Formal Languages, Automata and Computation

Proving Problems NP-Complete

SUMMARY

- Complexity Classes: P and NP
- Polynomial time reducibility
- Satisfiability Problem (SAT)
- CNF, 3CNF Forms
- 3SAT Problem
- NP-Completeness
- NP-Completeness of the SAT problem
- Reduction from accepting computation histories of nondeterministic TMs to a SAT formula such that
- A polynomial time NTM accepts w iff the corresponding SAT formula has a satisfying assignment.
- 3SAT is NP-Complete.

Showing Problems NP-COMPLETE

- Remember that in order to show a language X to be NP-complete we need to show
(1) X is in NP, and
(2) Every Y in NP is polynomial time reducible to X,
- Part 1 is (usually) easy. You argue that there is polynomial time verifier for X, which, given a solution (certificate), will verify in polynomial time, that, it is a solution.
- For part 2, pick a known NP-complete problem Z
(1) We already know that all problems Y in NP reduce to Z in polynomial time.
(2) We produce a polynomial time algorithm that reduces all instances of Z to some instance of X.
(0) So $Y \leq_{p} Z$ and $Z \leq_{P} X$ then $Y \leq_{p} X$.

Showing Problems NP-Complete

THEOREM

CLIQUE is NP-complete.

PROOF

- We know 3SAT is NP-complete.
(2) We know that $3 S A T \leq_{p}$ CLIQUE.
- Hence CLIQUE is NP-complete.

The Vertex Cover Problem

DEFINITION - VERTEX COVER

Given an undirected graph G, a vertex cover of G is a subset of the nodes where every edge of G touches one of those nodes.

- VERTEX-COVER $=\{\langle G, k\rangle \mid G$ is an undirected graph that has a k-node vertex cover $\}$.

The Vertex Cover Problem

Theorem

VERTEX-COVER is NP-complete.

Proof IdEA

- Show VERTEX-COVER is in NP.
- Easy, the certificate is the vertex cover of size k.
- We reduce an instance of $3 S A T, \phi$, to a graph G and an integer k so that ϕ is satisfiable whenever G has a vertex cover of size k.
- We employ a concept called gadgets, groups of nodes with specific functions, in the graph.
- Variable gadgets - representing literals
- Clause gadgets - representing clauses

The Vertex Cover Problem

- Let ϕ be a 3-cnf formula with m variables and / clauses.
- We construct in polynomial-time, an instance of $\langle G, k\rangle$ where $k=m+2$ I.
- For each variable x in ϕ, we add two nodes to G labeled x and \bar{x}, connected by an edge (variable gadget).
- For every clause ($\ell_{1} \vee \ell_{2} \vee \ell_{3}$) in ϕ, we add 3 nodes labeled ℓ_{1}, ℓ_{2} and ℓ_{3}, with edges between every pair so that they form a triangle (clause gadget)
- We add an edge between any two identically labelled nodes, one from a variable gadget and one from a clause gadget.

The Vertex Cover Problem

$$
\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{2}\right)
$$

Variables and negations of variables

The Vertex Cover Problem

$$
\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{2}\right)
$$

Variables and negations of variables

ϕ satisfiable \Rightarrow put "true" literals on top in vertex cover For each clause. pick a true literal and put other 2 in vertex cover

The Vertex Cover Problem

$$
\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{2}\right)
$$

Variables and negations of variables

k = 2(\#clauses) + (\#variables)

The Hamiltonian Path Problem

DEFINITION - HAMILTONIAN PATH

(Recall that) A Hamiltonian path in a directed graph G is a directed path that goes through each node exactly once.

Definition Hamiltonian Path Problem

HAMPATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph with a Hamiltonian path from s to t.

The Hamiltonian Path Problem

THEOREM

HAMPATH is NP-complete.

Proof IdEA

- We show $3 S A T \leq_{p}$ HAMPATH.
- We again use gadgets to represent the variables and clauses.
- For a given 3-cnf formula with k clauses

$$
\phi=\underbrace{\left(a_{1} \vee b_{1} \vee c_{1}\right)}_{c_{1}} \wedge \underbrace{\left(a_{2} \vee b_{2} \vee c_{2}\right)}_{c_{2}} \wedge \cdots \wedge \underbrace{\left(a_{k} \vee b_{k} \vee c_{k}\right)}_{c_{k}}
$$

where each a_{i}, b_{i} or c_{i} is a literal x or \bar{x}. We have / variables $x_{1}, x_{2}, \ldots x_{1}$.

The Hamiltonian Path Problem

- 1-node gadgets for clauses
- Diamondshaped gadgets for variables

The Hamiltonian Path Problem

- The middle spine in each diamond has $3 k+3$ nodes.
- 3 nodes per clause + 1 to isolate them from the two literal nodes and 2 nodes on each side for the literals $x_{i}, \overline{x_{i}}$.

The Hamiltonian Path Problem

- If x_{i} appears in clause c_{j}, we add two edges from $j^{\text {th }}$ group in the spine to the $j^{\text {th }}$ clause node in the $i^{\text {th }}$ diamond.

The Hamiltonian Path Problem

- If $\overline{x_{i}}$ appears in clause c_{j}, we add two edges from $j^{\text {th }}$ group in the spine to the $j^{\text {th }}$ clause node in the $i^{\text {th }}$ diamond, but in the reverse direction.

The Hamiltonian Path Problem

- Suppose ϕ is satisfiable.
- Ignoring the clause nodes, we note that the Hamiltonian path
- starts at s
- goes through each diamond
- ends up at t.
- In diamond i, it either goes left-to-right or right-to-left depending on the truth value of variable x_{i}.

zig-zag
zag-zig

The Hamiltonian Path Problem

- The clause nodes can be incorporated into the path using the detours we provided.
- So if x_{i} is true and is in clause c_{j}, we can take a detour to node for c_{j} and back to the spine in the right direction.

- Note that each detour is optional but we have to incorporate c_{j} only once.

The Hamiltonian Path Problem

- The clause nodes can be incorporated into the path using the detours we provided.
- So if $\overline{x_{i}}$ is true and is in clause c_{j}, we can take a detour to node for c_{j} and back to the spine in the reverse direction.

The Hamiltonian Path Problem

- How about the reverse direction? If G has a Hamiltonian path then ϕ has a satisfying assignment?
- If the path is normal, that is, it goes through from s zigzagging through the diamonds, then clearly there is a satisfying assignment.
- The following case can not happen!

The Undirected Hamiltonian Path

Definition Hamiltonian Path Problem

UHAMPATH $=\{\langle G, s, t\rangle \mid G$ is an undirected graph with a Hamiltonian path from s to $t\}$.

THEOREM
 UHAMPATH is NP-complete.

Proof IdEA

- We reduce HAMPATH to UHAMPATH.
- All nodes except s and t in the directed graph G, map to 3 nodes in the undirected graph G^{\prime}.
- G has a Hamiltonian path $\Leftrightarrow G^{\prime}$ has an undirected Hamiltonian path.

The Undirected Hamiltonian Path

THEOREM

UHAMPATH is NP-complete.

PROOF

- s in G maps to $s^{\text {out }}$ in G^{\prime}.
- t in G maps to $t^{i n}$ in G^{\prime}.
- Any other node u_{i} maps to $u_{i}^{\text {in }}, u_{i}^{\text {mid }}, u_{i}^{\text {out }}$ in G^{\prime}.
- All arcs coming to u_{i} in G become edges incident on $u_{i}^{i n}$ in G^{\prime}.
- All arcs going out from u_{i} in G become edges incident on $u_{i}^{\text {out }}$ in G^{\prime}.

goes to

The Undirected Hamiltonian Path

- Note that if

$$
s, u_{1}, u_{2}, \ldots, u_{k}, t
$$

is a Hamiltonian path in G then

$$
s^{\text {out }}, u_{1}^{\text {in }}, u_{1}^{\text {mid }}, u_{1}^{\text {out }}, u_{2}^{\text {in }}, u_{2}^{\text {mid }}, u_{2}^{\text {out }} \ldots, u_{k}^{\text {out }}, t_{\text {tin }}
$$

is a Hamiltonian path in G^{\prime}.

- Any Hamiltonian path between $s^{\text {out }}$ and $t^{\text {in }}$, must go through the triple of nodes except for the start and end nodes.

The Subset Sum Problem

SUBSET-SUM $=\left\{\langle S, t\rangle \mid S=\left\{x_{1}, \ldots, x_{m}\right\}\right.$ and for some

$$
\left.\left\{y_{1}, \ldots, y_{n}\right\} \subseteq S, \sum y_{i}=t\right\}
$$

THEOREM

SUBSET-SUM is NP-complete.

Proof IdEA

- We reduce 3SAT to an instance of the SUBSET-SUM problem with a set S and a bound t,
- so that if a formula ϕ has a satisfying assignment,
- then S has a subset T that adds to t
- We already know that SUBSET-SUM is in NP.

The Subset Sum Problem

- Let ϕ be a formula with variables $x_{1}, x_{2}, \ldots, x_{l}$ and clauses c_{1}, \ldots, c_{k}.
- We compute $m=2 \times I+2 \times k$ (large) numbers from ϕ and a bound t
- Such that when we choose the numbers corresponding to the literals in the satisfying assignment, they add to t.

The Subset Sum Problem

S for $\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \cdots\right) \wedge \cdots \wedge\left(\overline{x_{3}} \vee \cdots \vee \cdots\right)$

	1	2	3	4	\cdots	1	c_{1}	c_{2}	\cdots	c_{k}
y_{1}	1	0	0	0	\cdots	0	1	0	\cdots	0
z_{1}	1	0	0	0	\cdots	0	0	0	\cdots	0
y_{2}		1	0	0	\cdots	0	0	1	\cdots	0
z_{2}		1	0	0	\cdots	0	1	0	\cdots	0
y_{3}			1	0	\cdots	0	1	1	\cdots	0
z_{3}		1	0	\cdots	0	0	0	\cdots	1	
\vdots					\ddots	\vdots	\vdots		\vdots	\vdots
y_{1}						1	0	0	\cdots	0
z_{l}						1	0	0	\cdots	0
g_{1}						1	0	\cdots	0	
h_{1}							1	0	\cdots	0
g_{2}								1	\cdots	0
h_{2}								1	\cdots	0
\vdots									\ddots	\vdots
g_{k}										1
h_{k}										1
t	1	1	1	1	\cdots	1	3	3	\cdots	3

The Subset Sum Problem

	1	2	3	4	\cdots	1	c_{1}	c_{2}	\cdots	c_{k}
y_{1}	1	0	0	0	\cdots	0	1	0	\cdots	0
z_{1}	1	0	0	0	\cdots	0	0	0	\cdots	0
y_{2}		1	0	0	\cdots	0	0	1	\cdots	0
z_{2}		1	0	0	\cdots	0	1	0	\cdots	0
y_{3}			1	0	\cdots	0	1	1	\cdots	0
z_{3}			1	0	\cdots	0	0	0	\cdots	1
\vdots					\ddots	\vdots	\vdots		\vdots	\vdots
y_{1}						1	0	0	\cdots	0
z_{1}						1	0	0	\cdots	0
g_{1}							1	0	\cdots	0
h_{1}							1	0	\cdots	0
g_{2}								1	\cdots	0
h_{2}									\ddots	0
\vdots									\ddots	\vdots
g_{k}										1
h_{k}										
t	1	1	1	1	\cdots	1	3	3	\cdots	3

- We choose one of the numbers y_{i} if $x_{i}=1$, or z_{i} if $x_{i}=0$.
- The left part of t will add up the right number.
- The right side columns will at least be 1 each
- We take enough of the g and h 's to make them add up to 3.

