FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

SPACE COMPLEXITY

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 1/24

SPACE COMPLEXITY

o (Disk) Space — the final frontier!
e How much memory do computational problems require?

e We characterize problems based on their memory
requirements.

e Space is reusable, time is not!

e We again use the Turing machine as our model of
computation.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 2/24

SPACE COMPLEXITY

DEFINITION — SPACE COMPLEXITY

Let M be a deterministic Turing machine that halts on on inputs.
The space complexity of M is the function f : N'— N/, where
f(n) is the maximum number of tape cells that M scans on
any input of length n.

For nondeterministic TMs where all branches halt on all inputs,
we take the maximum over all the branches of computation.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 3/24

SPACE COMPLEXITY

DEFINITION — SPACE COMPLEXITY CLASSES

Let f : N — R*. The space complexity classes are defined as
follows:

SPACE(f(n)) ={L| Lisalanguage decided by an O(f(n))
space deterministic TM}
NSPACE(f(n)) ={L| Lis alanguage decided by an O(f(n))
space nondeterministic TM}

e SPACE(f(n)) formalizes the class of problems that can be
solved by computers with bounded memory. (Real world!)

e SPACE(f(n)) problems could potentially take a long time to
solve.

e Intutively space and time seem to be interchangeable.

e Just because a problem needs only linear space does not
mean it can be solved in linear time.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 4/24

DETERMINISTIC SPACE COMPLEXITY OF SAT

e SAT is NP-complete.
e But SAT can be solved in linear space.
e M; =“Oninput (¢), where ¢ is a Boolean formula:
@ For each truth assignment to the variables x1, xo, ..., Xy, of ¢:

Q Evaluate ¢ on that truth assignment.
© If ¢ ever evaluates to 1, accept; if not, reject”

3SAT ¢ SPACE(n)

[YD T Ty VIMyDT T T TT 1]
(X ISYIVIXDT TAyIvIxIVIyDT T#Ix] Ty]]
[xIvIIyIvIxDT TdylvIxIvlyD] T#]x]o[y[o]
[xIvI=lyIvIxD T TdylvIxIvlyD] T#]x]o[y[1]

(Ix|v|=lylvIxD | 1UyivixiviyD | [#[x]1]y] 0

e Note that M; takes exponential time.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 5/24

NONDETERMINISTIC SPACE COMPLEXITY OF

ALLNEA

o Consider ALLyra = {(A) | Aisa NFA and L(A) = X*}

e The following nondeterministic linear space algorithm
decides ALLyga.

e Nondeterministically guess an input string rejected by the
NFA and use linear space to guess which states the NFA
could be at a given time.

e N = “On input (M) where M is an NFA.

@ Place a marker on the start state of NFA.
© Repeat 29 times, where q is the number of states of M.

2.1 Nondeterministically select an input symbol and change the
position of the markers on M’s states, to simulate reading
that symbol.

@ Acceptif stages 2 reveals some string that M rejects, i.e., if
at some point none of the markers lie on accept states of M.
Otherwise. reject.”

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 6/24

NONDETERMINISTIC SPACE COMPLEXITY OF

ALLFA

@ Since there are at most 29 subsets of the states of M, it
must reject one of length at most 29, if M rejects any
strings.

e Remember that determinization could end up with at most 29
states.

e N needs space for

e storing the locations of the markers (O(q) = O(n))
e the repeat loop counter (O(q) = O(n))

e Hence N runs in nondeterministic O(n) space.
e Note that N runs in nondeterministic 2°(") time.
o ALLpnra is not known to be in NP or coNP.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 7124

SAVITCH’S THEOREM

e Remember that simulation of a nondeterministic TM with a
deterministic TM requires an exponentional increase in
time.

e Savitch’s Theorem shows that any nondeterministic TM that
uses f(n) space can be converted to a deterministic TM
that uses only f2(n) space, that is,

NSPACE(f(n)) C SPACE(f?(n))

e Obviously, there will be a slowdown.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 8/24

SAVITCH’S THEOREM

THEOREM

For any function f : N' — R ™', where f(n) > n

NSPACE(f(n)) C SPACE(f*(n))

| A

PROOF IDEA
e Let N be a nondeterministic TM with space complexity f(n).

e Construct a deterministic machine M that tries every
possible branch of N.

e Since each branch of N uses at most 7(n) space, then M
uses space at most f(n) space + space for book-keeping.

e We need to simulate the nondeterministic computation and
save as much space as possible.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 91/24

SAVITCH’S THEOREM

e Given two configurations ¢; and ¢, of a f(n) space TM N,
and a number t, determine if we can get from ¢, to ¢, within
t steps.
e CANYIELD = *On input ¢y, c; and t:
Q Ift=0acceptiffc; =
@ If t =1 accept iff ¢y = ¢ or ¢y yields ¢, in one step.
@ If t > 1 then for every possible configuration ¢, of N for w,
using space f(n)
o Run CANYIELD(cy, Cm,).
(5 Run CANYIELD(Cm, C2, L).
Q If steps 4 and 5 both accept, then accept.
@ If haven'’t yet accepted, reject”
e Space is reused during the recursive calls.
e The depth of the recursion is at most log t.
e Each recursive steps uses O(f(n)) space and t = 2°((") go
log t = O(f(n)) . Hence total space used is O(f%(n

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 10724

SAVITCH’S THEOREM

e M simulates N using CANYIELD.

e If nis the length of w, we choose d so that N has no more
than 29(" configurations each using f(n) tape.

e 291" provides an upper bound on the running time on any
branch of N.

e M ="“On input w:

@ Output the result of CANYIELD(Cstart, Caccept, 297(M).”

e At each stage, CANYIELD stores ¢y, ¢, and t for a total of
O(f(n)) space.

e Minor technical points with the accepting configuration and
the initial value of t (e.g., how does the TM know f(n)?) —
See the book.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 11724

THE CLASS PSPACE

DEFINITION — PSPACE

PSPACE is the class of languages that are decidable in
polynomial space on a deterministic TM.

PSPACE = _ SPACE(n").
k

e NSPACE is defined analogously.

e But PSPACE = NSPACE, due to Savitch’s theorem,
because the square of a polynomial is also a polynomial.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 12724

THE CLASS PSPACE — SOME OBSERVATIONS

e We know SAT € SPACE(n).
e = SAT ¢ PSPACE.
e We know ALLyra € NSPACE(n) and hence
ALLnga € SPACE(n?), by Savitch’s theorem.
o = ALLnra € PSPACE.

e Deterministic space complexity classes are closed under
complementation, so ALLyga € SPACE(n?).
o = ALLNrs € PSPACE.
e A TM that operates in f(n) > ntime, can use at most f(n)
space.
e = P C PSPACE

e NP C NSPACE = NP C PSPACE.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 13724

THE CLASS PSPACE — SOME OBSERVATIONS

e We can also bound the time complexity in terms of the
space complexity.
e For f(n) > n, a TM that uses f(n) space, can have at most
f(n)2°U(M) configurations.
o f(n) symbols on tape, so |/(") possible strings and f(n)
possible state positions and |Q| possible states = 209(f(n)
o PSPACE C EXPTIME = |J, TIME(2™).

@ NP PSPACE EXPTIME

(LECTURE 22)

SLIDES FOR 15-453

SPRING 2011 14724

PSPACE-COMPLETENESS

DEFINITION — PSPACE-COMPLETE

A language B is PSPACE-complete if it satisfies two conditions:
Q@ Bisin PSPACE, and
@ every Ain PSPACE is polynomial time reducible to B.

e Note that we use polynomial-time reducibility!

e The reduction should be easy relative to the complexity of
typical problems in the class.

e In general, whenever we define complete-problems for a

complexity class, the reduction model must be more limited
that the model use for defining the class itself.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 15724

THE TQBF PROBLEM

e Quantified Boolean Formulas are exactly like the Boolean
formulas we define for the SAT problem, but additionally
have existential (3) and universal (V) quantifiers.

Vx[x Vv y|

IxJy[x V]

Vx[x Vv X]

Vx|[x]

Wx3y[(x V y) A (X V Y)]

e A fully quantified Boolean formula is a quantified formula
where every variable is quantified.

o All except the first above are fully quantified.
e A fully quantified Boolean formula is also called a sentence,
and is either true or false.

DEFINITION — TQBF
TQBF = {{¢) | ¢ is a true fully quantified Boolean formula}

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 16 /24

THE TQBF PROBLEM

TQBF = {{¢) | ¢ is a true fully quantified Boolean formula} is
PSPACE-complete.

e Assume T decides TQBF.

e If ¢ has no quantifiers, it is an expression with only
constants! Evaluate ¢ and accept if result is 1.

e If ¢ = x4, recursively call T on v, first with x = 0 and then
with x = 1. Accept if either returns 1.

e If ¢ = Vxu, recursively call T on v, first with x = 0 and then
with x = 1. Accept if both return 1.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 17724

THE TQBF PROBLEM

Every language A in PSPACE is polynomial-time reducible to
TQBF.

e We build a polynomial time reduction from A to TQBF

e The reduction turns a string w into a TQBF ¢ that simulates
a PSPACE TM M for Aon w.

e Essentially the same as in the proof of the
NP-completeness of SAT — build a formula from the
accepting computation history.

e But uses the approach in Savitch’s Theorem.

e Details in section 8.3 in the book.

e PSPACE is often called the class of games.

e Formalizations of many popular games are
PSPACE-complete.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 18724

THE CLASSES L AND NL

e We have so far considered time and space complexity
bounds that are at least linear.

e We now examine smaller, sublinear space bounds.

e For time complexity, sublinear bounds are insufficient to read
the entire input!

e For sublinear space complexity, the TM is able to read the
whole input but not store it.

e We must modify the computational model!

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 19724

THE CLASSES L AND NL

e We introduce a TM with two-tapes:
@ A read-only input tape.
© A read/write work tape.
e On the input tape, the head always stays in the region
where the input is.
e The work tape can be read and written in the usual way.

e Only the cells scanned on the work tape contribute to the
space complexity.

DEFINITIONS— LOG SPACE COMPLEXITY CLASSES

L = SPACE(log n)
NL = NSPACE(log n)

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 20/24

AN ALGORITHM IN L

e Consider the (good old) language A = {0¥1% | kK > 0}

e Previous algorithm (zig-zag and cross out symbols) used
linear space.

e We can not do this now since the input tape is read-only.

e Once the machine is certain the string is of the desired
pattern, it can count the number of 0’s and 1’s.

e The only additional space needed are for the two counters
(in binary).

e A binary counter uses only logarithmic space, O(log k).

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 21/24

AN ALGORITHM IN NL

e Consider the PATH problem
PATH = {(G, s, t) | G is a directed graph that has a directed
path from s to t}

e PATH is in P, but that algorithm uses linear space.

e Itis not known if PATH can be solved in deterministic log
space.
e It can be solved in nondeterministic log space:
@ Starting with s, the nondeterministic log space TM guesses
the next node to go to on the way to t.
© The TM only records the id or the position of the node (so
needs log space).
© The TM nondeterministically guesses the next node, until
either it reaches t or until it has gone for m steps where m is
the number of nodes.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 221/24

THE CLASSES L AND NL

e Log-space reducibility
e NL-completeness
e PATH is NL-complete.

e For a given log space nondeterministic TM and input w, map
the accepting computation history to a graph, with nodes
representing configurations.

NL C P (remember PATH € P)
NL = coNL.
L € NL = coNL CP C PSPACE.

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 23/24

AND WE ARE DONE FOR THE SEMESTER

(— THE FINAL)

e Thanks for your patience and for taking the occasional
mental pain.
e But then, no pain no gain!

e We do review Thursday and (if you want) on Sunday, please
come prepared and let me know what major concepts your
still have problems with.

e Final on Monday, April 25, 2010, at 14:30-17:30
e Good luck!

(LECTURE 22) SLIDES FOR 15-453 SPRING 2011 24 /24

