FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

REGULAR EXPRESSIONS

Carnegie Mellon University in Qatar

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 4

Spring 2011 1 / 26

Nondeterminism

• Clone the FA at choice points

- Clone the FA at choice points
- Guess and verify

- Clone the FA at choice points
- Guess and verify
- Nondeterministic FA

- Clone the FA at choice points
- Guess and verify
- Nondeterministic FA
 - Multiple transitions from a state with the same input symbol

Nondeterminism

- Clone the FA at choice points
- Guess and verify

Nondeterministic FA

- Multiple transitions from a state with the same input symbol
- *e*-transitions

- Clone the FA at choice points
- Guess and verify
- Nondeterministic FA
 - Multiple transitions from a state with the same input symbol
 - *e*-transitions
- NFAs are equivalent to DFAs

Nondeterminism

- Clone the FA at choice points
- Guess and verify

Nondeterministic FA

- Multiple transitions from a state with the same input symbol
- *e*-transitions

• NFAs are equivalent to DFAs

• Determinization procedure builds a DFA with up to 2^k states for an NFA with *k* states.

THEOREM

The class of regular languages is closed under the union operation.

THEOREM PROOF IDEA BASED ON NFAS The class of regular languages is closed under the union operation. N, N. F

N₂

THEOREM

The class of regular languages is closed under the concatenation operation.

THEOREMPRThe class of
regular
languages is
closed under the
concatenation
operation.

THEOREM

The class of regular languages is closed under the star operation.

THEOREM

The class of regular languages is closed under the star operation.

 DFAs are finite descriptions of (finite or infinite) sets of strings

- DFAs are finite descriptions of (finite or infinite) sets of strings
 - Finite number of symbols, states, transitions

- DFAs are finite descriptions of (finite or infinite) sets of strings
 - Finite number of symbols, states, transitions
- Regular Expressions provide an algebraic expression framework to describe the same class of strings

- DFAs are finite descriptions of (finite or infinite) sets of strings
 - Finite number of symbols, states, transitions
- Regular Expressions provide an algebraic expression framework to describe the same class of strings
- Thus, DFAs and Regular Expressions are equivalent.

• For every regular expression, there is a corresponding regular set or language

- For every regular expression, there is a corresponding regular set or language
- *R*, *R*₁, *R*₂ are regular expressions; *L*(*R*) denotes the corresponding regular set

- For every regular expression, there is a corresponding regular set or language
- *R*, *R*₁, *R*₂ are regular expressions; *L*(*R*) denotes the corresponding regular set

Regular Expression Regular Set

- For every regular expression, there is a corresponding regular set or language
- *R*, *R*₁, *R*₂ are regular expressions; *L*(*R*) denotes the corresponding regular set

Regular ExpressionRegular Set ϕ {}

- For every regular expression, there is a corresponding regular set or language
- *R*, *R*₁, *R*₂ are regular expressions; *L*(*R*) denotes the corresponding regular set

Regular Expression	Regular Set
ϕ	{}
a for $a \in \Sigma$	{ a }

- For every regular expression, there is a corresponding regular set or language
- *R*, *R*₁, *R*₂ are regular expressions; *L*(*R*) denotes the corresponding regular set

- For every regular expression, there is a corresponding regular set or language
- *R*, *R*₁, *R*₂ are regular expressions; *L*(*R*) denotes the corresponding regular set

Regular Expression	Regular Set
ϕ	{}
a for $a \in \Sigma$	{ a }
ϵ	$\{\epsilon\}$
$(\textit{R}_1 \cup \textit{R}_2)$	$L(R_1) \cup L(R_2)$

- For every regular expression, there is a corresponding regular set or language
- *R*, *R*₁, *R*₂ are regular expressions; *L*(*R*) denotes the corresponding regular set

Regular Expression	Regular Set
ϕ	{}
a for $a \in \Sigma$	{ a }
ϵ	$\{\epsilon\}$
$(\textit{R}_1 \cup \textit{R}_2)$	$L(R_1) \cup L(R_2)$
(R_1R_2)	$L(R_1)L(R_2)$

- For every regular expression, there is a corresponding regular set or language
- *R*, *R*₁, *R*₂ are regular expressions; *L*(*R*) denotes the corresponding regular set

Regular Expression	Regular Set
ϕ	{}
a for $a \in \Sigma$	{ a }
ϵ	$\{\epsilon\}$
$(R_1\cup R_2)$	$L(R_1) \cup L(R_2)$
(R_1R_2)	$L(R_1)L(R_2)$
(R^*)	$L(R)^*$

• Also some books use $R_1 + R_2$ to denote union.

- Also some books use $R_1 + R_2$ to denote union.
- In (\ldots) , the parenthesis can be deleted

- Also some books use $R_1 + R_2$ to denote union.
- In (\ldots) , the parenthesis can be deleted
 - In which case, interpretation is done in the precedence order: star, concatenation and then union.

- Also some books use $R_1 + R_2$ to denote union.
- $\bullet~$ In $(\ldots),$ the parenthesis can be deleted
 - In which case, interpretation is done in the precedence order: star, concatenation and then union.
- $R^+ = RR^*$ and R^k for k-fold concatenation are useful shorthands.

Regular Expression 0*10*

Regular Language

 \rightarrow

Regular Expression 0*10*

Regular Language

 $\rightarrow \{\omega | \omega \text{ contains a single 1} \}$

 $\begin{array}{c} \text{Regular Expression} \\ 0^*10^* \\ (0\cup1)^*1(0\cup1)^* \end{array}$

Regular Language

 $\rightarrow \{\omega | \omega \text{ contains a single 1} \}$

 \rightarrow

 $\begin{array}{c} \text{Regular Expression} \\ 0^*10^* \\ (0\cup1)^*1(0\cup1)^* \end{array}$

Regular Language

- $\rightarrow \{\omega | \omega \text{ contains a single 1} \}$
- $\rightarrow \{\omega | \omega \text{ has at least one 1} \}$

Regular Expression 0^*10^* $(0 \cup 1)^*1(0 \cup 1)^*$ $0(0 \cup 1)^*0 \cup 1(0 \cup 1)^*1 \cup 0 \cup 1$

Regular Language

 $\rightarrow \{\omega | \omega \text{ contains a single 1} \}$

$$\rightarrow \{\omega | \omega \text{ has at least one } \mathbf{1} \}$$

 \rightarrow

REGULAR EXPRESSION EXAMPLES

$\begin{array}{c} \mbox{Regular Expression} \\ 0^*10^* \\ (0 \cup 1)^*1(0 \cup 1)^* \\ 0(0 \cup 1)^*0 \cup 1(0 \cup 1)^*1 \cup 0 \cup 1 \end{array}$

Regular Language

- $\rightarrow \{\omega | \omega \text{ contains a single 1} \}$
- $\rightarrow \{\omega | \omega \text{ has at least one 1} \}$
- $\label{eq:constants} \begin{array}{l} \rightarrow \quad \{ \omega | \omega \text{ starts and ends} \\ \text{ with the same symbol} \} \end{array}$

REGULAR EXPRESSION EXAMPLES

$\begin{array}{c} \mbox{Regular Expression} \\ 0^*10^* \\ (0 \cup 1)^*1(0 \cup 1)^* \\ 0(0 \cup 1)^*0 \cup 1(0 \cup 1)^*1 \cup 0 \cup 1 \end{array}$

(0*10*1)*0*

Regular Language

 $\rightarrow \{\omega | \omega \text{ contains a single 1} \}$

$$\rightarrow \{ \omega | \omega \text{ has at least one 1} \}$$

 \rightarrow

 $\rightarrow \ \ \{ \omega | \omega \text{ starts and ends} \\ \text{ with the same symbol} \}$

REGULAR EXPRESSION EXAMPLES

Regular Expression 0*10* $(0 \cup 1)*1(0 \cup 1)*$ $0(0 \cup 1)*0 \cup 1(0 \cup 1)*1 \cup 0 \cup 1$

(0*10*1)*0*

Regular Language

- $\rightarrow \{\omega | \omega \text{ contains a single 1} \}$
- $\rightarrow \{\omega | \omega \text{ has at least one 1} \}$
- $\begin{tabular}{lll} \label{eq:bound} \rightarrow & \{ \omega | \omega \mbox{ starts and ends} \\ & \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular}$

$$\rightarrow \{\omega | n_1(\omega) \text{ is even} \}$$

All strings with at least one pair of consecutive 0s

All strings with at least one pair of consecutive 0s

(0 ∪ 1)*00(0 ∪ 1)*

- All strings with at least one pair of consecutive 0s
 (0 ∪ 1)*00(0 ∪ 1)*
- All strings such that fourth symbol from the end is a 1

- All strings with at least one pair of consecutive 0s
 (0 ∪ 1)*00(0 ∪ 1)*
- All strings such that fourth symbol from the end is a 1
 - $(0 \cup 1)^* \mathbf{1} (0 \cup 1) (0 \cup 1) (0 \cup 1)$

- All strings with at least one pair of consecutive 0s
 (0 ∪ 1)*00(0 ∪ 1)*
- All strings such that fourth symbol from the end is a 1
 - $(0 \cup 1)^* \mathbf{1} (0 \cup 1) (0 \cup 1) (0 \cup 1)$
- All strings with no pair of consecutive 0s

- All strings with at least one pair of consecutive 0s
 (0 ∪ 1)*00(0 ∪ 1)*
- All strings such that fourth symbol from the end is a 1
 - $(0 \cup 1)^* \mathbf{1} (0 \cup 1) (0 \cup 1) (0 \cup 1)$
- All strings with no pair of consecutive 0s

(1*011*)*(0 ∪ ε) ∪ 1*

- All strings with at least one pair of consecutive 0s
 (0 ∪ 1)*00(0 ∪ 1)*
- All strings such that fourth symbol from the end is a 1
 - $(0 \cup 1)^* \mathbf{1} (0 \cup 1) (0 \cup 1) (0 \cup 1)$
- All strings with no pair of consecutive 0s

• $(1^*011^*)^*(0 \cup \epsilon) \cup 1^*$

Strings consist of repetitions of 1 or 01 or two boundary cases: (1 ∪ 01)*(0 ∪ ε)

- All strings with at least one pair of consecutive 0s
 (0 ∪ 1)*00(0 ∪ 1)*
- All strings such that fourth symbol from the end is a 1
 - $(0 \cup 1)^* \mathbf{1} (0 \cup 1) (0 \cup 1) (0 \cup 1)$
- All strings with no pair of consecutive 0s

• $(1^*011^*)^*(0 \cup \epsilon) \cup 1*$

- Strings consist of repetitions of 1 or 01 or two boundary cases: (1 ∪ 01)*(0 ∪ ε)
- All strings that do not end in 01.

- All strings with at least one pair of consecutive 0s
 (0 ∪ 1)*00(0 ∪ 1)*
- All strings such that fourth symbol from the end is a 1
 - $(0 \cup 1)^* \mathbf{1} (0 \cup 1) (0 \cup 1) (0 \cup 1)$
- All strings with no pair of consecutive 0s

(1*011*)*(0 ∪ ε) ∪ 1*

- Strings consist of repetitions of 1 or 01 or two boundary cases: (1 ∪ 01)*(0 ∪ ε)
- All strings that do not end in 01.
 - $(0 \cup 1)^* (00 \cup 10 \cup 11) \cup 0 \cup 1 \cup \epsilon$

All strings over Σ = {a, b, c} that contain every symbol at least once.

- All strings over Σ = {a, b, c} that contain every symbol at least once.
- (a ∪ b ∪ c)*a(a ∪ b ∪ c)*b(a ∪ b ∪ c)*c(a ∪ b ∪ c)*∪ (a ∪ b ∪ c)*a(a ∪ b ∪ c)*c(a ∪ b ∪ c)*b(a ∪ b ∪ c)*∪ (a ∪ b ∪ c)*b(a ∪ b ∪ c)*a(a ∪ b ∪ c)*c(a ∪ b ∪ c)*∪ (a ∪ b ∪ c)*b(a ∪ b ∪ c)*c(a ∪ b ∪ c)*a(a ∪ b ∪ c)*∪ (a ∪ b ∪ c)*c(a ∪ b ∪ c)*a(a ∪ b ∪ c)*b(a ∪ b ∪ c)*∪ (a ∪ b ∪ c)*c(a ∪ b ∪ c)*b(a ∪ b ∪ c)*a(a ∪ b ∪ c)*

All strings over Σ = {a, b, c} that contain every symbol at least once.

All strings over Σ = {a, b, c} that contain every symbol at least once.

- DFAs and REs may need different ways of looking at the problem.
 - For the DFA, you count symbols
 - For the RE, you enumerate all possible patterns

• $\mathbf{R} \cup \phi = \mathbf{R}$

• • • • • • • • • • • •

R ∪ φ = **R R**ϵ = ϵ**R** = **R**

< □ > < □ > < □ > < □ >

- $\mathbf{R} \cup \phi = \mathbf{R}$
- $\mathbf{R}\epsilon = \epsilon \mathbf{R} = \mathbf{R}$
- $\bullet \ \phi^* = \epsilon$

< □ > < □ > < □ > < □ > .

- $\mathbf{R} \cup \phi = \mathbf{R}$
- $\mathbf{R}\epsilon = \epsilon \mathbf{R} = \mathbf{R}$
- $\bullet \ \phi^* = \epsilon$
- Note that we do not have explicit operators for intersection or complementation!

DIGRESSION: RES IN REAL LIFE

- Linux/Unix Shell, Perl, Awk, Python all have built in regular expression support for pattern matching functionality
- See http://www.wdvl.com/Authoring/ Languages/Perl/PerlfortheWeb/ perlintro2_table1.html

DIGRESSION: RES IN REAL LIFE

- Linux/Unix Shell, Perl, Awk, Python all have built in regular expression support for pattern matching functionality
- See http://www.wdvl.com/Authoring/ Languages/Perl/PerlfortheWeb/ perlintro2_table1.html
- Mostly some syntactic extensions/changes to basic regular expressions with some additional functionality for remembering matches

DIGRESSION: RES IN REAL LIFE

- Linux/Unix Shell, Perl, Awk, Python all have built in regular expression support for pattern matching functionality
- See http://www.wdvl.com/Authoring/ Languages/Perl/PerlfortheWeb/ perlintro2_table1.html
- Mostly some syntactic extensions/changes to basic regular expressions with some additional functionality for remembering matches
- Substring matches in a string!
- Search for and download *Regex Coach* to learn and experiment with regular expression matching

THEOREM

A language is regular if and only if some regular expression describes it.

THEOREM

A language is regular if and only if some regular expression describes it.

LEMMA- THE *if* PART

If a language is described by a regular expression, then it is regular

THEOREM

A language is regular if and only if some regular expression describes it.

LEMMA- THE *if* PART

If a language is described by a regular expression, then it is regular

PROOF IDEA

Inductively convert a given regular expression to an NFA.

CONVERTING RES TO NFAS: BASIS CASES

q0

Regular Expression Corresponding NFA

CONVERTING RES TO NFAS: BASIS CASES

Regular Expression Corresponding NFA

CONVERTING RES TO NFAS: BASIS CASES

Regular Expression Corresponding NFA

CONVERTING RES TO NFAS

Union

• Let N_1 and N_2 be NFAs for R_1 and R_2 respectively. Then the NFA for $\mathbf{R_1} \cup \mathbf{R_2}$ is

SLIDES FOR 15-453 LECTURE 4

Concatenation

 Let N₁ and N₂ be NFAs for R₁ and R₂ respectively. Then the NFA for R₁R₂ is

CONVERTING RES TO NFAS: STAR

Star

• Let *N* be NFAs for *R*. Then the NFA for \mathbf{R}^* is

RE TO NFA CONVERSION EXAMPLE

• Let's convert $(\mathbf{a} \cup \mathbf{b})^* \mathbf{aba}$ to an NFA.

RE TO NFA TO DFA

• Regular Expression \rightarrow NFA (possibly with ϵ -transitions)

RE TO NFA TO DFA

- Regular Expression \rightarrow NFA (possibly with ϵ -transitions)
- \bullet NFA \rightarrow DFA via determinization

THEOREM

A language is regular if and only if some regular expression describes it.

THEOREM

A language is regular if and only if some regular expression describes it.

LEMMA – THE only if PART

If a language is regular then it is described by a regular expression

THEOREM

A language is regular if and only if some regular expression describes it.

LEMMA – THE only if PART

If a language is regular then it is described by a regular expression

PROOF IDEA

• Generalized transitions: label transitions with regular expressions

THEOREM

A language is regular if and only if some regular expression describes it.

LEMMA – THE only if PART

If a language is regular then it is described by a regular expression

PROOF IDEA

- Generalized transitions: label transitions with regular expressions
- Generalized NFAs (GNFA)

Theorem

A language is regular if and only if some regular expression describes it.

LEMMA – THE only if PART

If a language is regular then it is described by a regular expression

PROOF IDEA

- Generalized transitions: label transitions with regular expressions
- Generalized NFAs (GNFA)
- Iteratively eliminate states of the GNFA one by one, until only two states and a single generalized transition is left.

• DFAs have single symbols as transition labels

• If you are in state *p* and the next input symbol matches *a*, go to state *q*

DFAs have single symbols as transition labels

- If you are in state p and the next input symbol matches a, go to state q
- Now consider

DFAs have single symbols as transition labels

- If you are in state p and the next input symbol matches a, go to state q
- Now consider

 If you are in state p and a prefix of the remaining input matches the regular expression ab^{*} ∪ bc^{*} then go to state q

 A generalized transition is a transition whose label is a regular expression

• A generalized transition is a transition whose label is a regular expression

• A generalized transition is a transition whose label is a regular expression

• A Generalized NFA is an NFA with generalized transitions.

• A generalized transition is a transition whose label is a regular expression

• A Generalized NFA is an NFA with generalized transitions.

 In fact, all standard DFA transitions are generalized transitions with regular expressions of a single symbol!

(CARNEGIE MELLON UNIVERSITY IN QATAR)

SLIDES FOR 15-453 LECTURE 4

Spring 2011 24 / 26

Consider the 2-state DFA

Consider the 2-state DFA

SLIDES FOR 15-453 LECTURE 4

Spring 2011 25 / 26

Consider the 2-state DFA

• **0***1 takes the DFA from state q_0 to q_1

Consider the 2-state DFA

- **0***1 takes the DFA from state q_0 to q_1
- $(\mathbf{0} \cup \mathbf{10}^*\mathbf{1})^*$ takes the machine from q_1 back to q_1

Consider the 2-state DFA

- **0***1 takes the DFA from state q_0 to q_1
- $(\mathbf{0} \cup \mathbf{10}^*\mathbf{1})^*$ takes the machine from q_1 back to q_1
- So ?= 0*1(0 ∪ 10*1)* represents all strings that take the DFA from state q₀ to q₁

GENERALIZED NFAS

Take any NFA and transform it into a GNFA

• with only two states: one start and one accept

GENERALIZED NFAS

Take any NFA and transform it into a GNFA

- with only two states: one start and one accept
- with one generalized transition

GENERALIZED NFAS

- Take any NFA and transform it into a GNFA
 - with only two states: one start and one accept
 - with one generalized transition
- then we can "read" the regular expression from the label of the generalized transition (as in the example above)