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SPACE COMPLEXITY
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SPACE COMPLEXITY

o (Disk) Space — the final frontier!
e How much memory do computational problems require?

e We characterize problems based on their memory
requirements.

e Space is reusable, time is not!

e We again use the Turing machine as our model of
computation.
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SPACE COMPLEXITY

DEFINITION — SPACE COMPLEXITY

Let M be a deterministic Turing machine that halts on on inputs.
The space complexity of M is the function f : N'— N/, where
f(n) is the maximum number of tape cells that M scans on
any input of length n.

For nondeterministic TMs where all branches halt on all inputs,
we take the maximum over all the branches of computation.
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SPACE COMPLEXITY

DEFINITION — SPACE COMPLEXITY CLASSES

Let f : N — R*. The space complexity classes are defined as
follows:

SPACE(f(n)) ={L| Lisalanguage decided by an O(f(n))
space deterministic TM}
NSPACE(f(n)) ={L| Lis alanguage decided by an O(f(n))
space nondeterministic TM}

e SPACE(f(n)) formalizes the class of problems that can be
solved by computers with bounded memory. (Real world!)

e SPACE(f(n)) problems could potentially take a long time to
solve.

e Intutively space and time seem to be interchangeable.

e Just because a problem needs only linear space does not
mean it can be solved in linear time.
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DETERMINISTIC SPACE COMPLEXITY OF SAT

e SAT is NP-complete.
e But SAT can be solved in linear space.
e M; =“Oninput (¢), where ¢ is a Boolean formula:
@ For each truth assignment to the variables x1, xo, ..., Xy, of ¢:

Q Evaluate ¢ on that truth assignment.
© If ¢ ever evaluates to 1, accept; if not, reject”

3SAT ¢ SPACE(n)

[ YD T Ty VIMyDT T T TT 1]
(X ISYIVIXDT TAyIvIxIVIyDT T#Ix] Ty] ]
[xIvIIyIvIxDT TdylvIxIvlyD ] T#]x]o[y[o]
[xIvI=lyIvIxD T TdylvIxIvlyD ] T#]x]o[y[1]

(Ix|v|=lylvIxD | 1UyivixiviyD | [#[x]1]y] 0

e Note that M; takes exponential time.
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NONDETERMINISTIC SPACE COMPLEXITY OF

ALLNEA

o Consider ALLyra = {(A) | Aisa NFA and L(A) = X*}

e The following nondeterministic linear space algorithm
decides ALLyga.

e Nondeterministically guess an input string rejected by the
NFA and use linear space to guess which states the NFA
could be at a given time.

e N = “On input (M) where M is an NFA.

@ Place a marker on the start state of NFA.
© Repeat 29 times, where q is the number of states of M.

2.1 Nondeterministically select an input symbol and change the
position of the markers on M’s states, to simulate reading
that symbol.

@ Acceptif stages 2 reveals some string that M rejects, i.e., if
at some point none of the markers lie on accept states of M.
Otherwise. reject.”
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NONDETERMINISTIC SPACE COMPLEXITY OF

ALLFA

@ Since there are at most 29 subsets of the states of M, it
must reject one of length at most 29, if M rejects any
strings.

e Remember that determinization could end up with at most 29
states.

e N needs space for

e storing the locations of the markers (O(q) = O(n))
e the repeat loop counter (O(q) = O(n))

e Hence N runs in nondeterministic O(n) space.
e Note that N runs in nondeterministic 2°(") time.
o ALLpnra is not known to be in NP or coNP.

( LECTURE 22) SLIDES FOR 15-453 SPRING 2011 7124



SAVITCH’S THEOREM

e Remember that simulation of a nondeterministic TM with a
deterministic TM requires an exponentional increase in
time.

e Savitch’s Theorem shows that any nondeterministic TM that
uses f(n) space can be converted to a deterministic TM
that uses only f2(n) space, that is,

NSPACE(f(n)) C SPACE(f?(n))

e Obviously, there will be a slowdown.
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SAVITCH’S THEOREM

THEOREM

For any function f : N' — R ™', where f(n) > n

NSPACE(f(n)) C SPACE(f*(n))

| A

PROOF IDEA
e Let N be a nondeterministic TM with space complexity f(n).

e Construct a deterministic machine M that tries every
possible branch of N.

e Since each branch of N uses at most 7(n) space, then M
uses space at most f(n) space + space for book-keeping.

e We need to simulate the nondeterministic computation and
save as much space as possible.
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SAVITCH’S THEOREM

e Given two configurations ¢; and ¢, of a f(n) space TM N,
and a number t, determine if we can get from ¢, to ¢, within
t steps.
e CANYIELD = *On input ¢y, c; and t:
Q Ift=0acceptiffc; =
@ If t =1 accept iff ¢y = ¢ or ¢y yields ¢, in one step.
@ If t > 1 then for every possible configuration ¢, of N for w,
using space f(n)
o Run CANYIELD(cy, Cm, ).
(5 Run CANYIELD(Cm, C2, L).
Q If steps 4 and 5 both accept, then accept.
@ If haven'’t yet accepted, reject”
e Space is reused during the recursive calls.
e The depth of the recursion is at most log t.
e Each recursive steps uses O(f(n)) space and t = 2°((") go
log t = O(f(n)) . Hence total space used is O(f%(n
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SAVITCH’S THEOREM

e M simulates N using CANYIELD.

e If nis the length of w, we choose d so that N has no more
than 29(" configurations each using f(n) tape.

e 291" provides an upper bound on the running time on any
branch of N.

e M ="“On input w:

@ Output the result of CANYIELD(Cstart, Caccept, 297(M).”

e At each stage, CANYIELD stores ¢y, ¢, and t for a total of
O(f(n)) space.

e Minor technical points with the accepting configuration and
the initial value of t (e.g., how does the TM know f(n)?) —
See the book.
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THE CLASS PSPACE

DEFINITION — PSPACE

PSPACE is the class of languages that are decidable in
polynomial space on a deterministic TM.

PSPACE = _ SPACE(n").
k

e NSPACE is defined analogously.

e But PSPACE = NSPACE, due to Savitch’s theorem,
because the square of a polynomial is also a polynomial.
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THE CLASS PSPACE — SOME OBSERVATIONS

e We know SAT € SPACE(n).
e = SAT ¢ PSPACE.
e We know ALLyra € NSPACE(n) and hence
ALLnga € SPACE(n?), by Savitch’s theorem.
o = ALLnra € PSPACE.

e Deterministic space complexity classes are closed under
complementation, so ALLyga € SPACE(n?).
o = ALLNrs € PSPACE.
e A TM that operates in f(n) > ntime, can use at most f(n)
space.
e = P C PSPACE

e NP C NSPACE = NP C PSPACE.
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THE CLASS PSPACE — SOME OBSERVATIONS

e We can also bound the time complexity in terms of the
space complexity.
e For f(n) > n, a TM that uses f(n) space, can have at most
f(n)2°U(M) configurations.
o f(n) symbols on tape, so |/(") possible strings and f(n)
possible state positions and |Q| possible states = 209(f(n)
o PSPACE C EXPTIME = |J, TIME(2™).

@ NP PSPACE EXPTIME
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PSPACE-COMPLETENESS

DEFINITION — PSPACE-COMPLETE

A language B is PSPACE-complete if it satisfies two conditions:
Q@ Bisin PSPACE, and
@ every Ain PSPACE is polynomial time reducible to B.

e Note that we use polynomial-time reducibility!

e The reduction should be easy relative to the complexity of
typical problems in the class.

e In general, whenever we define complete-problems for a

complexity class, the reduction model must be more limited
that the model use for defining the class itself.
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THE TQBF PROBLEM

e Quantified Boolean Formulas are exactly like the Boolean
formulas we define for the SAT problem, but additionally
have existential (3) and universal (V) quantifiers.

Vx[x Vv y|

IxJy[x V]

Vx[x Vv X]

Vx|[x]

Wx3y[(x V y) A (X V Y)]

e A fully quantified Boolean formula is a quantified formula
where every variable is quantified.

o All except the first above are fully quantified.
e A fully quantified Boolean formula is also called a sentence,
and is either true or false.

DEFINITION — TQBF
TQBF = {{¢) | ¢ is a true fully quantified Boolean formula}
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THE TQBF PROBLEM

TQBF = {{¢) | ¢ is a true fully quantified Boolean formula} is
PSPACE-complete.

e Assume T decides TQBF.

e If ¢ has no quantifiers, it is an expression with only
constants! Evaluate ¢ and accept if result is 1.

e If ¢ = x4, recursively call T on v, first with x = 0 and then
with x = 1. Accept if either returns 1.

e If ¢ = Vxu, recursively call T on v, first with x = 0 and then
with x = 1. Accept if both return 1.
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THE TQBF PROBLEM

Every language A in PSPACE is polynomial-time reducible to
TQBF.

e We build a polynomial time reduction from A to TQBF

e The reduction turns a string w into a TQBF ¢ that simulates
a PSPACE TM M for Aon w.

e Essentially the same as in the proof of the
NP-completeness of SAT — build a formula from the
accepting computation history.

e But uses the approach in Savitch’s Theorem.

e Details in section 8.3 in the book.

e PSPACE is often called the class of games.

e Formalizations of many popular games are
PSPACE-complete.
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THE CLASSES L AND NL

e We have so far considered time and space complexity
bounds that are at least linear.

e We now examine smaller, sublinear space bounds.

e For time complexity, sublinear bounds are insufficient to read
the entire input!

e For sublinear space complexity, the TM is able to read the
whole input but not store it.

e We must modify the computational model!
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THE CLASSES L AND NL

e We introduce a TM with two-tapes:
@ A read-only input tape.
© A read/write work tape.
e On the input tape, the head always stays in the region
where the input is.
e The work tape can be read and written in the usual way.

e Only the cells scanned on the work tape contribute to the
space complexity.

DEFINITIONS— LOG SPACE COMPLEXITY CLASSES

L = SPACE(log n)
NL = NSPACE(log n)
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AN ALGORITHM IN L

e Consider the (good old) language A = {0¥1% | kK > 0}

e Previous algorithm (zig-zag and cross out symbols) used
linear space.

e We can not do this now since the input tape is read-only.

e Once the machine is certain the string is of the desired
pattern, it can count the number of 0’s and 1’s.

e The only additional space needed are for the two counters
(in binary).

e A binary counter uses only logarithmic space, O(log k).
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AN ALGORITHM IN NL

e Consider the PATH problem
PATH = {(G, s, t) | G is a directed graph that has a directed
path from s to t}

e PATH is in P, but that algorithm uses linear space.

e Itis not known if PATH can be solved in deterministic log
space.
e It can be solved in nondeterministic log space:
@ Starting with s, the nondeterministic log space TM guesses
the next node to go to on the way to t.
© The TM only records the id or the position of the node (so
needs log space).
© The TM nondeterministically guesses the next node, until
either it reaches t or until it has gone for m steps where m is
the number of nodes.
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THE CLASSES L AND NL

e Log-space reducibility
e NL-completeness
e PATH is NL-complete.

e For a given log space nondeterministic TM and input w, map
the accepting computation history to a graph, with nodes
representing configurations.

NL C P (remember PATH € P)
NL = coNL.
L € NL = coNL CP C PSPACE.
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AND WE ARE DONE FOR THE SEMESTER

(— THE FINAL)

e Thanks for your patience and for taking the occasional
mental pain.
e But then, no pain no gain!

e We do review Thursday and (if you want) on Sunday, please
come prepared and let me know what major concepts your
still have problems with.

e Final on Monday, April 25, 2010, at 14:30-17:30
e Good luck!
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