FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

PROVING PROBLEMS NP-COMPLETE

SUMMARY

- Complexity Classes: P and NP
- Polynomial time reducibility
- Satisfiability Problem (SAT)
 - CNF, 3CNF Forms
 - 3SAT Problem
- NP-Completeness
- NP-Completeness of the SAT problem
 - Reduction from accepting computation histories of nondeterministic TMs to a *SAT* formula such that
 - A polynomial time NTM accepts *w* iff the corresponding *SAT* formula has a satisfying assignment.
- 3SAT is NP-Complete.

SHOWING PROBLEMS NP-COMPLETE

- Remember that in order to show a language *X* to be NP-complete we need to show
 - X is in NP, and
 - **2** Every Y in NP is polynomial time reducible to X,
- Part 1 is (usually) easy. You argue that there is polynomial time verifier for *X*, which, given a solution (certificate), will verify in polynomial time, that, it is a solution.
- For part 2, pick a known NP-complete problem Z
 - We already know that all problems Y in NP reduce to Z in polynomial time.
 - We produce a polynomial time algorithm that reduces all instances of Z to some instance of X.
 - So $Y \leq_P Z$ and $Z \leq_P X$ then $Y \leq_P X$.

SHOWING PROBLEMS NP-COMPLETE

THEOREM

CLIQUE is NP-complete.

Proof

- We know 3SAT is NP-complete.
- We know that $3SAT \leq_P CLIQUE$.
- Hence CLIQUE is NP-complete.

DEFINITION – VERTEX COVER

Given an undirected graph *G*, a vertex cover of *G* is a subset of the nodes where every edge of *G* touches one of those nodes.

• *VERTEX-COVER* = { $\langle G, k \rangle$ | *G* is an undirected graph that has a *k*-node vertex cover}.

THEOREM

VERTEX-COVER is NP-complete.

PROOF IDEA

- Show VERTEX-COVER is in NP.
 - Easy, the certificate is the vertex cover of size k.
- We reduce an instance of 3SAT, φ, to a graph G and an integer k so that φ is satisfiable whenever G has a vertex cover of size k.
- We employ a concept called gadgets, groups of nodes with specific functions, in the graph.
 - Variable gadgets representing literals
 - Clause gadgets representing clauses

- Let ϕ be a 3-cnf formula with *m* variables and *l* clauses.
- We construct in polynomial-time, an instance of $\langle G, k \rangle$ where k = m + 2I.
 - For each variable x in φ, we add two nodes to G labeled x and x
 , connected by an edge (variable gadget).
 - For every clause (ℓ₁ ∨ ℓ₂ ∨ ℓ₃) in φ, we add 3 nodes labeled ℓ₁, ℓ₂ and ℓ₃, with edges between every pair so that they form a triangle (clause gadget)
 - We add an edge between any two identically labelled nodes, one from a variable gadget and one from a clause gadget.

Variables and negations of variables

 $(\mathbf{X}_1 \lor \mathbf{X}_1 \lor \mathbf{X}_2) \land (\neg \mathbf{X}_1 \lor \neg \mathbf{X}_2 \lor \neg \mathbf{X}_2) \land (\neg \mathbf{X}_1 \lor \mathbf{X}_2 \lor \mathbf{X}_2)$

Variables and negations of variables

(LECTURE 21)

$(\mathbf{x}_1 \lor \mathbf{x}_1 \lor \mathbf{x}_2) \land (\neg \mathbf{x}_1 \lor \neg \mathbf{x}_2 \lor \neg \mathbf{x}_2) \land (\neg \mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_2)$

Variables and negations of variables

DEFINITION - HAMILTONIAN PATH

(Recall that) A Hamiltonian path in a directed graph G is a directed path that goes through each node exactly once.

DEFINITION HAMILTONIAN PATH PROBLEM

 $HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph with a Hamiltonian path from } s \text{ to } t \}.$

THEOREM

HAMPATH is NP-complete.

PROOF IDEA

- We show $3SAT \leq_P HAMPATH$.
- We again use gadgets to represent the variables and clauses.

• For a given 3-cnf formula with k clauses

$$\phi = \underbrace{(a_1 \lor b_1 \lor c_1)}_{c_1} \land \underbrace{(a_2 \lor b_2 \lor c_2)}_{c_2} \land \cdots \land \underbrace{(a_k \lor b_k \lor c_k)}_{c_k}$$

where each a_i, b_i or c_i is a literal x or \overline{x} . We have l variables $x_1, x_2, \ldots x_l$.

(LECTURE 21)

1-node S false gadgets for true C X_1 0 clauses • Diamond- C_{2} shaped gadgets for variables ÷ х clauses

- The middle spine in each diamond has 3k + 3 nodes.
 - 3 nodes per clause + 1 to isolate them from the two literal nodes and 2 nodes on each side for the literals x_i , $\overline{x_i}$.

• If *x_i* appears in clause *c_j*, we add two edges from *jth* group in the spine to the *jth* clause node in the *ith* diamond.

 If x
i appears in clause c
j, we add two edges from jth group in the spine to the jth clause node in the ith diamond, but in the reverse direction.

- Suppose ϕ is satisfiable.
- Ignoring the clause nodes, we note that the Hamiltonian path
 - starts at s
 - goes through each diamond
 - ends up at t.
- In diamond *i*, it either goes left-to-right or right-to-left depending on the truth value of variable x_i.

- The clause nodes can be incorporated into the path using the detours we provided.
- So if *x_i* is true and is in clause *c_j*, we can take a detour to node for *c_i* and back to the spine in the right direction.

• Note that each detour is optional but we have to incorporate c_i only once.

(LECTURE 21)

- The clause nodes can be incorporated into the path using the detours we provided.
- So if $\overline{x_i}$ is true and is in clause c_j , we can take a detour to node for c_i and back to the spine in the reverse direction.

- How about the reverse direction? If *G* has a Hamiltonian path then ϕ has a satisfying assignment?
- If the path is normal, that is, it goes through from *s* zigzagging through the diamonds, then clearly there is a satisfying assignment.
- The following case can not happen!

THE UNDIRECTED HAMILTONIAN PATH

DEFINITION HAMILTONIAN PATH PROBLEM

 $UHAMPATH = \{ \langle G, s, t \rangle \mid G \text{ is an undirected graph with a} \\Hamiltonian path from s to t \}.$

THEOREM

UHAMPATH is NP-complete.

PROOF IDEA

- We reduce HAMPATH to UHAMPATH.
- All nodes except *s* and *t* in the directed graph *G*, map to 3 nodes in the undirected graph *G*'.
- G has a Hamiltonian path ⇔ G' has an undirected Hamiltonian path.

THE UNDIRECTED HAMILTONIAN PATH

THEOREM

UHAMPATH is NP-complete.

Proof

- s in G maps to s^{out} in G'.
- t in G maps to t^{in} in G'.
- Any other node u_i maps to u_i^{in} , u_i^{mid} , u_i^{out} in G'.
 - All arcs coming to u_i in G become edges incident on u_iⁱⁿ in G'.
 - All arcs going out from u_i in G become edges incident on u_i^{out} in G'.

(LECTURE 21)

THE UNDIRECTED HAMILTONIAN PATH

Note that if

 $s, u_1, u_2, \ldots, u_k, t$

is a Hamiltonian path in G then

 $s^{out}, u_1^{in}, u_1^{mid}, u_1^{out}, u_2^{in}, u_2^{mid}, u_2^{out} \dots, u_k^{out}, t^{tin}$

is a Hamiltonian path in G'.

• Any Hamiltonian path between *s^{out}* and *tⁱⁿ*, must go through the triple of nodes except for the start and end nodes.

$$SUBSET-SUM = \{ \langle S, t \rangle \mid S = \{x_1, \dots, x_m\} \text{ and for some} \\ \{y_1, \dots, y_n\} \subseteq S, \sum y_i = t \}$$

THEOREM

SUBSET-SUM is NP-complete.

PROOF IDEA

- We reduce 3*SAT* to an instance of the *SUBSET-SUM* problem with a set *S* and a bound *t*,
 - so that if a formula ϕ has a satisfying assignment,
 - then S has a subset T that adds to t
- We already know that SUBSET-SUM is in NP.

- Let ϕ be a formula with variables x_1, x_2, \ldots, x_l and clauses c_1, \ldots, c_k .
- We compute m = 2 × l + 2 × k (large) numbers from φ and a bound t
- Such that when we choose the numbers corresponding to the literals in the satisfying assignment, they add to *t*.

S for $\phi = (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3 \lor \cdots) \land \cdots \land (\overline{x_3} \lor \cdots \lor \cdots)$

	1	2	3	4		1	C1	<i>C</i> ₂		Ck
y 1	1	0	0	0	• • •	0	1	0	• • •	0
<i>Z</i> 1	1	0	0	0		0	0	0		0
y 2		1	0	0		0	0	1		0
<i>Z</i> 2		1	0	0		0	1	0		0
<i>y</i> 3			1	0		0	1	1		0
Z ₃			1	0	•••	0	0	0		1
:					•.	:	:		:	:
•					•	•	•		•	•
Уı						1	0	0	• • •	0
Z_l						1	0	0		0
<i>g</i> 1							1	0		0
h_1							1	0		0
g_2								1		0
h_2								1		0
:									•.	:
·									•	•
g_k										1
h _k										1
t	1	1	1	1		1	3	3		3

(LECTURE 21)

Spring 2011 26 / 27

	1	2	3	4		1	C1	<i>C</i> ₂		c _k	•
<i>y</i> ₁	1	0	0	0		0	1	0		0	1
Z_1	1	0	0	0		0	0	0		0	
<i>y</i> 2		1	0	0		0	0	1		0	
Z_2		1	0	0		0	1	0		0	
V3			1	0		0	1	1		0	
Z ₃			1	0		0	0	0		1	
÷					·	÷	:		÷	÷	
VI						1	0	0		0	
Z_l						1	0	0		0	
g_1							1	0	• • •	0	1
h_1							1	0		0	
g_2								1		0	
h ₂								1	•••	0	
:									۰.	:	
•									•	÷	
g_k										1	
n_k										1	
t	1	1	1	1		1	3	3	• • •	3]

- We choose one of the numbers y_i if $x_i = 1$, or z_i if $x_i = 0$.
- The left part of t will add up the right number.
- The right side columns will at least be 1 each
- We take enough of the *g* and *h*'s to make them add up to 3.