Formal Languages, Automata and COMPUTATION

Regular Expressions

Carnegie Mellon University in Qatar

SUMMARY

- Nondeterminism
- Clone the FA at choice points

SUMMARY

- Nondeterminism
- Clone the FA at choice points
- Guess and verify

SUMMARY

- Nondeterminism
- Clone the FA at choice points
- Guess and verify
- Nondeterministic FA

SUMMARY

- Nondeterminism
- Clone the FA at choice points
- Guess and verify
- Nondeterministic FA
- Multiple transitions from a state with the same input symbol

SUMMARY

- Nondeterminism
- Clone the FA at choice points
- Guess and verify
- Nondeterministic FA
- Multiple transitions from a state with the same input symbol
- ϵ-transitions

SUMMARY

- Nondeterminism
- Clone the FA at choice points
- Guess and verify
- Nondeterministic FA
- Multiple transitions from a state with the same input symbol
- ϵ-transitions
- NFAs are equivalent to DFAs

SUMMARY

- Nondeterminism
- Clone the FA at choice points
- Guess and verify
- Nondeterministic FA
- Multiple transitions from a state with the same input symbol
- ϵ-transitions
- NFAs are equivalent to DFAs
- Determinization procedure builds a DFA with up to 2^{k} states for an NFA with k states.

Closure Theorems

THEOREM
The class of regular
languages is closed under the union operation.

Closure Theorems

THEOREM

The class of regular languages is closed under the union operation.

Closure Theorems

THEOREM
The class of regular languages is closed under the concatenation operation.

Closure Theorems

THEOREM

The class of regular languages is closed under the concatenation operation.

Proof Idea Based on NFAS

Closure Theorems

THEOREM
The class of regular
languages is closed under the star operation.

Closure Theorems

THEOREM

PROOF IDEA BASED ON NFAS

The class of regular languages is closed under the star operation.

Regular Expressions

- DFAs are finite descriptions of (finite or infinite) sets of strings

Regular Expressions

- DFAs are finite descriptions of (finite or infinite) sets of strings
- Finite number of symbols, states, transitions

Regular Expressions

- DFAs are finite descriptions of (finite or infinite) sets of strings
- Finite number of symbols, states, transitions
- Regular Expressions provide an algebraic expression framework to describe the same class of strings

Regular Expressions

- DFAs are finite descriptions of (finite or infinite) sets of strings
- Finite number of symbols, states, transitions
- Regular Expressions provide an algebraic expression framework to describe the same class of strings
- Thus, DFAs and Regular Expressions are equivalent.

Regular Expressions

- For every regular expression, there is a corresponding regular set or language

Regular Expressions

- For every regular expression, there is a corresponding regular set or language
- R, R_{1}, R_{2} are regular expressions; $L(R)$ denotes the corresponding regular set

Regular Expressions

- For every regular expression, there is a corresponding regular set or language
- R, R_{1}, R_{2} are regular expressions; $L(R)$ denotes the corresponding regular set

Regular Expression Regular Set

Regular Expressions

- For every regular expression, there is a corresponding regular set or language
- R, R_{1}, R_{2} are regular expressions; $L(R)$ denotes the corresponding regular set

Regular Expression Regular Set

Regular Expressions

- For every regular expression, there is a corresponding regular set or language
- R, R_{1}, R_{2} are regular expressions; $L(R)$ denotes the corresponding regular set

Regular Expression Regular Set

\mathbf{a} for $\mathrm{a} \in \Sigma \quad\{a\}$

Regular Expressions

- For every regular expression, there is a corresponding regular set or language
- R, R_{1}, R_{2} are regular expressions; $L(R)$ denotes the corresponding regular set

Regular Expression Regular Set

\{\} ϵ
\{a\}
$\{\epsilon\}$

Regular Expressions

- For every regular expression, there is a corresponding regular set or language
- R, R_{1}, R_{2} are regular expressions; $L(R)$ denotes the corresponding regular set

Regular Expression Regular Set
ϕ
a for $\mathbf{a} \in \Sigma$
ϵ
$\left(R_{1} \cup R_{2}\right) \quad L\left(R_{1}\right) \cup L\left(R_{2}\right)$

Regular Expressions

- For every regular expression, there is a corresponding regular set or language
- R, R_{1}, R_{2} are regular expressions; $L(R)$ denotes the corresponding regular set

Regular Expression Regular Set
ϕ

$$
\begin{gathered}
\left(R_{1} \cup R_{2}\right) \\
\left(R_{1} R_{2}\right)
\end{gathered}
$$

\mathbf{a} for $\mathrm{a} \in \Sigma$
ϵ
\{\}
\{a\}
$\{\epsilon\}$

$$
L\left(R_{1}\right) \cup L\left(R_{2}\right)
$$

$$
L\left(R_{1}\right) L\left(R_{2}\right)
$$

Regular Expressions

- For every regular expression, there is a corresponding regular set or language
- R, R_{1}, R_{2} are regular expressions; $L(R)$ denotes the corresponding regular set

Regular Expression Regular Set
ϕ

$$
\}
$$

\mathbf{a} for $\mathrm{a} \in \Sigma$

$$
\{a\}
$$

ϵ

$$
\{\epsilon\}
$$

$$
\begin{gathered}
\left(R_{1} \cup R_{2}\right) \\
\left(R_{1} R_{2}\right) \\
\left(R^{*}\right)
\end{gathered}
$$

$$
L\left(R_{1}\right) \cup L\left(R_{2}\right)
$$

$$
L\left(R_{1}\right) L\left(R_{2}\right)
$$

$$
L(R)^{*}
$$

Regular Expressions- More Syntax

Regular Expression Regular Set

$$
\begin{array}{cc}
\hline \phi & \} \\
\text { a for } \in \Sigma & \{a\} \\
\epsilon & \{\epsilon\} \\
\left(R_{1} \cup R_{2}\right) & L\left(R_{1}\right) \cup L\left(R_{2}\right) \\
\left(R_{1} \circ R_{2}\right) & L\left(R_{1}\right) \circ L\left(R_{2}\right) \\
\left(R^{*}\right) & L(R)^{*}
\end{array}
$$

- Also some books use $R_{1}+R_{2}$ to denote union.

Regular Expressions- More Syntax

Regular Expression Regular Set

$$
\begin{array}{cc}
\phi & \} \\
\text { a for } \in \Sigma & \{a\} \\
\epsilon & \{\epsilon\} \\
\left(R_{1} \cup R_{2}\right) & L\left(R_{1}\right) \cup L\left(R_{2}\right) \\
\left(R_{1} \circ R_{2}\right) & L\left(R_{1}\right) \circ L\left(R_{2}\right) \\
\left(R^{*}\right) & L(R)^{*}
\end{array}
$$

- Also some books use $R_{1}+R_{2}$ to denote union.
- In (...), the parenthesis can be deleted

Regular Expressions- More Syntax

Regular Expression Regular Set

$$
\begin{array}{cc}
\hline \phi & \} \\
\text { a for } \in \Sigma & \{a\} \\
\epsilon & \{\epsilon\} \\
\left(R_{1} \cup R_{2}\right) & L\left(R_{1}\right) \cup L\left(R_{2}\right) \\
\left(R_{1} \circ R_{2}\right) & L\left(R_{1}\right) \circ L\left(R_{2}\right) \\
\left(R^{*}\right) & L(R)^{*}
\end{array}
$$

- Also some books use $R_{1}+R_{2}$ to denote union.
- In (...), the parenthesis can be deleted
- In which case, interpretation is done in the precedence order: star, concatenation and then union.

Regular Expressions- More Syntax

Regular Expression Regular Set

$$
\begin{array}{cc}
\hline \phi & \} \\
\text { a for } \in \Sigma & \{a\} \\
\epsilon & \{\epsilon\} \\
\left(R_{1} \cup R_{2}\right) & L\left(R_{1}\right) \cup L\left(R_{2}\right) \\
\left(R_{1} \circ R_{2}\right) & L\left(R_{1}\right) \circ L\left(R_{2}\right) \\
\left(R^{*}\right) & L(R)^{*}
\end{array}
$$

- Also some books use $R_{1}+R_{2}$ to denote union.
- In (...), the parenthesis can be deleted
- In which case, interpretation is done in the precedence order: star, concatenation and then union.
- $R^{+}=R R^{*}$ and R^{k} for k-fold concatenation are useful shorthands.

Regular Expression Examples

Regular Expression 0*10*

Regular Language

\rightarrow

Regular Expression Examples

Regular Expression 0*10*

Regular Language
$\rightarrow \quad\{\omega \mid \omega$ contains a single 1$\}$

Regular Expression Examples

Regular Expression
0*10*
$(0 \cup 1)^{*} 1(0 \cup 1)^{*}$

Regular Language
$\rightarrow\{\omega \mid \omega$ contains a single 1$\}$
\rightarrow

Regular Expression Examples

Regular Expression 0*10*
 $(0 \cup 1)^{*} 1(0 \cup 1)^{*}$

Regular Language

$\rightarrow \quad\{\omega \mid \omega$ contains a single 1$\}$
$\rightarrow\{\omega \mid \omega$ has at least one 1$\}$

Regular Expression Examples

$$
\begin{array}{cll}
\text { Regular Expression } & & \text { Regular Language } \\
\mathbf{0}^{*} \mathbf{1 0}^{*} & \rightarrow & \{\omega \mid \omega \text { contains a single } 1\} \\
(\mathbf{0} \cup \mathbf{1})^{*} \mathbf{1}(\mathbf{0} \cup \mathbf{1})^{*} & \rightarrow & \{\omega \mid \omega \text { has at least one } 1\} \\
\mathbf{0}(\mathbf{0} \cup \mathbf{1})^{*} \mathbf{0} \cup \mathbf{1}(\mathbf{0} \cup \mathbf{1})^{*} \mathbf{1} \cup \mathbf{0} \cup \mathbf{1} & \rightarrow &
\end{array}
$$

Regular Expression Examples

$$
\begin{array}{cll}
\text { Regular Expression } & & \text { Regular Language } \\
\mathbf{0}^{*} \mathbf{1 0}^{*} & \rightarrow & \{\omega \mid \omega \text { contains a single } 1\} \\
(\mathbf{0} \cup \mathbf{1})^{*} \mathbf{1}(\mathbf{0} \cup \mathbf{1})^{*} & \rightarrow & \{\omega \mid \omega \text { has at least one } 1\} \\
\mathbf{0}(\mathbf{0} \cup \mathbf{1})^{*} \mathbf{0} \cup \mathbf{1}(\mathbf{0} \cup \mathbf{1})^{*} \mathbf{1} \cup \mathbf{0} \cup \mathbf{1} & \rightarrow & \{\omega \mid \omega \text { starts and ends } \\
& & \text { with the same symbol }\}
\end{array}
$$

Regular Expression Examples

Regular Expression 0*10*
$(0 \cup 1)^{*} 1(0 \cup 1)^{*}$
$0(0 \cup 1)^{*} 0 \cup 1(0 \cup 1)^{*} 1 \cup 0 \cup 1$
$\left(0^{*} 10^{*} 1\right)^{*} 0^{*}$

Regular Language
$\rightarrow \quad\{\omega \mid \omega$ contains a single 1$\}$
$\rightarrow\{\omega \mid \omega$ has at least one 1$\}$
$\rightarrow \quad\{\omega \mid \omega$ starts and ends with the same symbol $\}$
\longrightarrow

Regular Expression Examples

Regular Expression 0*10*
$(0 \cup 1)^{*} 1(0 \cup 1)^{*}$
$0(0 \cup 1)^{*} 0 \cup 1(0 \cup 1)^{*} 1 \cup 0 \cup 1$
$\left(0^{*} 10^{*} 1\right)^{*} 0^{*}$

Regular Language
$\rightarrow \quad\{\omega \mid \omega$ contains a single 1$\}$
$\rightarrow\{\omega \mid \omega$ has at least one 1$\}$
$\rightarrow \quad\{\omega \mid \omega$ starts and ends with the same symbol $\}$
$\rightarrow \quad\left\{\omega \mid n_{1}(\omega)\right.$ is even $\}$

Writing Regular Expressions

- All strings with at least one pair of consecutive 0s

Writing Regular Expressions

- All strings with at least one pair of consecutive 0s
- $(0 \cup 1)^{*} 00(0 \cup 1)^{*}$

Writing Regular Expressions

- All strings with at least one pair of consecutive 0s - $(0 \cup 1)^{*} 00(0 \cup 1)^{*}$
- All strings such that fourth symbol from the end is a 1

Writing Regular Expressions

- All strings with at least one pair of consecutive 0s
- $(0 \cup 1)^{*} 00(0 \cup 1)^{*}$
- All strings such that fourth symbol from the end is a 1
- $(0 \cup 1)^{*} 1(0 \cup 1)(0 \cup 1)(0 \cup 1)$

Writing Regular Expressions

- All strings with at least one pair of consecutive 0s
- $(0 \cup 1)^{*} 00(0 \cup 1)^{*}$
- All strings such that fourth symbol from the end is a 1
- $(0 \cup 1)^{*} 1(0 \cup 1)(0 \cup 1)(0 \cup 1)$
- All strings with no pair of consecutive 0s

Writing Regular Expressions

- All strings with at least one pair of consecutive 0s
- $(0 \cup 1)^{*} 00(0 \cup 1)^{*}$
- All strings such that fourth symbol from the end is a 1
- $(0 \cup \mathbf{1})^{* 1}(0 \cup 1)(0 \cup \mathbf{1})(0 \cup \mathbf{1})$
- All strings with no pair of consecutive 0s
- $\left(\mathbf{1}^{*} 011^{*}\right)^{*}(0 \cup \epsilon) \cup \mathbf{1 *}$

Writing Regular Expressions

- All strings with at least one pair of consecutive 0s
- $(0 \cup 1)^{*} 00(0 \cup 1)^{*}$
- All strings such that fourth symbol from the end is a 1
- $(0 \cup 1)^{*} 1(0 \cup 1)(0 \cup 1)(0 \cup 1)$
- All strings with no pair of consecutive 0s
- $\left(1^{*} 011^{*}\right)^{*}(0 \cup \epsilon) \cup 1 *$
- Strings consist of repetitions of 1 or 01 or two boundary cases: $(\mathbf{1} \cup 01)^{*}(0 \cup \epsilon)$

Writing Regular Expressions

- All strings with at least one pair of consecutive 0s
- $(0 \cup 1)^{*} 00(0 \cup 1)^{*}$
- All strings such that fourth symbol from the end is a 1
- $(0 \cup 1)^{*} 1(0 \cup 1)(0 \cup 1)(0 \cup 1)$
- All strings with no pair of consecutive 0s
- $\left(1^{*} 011^{*}\right)^{*}(0 \cup \epsilon) \cup 1 *$
- Strings consist of repetitions of 1 or 01 or two boundary cases: $(\mathbf{1} \cup 01)^{*}(0 \cup \epsilon)$
- All strings that do not end in 01.

Writing Regular Expressions

- All strings with at least one pair of consecutive 0s
- $(0 \cup 1)^{*} 00(0 \cup 1)^{*}$
- All strings such that fourth symbol from the end is a 1
- $(0 \cup 1)^{* 1}(0 \cup 1)(0 \cup 1)(0 \cup 1)$
- All strings with no pair of consecutive 0s
- $\left(1^{*} 011^{*}\right)^{*}(0 \cup \epsilon) \cup 1 *$
- Strings consist of repetitions of 1 or 01 or two boundary cases: $(\mathbf{1} \cup 01)^{*}(0 \cup \epsilon)$
- All strings that do not end in 01.
- $(0 \cup 1)^{*}(00 \cup 10 \cup 11) \cup 0 \cup 1 \cup \epsilon$

Writing Regular Expressions

- All strings over $\Sigma=\{a, b, c\}$ that contain every symbol at least once.

Writing Regular Expressions

- All strings over $\Sigma=\{a, b, c\}$ that contain every symbol at least once.
- $\quad(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{a}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{b}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{c}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \cup$ $(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{a}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{c}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{b}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \cup$ $(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{b}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{a}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{c}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \cup$ $(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{b}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{c}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{a}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \cup$ $(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{c}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{a}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{b}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \cup$
$(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{c}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{b}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*} \mathbf{a}(\mathbf{a} \cup \mathbf{b} \cup \mathbf{c})^{*}$

Writing Regular Expressions

- All strings over $\Sigma=\{a, b, c\}$ that contain every symbol at least once.

Writing Regular Expressions

- All strings over $\Sigma=\{a, b, c\}$ that contain every symbol at least once.

- DFAs and REs may need different ways of looking at the problem.
- For the DFA, you count symbols
- For the RE, you enumerate all possible patterns

RE IDENTITIES

- $\mathbf{R} \cup \phi=\mathbf{R}$

RE IDENTITIES

- $\mathbf{R} \cup \phi=\mathbf{R}$
- $\mathbf{R} \epsilon=\epsilon \mathbf{R}=\mathbf{R}$

RE IDENTITIES

- $\mathbf{R} \cup \phi=\mathbf{R}$
- $\mathbf{R} \epsilon=\epsilon \mathbf{R}=\mathbf{R}$
- $\phi^{*}=\epsilon$

RE IDENTITIES

- $\mathbf{R} \cup \phi=\mathbf{R}$
- $\mathbf{R} \epsilon=\epsilon \mathbf{R}=\mathbf{R}$
- $\phi^{*}=\epsilon$
- Note that we do not have explicit operators for intersection or complementation!

Digression: REs in Real life

- Linux/Unix Shell, Perl, Awk, Python all have built in regular expression support for pattern matching functionality
- See http://www.wdvl.com/Authoring/

Languages/Perl/PerlfortheWeb/
perlintro2_table1.html

Digression: REs in Real life

- Linux/Unix Shell, Perl, Awk, Python all have built in regular expression support for pattern matching functionality
- See http://www.wdvl.com/Authoring/ Languages/Perl/PerlfortheWeb/ perlintro2_table1.html
- Mostly some syntactic extensions/changes to basic regular expressions with some additional functionality for remembering matches

Digression: REs in Real life

- Linux/Unix Shell, Perl, Awk, Python all have built in regular expression support for pattern matching functionality
- See http://www.wdvl.com/Authoring/ Languages/Perl/PerlfortheWeb/ perlintro2_table1.html
- Mostly some syntactic extensions/changes to basic regular expressions with some additional functionality for remembering matches
- Substring matches in a string!
- Search for and download Regex Coach to learn and experiment with regular expression matching

Equivalence with Finite Automata

THEOREM

A language is regular if and only if some regular expression describes it.

Equivalence with Finite Automata

```
THEOREM
A language is regular if and only if some regular expression describes it.
```


LEMMA- THE if PART

If a language is described by a regular expression, then it is regular

Equivalence with Finite Automata

THEOREM
 A language is regular if and only if some regular expression describes it.

LEMMA- THE if PART

If a language is described by a regular expression, then it is regular

PROOF IDEA

Inductively convert a given regular expression to an NFA.

Converting REs to NFAs: Basis Cases

Regular Expression Corresponding NFA

$$
\phi
$$

Converting REs to NFAs: Basis Cases

Regular Expression Corresponding NFA

ϕ

Converting REs to NFAs: Basis Cases

Regular Expression Corresponding NFA

$$
\begin{aligned}
& \phi \\
& \epsilon
\end{aligned}
$$

\mathbf{a} for $\mathbf{a} \in \Sigma$

Converting REs to NFAs

Union

- Let N_{1} and N_{2} be NFAs for R_{1} and R_{2} respectively. Then the NFA for $\mathbf{R}_{\mathbf{1}} \cup \mathbf{R}_{\mathbf{2}}$ is

Converting REs to NFAs

Concatenation

- Let N_{1} and N_{2} be NFAs for R_{1} and R_{2} respectively. Then the NFA for $\mathbf{R}_{\mathbf{1}} \mathbf{R}_{\mathbf{2}}$ is

Converting REs to NFAs: Star

Star

- Let N be NFAs for R. Then the NFA for \mathbf{R}^{*} is

RE to NFA CONVERSION EXAMPLE

- Let's convert $(\mathbf{a} \cup \mathbf{b})^{*}$ aba to an NFA.

RE To NFA To DFA

- Regular Expression \rightarrow NFA (possibly with ϵ-transitions)

RE To NFA To DFA

- Regular Expression \rightarrow NFA (possibly with ϵ-transitions)
- NFA \rightarrow DFA via determinization

Equivalence with Finite Automata

THEOREM

A language is regular if and only if some regular expression describes it.

Equivalence with Finite Automata

```
THEOREM
A language is regular if and only if some regular expression describes it.
```


LEMMA - THE only if PART

If a language is regular then it is described by a regular expression

Equivalence with Finite Automata

THEOREM

A language is regular if and only if some regular expression describes it.

LEMMA - THE only if PART

If a language is regular then it is described by a regular expression

PROOF IDEA

- Generalized transitions: label transitions with regular expressions

Equivalence with Finite Automata

THEOREM

A language is regular if and only if some regular expression describes it.

LEMMA - THE only if PART

If a language is regular then it is described by a regular expression

PROOF IDEA

- Generalized transitions: label transitions with regular expressions
- Generalized NFAs (GNFA)

Equivalence with Finite Automata

THEOREM

A language is regular if and only if some regular expression describes it.

LEMMA - THE only if PART

If a language is regular then it is described by a regular expression

Proof IdEA

- Generalized transitions: label transitions with regular expressions
- Generalized NFAs (GNFA)
- Iteratively eliminate states of the GNFA one by one, until only two states and a single generalized transition is left.

Generalized Transitions

- DFAs have single symbols as transition labels

- If you are in state p and the next input symbol matches a, go to state q

Generalized Transitions

- DFAs have single symbols as transition labels

- If you are in state p and the next input symbol matches a, go to state q
- Now consider

Generalized Transitions

- DFAs have single symbols as transition labels

- If you are in state p and the next input symbol matches a, go to state q
- Now consider

- If you are in state p and a prefix of the remaining input matches the regular expression $\mathbf{a b}^{*} \cup \mathbf{b} \mathbf{c}^{*}$ then go to state q

Generalized Transitions and NFA

- A generalized transition is a transition whose label is a regular expression

Generalized Transitions and NFA

- A generalized transition is a transition whose label is a regular expression

Generalized Transitions and NFA

- A generalized transition is a transition whose label is a regular expression

- A Generalized NFA is an NFA with generalized transitions.

GEnERALIZED Transitions and NFA

- A generalized transition is a transition whose label is a regular expression

- A Generalized NFA is an NFA with generalized transitions.

- In fact, all standard DFA transitions are generalized transitions with regular expressions of a single symbol!

Generalized Transitions

- Consider the 2-state DFA

Generalized Transitions

- Consider the 2-state DFA

Generalized Transitions

- Consider the 2-state DFA

- 0*1 takes the DFA from state q_{0} to q_{1}

Generalized Transitions

- Consider the 2-state DFA

- 0*1 takes the DFA from state q_{0} to q_{1}
- $\left(\mathbf{0} \cup \mathbf{1 0}^{*} \mathbf{1}\right)^{*}$ takes the machine from q_{1} back to q_{1}

Generalized Transitions

- Consider the 2-state DFA

- 0*1 takes the DFA from state q_{0} to q_{1}
- $\left(\mathbf{0} \cup \mathbf{1 0}^{*} \mathbf{1}\right)^{*}$ takes the machine from q_{1} back to q_{1}
- So $\boldsymbol{?}=\mathbf{0}^{*} \mathbf{1}(0 \cup \mathbf{1 0 *})^{*}$ represents all strings that take the DFA from state q_{0} to q_{1}

GENERALIZED NFAS

- Take any NFA and transform it into a GNFA
- with only two states: one start and one accept

GENERALIZED NFAS

- Take any NFA and transform it into a GNFA
- with only two states: one start and one accept
- with one generalized transition

GENERALIZED NFAS

- Take any NFA and transform it into a GNFA
- with only two states: one start and one accept
- with one generalized transition
- then we can "read" the regular expression from the label of the generalized transition (as in the example above)

