the string ω, if the number of transitions \geq number of states, some state q has to repeat!
- Transitions are pigeons, states are holes.

Pumping a String

- Consider a string $\omega=x y z$

- $|y| \geq 1$
- $|x y| \leq m$ (m the number of states)

Pumping a String

- Consider a string $\omega=x y z$

- If $\omega=x y z \in L$ that so are $x y^{i} z$ for all $i \geq 0$
- The substring y can be pumped.
- So if a DFA accepts a sufficiently long string, then it accepts an infinite number of strings!

A Nonregular Language

- Consider the language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- Suppose L is regular and a DFA with p states accepts L
- Consider $\delta^{*}\left(q_{0}, a^{i}\right)$ for $i=0,1,2, \ldots$
- Since there are infinite i 's, but a finite number states, the Pigeonhole Principle tells us that there is some state q such that
- $\delta^{*}\left(q_{0}, a^{n}\right)=q$ and $\delta^{*}\left(q_{0}, a^{m}\right)=q$, but $n \neq m$
- Thus if M accepts $a^{n} b^{n}$ it must also accept $a^{m} b^{n}$, since in state q is does not "remember" if there were n or m a's.
- Thus M can not exist and L is not regular.

The Pumping Lemma

Lemma

Given an infinite regular language L

- There exists an integer m such that
(2) for any string $\omega \in L$ with length $|\omega| \geq m$,
(3) we can write $\omega=x y z$ with $|y| \geq 1$ and $|x y| \leq m$,
- such that the strings $x y^{i} z$ for $i=0,1,2 \ldots$ are also in L
Thus any sufficiently long string can be "pumped."

Proof Idea

We already have some hints.

The Pumping Lemma

PROOF.

- If L is regular then M with p states recognizes L. Take a string $s=s_{1} s_{2} \cdots s_{n} \in L$ with $n \geq p$.
- Let $r_{1} r_{2} \cdots r_{n+1}$ be the sequence of $n+1(\geq p+1)$ states M enters while processing $s\left(r_{i+1}=\delta\left(r_{i}, s_{i}\right)\right)$
- r_{j} and r_{l} (for some j and $I(j<I \leq p+1)$ should be the same state (Pigeons!)
- Now let $x=s_{1} \cdots s_{j-1}, y=s_{j} \cdots s_{l-1}$, and $z=s_{l} \cdots s_{n}$.
- x takes M from r_{1} to r_{j}, y takes M from r_{j} to r_{j}, and z takes M from r_{j} to r_{n+1}, which is an accepting state. So M must also accept $x y^{i} z$ for $i \geq 0$.
- We know $j \neq I$, so $|y|>0$ and $I \leq p+1$ so $|x y| \leq p$

Using the Pumping Lemma

- If a language violates the pumping lemma, then it can not be regular.
- Two Player Proof Strategy:
- Opponent picks m
- Given m, we pick ω in L such that $|\omega| \geq m$. We are free to choose ω as we please, as long as those conditions are satisfied.
- Opponent picks $\omega=x y z$ - the decomposition subject to $|x y| \leq m$ and $|y| \geq 1$.
- We try to pick an i such that $x y^{i} z \notin L$
- If for all possible decompositions the opponent can pick, we can find an i, then L is not regular.

Using the Pumping Lemma

Consider $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

- Opponent picks m
- We pick $\omega=a^{m} b^{m}$. Clearly $|\omega| \geq m$.
- Since the first m symbols are all a's, the opponent is forced to pick $x=a^{j}, y=a^{k}$ and $z=a^{\prime} b^{m}$, with $j+k \leq m$ and $I \geq 0$ and $j+k+I=m$

$$
\omega=\underbrace{a \cdots a}_{x} \underbrace{a \cdots a}_{y} \underbrace{a \cdots a b \cdots b}_{z}
$$

- We choose $i=2$ which means $a^{j} a^{k} a^{k} a^{\prime} b^{m}=a^{m+k} b^{m} \in L$ but it can not be!
- The opponent does not have any other way of partitioning ω, so L is not regular.

Using the Pumping Lemma

Consider $L=\left\{\omega \mid n_{a}(\omega)<n_{b}(\omega)\right\}$

- Opponent picks m
- We pick $a^{m} b^{m+1}$. Clearly $|\omega| \geq m$.
- Opponent is forced to pick $y=a^{k}$ for some $1 \leq k \leq m$
- We pick $i=2$ which means $a^{m+k} b^{m+1} \in L$ but it can not be!
- The opponent does not have any other way of partitioning ω, so L is not regular.

Using the Pumping Lemma

Consider $L=\left\{1^{n^{2}} \mid n \geq 0\right\}$

- Opponent picks m
- We pick $\omega=1^{m^{2}}$. Clearly $|\omega| \geq m$.
- Opponent chooses any partitioning of $\omega=x y z=1^{j} 1^{k} 1^{\prime}$ with $1 \leq k \leq m$ and $j+k \leq m$
- With $|x y z|=m^{2}$ and $i=2, m^{2}<|x y y z| \leq m^{2}+m$. But $m^{2}<m^{2}+m<m^{2}+2 m+1=(m+1)^{2}$
- $|x y y z|$ lies between to perfect squares. So $x y y z \notin L$.
- L can not be regular.

SUMMARY

- Symbols, Strings, Languages, Set of all Languages
- DFAs, Regular Languages, NFAs, Regular Expressions
- DFA \Leftrightarrow REs
- Minimal DFAs
- Closure properties, Decision properties
- Nonregular Languages, Pumping Lemma

Let's See if we can tie things together

True or False?

(1) If L_{1} is not regular and L_{2} is regular then $L=L_{1} L_{2}=\left\{x y: x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$ is not regular.
(2) $L=\left\{a^{i} b^{j} a^{k}: i+k<10\right.$ and $\left.j>10\right\}$ is not regular.
(3) $L=\left\{w \in\{a, b\}^{*}: n_{a}(w) \times n_{b}(w)=0 \bmod 2\right\}$ is regular.
(4) $L=\left\{a^{i} b^{j}: i+j \geq 10\right\}$ is not regular.
(5) $L=\left\{a^{i} b^{j}: i-j>10\right\}$ is not regular.
(6) $L=\left\{a^{i} a^{j}: i / j=5\right\}$ is not regular.
(0) If $L_{1} \cap L_{2}$ is regular then L_{1} and L_{2} are regular.
(8) If $L_{1} \subseteq L_{2}$ and L_{2} is regular, then L_{1} must be regular.

LET'S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

(1) There are subsets of a regular language which are not regular.
(2) If L_{1} and L_{2} are nonregular, then $L_{1} \cup L_{2}$ must be nonregular.
(3) If F is a finite language and L is some language, and $L-F$ is a regular language, then L must be a regular language.
(4) $L=\{w \in\{a, b\}$: the number a's times the number of b 's in w is greater than 1333$\}$ is not regular.
(5) If the start state of a DFA has a self-loop, then the language accepted by that DFA is infinite.
(6) The set of strings of 0 's, 1 's, and 2's with at least 100 of each of the three symbols is a regular language.
(3) The union of a countable number of regular languages is regular.

LET'S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

(1) $L=\left\{u w w^{R} v \mid u, v, w \in\{a, b\}^{+}\right\}$is not regular.
(2) If L is nonregular then \bar{L} is nonregular.
(3) If $L_{1} \cap L_{2}$ is finite then L_{1} and L_{2} are regular.
(4) The family of regular languages is closed under nor operation, $\operatorname{nor}\left(L_{1}, L_{2}\right)=\left\{w: w \notin L_{1}\right.$ and $\left.w \notin L_{2}\right\}$
(3) If L is a regular language, then so is $\{x y: x \in L$ and $y \notin L\}$
(6) Let L be a regular language over $\Sigma=\{a, b, c\}$. Let us define $\operatorname{SINGLE}(L)=\{w \in L$: all symbols in w are the same $\}$. $\operatorname{SINGLE}(L)$ is regular.

LET'S SEE IF WE CAN TIE THINGS TOGETHER

Let $\Sigma=\{a\}$ and let M be a deterministic finite state acceptor that accepts a regular language $L \subseteq \Sigma^{*}$.
A) Describe with very simple diagrams, possible structures of the state graph of M, if M has only a single final state. Show any relevant parameters that you feel are necessary.
в) Describe with a regular expression the language accepted by M, if M has a single final state. If necessary, use any parameters you showed in part a).
c) Describe mathematically the language accepted by M, if M has more than one final state.

Where do we go from here?

How can we characterize these languages just outside the boundary of RLs?

