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SUMMARY

Symbols, Alphabet, Strings, Σ∗, Languages, 2Σ∗

Deterministic Finite State Automata
States, Labels, Start State, Final States, Transitions
Extended State Transition Function
DFAs accept regular languages
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REGULAR LANGUAGES

Since regular languages are sets, we can
combine them with the usual set operations

Union
Intersection
Difference

THEOREM

If L1 and L2 are regular languages, so are L1 ∪ L2,
L1 ∩ L2 and L1 − L2.

PROOF IDEA

Construct cross-product DFAs
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CROSS-PRODUCT DFAS

A single DFA which simulates operation of two
DFAs in parallel!
Let the two DFAs be M1 and M2 accepting regular
languages L1 and L2

1 M1 = (Q1,Σ, δ1,q1
0 ,F1)

2 M2 = (Q2,Σ, δ2,q2
0 ,F2)

We want to construct DFAs M = (Q,Σ, δ,q0,F )
that recognize

L1 ∪ L2
L1 ∩ L2
L1 − L2
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CONSTRUCTING THE CROSS-PRODUCT DFA M

We need to construct M = (Q,Σ, δ,q0,F )

Q =pairs of states, one from M1 and one from M2

Q = {(q1,q2)|q1 ∈ Q1 and q2 ∈ Q2}
Q = Q1 ×Q2

q0 = (q1
0 ,q

2
0)

δ((q1
i ,q

2
j ), x) = (δ1(q1

i , x), δ2(q2
j , x))

Union: F = {(q1,q2)|q1 ∈ F1 or q2 ∈ F2}
Intersection: F = {(q1,q2)|q1 ∈ F1 and q2 ∈ F2}
Difference: F = {(q1,q2)|q1 ∈ F1 and q2 6∈F2}
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CROSS-PRODUCT DFA EXAMPLE

STRINGS WITH EVEN NUMBER OF 1S

M1

STRINGS WITH ODD NUMBER OF 0S

M2
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DFA FOR L1 ∪ L2

DFA for L1 ∪ L2 accepts when either M1 or M2

accepts.
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DFA FOR L1 ∩ L2

DFA for L1 ∩ L2 accepts when both M1 and M2

accept.
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DFA FOR L1 − L2

DFA for L1 − L2 accepts when M1 accepts and M2

rejects.
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ANOTHER EXAMPLE: FIND THE

CROSS-PRODUCT DFA FOR

DFA for binary numbers divisible by 3
DFA for binary numbers divisible by 2
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OTHER REGULAR OPERATIONS

Reverse: LR = {ω = a1 . . . an|ωR = an . . . a1 ∈ L}
Concatenation: L1 · L2 = {ων|ω ∈ L1 and ν ∈ L2}
Star Closure: L∗ = {ω1ω2 . . . ωk |k ≥ 0 and ωi ∈ L}
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THE REVERSE OF A REGULAR LANGUAGE

THEOREM

The reverse of a regular language is also a regular
language.

If a language can be recognized by a DFA that
reads strings from right to left, then there is an
“normal” DFA (one that reads from left to right)
that accepts the same language.
Counter-intuitive! DFAs have finite memory. . .

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 3 SPRING 2011 12 / 1



REVERSING A DFA

Assume L is a regular language. Let M be a DFA
that recognizes L
We will build a machine MR that accepts LR

If M accepts ω, then ω describes a directed path,
in M, from the start state to a final state.
First attempt: Try to define MR as M as follows

Reverse all transitions
Turn the start state to a final state
Turn the final states to start states!

But, as such, MR is not always a DFA.
It could have many start states.
Some states may have too many outgoing transitions or
none at all!
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EXAMPLE

What language does this DFA recognize?
All strings that contain a substring of 2 or more 0s followed
by a 1.
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REVERSING THE DFA

What happens with input 100?
There are multiple transitions from a state labeled with the
same symbol.
State transitions are not deterministic any more: the next
state is not uniquely determined by the current state and the
current input. → Nondeterminism
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REVERSING THE DFA

We will say that this machine accepts a string if
there is some path that reaches an accept state
from a start state.
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HOW DOES NONDETERMINISM WORK?

When a nondeterministic finite state automaton
(NFA) reads an input symbol and there are
multiple transitions labeled with that symbol

It splits into multiple copies of itself, and
follows all possibilities in parallel.
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DETERMINISTIC VS NONDETERMINISTIC

COMPUTATION
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HOW DOES NONDETERMINISM WORK?

When a nondeterministic finite state automaton
(NFA) reads an input symbol and there are
multiple transitions with labeled with that symbol

It splits into multiple copies of itself, and
follows all possibilities in parallel.

Each copy of the machine takes one of the
possible ways to proceed and continues as
before.
If there are subsequent choices, the machine
splits again.

We have an unending supply of these machines that we can
boot at any point to any state!
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DFAS AND NFAS – OTHER DIFFERENCES

A state need not have a transition with every
symbol in Σ

No transition with the next input symbol? ⇒ that copy of the
machine dies, along with the branch of computation
associated with it.
If any copy of the machine is in a final state at the end of the
input, the NFA accepts the input string.

NFAs can have transitions labeled with ε – the
empty string.
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ε-TRANSITIONS

If a transition with ε label is encountered,
something similar happens:

The machine does not read the next input symbol.
It splits into multiple copies, one following each ε transition,
and one staying at the current state.

What the NFA arrives at p (say after having read
input a, it splits into 3 copies
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NFA EXAMPLE

Accepts all strings over
Σ = {a,b, c} with at
least one of the symbols
occuring an odd number
of times.

For example, the
machine copy taking the
upper ε transition
guesses that there are
an odd number of a’s
and then tries to verify it.
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NONDETERMINISM

So nondeterminism can also be viewed as
guessing the future, and
then verifying it as the rest of the input is read in.

If the machine’s guess is not verifiable, it dies!
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NFA EXAMPLE

Accepts all strings over Σ = {0,1} where the 3rd

symbol from the end is a 1.
How do you know that a symbol is the 3rd symbol from the
end?

The start state guesses every 1 is the 3rd from the
end, and then the rest tries to verify that it is or it
is not.

The machine dies if you reach the final state and you get
one more symbol.
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NFA–FORMAL DEFINITION

A Nondeterministic Finite State Acceptor (NFA) is
defined as the 5-tuple M = (Q,Σ, δ,q0,F ) where

Q is a finite set of states
Σ is a finite set of symbols – the alphabet
δ : Q × (Σ ∪ {ε})→ 2Q, is the next-state function

2Q = {P|P ⊆ Q}
q0 ∈ Q is the (label of the) start state
F ⊆ Q is the set of final (accepting) states

δ maps states and inputs (including ε) to a set of
possible next states
Similarly δ∗ : Q × Σ∗ → 2Q

δ∗(q, ε) = {q}
δ∗(q, ω · a) = {p|∃r ∈ δ∗(q, ω) such that p ∈ δ(r ,a)}

a could be ε
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HOW AN NFA ACCEPTS STRINGS

An NFA accepts a string ω = x1x2 · · · xn if a
sequence of states r0r1r2 · · · rn, ri ∈ Q exist such
that

1 r0 = q0 (Start in the initial state)
2 ri∈δ(ri−1, xi) for i = 1,2, . . .n (Move from state to state –

nondeterministically: ri is one of the allowable next states)
3 rn ∈ F (End up in a final state)
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NONDETERMINISTIC VS DETERMINISTIC FA

We know that DFAs accept regular languages.
Are NFAs strictly more powerful than DFAs?

Are there languages that some NFA will accept but no DFA
can accept?

It turns out that NFAs and DFAs accept the same
set of languages.

Q is finite⇒ |2Q| = |{P|P ⊆ Q}| = 2|Q| is also finite.
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NFAS AND DFAS ARE EQUIVALENT

THEOREM

Every NFA has an equivalent DFA.

PROOF IDEA

Convert the NFA to an equivalent DFA that
accepts the same language.
If the NFA has k states, then there are 2k possible
subsets (still finite)
The states of the DFA are labeled with subsets of
the states of the NFA
Thus the DFA can have up to 2k states.
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NFAS AND DFAS ARE EQUIVALENT

THEOREM

Every NFA has an equivalent DFA.

CONSTRUCTION

Let N = (Q,Σ, δ,q0,F ) be an NFA. We construct
M = (Q′,Σ, δ′,q′0,F

′).

1 Q′ = 2Q, the power set of Q
2 For R ∈ Q′ and a ∈ Σ, let δ′(R,a) = {q ∈ Q|q ∈ ε(δ(r ,a)) for

some r ∈ R}
For R ∈ Q, the ε-closure of R, is defined as
ε(R) = {q|q is reachable from some r ∈ R
by traveling along zero or more ε− transitions}

3 q′0 = ε({q0})
4 F ′ = {R ∈ Q′|R ∩ F 6= φ}: at least one of the states in R is a

final state of N
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NFA EXAMPLE

Note that q0 has an ε-transition
Some states (e.g., q1) do not have a transition for
some of the symbols in Σ. Machine dies if it sees
input 1 when it is in state q1.
ε({q0}) = {q0,q1}
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NFA TO DFA CONVERSION EXAMPLE

Given N = ({1,2,3}, {a,b}, δ,1, {1}), construct
M = (Q′,Σ, δ′,q′0,F

′).

ε({1}) = {1,3}

δ′ a b
φ φ φ

{1} φ {2}
{2} {2,3} {3}
{3} {1,3} φ

{1,2} {2,3} {2,3}
{1,3} {1,3} {2}
{2,3} {1,2,3} {3}
{1,2,3} {1,2,3} {2,3}

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 3 SPRING 2011 31 / 1



NFA TO DFA CONVERSION EXAMPLE

Given N = ({1,2,3}, {a,b}, δ,1, {1}), construct
M = (Q′,Σ, δ′,q′0,F

′).

ε({1}) = {1,3}
{1,3} is the start state of M

δ′ a b
φ φ φ

{1} φ {2}
{2} {2,3} {3}
{3} {1,3} φ

{1,2} {2,3} {2,3}
{1,3} {1,3} {2}
{2,3} {1,2,3} {3}
{1,2,3} {1,2,3} {2,3}
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NFA TO DFA CONVERSION EXAMPLE

Given N = ({1,2,3}, {a,b}, δ,1, {1}), construct
M = (Q′,Σ, δ′,q′0,F

′).

States {1} and {1,2} do
not appear as the next
state in any transition!
They can be removed

States with labels {1,3}
and {1,2,3} are the
final states of M.

We can now relabel the
states as we wish!

δ′ a b
q5 φ φ φ

q2 {2} {2,3} {3}
q1 {3} {1,3} φ

q0 {1,3} {1,3} {2}
q3 {2,3} {1,2,3} {3}
q4 {1,2,3} {1,2,3} {2,3}
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NFA TO DFA CONVERSION EXAMPLE

Given N = ({1,2,3}, {a,b}, δ,1, {1}), construct
M = (Q′,Σ, δ′,q′0,F

′).

States {1} and {1,2} do
not appear as the next
state in any transition!
They can be removed

States with labels {1,3}
and {1,2,3} are the
final states of M.

We can now relabel the
states as we wish!

δ′ a b
q5 q5 q5
q2 q3 q1
q1 q0 q5
q0 q0 q2
q3 q4 q1
q4 q4 q3
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