FORMAL LANGUAGES, AUTOMATA AND COMPUTATION NP-COMPLETENESS

Carnegie Mellon University in Qatar

SUMMARY

- Time complexity: Big-O notation, asympotic complexity
- Simulation of multi-tape TMs with a single tape deterministic TM can be done with a polynomial slow-down.
- Simulation of nondeterministic TMs with a deterministic TM is exponentially slower.
- The Class P: The class of languages for which membership can be decided quickly.
- The Class NP: The class of languages for which membership can be verified quickly.

- We do not yet know if $P=N P$, or not.

NP PROBLEMS

- The best method known for solving languages in NP deterministically uses exponential time, that is

$$
N P \subseteq E X P T I M E=\bigcup_{k} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

- It is not known whether NP is contained in a smaller deterministic time complexity class.

NP-COMPLETE PROBLEMS

- Cook and Levin in early 1970's showed that certain problems in NP were such that
- If any of these problems had a deterministic polynomial-time algorithm, then
- All problems in NP had deterministic polynomial-time algorithms.
- Such problems are called NP-complete problems.
- This is important for a number of reasons:
(1) If one is attempting to show that $P \neq N P$, s/he may focus on an NP-complete problem and try to show that it needs more than a polynomial amount of time.
(2) If one is attempting to show that $\mathrm{P}=\mathrm{NP}, \mathrm{s} /$ he may focus on an NP-complete problem and try to come up with a polynomial time algorithm for it.
(3) One may avoid wasting searching for a nonexistent polynomial time algorithm to solve a particular problem, if one can show it reduces to an NP-complete problem (as it is generally believed that $\mathrm{P} \neq \mathrm{NP}$.)

The Satisfiability Problem

DEFINITION - Boolean VARIABLES

A boolean variable is a variable that can taken on values TRUE (1) and FALSE (0).

- We have Boolean operations of AND $(x \wedge y)$, OR $(x \vee y)$ and NOT ($\neg x$ or \bar{x}) on boolean variables.

$$
\begin{array}{ccc}
\text { AND } & O R & \text { NOT } \\
\hline 0 \wedge 0=0 & 0 \vee 0=0 & \overline{0}=1 \\
0 \wedge 1=0 & 0 \vee 1=1 & \overline{1}=0 \\
1 \wedge 0=0 & 1 \vee 0=1 & \\
1 \wedge 1=1 & 1 \vee 1=1 &
\end{array}
$$

The Satisfiability Problem

DEFINITION - BOOLEAN FORMULA

A Boolean formula is an expression involving Boolean variables and operations.
For example: $\phi=(\bar{x} \wedge y) \vee(x \wedge \bar{z}) \vee(y \wedge z)$ is a Boolean formula.

DEFINITION - SATISFIABILITY

A Boolean formula is satisfiable if some assignment of $0 s$ and $1 s$ to the variables makes the formula evaluate to 1.
We say the assignment satisfies ϕ.

- What possible assignments satisfy the formula above?

DEFINITION - THE SATISFIABILITY PROBLEM

The satisfiability problem checks if a Boolean formula is satisfiable.

$$
S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula }\}
$$

The Satisfiability Problem

> Theorem 7.27 - The Cook-Levin Theorem SAT $\in \mathrm{P}$ iff $\mathrm{P}=$ NP.

Proof

Coming slowly!

Polynomial Time Reducibility

Definition - Polynomial Time Computable Function

A function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a polynomial time computable function if some polynomial time TM M exists that halts with $f(w)$ on its tape, when started on any input w.

Definition - Polynomial Time Reducibility

Language A is polynomial time mapping reducible or polynomial time reducible, to language B, notated $A \leq_{P} B$, if a polynomial time computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ exists, where for every w,

$$
w \in A \Leftrightarrow f(w) \in B
$$

The function f is called the polynomial time reduction of A to B.

- To test whether $w \in A$ we use the reduction f to map w to $f(w)$ and test whether $f(w) \in B$.

Polynomial Time Reducibility

```
THEOREM 7.31
If \(A \leq_{P} B\) and \(B \in P\), then \(A \in P\).
```


Proof

- It takes polynomial time to reduce A to B.
- It takes polynomial time to decide B.

Variations on the Satisfiability Problem

- A literal is a Boolean variable or its negated version (x or \bar{x}).
- A clause is several literals connected with \vee (OR), e.g., $\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right)$.
- A Boolean formula is in conjuctive normal form (or is a cnf-formula) if it consists of several clauses connected with $\wedge(A N D)$, e.g.

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee \overline{x_{5}}\right)
$$

- A cnf-formula is a 3cnf-formula if all clauses have 3 literals, e.g.

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{3} \vee \overline{x_{5}}\right)
$$

- 3SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable 3cnf-formula $\}$.
- In a satisfiable cnf-formula, each clause must contain at least one literal that is assigned 1.

An Example Reduction: Reducing 3SAT tо CLIQUE

THEOREM 7.32

$3 S A T$ is polynomial time reducible to CLIQUE.

Proof IDEA

Take any 3SAT formula and polynomial-time reduce it to a graph such that if the graph has a clique then the 3cnf-formula is satisfiable.

- Some details:
- ϕ is a formula with k clauses each with 3 literals.
- The k clauses in ϕ map to k groups of 3 nodes each called a triple.
- Each node in the triple corresponds to one of the literals in the corresponding clause.
- No edges between the nodes in a triple.
- No edges between "conflicting" nodes (e.g., x and \bar{x})

An Example Reduction: Reducing 3SAT to CLIQUE

$$
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

An Example Reduction: Reducing 3SAT to CLIQUE

$$
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

- If ϕ has a satisfying assignment, then at least one literal in each clause needs to be 1.
- We select the corresponding nodes in the corresponding triples.
- These nodes should form a k-clique.
- If G has a k-clique, then selected nodes give a satisfying assignment to variables.

NP-COMPLETENESS

DEFINITION - NP-COMPLETENESS

A language B is NP-complete if it satisfies two conditions:
(1) B is in NP, and
(2) Every A in NP is polynomial time reducible to B.

THEOREM

If B is NP-complete and $B \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$. (Obvious)

THEOREM

If B is NP-complete and $B \leq_{P} C$ for C in NP, then C is NP-complete.

PROOF

All $A \leq_{P} B$ and $B \leq_{P} C$ thus all $A \leq_{P} C$.

The Cook-Levin Theorem (AGAin)

Theorem

SAT is NP-Complete.

Proof IdEA

- Showing SAT is in NP is easy.
- Nondeterministically guess the assignments to variables and accept if the assignments satisfy ϕ
- We can encode the accepting computation history of a polynomial time NTM for every problem in NP as a SAT formula ϕ.
- Thus every language $A \in$ NP is polynomial-time reducible to $S A T$.
- N is a NTM that can decide A in time $O\left(n^{k}\right)$
- N accepts w if and only if ϕ is satisfiable.

BIRD'S EYE VIEW OF A POLYNOMIAL TIME COMPUTATION BRANCH

BIRD's EYE VIEW OF A POLYNOMIAL TIME

COMPUTATION BRANCH

- We represent the computation of a NTM N on w with a $n^{k} \times n^{k}$ table,
called a tableau.

a	p	b
a	c	q

window $(2,3)$

- Rows represent configurations
- First row is the start configuration (w + lots of blanks to fill the remaining of the n^{k} cells.)
window(1,5)
All legal windows can be enumerated. one using N 's transition function. cell $[i, j]$... i'th configuration, j 'th tape cell
- A tableau is accepting if any row of the tableau is an accepting configuration.
- Every accepting tableau for N on w corresponds to an accepting computation branch of N on w.
- If N accepts w, then an accepting tableau exists!

SETTING UP FORMULA ϕ

THE VARIABLES

- Let $C=Q \cup \Gamma \cup\{\#\}$.
- For $1 \leq i, j \leq n^{k}$ and for each $s \in C$, we have a variable $x_{i, j, s}$.
- $x_{i, j, s}=1$ if the cell[i,j] contains the symbol s.
- Note that the number of variables is polynomial function of n.

THE FORMULA ϕ

$$
\phi=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {move }} \wedge \phi_{\text {accept }}
$$

- $\phi_{\text {cell }}$ makes sure that there is only one symbol in every cell!
- $\phi_{\text {start }}$ makes sure the start configuration is correct.
- $\phi_{\text {accept }}$ makes sure the accept state occurs somewhere.
- $\phi_{\text {move }}$ makes sure configurations follow each other legally.
- For all i and j, if cell[$[i, j]$ contains symbol s, (that is $x_{i, j, s}=1$), it can not contain another symbol (that is, no other variable with the same i and j, but a different symbol, is 1).

$$
\phi_{\text {cell }}=\bigwedge_{1 \leq i, j \leq n^{k}}\left[\left(\bigvee_{s \in C} x_{i, j, s}\right) \wedge\left(\bigwedge_{\substack{s, t \in c \\ s \neq t}}\left(\overline{x_{i, j, s}} \vee \overline{\bar{x}_{i, j, t}}\right)\right)\right]
$$

- For all i and j, if cell $[i, j]$ contains symbol s, (that is $x_{i, j, s}=1$), it can not contain another symbol (that is, no other variable with the same i and j, but a different symbol, is 1).

$$
\phi_{\text {cell }}=\underbrace{\bigwedge_{1 \leq i, j \leq n^{k}}}_{\text {for all iand } j}\left[\left(\bigvee_{s \in C} x_{i, j, s}\right) \wedge\left(\bigwedge_{\substack{s, t \in c \\ s \neq t}}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right)\right]
$$

- For all i and j, if cell[$[i, j]$ contains symbol s, (that is $x_{i, j, s}=1$), it can not contain another symbol (that is, no other variable with the same i and j, but a different symbol, is 1).

$$
\phi_{\text {cell }}=\underbrace{}_{\text {for all } i \text { and } j} \bigwedge_{\substack{1 \leq i, j \leq n^{k} \\ \text { at east one symbol } \\ \text { is in a cell }}}^{(\underbrace{}_{s \in C} x_{i, j, s})} \wedge\left(\bigwedge_{\substack{s, t \in c \\ s \neq \nmid}}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right)]
$$

- For all i and j, if cell $[i, j]$ contains symbol s, (that is $x_{i, j, s}=1$), it can not contain another symbol (that is, no other variable with the same i and j, but a different symbol, is 1).

- Note that $\phi_{\text {cell }}$ is in a conjuctive normal form.
- $\phi_{\text {start }}$ sets up the first configuration.

$$
\begin{aligned}
\phi_{\text {start }}= & x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \cdots x_{1, n+2, w_{n}} \wedge \\
& x_{1, n+3, \sqcup} \wedge \cdots x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#}
\end{aligned}
$$

$\phi_{\text {start }}$

- $\phi_{\text {start }}$ sets up the first configuration.

$$
\begin{aligned}
& \phi_{\text {start }}= \overbrace{x_{1,1, \#} \wedge x_{1,2, q_{0} \wedge} \wedge x_{1,3, w_{1}} \wedge x_{1,4, w_{2}} \wedge \cdots x_{1, n+2, w_{n}} \wedge}^{q_{0} \text { and input symbols }} \\
& \underbrace{x_{1, n+3, \sqcup \wedge \cdots x_{1, n^{k}-1, \sqcup} \wedge x_{1, n^{k}, \#}}}_{\text {all the blanks to the right }}
\end{aligned}
$$

- $\phi_{\text {accept }}$ says $q_{\text {accept }}$ occurs somewhere.

$$
\phi_{\text {accept }}=\bigvee_{1 \leq i, j \leq n^{k}} x_{i, j, q_{\text {accept }}}
$$

- $\phi_{\text {move }}$ is the most interesting of the subformulas

- How many possible such windows are there?
- There are $|C|^{6}$ possible such windows.

DEFINITION - LEGAL WINDOW

A 2×3 window is legal if that window does not violate the actions specified by N 's transition function.

- Suppose δ of N has the entries

$$
\begin{aligned}
\text { - } \delta\left(q_{1}, a\right) & =\left\{\left(q_{1}, b, R\right)\right\} \\
\text { - } \delta\left(q_{1}, b\right) & =\left\{\left(q_{2}, c, L\right),\left(q_{2}, a, R\right)\right\}
\end{aligned}
$$

- The following windows are legal:

a	q_{1}	b
q_{2}	a	c

a	q_{1}	b
a	a	q_{2}

a	a	q_{1}
a	a	b

$\#$	b	a
$\#$	b	a

a	b	a
a	b	q_{2}

b	b	b
c	b	b

DEFINITION - LEGAL WINDOW

A 2 is legal if that window does not violate the actions specified by N's transition function.

- Suppose δ of N has the entries

$$
\begin{aligned}
-\delta\left(q_{1}, a\right) & =\left\{\left(q_{1}, b, R\right)\right\} \\
-\delta\left(q_{1}, b\right) & =\left\{\left(q_{2}, c, L\right),\left(q_{2}, a, R\right)\right\}
\end{aligned}
$$

- The following windows are NOT legal:

a	b	a
a	a	a

a	q_{1}	b
q_{1}	a	a

b	q_{1}	b
q_{2}	b	q_{2}

Claim

If the top row of the table is the start configuration and every window in the tableau is legal, then every row of the table (after the first) is a configuration that follows the preceding one!

Thus

$$
\phi_{\text {move }}=\bigwedge_{1 \leq i<n^{k}, 1<j<n^{k}}(\text { the }(i, j) \text { window is legal })
$$

Where" (the (i, j) window is legal) " is actually the following formula
$\bigvee \quad\left(x_{i, j-1, a_{1}} \wedge x_{i, j, a_{2}} \wedge x_{i, j+1, a_{3}} \wedge x_{i+1, j-1, a_{4}} \wedge x_{i+1, j, a_{5}} \wedge x_{i+1, j+1, a_{6}}\right)$ $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ is a legal window

- We have $O\left(n^{2 k}\right)$ variables $\left(=|C| \times n^{k} \times n^{k}\right)$
- The total formula size is $O\left(n^{2 k}\right)$, so it is polynomial time reduction.

3SAT IS NP-COMPLETE

COROLLARY

$3 S A T$ is NP-complete.

- Every formula in the construction of the NP-completeness proof of SAT can actually be written as a conjuctive normal form formula with 3 literals per clause.
- If a clause has less that 3 literals, repeat one.
- Disjunctive normal form clauses can be transformed into conjunctive normal form clauses, e.g.,

$$
(a \wedge b) \vee(c \wedge d)=(a \vee c) \wedge(a \vee d) \wedge(b \vee c) \wedge(b \vee d)
$$

- Clauses longer than 3 clauses can be rewritten as clauses with 3 variable, e.g.,

$$
(a \vee b \vee c \vee d)=(a \vee b \vee z) \wedge(\bar{z} \vee c \vee d)
$$

