FORMAL LANGUAGES, AUTOMATA AND COMPUTATION Identifying Nonregular languages

PUMPING LEMMA

Carnegie Mellon University in Qatar

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 5

SUMMARY

- DFAs to Regular Expressions
- Minimizing DFA's
- Closure Properties
- Decision Properties

IDENTIFYING NONREGULAR LANGUAGES

- Given language *L* how can we check if it is not a regular language ?
 - The answer is not obvious.
 - Not being able to design a DFA does not constitute a proof!

THE PIGEONHOLE PRINCIPLE

 If there are *n* pigeons and *m* holes and *n* > *m*, then at least one hole has > 1 pigeons.

• What do pigeons have to do with regular languages?

(CARNEGIE MELLON UNIVERSITY IN QATAR)

SLIDES FOR 15-453 LECTURE 5

THE PIGEONHOLE PRINCIPLE

Consider the DFA

- With strings a, aa or aab, no state is repeated
- With strings *aabb*, *bbaa*, *abbabb* or *abbbabbabb*, a state is repeated
- In fact, for any ω where $|\omega| \ge 4$, some state has to repeat? Why?

THE PIGEONHOLE PRINCIPLE

- When traversing the DFA with the string ω, if the number of transitions ≥ number of states, some state q has to repeat!
- Transitions are pigeons, states are holes.

PUMPING A STRING

• Consider a string $\omega = xyz$

|y| ≥ 1
|xy| ≤ m (m the number of states)

PUMPING A STRING

• Consider a string $\omega = xyz$

- If $\omega = xyz \in L$ that so are $xy^i z$ for all $i \ge 0$
- The substring *y* can be pumped.
- So if a DFA accepts a sufficiently long string, then it accepts an infinite number of strings!

A NONREGULAR LANGUAGE

- Consider the language $L = \{a^n b^n | n \ge 0\}$
- Suppose L is regular and a DFA with p states accepts L
- Consider $\delta^*(q_0, a^i)$ for i = 0, 1, 2, ...
- Since there are infinite *i*'s, but a finite number states, the Pigeonhole Principle tells us that there is some state *q* such that
 - $\delta^*(q_0, a^n) = q$ and $\delta^*(q_0, a^m) = q$, but $n \neq m$
 - Thus if *M* accepts *aⁿbⁿ* it must also accept *a^mbⁿ*, since in state *q* is does not "remember" if there were *n* or *m a*'s.
- Thus *M* can not exist and *L* is not regular.

THE PUMPING LEMMA

LEMMA

Given an infinite regular language L

- There exists an integer m such that
- for any string $\omega \in L$ with length $|\omega| \geq m$,
- we can write $\omega = xyz$ with $|y| \ge 1$ and $|xy| \le m$,
- such that the strings xyⁱz for i = 0, 1, 2... are also in L

Thus any sufficiently long string can be "pumped."

PROOF IDEA We already have some hints.

(CARNEGIE MELLON UNIVERSITY IN QATAR)

THE PUMPING LEMMA

PROOF.

- If *L* is regular then *M* with *p* states recognizes *L*. Take a string $s = s_1 s_2 \cdots s_n \in L$ with $n \ge p$.
- Let r₁r₂ ··· r_{n+1} be the sequence of n + 1(≥ p + 1) states M enters while processing s (r_{i+1} = δ(r_i, s_i))
- *r_j* and *r_l* (for some *j* and *l* (*j* < *l* ≤ *p* + 1) should be the same state (Pigeons!)
- Now let $x = s_1 \cdots s_{j-1}$, $y = s_j \cdots s_{l-1}$, and $z = s_l \cdots s_n$.
- *x* takes *M* from r_1 to r_j , *y* takes *M* from r_j to r_j , and *z* takes *M* from r_j to r_{n+1} , which is an accepting state. So *M* must also accept $xy^i z$ for $i \ge 0$.
- We know $j \neq l$, so |y| > 0 and $l \leq p + 1$ so $|xy| \leq p$

- If a language violates the pumping lemma, then it can not be regular.
- Two Player Proof Strategy:
 - Opponent picks *m*
 - Given *m*, we pick ω in *L* such that |ω| ≥ *m*. We are free to choose ω as we please, as long as those conditions are satisfied.
 - Opponent picks $\omega = xyz$ the decomposition subject to $|xy| \le m$ and $|y| \ge 1$.
 - We try to pick an *i* such that $xy^i z \notin L$
 - If for all possible decompositions the opponent can pick, we can find an *i*, then *L* is not regular.

Consider
$$L = \{a^n b^n | n \ge 0\}$$

- Opponent picks *m*
- We pick $\omega = a^m b^m$. Clearly $|\omega| \ge m$.
- Since the first *m* symbols are all *a*'s, the opponent is forced to pick $x = a^j$, $y = a^k$ and $z = a^l b^m$, with $j + k \le m$ and $l \ge 0$ and j + k + l = m

$$\omega = \underbrace{a \cdots a}_{x} \underbrace{a \cdots a}_{y} \underbrace{a \cdots a}_{z} \underbrace{a \cdots b}_{z}$$

 We choose *i* = 2 which means *aⁱa^ka^ka^lb^m* = a^{m+k}b^m ∈ L but it can not be!
 The opponent does not have any other way of

partitioning ω , so *L* is not regular.

(CARNEGIE MELLON UNIVERSITY IN QATAR)

SLIDES FOR 15-453 LECTURE 5

Consider
$$L = \{ \omega | n_a(\omega) < n_b(\omega) \}$$

- Opponent picks *m*
- We pick $a^m b^{m+1}$. Clearly $|\omega| \ge m$.
- Opponent is forced to pick $y = a^k$ for some $1 \le k \le m$
- We pick *i* = 2 which means *a^{m+k}b^{m+1}* ∈ *L* but it can not be!
- The opponent does not have any other way of partitioning ω, so L is not regular.

Consider
$$L = \{1^{n^2} | n \ge 0\}$$

- Opponent picks *m*
- We pick $\omega = 1^{m^2}$. Clearly $|\omega| \ge m$.
- Opponent chooses any partitioning of $\omega = xyz = 1^j 1^k 1^l$ with $1 \le k \le m$ and $j + k \le m$
- With $|xyz| = m^2$ and i = 2, $m^2 < |xyyz| \le m^2 + m$. But $m^2 < m^2 + m < m^2 + 2m + 1 = (m + 1)^2$
- *xyyz* | lies between to perfect squares. So xyyz ∉ L.
- *L* can not be regular.

SUMMARY

- Symbols, Strings, Languages, Set of all Languages
- DFAs, Regular Languages, NFAs, Regular Expressions
- DFA \Leftrightarrow REs
- Minimal DFAs
- Closure properties, Decision properties
- Nonregular Languages, Pumping Lemma

LET'S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

- If L_1 is not regular and L_2 is regular then $L = L_1L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$ is not regular.
- 2 $L = \{a^i b^j a^k : i + k < 10 \text{ and } j > 10\}$ is not regular.
- $L = \{w \in \{a, b\}^* : n_a(w) \times n_b(w) = 0 \text{ mod } 2\}$ is regular.
- $L = \{a^i b^j : i + j \ge 10\}$ is not regular.
- $L = \{a^i b^j : i j > 10\}$ is not regular.
- $L = \{a^{i}a^{j} : i/j = 5\}$ is not regular.
- If $L_1 \cap L_2$ is regular then L_1 and L_2 are regular.
- So If $L_1 \subseteq L_2$ and L_2 is regular, then L_1 must be regular.

True or False?

- There are subsets of a regular language which are not regular.
- **2** If L_1 and L_2 are nonregular, then $L_1 \cup L_2$ must be nonregular.
- If F is a finite language and L is some language, and L F is a regular language, then L must be a regular language.
- $L = \{w \in \{a, b\} : \text{the number } a$'s times the number of *b*'s in *w* is greater than 1333} is not regular.
- If the start state of a DFA has a self-loop, then the language accepted by that DFA is infinite.
- The set of strings of 0's, 1's, and 2's with at least 100 of each of the three symbols is a regular language.
- The union of a countable number of regular languages is regular.

LET'S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

- $L = \{uww^R v | u, v, w \in \{a, b\}^+\}$ is not regular.
- **2** If *L* is nonregular then \overline{L} is nonregular.
- If $L_1 \cap L_2$ is finite then L_1 and L_2 are regular.
- The family of regular languages is closed under *nor* operation, $nor(L_1, L_2) = \{w : w \notin L_1 \text{ and } w \notin L_2\}$
- So If L is a regular language, then so is $\{xy: x \in L \text{ and } y \notin L\}$
- Let *L* be a regular language over $\Sigma = \{a, b, c\}$. Let us define $SINGLE(L) = \{w \in L : all symbols in w are the same\}$. SINGLE(L) is regular.

LET'S SEE IF WE CAN TIE THINGS TOGETHER

Let $\Sigma = \{a\}$ and let *M* be a *deterministic finite state acceptor* that accepts a regular language $L \subseteq \Sigma^*$.

- A) Describe with very simple diagrams, possible structures of the state graph of *M*, if M has only a single final state. Show any relevant parameters that you feel are necessary.
- B) Describe with a regular expression the language accepted by *M*, if *M* has a single final state. If necessary, use any parameters you showed in part *a*).
- c) Describe *mathematically* the language accepted by *M*, if *M* has more than one final state.

WHERE DO WE GO FROM HERE?

