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SUMMARY

Complexity Classes: P and NP
Polynomial time reducibility
Satisfiability Problem (SAT )

CNF, 3CNF Forms
3SAT Problem

NP-Completeness
NP-Completeness of the SAT problem

Reduction from accepting computation histories of
nondeterministic TMs to a SAT formula such that

A polynomial time NTM accepts w iff the corresponding SAT
formula has a satisfying assignment.

3SAT is NP-Complete.
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SHOWING PROBLEMS NP-COMPLETE

Remember that in order to show a language X to be
NP-complete we need to show

1 X is in NP, and
2 Every Y in NP is polynomial time reducible to X ,

Part 1 is (usually) easy. You argue that there is polynomial
time verifier for X , which, given a solution (certificate), will
verify in polynomial time, that, it is a solution.
For part 2, pick a known NP-complete problem Z

1 We already know that all problems Y in NP reduce to Z in
polynomial time.

2 We produce a polynomial time algorithm that reduces all
instances of Z to some instance of X .

3 So Y ≤P Z and Z ≤P X then Y ≤P X .
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SHOWING PROBLEMS NP-COMPLETE

THEOREM
CLIQUE is NP-complete.

PROOF
1 We know 3SAT is

NP-complete.
2 We know that

3SAT ≤P CLIQUE .
3 Hence CLIQUE is

NP-complete.
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THE VERTEX COVER PROBLEM

DEFINITION – VERTEX COVER
Given an undirected graph G, a vertex cover of G is a subset of
the nodes where every edge of G touches one of those nodes.

VERTEX-COVER = {〈G, k〉 | G is an undirected graph that
has a k -node vertex cover}.
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THE VERTEX COVER PROBLEM

THEOREM
VERTEX-COVER is NP-complete.

PROOF IDEA
Show VERTEX-COVER is in NP.

Easy, the certificate is the vertex cover of size k .

We reduce an instance of 3SAT , φ, to a graph G and an
integer k so that φ is satisfiable whenever G has a vertex
cover of size k .
We employ a concept called gadgets, groups of nodes with
specific functions, in the graph.

Variable gadgets – representing literals
Clause gadgets – representing clauses
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THE VERTEX COVER PROBLEM

Let φ be a 3-cnf formula with m variables and l clauses.
We construct in polynomial-time, an instance of 〈G, k〉
where k = m + 2l .

For each variable x in φ, we add two nodes to G labeled x
and x , connected by an edge (variable gadget).
For every clause (`1 ∨ `2 ∨ `3) in φ, we add 3 nodes labeled
`1, `2 and `3, with edges between every pair so that they
form a triangle (clause gadget)
We add an edge between any two identically labelled nodes,
one from a variable gadget and one from a clause gadget.
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THE VERTEX COVER PROBLEM

( LECTURE 21) SLIDES FOR 15-453 SPRING 2011 8 / 27



THE VERTEX COVER PROBLEM
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THE VERTEX COVER PROBLEM
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THE HAMILTONIAN PATH PROBLEM

DEFINITION - HAMILTONIAN PATH
(Recall that) A Hamiltonian path in a directed graph G is a
directed path that goes through each node exactly once.

DEFINITION HAMILTONIAN PATH PROBLEM
HAMPATH = {〈G, s, t〉 | G is a directed graph with a Hamiltonian

path from s to t}.
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THE HAMILTONIAN PATH PROBLEM

THEOREM
HAMPATH is NP-complete.

PROOF IDEA
We show 3SAT ≤P HAMPATH.
We again use gadgets to represent the variables and
clauses.
For a given 3-cnf formula with k clauses

φ = (a1 ∨ b1 ∨ c1)︸ ︷︷ ︸
c1

∧ (a2 ∨ b2 ∨ c2)︸ ︷︷ ︸
c2

∧ · · · ∧ (ak ∨ bk ∨ ck)︸ ︷︷ ︸
ck

where each ai ,bi or ci is a literal x or x . We have l variables
x1, x2, . . . xl .
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THE HAMILTONIAN PATH PROBLEM
1-node
gadgets for
clauses
Diamond-
shaped
gadgets for
variables
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THE HAMILTONIAN PATH PROBLEM

The middle spine in each diamond has 3k + 3 nodes.
3 nodes per clause + 1 to isolate them from the two literal
nodes and 2 nodes on each side for the literals xi , xi .
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THE HAMILTONIAN PATH PROBLEM

If xi appears in clause cj , we add two edges from j th group
in the spine to the j th clause node in the i th diamond.
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THE HAMILTONIAN PATH PROBLEM

If xi appears in clause cj , we add two edges from j th group
in the spine to the j th clause node in the i th diamond, but in
the reverse direction.
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THE HAMILTONIAN PATH PROBLEM

Suppose φ is satisfiable.
Ignoring the clause nodes, we note that the Hamiltonian
path

starts at s
goes through each diamond
ends up at t .

In diamond i , it either goes left-to-right or right-to-left
depending on the truth value of variable xi .
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THE HAMILTONIAN PATH PROBLEM

The clause nodes can be incorporated into the path using
the detours we provided.
So if xi is true and is in clause cj , we can take a detour to
node for cj and back to the spine in the right direction.

Note that each detour is optional but we have to incorporate
cj only once.
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THE HAMILTONIAN PATH PROBLEM

The clause nodes can be incorporated into the path using
the detours we provided.
So if xi is true and is in clause cj , we can take a detour to
node for cj and back to the spine in the reverse direction.
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THE HAMILTONIAN PATH PROBLEM

How about the reverse direction? If G has a Hamiltonian
path then φ has a satisfying assignment?
If the path is normal, that is, it goes through from s
zigzagging through the diamonds, then clearly there is a
satisfying assignment.
The following case can not happen!
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THE UNDIRECTED HAMILTONIAN PATH

DEFINITION HAMILTONIAN PATH PROBLEM
UHAMPATH = {〈G, s, t〉 | G is an undirected graph with a

Hamiltonian path from s to t}.

THEOREM
UHAMPATH is NP-complete.

PROOF IDEA
We reduce HAMPATH to UHAMPATH.
All nodes except s and t in the directed graph G, map to 3
nodes in the undirected graph G′.
G has a Hamiltonian path⇔ G′ has an undirected
Hamiltonian path.
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THE UNDIRECTED HAMILTONIAN PATH

THEOREM
UHAMPATH is NP-complete.

PROOF

s in G maps to sout in G′.
t in G maps to t in in G′.
Any other node ui maps to u in

i ,u
mid
i ,uout

i in G′.
All arcs coming to ui in G become edges incident on uin

i in
G′.
All arcs going out from ui in G become edges incident on
uout

i in G′.
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THE UNDIRECTED HAMILTONIAN PATH

Note that if
s,u1,u2, . . . ,uk , t

is a Hamiltonian path in G then

sout ,u in
1 ,u

mid
1 ,uout

1 ,u in
2 ,u

mid
2 ,uout

2 . . . ,uout
k , t tin

is a Hamiltonian path in G′.
Any Hamiltonian path between sout and t in, must go through
the triple of nodes except for the start and end nodes.
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THE SUBSET SUM PROBLEM

SUBSET-SUM = {〈S, t〉 | S = {x1, . . . , xm} and for some
{y1, . . . , yn} ⊆ S,

∑
yi = t}

THEOREM
SUBSET-SUM is NP-complete.

PROOF IDEA
We reduce 3SAT to an instance of the SUBSET-SUM
problem with a set S and a bound t ,

so that if a formula φ has a satisfying assignment,
then S has a subset T that adds to t

We already know that SUBSET-SUM is in NP.
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THE SUBSET SUM PROBLEM

Let φ be a formula with variables x1, x2, . . . , xl and clauses
c1, . . . , ck .
We compute m = 2× l + 2× k (large) numbers from φ and
a bound t
Such that when we choose the numbers corresponding to
the literals in the satisfying assignment, they add to t .
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THE SUBSET SUM PROBLEM

S for φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ · · · ) ∧ · · · ∧ (x3 ∨ · · · ∨ · · · )
1 2 3 4 · · · l c1 c2 · · · ck

y1 1 0 0 0 · · · 0 1 0 · · · 0
z1 1 0 0 0 · · · 0 0 0 · · · 0
y2 1 0 0 · · · 0 0 1 · · · 0
z2 1 0 0 · · · 0 1 0 · · · 0
y3 1 0 · · · 0 1 1 · · · 0
z3 1 0 · · · 0 0 0 · · · 1
...

. . .
...

...
...

...
yl 1 0 0 · · · 0
zl 1 0 0 · · · 0
g1 1 0 · · · 0
h1 1 0 · · · 0
g2 1 · · · 0
h2 1 · · · 0
...

. . .
...

gk 1
hk 1
t 1 1 1 1 · · · 1 3 3 · · · 3
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THE SUBSET SUM PROBLEM

1 2 3 4 · · · l c1 c2 · · · ck
y1 1 0 0 0 · · · 0 1 0 · · · 0
z1 1 0 0 0 · · · 0 0 0 · · · 0
y2 1 0 0 · · · 0 0 1 · · · 0
z2 1 0 0 · · · 0 1 0 · · · 0
y3 1 0 · · · 0 1 1 · · · 0
z3 1 0 · · · 0 0 0 · · · 1
...

. . .
...

...
...

...
yl 1 0 0 · · · 0
zl 1 0 0 · · · 0
g1 1 0 · · · 0
h1 1 0 · · · 0
g2 1 · · · 0
h2 1 · · · 0
...

. . .
...

gk 1
hk 1
t 1 1 1 1 · · · 1 3 3 · · · 3

We choose one of the
numbers yi if xi = 1,
or zi if xi = 0.
The left part of t will
add up the right
number.
The right side
columns will at least
be 1 each
We take enough of
the g and h’s to make
them add up to 3.
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