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SUMMARY

e Complexity Classes: P and NP
e Polynomial time reducibility

Satisfiability Problem (SAT)

o CNF, 3CNF Forms
o 3SAT Problem

NP-Completeness

NP-Completeness of the SAT problem

e Reduction from accepting computation histories of
nondeterministic TMs to a SAT formula such that
e A polynomial time NTM accepts w iff the corresponding SAT
formula has a satisfying assignment.

3SAT is NP-Complete.
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SHOWING PROBLEMS NP-COMPLETE

e Remember that in order to show a language X to be

NP-complete we need to show
@ Xisin NP and
© Every Y in NP is polynomial time reducible to X,

e Part 1 is (usually) easy. You argue that there is polynomial
time verifier for X, which, given a solution (certificate), will
verify in polynomial time, that, it is a solution.

e For part 2, pick a known NP-complete problem Z

@ We already know that all problems Y in NP reduce to Z in
polynomial time.

© We produce a polynomial time algorithm that reduces all
instances of Z to some instance of X.

Q@ SoY<pZand Z <p XthenY <p X.

SPRING 2011 3/27
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SHOWING PROBLEMS NP-COMPLETE
CLIQUE is NP-complete. l

@ We know 3SAT is
NP-complete.

© We know that
3SAT <p CLIQUE.

© Hence CLIQUE is
NP-complete.
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THE VERTEX COVER PROBLEM

DEFINITION — VERTEX COVER

Given an undirected graph G, a vertex cover of G is a subset of
the nodes where every edge of G touches one of those nodes.

K k o)

e VERTEX-COVER = {(G, k) | Gis an undirected graph that
has a k-node vertex cover}.
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THE VERTEX COVER PROBLEM
VERTEX-COVER is NP-complete.

PROOF IDEA

e Show VERTEX-COVER s in NP.

e Easy, the certificate is the vertex cover of size k.

e We reduce an instance of 3SAT, ¢, to a graph G and an
integer k so that ¢ is satisfiable whenever G has a vertex
cover of size k.

e We employ a concept called gadgets, groups of nodes with
specific functions, in the graph.

e Variable gadgets — representing literals
e Clause gadgets — representing clauses
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THE VERTEX COVER PROBLEM

o Let ¢ be a 3-cnf formula with m variables and / clauses.

e We construct in polynomial-time, an instance of (G, k)
where k = m+ 2.

e For each variable x in ¢, we add two nodes to G labeled x
and x, connected by an edge (variable gadget).

e For every clause (¢4 VV ¢2 \V £3) in ¢, we add 3 nodes labeled
{4, £> and /3, with edges between every pair so that they
form a triangle (clause gadget)

e We add an edge between any two identically labelled nodes,
one from a variable gadget and one from a clause gadget.

( LECTURE 21) SLIDES FOR 15-453 SPRING 2011 7127



THE VERTEX COVER PROBLEM

(X1 A\ X1 A\ XZ) AN (_IX1 A\ —|X2 A\ ﬂXz) A (_IX1 A\ Xz A\ Xz)

Variables and negations of variables

#nodes = 2(#variables) + 3(#clauses)




THE VERTEX COVER PROBLEM

(x1 vXqVv x2) A (—|x1 Vv Xy Vv —|X2) A (—|x1 Vv X3 Vv XZ)

Variables and negations of variables

¢ satisfiable = put “true” literals on top in verte
For each clause. pDick a true literal and put other 2 in vertex cover
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THE VERTEX COVER PROBLEM

(X1 A\ X1 Vv XZ) N (—IX1 A" —IXZ A4 ﬁXz) N\ (—IX1 Vv XZ A4 XZ)

Variables and negations of variables




THE HAMILTONIAN PATH PROBLEM

DEFINITION - HAMILTONIAN PATH

(Recall that) A Hamiltonian path in a directed graph G is a
directed path that goes through each node exactly once.

DEFINITION HAMILTONIAN PATH PROBLEM

HAMPATH = {(G, s, t) | G is a directed graph with a Hamiltonian
path from s to t}.
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THE HAMILTONIAN PATH PROBLEM
HAMPATH is NP-complete.

PROOF IDEA
o We show 3SAT <p HAMPATH.

e We again use gadgets to represent the variables and
clauses.

e For a given 3-cnf formula with k clauses

dp=(ayVbVec)A(@aVbVe)AN---A(akV bk V ck)
- ~~ g N ~~ g N s

Cq Co Ck

where each a;, b; or ¢; is a literal x or x. We have / variables
X1, Xo, ... X].

4
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THE HAMILTONIAN PATH PROBLEM

e 1-node ¥
gadgets for t"ue/o\fa('je o C
|
clauses e i S R O
e Diamond-
shaped Sl
gadgets for
variables
o C,
clauses
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THE HAMILTONIAN PATH PROBLEM

e The middle spine in each diamond has 3k + 3 nodes.

e 3 nodes per clause + 1 to isolate them from the two literal
nodes and 2 nodes on each side for the literals x;, X;.
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THE HAMILTONIAN PATH PROBLEM

e If x; appears in clause c;, we add two edges from j group
in the spine to the j clause node in the i diamond.

€Z;
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THE HAMILTONIAN PATH PROBLEM

e If X; appears in clause c;, we add two edges from j group
in the spine to the j clause node in the i diamond, but in
the reverse direction.
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THE HAMILTONIAN PATH PROBLEM

e Suppose ¢ is satisfiable.
e Ignoring the clause nodes, we note that the Hamiltonian
path
o startsat s
e goes through each diamond
e ends up at t.
e In diamond /, it either goes left-to-right or right-to-left
depending on the truth value of variable x;.

g-zag
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THE HAMILTONIAN PATH PROBLEM

e The clause nodes can be incorporated into the path using
the detours we provided.

e Soif x; is true and is in clause ¢;, we can take a detour to
node for ¢; and back to the spine in the right direction.

£

o Note that each detour is optional but we have to incorporate
c; only once.
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THE HAMILTONIAN PATH PROBLEM

e The clause nodes can be incorporated into the path using
the detours we provided.

e Soif X; is true and is in clause ¢;, we can take a detour to
node for ¢; and back to the spine in the reverse direction.
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THE HAMILTONIAN PATH PROBLEM

e How about the reverse direction? If G has a Hamiltonian
path then ¢ has a satisfying assignment?

e If the path is normal, that is, it goes through from s
zigzagging through the diamonds, then clearly there is a
satisfying assignment.

e The following case can not happen!

~
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THE UNDIRECTED HAMILTONIAN PATH

DEFINITION HAMILTONIAN PATH PROBLEM

UHAMPATH = {(G, s, t) | G is an undirected graph with a
Hamiltonian path from s to t}.

UHAMPATH is NP-complete.

PROOF IDEA
o We reduce HAMPATH to UHAMPATH.
e All nodes except s and t in the directed graph G, map to 3
nodes in the undirected graph G'.

e G has a Hamiltonian path < G’ has an undirected
Hamiltonian path.
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THE UNDIRECTED HAMILTONIAN PATH
UHAMPATH is NP-complete. \

PROOF
@ sin G maps to s®tin G.
e tin Gmapsto t"in G.
e Any other node u; maps to u", u™@ yo“in G.
e All arcs coming to u; in G become edges incident on u;” in
G.

e All arcs going out from u; in G become edges incident on
uttin G

SLIDES FOR 15-453
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THE UNDIRECTED HAMILTONIAN PATH

e Note that if
S,U1,U2,.-.,Uk,t

is a Hamiltonian path in G then
Sout7 Uin, anid, U1out7 uén7 Ugﬁd, ugut' . U,?Ut, ttin

is a Hamiltonian path in G'.

e Any Hamiltonian path between s°“ and ", must go through
the triple of nodes except for the start and end nodes.
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THE SUBSET SUM PROBLEM

SUBSET-SUM = {(S,t) | S = {x1, ..., Xm} and for some J
t}

W,y €8 Y Y=

SUBSET-SUM is NP-complete.

PROOF IDEA

@ We reduce 3SAT to an instance of the SUBSET-SUM
problem with a set S and a bound t,

e so that if a formula ¢ has a satisfying assignment,
e then S has a subset T that adds to ¢

o We already know that SUBSET-SUM is in NP.
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THE SUBSET SUM PROBLEM

o Let ¢ be a formula with variables x;, x», ..., x; and clauses
Ci,...,Ck.

e We compute m=2 x [+ 2 x k (large) numbers from ¢ and
a bound t

e Such that when we choose the numbers corresponding to
the literals in the satisfying assignment, they add to t.
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THE SUBSET SUM PROBLEM

Storé=0a VXV xa)A(eVXaV YA AGGV V)
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THE SUBSET SUM PROBLEM

@ We choose one of the

1 2 3 4 'l e o Ck

i1 0 0 0 01 o0 0 numbers y; if x; = 1,
zz |1 0 0 O 0| O 0 0 .
¥e 1.0 0 0|0 1 0 or z; if x; = 0.
Zzpot 98 oy e o | @ The left part of ¢ wil
23 10 00 © 1 add up the right

: S : number.

1 0 0 0 : :

7 il o o | @ The right side
g 1 8 8 columns will at least

1
o 1 0 be 1 each
e 1 ° | e We take enough of

: o the g and h’s to make
7 1 | them add up to 3.

t { 1 1 1 1 1 { 3 3 3 }
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