
FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

NP-COMPLETENESS

Carnegie Mellon University in Qatar

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 1 / 30

SUMMARY

Time complexity: Big-O notation, asympotic complexity
Simulation of multi-tape TMs with a single tape deterministic TM
can be done with a polynomial slow-down.
Simulation of nondeterministic TMs with a deterministic TM is
exponentially slower.
The Class P: The class of languages for which membership can
be decided quickly.
The Class NP: The class of languages for which membership can
be verified quickly.

We do not yet know if P = NP, or not.
(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 2 / 30

NP PROBLEMS

The best method known for solving languages in NP
deterministically uses exponential time, that is

NP ⊆ EXPTIME =
⋃
k

TIME(2nk
)

It is not known whether NP is contained in a smaller deterministic
time complexity class.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 3 / 30

NP-COMPLETE PROBLEMS

Cook and Levin in early 1970’s showed that certain problems in
NP were such that

If any of these problems had a deterministic polynomial-time
algorithm, then
All problems in NP had deterministic polynomial-time algorithms.

Such problems are called NP-complete problems.
This is important for a number of reasons:

1 If one is attempting to show that P6=NP, s/he may focus on an
NP-complete problem and try to show that it needs more than a
polynomial amount of time.

2 If one is attempting to show that P=NP, s/he may focus on an
NP-complete problem and try to come up with a polynomial time
algorithm for it.

3 One may avoid wasting searching for a nonexistent polynomial time
algorithm to solve a particular problem, if one can show it reduces
to an NP-complete problem (as it is generally believed that P6= NP.)

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 4 / 30

THE SATISFIABILITY PROBLEM

DEFINITION – BOOLEAN VARIABLES

A boolean variable is a variable that can taken on values TRUE (1) and
FALSE (0).

We have Boolean operations of AND (x ∧ y), OR (x ∨ y) and NOT
(¬x or x) on boolean variables.

AND OR NOT
0 ∧ 0 = 0 0 ∨ 0 = 0 0 = 1
0 ∧ 1 = 0 0 ∨ 1 = 1 1 = 0
1 ∧ 0 = 0 1 ∨ 0 = 1
1 ∧ 1 = 1 1 ∨ 1 = 1

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 5 / 30

THE SATISFIABILITY PROBLEM

DEFINITION – BOOLEAN FORMULA

A Boolean formula is an expression involving Boolean variables and
operations.
For example: φ = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) is a Boolean formula.

DEFINITION – SATISFIABILITY

A Boolean formula is satisfiable if some assignment of 0s and 1s to the
variables makes the formula evaluate to 1.
We say the assignment satisfies φ.

What possible assignments satisfy the formula above?

DEFINITION – THE SATISFIABILITY PROBLEM

The satisfiability problem checks if a Boolean formula is satisfiable.

SAT = {〈φ〉 | φ is a satisfiable Boolean formula}
(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 6 / 30

THE SATISFIABILITY PROBLEM

THEOREM 7.27 – THE COOK-LEVIN THEOREM

SAT ∈ P iff P = NP.

PROOF

Coming slowly!

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 7 / 30

POLYNOMIAL TIME REDUCIBILITY

DEFINITION – POLYNOMIAL TIME COMPUTABLE FUNCTION

A function f : Σ∗ −→ Σ∗ is a polynomial time computable function if
some polynomial time TM M exists that halts with f (w) on its tape,
when started on any input w .

DEFINITION – POLYNOMIAL TIME REDUCIBILITY

Language A is polynomial time mapping reducible or polynomial time
reducible, to language B, notated A ≤P B, if a polynomial time
computable function f : Σ∗ −→ Σ∗ exists, where for every w ,

w ∈ A⇔ f (w) ∈ B

The function f is called the polynomial time reduction of A to B.

To test whether w ∈ A we use the reduction f to map w to f (w)
and test whether f (w) ∈ B.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 8 / 30

POLYNOMIAL TIME REDUCIBILITY

THEOREM 7.31
If A ≤P B and B ∈ P, then A ∈ P.

PROOF

It takes polynomial time to reduce A to B.
It takes polynomial time to decide B.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 9 / 30

VARIATIONS ON THE SATISFIABILITY PROBLEM

A literal is a Boolean variable or its negated version (x or x).
A clause is several literals connected with ∨ (OR), e.g.,
(x1 ∨ x2 ∨ x4).
A Boolean formula is in conjuctive normal form (or is a
cnf-formula) if it consists of several clauses connected with
∧(AND), e.g.

(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5)

A cnf-formula is a 3cnf-formula if all clauses have 3 literals, e.g.

(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x5)

3SAT = {〈φ〉 | φ is a satisfiable 3cnf-formula }.
In a satisfiable cnf-formula, each clause must contain at least one
literal that is assigned 1.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 10 / 30

AN EXAMPLE REDUCTION: REDUCING 3SAT TO

CLIQUE

THEOREM 7.32
3SAT is polynomial time reducible to CLIQUE .

PROOF IDEA

Take any 3SAT formula and polynomial-time reduce it to a graph such
that if the graph has a clique then the 3cnf-formula is satisfiable.

Some details:
φ is a formula with k clauses each with 3 literals.
The k clauses in φ map to k groups of 3 nodes each called a triple.
Each node in the triple corresponds to one of the literals in the
corresponding clause.
No edges between the nodes in a triple.
No edges between “conflicting” nodes (e.g., x and x)

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 11 / 30

AN EXAMPLE REDUCTION: REDUCING 3SAT TO

CLIQUE

φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 12 / 30

AN EXAMPLE REDUCTION: REDUCING 3SAT TO

CLIQUE

φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

If φ has a satisfying assignment,
then at least one literal in each
clause needs to be 1.
We select the corresponding nodes
in the corresponding triples.
These nodes should form a k -clique.
If G has a k -clique, then selected
nodes give a satisfying assignment
to variables.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 13 / 30

NP-COMPLETENESS

DEFINITION – NP-COMPLETENESS

A language B is NP-complete if it satisfies two conditions:
1 B is in NP, and
2 Every A in NP is polynomial time reducible to B.

THEOREM

If B is NP-complete and B ∈ P, then P = NP. (Obvious)

THEOREM

If B is NP-complete and B ≤P C for C in NP, then C is NP-complete.

PROOF

All A ≤P B and B ≤P C thus all A ≤P C.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 14 / 30

THE COOK-LEVIN THEOREM (AGAIN)

THEOREM

SAT is NP-Complete.

PROOF IDEA

Showing SAT is in NP is easy.
Nondeterministically guess the assignments to variables and
accept if the assignments satisfy φ

We can encode the accepting computation history of a polynomial
time NTM for every problem in NP as a SAT formula φ.
Thus every language A ∈ NP is polynomial-time reducible to SAT .

N is a NTM that can decide A in time O(nk)
N accepts w if and only if φ is satisfiable.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 15 / 30

BIRD’S EYE VIEW OF A POLYNOMIAL TIME

COMPUTATION BRANCH

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 16 / 30

BIRD’S EYE VIEW OF A POLYNOMIAL TIME

COMPUTATION BRANCH
We represent the computation of a
NTM N on w with a nk × nk table,
called a tableau.
Rows represent configurations
First row is the start configuration (w
+ lots of blanks to fill the remaining
of the nk cells.)
Each row follows from the previous
one using N ’s transition function.

A tableau is accepting if any row of the tableau is an accepting
configuration.
Every accepting tableau for N on w corresponds to an accepting
computation branch of N on w .
If N accepts w , then an accepting tableau exists!

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 17 / 30

SETTING UP FORMULA φ

THE VARIABLES

Let C = Q ∪ Γ ∪ {#}.
For 1 ≤ i , j ≤ nk and for each s ∈ C, we have a variable xi,j,s.
xi,j,s = 1 if the cell[i , j] contains the symbol s.
Note that the number of variables is polynomial function of n.

THE FORMULA φ

φ = φcell ∧ φstart ∧ φmove ∧ φaccept

φcell makes sure that there is only one symbol in every cell!
φstart makes sure the start configuration is correct.
φaccept makes sure the accept state occurs somewhere.
φmove makes sure configurations follow each other legally.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 18 / 30

φcell

For all i and j , if cell[i , j] contains symbol s, (that is xi,j,s = 1), it
can not contain another symbol (that is, no other variable with the
same i and j , but a different symbol, is 1).

φcell =
∧

1≤i,j≤nk

(∨

s∈C

xi,j,s

)
∧

∧
s,t∈C
s 6=t

(xi,j,s ∨ xi,j,t)

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 19 / 30

φcell

For all i and j , if cell[i , j] contains symbol s, (that is xi,j,s = 1), it
can not contain another symbol (that is, no other variable with the
same i and j , but a different symbol, is 1).

φcell =
∧

1≤i,j≤nk︸ ︷︷ ︸
for all iand j

(∨

s∈C

xi,j,s

)
∧

∧
s,t∈C
s 6=t

(xi,j,s ∨ xi,j,t)

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 20 / 30

φcell

For all i and j , if cell[i , j] contains symbol s, (that is xi,j,s = 1), it
can not contain another symbol (that is, no other variable with the
same i and j , but a different symbol, is 1).

φcell =
∧

1≤i,j≤nk︸ ︷︷ ︸
for all i and j

(∨

s∈C

xi,j,s

)
︸ ︷︷ ︸
at least one symbol

is in a cell

∧

∧
s,t∈C
s 6=t

(xi,j,s ∨ xi,j,t)

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 21 / 30

φcell

For all i and j , if cell[i , j] contains symbol s, (that is xi,j,s = 1), it
can not contain another symbol (that is, no other variable with the
same i and j , but a different symbol, is 1).

φcell =
∧

1≤i,j≤nk︸ ︷︷ ︸
for all i and j

(∨

s∈C

xi,j,s

)
︸ ︷︷ ︸
at least one symbol

is in a cell

∧

∧
s,t∈C
s 6=t

only one symbol in a cell︷ ︸︸ ︷
(xi,j,s ∨ xi,j,t)

Note that φcell is in a conjuctive normal form.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 22 / 30

φstart

φstart sets up the first configuration.

φstart = x1,1,# ∧ x1,2,q0 ∧ x1,3,w1 ∧ x1,4,w2 ∧ · · · x1,n+2,wn ∧
x1,n+3,t ∧ · · · x1,nk−1,t ∧ x1,nk ,#

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 23 / 30

φstart

φstart sets up the first configuration.

φstart =

q0 and input symbols︷ ︸︸ ︷
x1,1,# ∧ x1,2,q0 ∧ x1,3,w1 ∧ x1,4,w2 ∧ · · · x1,n+2,wn∧
x1,n+3,t ∧ · · · x1,nk−1,t ∧ x1,nk ,#︸ ︷︷ ︸

all the blanks to the right

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 24 / 30

φaccept

φaccept says qaccept occurs somewhere.

φaccept =
∨

1≤i,j≤nk

xi,j,qaccept

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 25 / 30

φmove

φmove is the most interesting of the subformulas

How many possible such windows are there?
There are |C|6 possible such windows.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 26 / 30

φmove

DEFINITION – LEGAL WINDOW

A 2× 3 window is legal if that window does not violate the actions
specified by N ’s transition function.

Suppose δ of N has the entries
δ(q1,a) = {(q1,b,R)}
δ(q1,b) = {(q2, c,L), (q2,a,R)}

The following windows are legal:

a q1 b
q2 a c

b a
b a

a q1 b
a a q2

a b a
a b q2

a a q1
a a b

b b b
c b b

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 27 / 30

φmove

DEFINITION – LEGAL WINDOW

A 2 is legal if that window does not violate the actions specified by N ’s
transition function.

Suppose δ of N has the entries
δ(q1,a) = {(q1,b,R)}
δ(q1,b) = {(q2, c,L), (q2,a,R)}

The following windows are NOT legal:

a b a
a a a

a q1 b
q1 a a

b q1 b
q2 b q2

CLAIM

If the top row of the table is the start configuration and every window in
the tableau is legal, then every row of the table (after the first) is a
configuration that follows the preceding one!

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 28 / 30

φmove

Thus
φmove =

∧
1≤i<nk ,1<j<nk

(the (i , j) window is legal)

Where “ (the (i , j) window is legal) “ is actually the following formula∨
a1,a2,a3,a4,a5,a6

is a legal window

(xi,j−1,a1 ∧xi,j,a2 ∧xi,j+1,a3 ∧xi+1,j−1,a4 ∧xi+1,j,a5 ∧xi+1,j+1,a6)

We have O(n2k) variables (= |C| × nk × nk)
The total formula size is O(n2k), so it is polynomial time reduction.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 29 / 30

3SAT IS NP-COMPLETE

COROLLARY

3SAT is NP-complete.

Every formula in the construction of the NP-completeness proof of
SAT can actually be written as a conjuctive normal form formula
with 3 literals per clause.

If a clause has less that 3 literals, repeat one.
Disjunctive normal form clauses can be transformed into
conjunctive normal form clauses, e.g.,

(a ∧ b) ∨ (c ∧ d) = (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d)

Clauses longer than 3 clauses can be rewritten as clauses with 3
variable, e.g.,

(a ∨ b ∨ c ∨ d) = (a ∨ b ∨ z) ∧ (z ∨ c ∨ d)

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 30 / 30

