FORMAL LANGUAGES, AUTOMATA AND COMPUTATION Regular Languages

NONDETERMINISTIC FINITE STATE AUTOMATA

Carnegie Mellon University in Qatar

SUMMARY

- Symbols, Alphabet, Strings, Σ^* , Languages, 2^{Σ^*}
- Deterministic Finite State Automata
 - States, Labels, Start State, Final States, Transitions
 - Extended State Transition Function
 - DFAs accept regular languages

REGULAR LANGUAGES

- Since regular languages are sets, we can combine them with the usual set operations
 - Union
 - Intersection
 - Difference

THEOREM

If L_1 and L_2 are regular languages, so are $L_1 \cup L_2$, $L_1 \cap L_2$ and $L_1 - L_2$.

PROOF IDEA

Construct cross-product DFAs

CROSS-PRODUCT DFAS

- A single DFA which simulates operation of two DFAs in parallel!
- Let the two DFAs be *M*₁ and *M*₂ accepting regular languages *L*₁ and *L*₂

D
$$M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$$

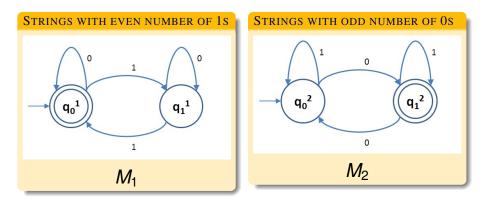
$$M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$$

- We want to construct DFAs M = (Q, Σ, δ, q₀, F) that recognize
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - $L_1 L_2$

CONSTRUCTING THE CROSS-PRODUCT DFA M

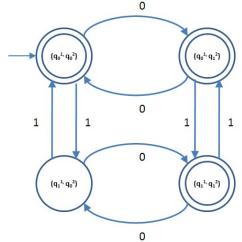
- We need to construct $M = (Q, \Sigma, \delta, q_0, F)$
- Q =pairs of states, one from M_1 and one from M_2 $Q = \{(q_1, q_2) | q_1 \in Q_1 \text{ and } q_2 \in Q_2\}$ $Q = Q_1 \times Q_2$
- $q_0 = (q_0^1, q_0^2)$
- $\delta((q_i^1, q_j^2), x) = (\delta_1(q_i^1, x), \delta_2(q_j^2, x))$
- Union: $F = \{(q_1, q_2) | q_1 \in F_1 \text{ or } q_2 \in F_2\}$
- Intersection: $F = \{(q_1, q_2) | q_1 \in F_1 \text{ and } q_2 \in F_2\}$
- Difference: $F = \{(q_1, q_2) | q_1 \in F_1 \text{ and } q_2 \notin F_2\}$

CROSS-PRODUCT DFA EXAMPLE



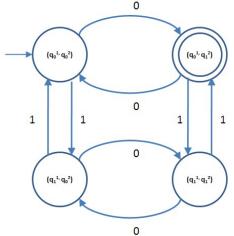
DFA FOR $L_1 \cup L_2$

• DFA for $L_1 \cup L_2$ accepts when either M_1 or M_2 accepts.



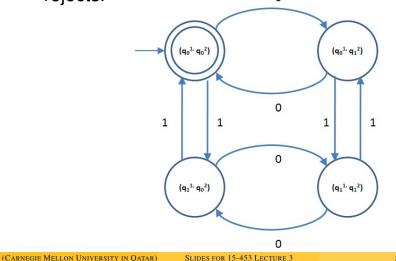
DFA FOR $L_1 \cap L_2$

• DFA for $L_1 \cap L_2$ accepts when both M_1 and M_2 accept.



DFA FOR $L_1 - L_2$

• DFA for $L_1 - L_2$ accepts when M_1 accepts and M_2 rejects.



ANOTHER EXAMPLE: FIND THE CROSS-PRODUCT DFA FOR

- DFA for binary numbers divisible by 3
- DFA for binary numbers divisible by 2

OTHER REGULAR OPERATIONS

- Reverse: $L^R = \{ \omega = a_1 \dots a_n | \omega^R = a_n \dots a_1 \in L \}$
- Concatenation: $L_1 \cdot L_2 = \{\omega \nu | \omega \in L_1 \text{ and } \nu \in L_2\}$
- Star Closure: $L^* = \{\omega_1 \omega_2 \dots \omega_k | k \ge 0 \text{ and } \omega_i \in L\}$

THE REVERSE OF A REGULAR LANGUAGE

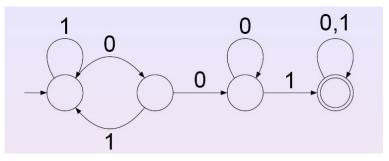
THEOREM

The reverse of a regular language is also a regular language.

- If a language can be recognized by a DFA that reads strings from right to left, then there is an "normal" DFA (one that reads from left to right) that accepts the same language.
- Counter-intuitive! DFAs have finite memory...

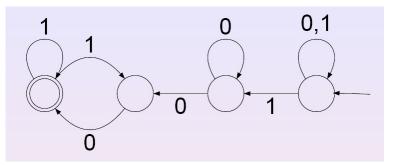
- Assume *L* is a regular language. Let *M* be a DFA that recognizes *L*
- We will build a machine M^R that accepts L^R
- If *M* accepts ω, then ω describes a directed path, in *M*, from the start state to a final state.
- First attempt: Try to define M^R as M as follows
 - Reverse all transitions
 - Turn the start state to a final state
 - Turn the final states to start states!
- But, as such, M^R is not always a DFA.
 - It could have many start states.
 - Some states may have too many outgoing transitions or none at all!

EXAMPLE



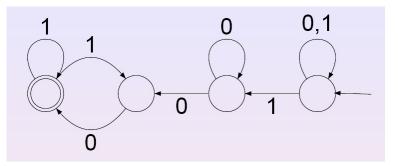
- What language does this DFA recognize?
 - All strings that contain a substring of 2 or more 0s followed by a 1.

REVERSING THE DFA



- What happens with input 100?
 - There are multiple transitions from a state labeled with the same symbol.
 - State transitions are not deterministic any more: the next state is not uniquely determined by the current state and the current input. → Nondeterminism

REVERSING THE DFA

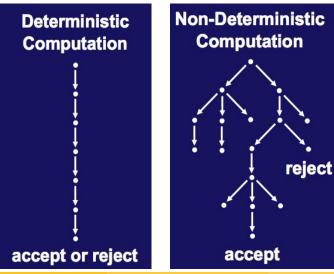


• We will say that this machine accepts a string if there is <u>some path</u> that reaches an accept state from a start state.

HOW DOES NONDETERMINISM WORK?

- When a nondeterministic finite state automaton (NFA) reads an input symbol and there are multiple transitions labeled with that symbol
 - It splits into multiple copies of itself, and
 - follows all possibilities in parallel.

DETERMINISTIC VS NONDETERMINISTIC COMPUTATION



(CARNEGIE MELLON UNIVERSITY IN QATAR)

How does nondeterminism work?

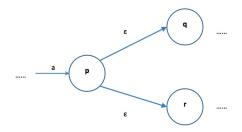
- When a nondeterministic finite state automaton (NFA) reads an input symbol and there are multiple transitions with labeled with that symbol
 - It splits into multiple copies of itself, and
 - follows all possibilities in parallel.
- Each copy of the machine takes one of the possible ways to proceed and continues as before.
- If there are subsequent choices, the machine splits again.
 - We have an unending supply of these machines that we can boot at any point to any state!

DFAs AND NFAS – OTHER DIFFERENCES

- \bullet A state need not have a transition with every symbol in Σ
 - No transition with the next input symbol? ⇒ that copy of the machine dies, along with the branch of computation associated with it.
 - If any copy of the machine is in a final state at the end of the input, the NFA accepts the input string.
- NFAs can have transitions labeled with ϵ the empty string.

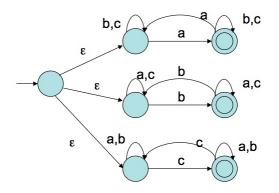
ϵ -TRANSITIONS

- If a transition with ϵ label is encountered, something similar happens:
 - The machine does not read the next input symbol.
 - It splits into multiple copies, one following each ϵ transition, and one staying at the current state.



• What the NFA arrives at p (say after having read input *a*, it splits into 3 copies

NFA EXAMPLE

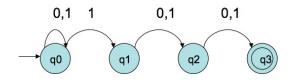


- Accepts all strings over
 Σ = {a, b, c} with at least one of the symbols occuring an odd number of times.
- For example, the machine copy taking the upper ε transition guesses that there are an odd number of a's and then tries to verify it.

NONDETERMINISM

- So nondeterminism can also be viewed as
 - guessing the future, and
 - then verifying it as the rest of the input is read in.
- If the machine's guess is not verifiable, it dies!

NFA EXAMPLE



- Accepts all strings over $\Sigma = \{0, 1\}$ where the 3rd symbol from the end is a 1.
 - How do you know that a symbol is the 3rd symbol from the end?
- The start state guesses every 1 is the 3rd from the end, and then the rest tries to verify that it is or it is not.
 - The machine dies if you reach the final state and you get one more symbol.

NFA-FORMAL DEFINITION

- A Nondeterministic Finite State Acceptor (NFA) is defined as the 5-tuple M = (Q, Σ, δ, q₀, F) where
 - Q is a finite set of states
 - Σ is a finite set of symbols the alphabet
 - $\delta : \mathbf{Q} \times (\Sigma \cup \{\epsilon\}) \to \mathbf{2}^{\mathbf{Q}}$, is the next-state function

•
$$2^Q = \{P | P \subseteq Q\}$$

- $q_0 \in Q$ is the (label of the) start state
- $F \subseteq Q$ is the set of final (accepting) states
- δ maps states and inputs (including ε) to a set of possible next states
- Similarly $\delta^* : \boldsymbol{Q} \times \boldsymbol{\Sigma}^* \to \boldsymbol{2}^{\boldsymbol{Q}}$
 - $\delta^*(\boldsymbol{q},\epsilon) = \{\boldsymbol{q}\}$
 - $\delta^*(q, \omega \cdot a) = \{p | \exists r \in \delta^*(q, \omega) \text{ such that } p \in \delta(r, a)\}$
 - $a \text{ could be } \epsilon$

HOW AN NFA ACCEPTS STRINGS

- An NFA accepts a string ω = x₁x₂ ··· x_n if a sequence of states r₀r₁r₂ ··· r_n, r_i ∈ Q exist such that
 - $r_0 = q_0$ (Start in the initial state)
 - ② $r_i \in \delta(r_{i-1}, x_i)$ for i = 1, 2, ..., n (Move from state to state nondeterministically: r_i is one of the allowable next states)
 - $r_n \in F$ (End up in a final state)

NONDETERMINISTIC VS DETERMINISTIC FA

- We know that DFAs accept regular languages.
- Are NFAs strictly more powerful than DFAs?
 - Are there languages that some NFA will accept but no DFA can accept?
- It turns out that NFAs and DFAs accept the same set of languages.
 - Q is finite $\Rightarrow |2^Q| = |\{P|P \subseteq Q\}| = 2^{|Q|}$ is also finite.

NFAs and DFAs are equivalent

THEOREM Every NFA has an equivalent DFA.

PROOF IDEA

- Convert the NFA to an equivalent DFA that accepts the same language.
- If the NFA has k states, then there are 2^k possible subsets (still finite)
- The states of the DFA are labeled with subsets of the states of the NFA
- Thus the DFA can have up to 2^k states.

NFAs and DFAs are equivalent

THEOREM

Every NFA has an equivalent DFA.

CONSTRUCTION

• Let
$$N = (Q, \Sigma, \delta, q_0, F)$$
 be an NFA. We construct $M = (Q', \Sigma, \delta', q'_0, F')$.

•
$$Q' = 2^Q$$
, the power set of Q

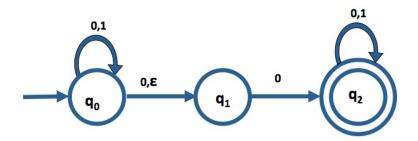
- So For *R* ∈ *Q*['] and *a* ∈ Σ, let $\delta'(R, a) = \{q \in Q | q \in \epsilon(\delta(r, a)) \text{ for some } r \in R\}$
 - For *R* ∈ *Q*, the *ϵ*-closure of *R*, is defined as
 ϵ(*R*) = {*q*|*q* is reachable from some *r* ∈ *R* by traveling along zero or more *ϵ* − transitions}

•
$$q'_0 = \epsilon(\{q_0\})$$

• $F' = \{R \in Q' | R \cap F \neq \phi\}$: at least one of the states in *R* is a final state of *N*

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDI

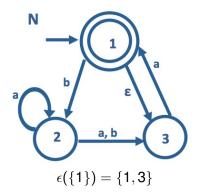
NFA EXAMPLE



- Note that q_0 has an ϵ -transition
- Some states (e.g., q₁) do not have a transition for some of the symbols in Σ. Machine dies if it sees input 1 when it is in state q₁.

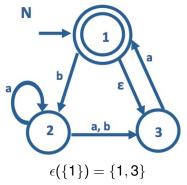
•
$$\epsilon(\{q_0\}) = \{q_0, q_1\}$$

• Given $N = (\{1, 2, 3\}, \{a, b\}, \delta, 1, \{1\})$, construct $M = (Q', \Sigma, \delta', q'_0, F')$.



δ'	а	b
ϕ	ϕ	ϕ
{1}	ϕ	{2}
{2}	{2,3}	{3 }
{3 }	{ 1 , 3 }	ϕ
{1,2}	{2,3}	{2,3}
{ 1 , 3 }	{ 1 , 3 }	{2}
{2,3}	$\{1, 2, 3\}$	{3 }
$\{1, 2, 3\}$	$\{1, 2, 3\}$	{2,3}

• Given $N = (\{1, 2, 3\}, \{a, b\}, \delta, 1, \{1\})$, construct $M = (Q', \Sigma, \delta', q'_0, F')$.



 $\{1,3\}$ is the start state of M

(CARNEGIE MELLON UNIVERSITY IN QATAR)

δ'	а	b
ϕ	ϕ	ϕ
{1}	ϕ	{2}
{2}	{2,3}	{3 }
{3 }	{ 1 , 3 }	ϕ
{1,2}	{2,3}	{2,3}
{ 1 , 3 }	{ 1 , 3 }	{2}
{2,3}	$\{1, 2, 3\}$	{3 }
{ 1 , 2 , 3 }	{ 1 , 2 , 3 }	{2,3}

• Given $N = (\{1, 2, 3\}, \{a, b\}, \delta, 1, \{1\})$, construct $M = (Q', \Sigma, \delta', q'_0, F')$.

- States {1} and {1,2} do not appear as the next state in any transition! They can be removed
- States with labels {1,3} and {1,2,3} are the final states of *M*.
- We can now relabel the states as we wish!

	δ'	а	b
q 5	ϕ	ϕ	ϕ
q_2	{2 }	{2,3}	{3 }
q_1	{3 }	{1,3}	ϕ
q_0	{ 1 , 3 }	{ 1 , 3 }	{2}
q_3	{2,3}	$\{1, 2, 3\}$	{3 }
q_4	$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{2,3\}$

• Given $N = (\{1, 2, 3\}, \{a, b\}, \delta, 1, \{1\})$, construct $M = (Q', \Sigma, \delta', q'_0, F')$.

- States {1} and {1,2} do not appear as the next state in any transition! They can be removed
- States with labels {1,3} and {1,2,3} are the final states of *M*.
- We can now relabel the states as we wish!

δ'	а	b
q_5	q_5	q_5
q_2	q_3	q_1
q_1	q_0	q 5
\mathbf{q}_0	q_0	<i>q</i> ₂
q_3	q_4	q_1
q_4	q_4	q_3