FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

NP-COMPLETENESS

Carnegie Mellon University in Qatar

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011

SUMMARY

e Time complexity: Big-O notation, asympotic complexity

e Simulation of multi-tape TMs with a single tape deterministic TM
can be done with a polynomial slow-down.

e Simulation of nondeterministic TMs with a deterministic TM is
exponentially slower.

e The Class P: The class of languages for which membership can
be decided quickly.

e The Class NP: The class of languages for which membership can
be verified quickly.

NP Problems

e We do not yet know if P = NP, or not.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 21/30

e The best method known for solving languages in NP
deterministically uses exponential time, that is

NP C EXPTIME = | J TIME(2™)
k

e It is not known whether NP is contained in a smaller deterministic
time complexity class.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011

NP-COMPLETE PROBLEMS

e Cook and Levin in early 1970’s showed that certain problems in
NP were such that
e If any of these problems had a deterministic polynomial-time
algorithm, then
o All problems in NP had deterministic polynomial-time algorithms.

e Such problems are called NP-complete problems.
e This is important for a number of reasons:

@ If one is attempting to show that P#NP, s’/he may focus on an
NP-complete problem and try to show that it needs more than a
polynomial amount of time.

Q If one is attempting to show that P=NP, s/he may focus on an
NP-complete problem and try to come up with a polynomial time
algorithm for it.

© One may avoid wasting searching for a nonexistent polynomial time
algorithm to solve a particular problem, if one can show it reduces
to an NP-complete problem (as it is generally believed that P=£ NP.)

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 41/30

THE SATISFIABILITY PROBLEM

DEFINITION — BOOLEAN VARIABLES
A boolean variable is a variable that can taken on values TRUE (1) and

FALSE (0).

e We have Boolean operations of AND (x A y), OR (x vV y) and NOT
(—=x or X) on boolean variables.
AND OR NOT
0OA0=0 0v0=0 0=1
0OA1=0 0vi=1 1=0
1A0=0 1v0=1
iAnT=1 1vi1=1

SPRING 2011 5/30

(LECTURE 20) SLIDES FOR 15-453

THE SATISFIABILITY PROBLEM

DEFINITION — BOOLEAN FORMULA

A Boolean formula is an expression involving Boolean variables and
operations.
For example: ¢ = (X Ay) V(X AZ) V (¥ A Z) is a Boolean formula.

DEFINITION — SATISFIABILITY

A Boolean formula is satisfiable if some assignment of Os and 1s to the
variables makes the formula evaluate to 1.

We say the assignment satisfies ¢.

| \

e What possible assignments satisfy the formula above?

DEFINITION — THE SATISFIABILITY PROBLEM
The satisfiability problem checks if a Boolean formula is satisfiable.

SAT = {{(¢) | ¢ is a satisfiable Boolean formula}

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 6/30

THE SATISFIABILITY PROBLEM
THEOREM 7.27 — THE COOK-LEVIN THEOREM
SAT € P iff P = NP.

PROOF
Coming slowly!

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 71730

PoOoLYNOMIAL TIME REDUCIBILITY

DEFINITION — POLYNOMIAL TIME COMPUTABLE FUNCTION

A function 7 : ¥* — ¥* is a polynomial time computable function if
some polynomial time TM M exists that halts with f(w) on its tape,
when started on any input w.

| A\

DEFINITION — POLYNOMIAL TIME REDUCIBILITY

Language A is polynomial time mapping reducible or polynomial time
reducible, to language B, notated A <p B, if a polynomial time
computable function f : ¥* — ¥Y* exists, where for every w,

weAs f(w)eB

The function f is called the polynomial time reduction of A to B.

e To test whether w € A we use the reduction f to map w to f(w)
and test whether f(w) € B.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 8730

PoOoLYNOMIAL TIME REDUCIBILITY
If A<p Band Be P,then Ac P. \

o It takes polynomial time to reduce A to B.
e It takes polynomial time to decide B.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 91/30

VARIATIONS ON THE SATISFIABILITY PROBLEM

e A literal is a Boolean variable or its negated version (x or X).

e A clause is several literals connected with v (OR), e.g.,
(X1 VX2 V Xy).

e A Boolean formula is in conjuctive normal form (or is a
cnf-formula) if it consists of several clauses connected with
A(AND), e.g.

(X1 VX2V XeVX5)A(X2V X3V Xg)A(X1V X2V X3V Xs)
e A cnf-formula is a 3cnf-formula if all clauses have 3 literals, e.g.
(X1 VTQ\/X4)/\(X2 VY3V74)/\(X1 VX3V75)

e 3SAT = {(¢) | ¢ is a satisfiable 3cnf-formula }.

e In a satisfiable cnf-formula, each clause must contain at least one
literal that is assigned 1.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 10730

AN EXAMPLE REDUCTION: REDUCING 3SAT TO

CLIQUE

3SAT is polynomial time reducible to CLIQUE.

PROOF IDEA

Take any 3SAT formula and polynomial-time reduce it to a graph such
that if the graph has a clique then the 3cnf-formula is satisfiable.

e Some details:

e ¢ is a formula with k clauses each with 3 literals.

e The k clauses in ¢ map to k groups of 3 nodes each called a triple.

e Each node in the triple corresponds to one of the literals in the
corresponding clause.

o No edges between the nodes in a triple.

o No edges between “conflicting” nodes (e.g., x and X)

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 11730

AN EXAMPLE REDUCTION: REDUCING 3SAT TO
CLIQUE

¢:(X1 V Xq VXg)/\(ZVXig\/Xig)/\(Z\/XQVXg)

AN EXAMPLE REDUCTION: REDUCING 3SAT TO

CLIQUE

¢ = (X1 V X4 VX2)/\(X71\/X72\/X72)/\(Z\/X2\/X2)

e If ¢ has a satisfying assignment,
then at least one literal in each
clause needs to be 1.

o We select the corresponding nodes
in the corresponding triples.

e These nodes should form a k-clique.

e If G has a k-clique, then selected
nodes give a satisfying assignment
to variables.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 13/30

NP-COMPLETENESS

DEFINITION — NP-COMPLETENESS

A language B is NP-complete if it satisfies two conditions:
@ Bisin NP and
@ Every Ain NP is polynomial time reducible to B.

If Bis NP-complete and B € P, then P = NP. (Obvious)

If B is NP-complete and B <p C for C in NP, then C is NP-complete.
PROOF
AllA<pBand B<p Cthusall A<p C.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 14730

THE COOK-LEVIN THEOREM (AGAIN)
SAT is NP-Complete.

PROOF IDEA

e Showing SAT is in NP is easy.

o Nondeterministically guess the assignments to variables and
accept if the assignments satisfy ¢

e We can encode the accepting computation history of a polynomial
time NTM for every problem in NP as a SAT formula ¢.
e Thus every language A € NP is polynomial-time reducible to SAT.

o Nis a NTM that can decide A in time O(n)
e N accepts w if and only if ¢ is satisfiable.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 15730

BIRD’S EYE VIEW OF A POLYNOMIAL TIME

COMPUTATION BRANCH

| 2 3 4 columnj nk
| |#|gla|bla]| b]a #
2 [#[a[p[b]a] b]a #| |alp|b
3 |#|lalc|qla|bla # % C 14
4 ([*|#| window(2,3)
#
H
rowi | # P # bla|b
H H# bla|b
/ #| window(l,5)
#
. # #| Alllegal windows
nCl# #| can be enumerated.

7
cell[i,j] ... "th configuration, j'th tape cell

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 16 /30

BIRD’S EYE VIEW OF A POLYNOMIAL TIME

COMPUTATION BRANCH

We represent the computation of a
NTM N on w with a n* x n¥ table,
alplb called a tableau.

window(2,3)® ROWS represent configurations

e First row is the start configuration (w
+ lots of blanks to fill the remaining
window(5) Of the n¥ cells.)

3
~

AW —
B 3 EREY)
o O e | W
~la]o|o] &
P &

8

g
ololo| 3
> :

|| | | | | |] —

alb

Aol wingo® EQCH row follows from the previous
egal windows

can be eumerated. oNe USING N’s transition function.

cellfij] ...7"th configuration, j'th tape cell

™™
I (3 A H | ®
o

e A tableau is accepting if any row of the tableau is an accepting
configuration.

e Every accepting tableau for N on w corresponds to an accepting
computation branch of N on w.

e If N accepts w, then an accepting tableau exists!

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 17730

SETTING UP FORMULA ¢

THE VARIABLES

o Let C=QUT U {#}.

e For 1 <i,j < n*and for each s € C, we have a variable x; .
e x;; s = 1if the cell[i,] contains the symbol s.

e Note that the number of variables is polynomial function of n.

| A\

THE FORMULA ¢

® = Gcell N\ start N Pmove N ¢accept

@ ¢cey Makes sure that there is only one symbol in every cell!
® ¢siart Makes sure the start configuration is correct.

® ¢accept Makes sure the accept state occurs somewhere.

@ ¢®move Makes sure configurations follow each other legally.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011

e Forall i and j, if cell[i, j] contains symbol s, (that is x;; s = 1), it
can not contain another symbol (that is, no other variable with the
same i/ and j, but a different symbol, is 1).

b = /\ (\/ Xi,j,s) AN Kijs v Xija)

1</, j<nk seC s,teC
S#t

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 19/30

e Forall i and j, if cell[i, j] contains symbol s, (that is x;; s = 1), it
can not contain another symbol (that is, no other variable with the
same i/ and j, but a different symbol, is 1).

Peenl = /\ (\/ Xi,/,s> A /\ (Xij.s V Xij,t)
1<i j<nk seC steC
S#t
for all iand j

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 20/30

e Forall i and j, if cell[i, j] contains symbol s, (that is x;; s = 1), it
can not contain another symbol (that is, no other variable with the
same i/ and j, but a different symbol, is 1).

¢cel/ = A \/ Xi,j,s /\ /\ (Xi,j,s \/ lejvt)
1<i j<nk seC s,teC
——— s#t
for all i andj at least one symbol
L isinacell -

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 21/30

e Forall i and j, if cell[i, j] contains symbol s, (that is x;; s = 1), it
can not contain another symbol (that is, no other variable with the
same i/ and j, but a different symbol, is 1).

only one symbol in a cell

—
beell = /\ \/ Xijs | A /\ (Xijs V Xijt)
1<i j<nk seC s,teC
N— s#t
for all j andj at least one symbol
L isinacell .

e Note that ¢.¢y is in a conjuctive normal form.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 22/30

@ ¢siart SEtS UP the first configuration.

Gstart = X114 NX12,g0 N X13m A X1 dm A X1 ng2,w, A
XUn+3,u A Xy gk 1,0 A Xq ko

SLIDES FOR 15-453 SPRING 2011 23/30

® ¢siart SEtS UP the first configuration.

go and input symbols

Gstart = X114 NX12,g0 N X13m N X4 N X1 pg2,w, /A
XUn+3,u A e Xq gk A X oo

all the blanks to the right

SLIDES FOR 15-453 SPRING 2011 24/30

® Paccept SAYS Qaccept OCCUrS SOMewhere.

¢accept = \/ Xi,j,CIaccept
1< j<nk

SLIDES FOR 15-453 SPRING 2011

® dmove is the most interesting of the subformulas

| 23 4 colmj nk
| [#|qla]b|a]| b]a #
2 |#|a|p|b]a]| b]a # alp|b
3 [#|alclala| b|a # ajc|q
4 |# ElELEE C1#] window(2,3)
#
#
row i # 4 H b a b
bla|b
/ #| window(l,5)
#
k # #| Al legal windows
n|# # | can be enumerated.

7
cell[i,j] ...I’th configuration, j’th tape cell

e How many possible such windows are there?
e There are |C|® possible such windows.

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 26/30

DEFINITION — LEGAL WINDOW

A 2 x 3 window is legal if that window does not violate the actions
specified by N’s transition function.

e Suppose § of N has the entries

o d(qr,a) ={(q1,b,R)}
4 6(q17b) = {(q27 C, L)> (q27a7 R)}

e The following windows are legal:

a | | b a |q1 | b a |a | g
g |a C a a Qo a a b
b a a b a b b b
b a a b Qo C b b

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011

DEFINITION — LEGAL WINDOW

A 2 is legal if that window does not violate the actions specified by N’s
transition function.

e Suppose § of N has the entries
L4 6(q1 ; a) = {(q1 y b7 R)}
o 6(aq1,b) = {(ge,c,L), (2,8 R)}
e The following windows are NOT legal:

a |b |a a |g |b b |g |b
a |a |a g1 |a |a g |b | g

If the top row of the table is the start configuration and every window in
the tableau is legal, then every row of the table (after the first) is a
configuration that follows the preceding one!

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 28/30

Thus
Pmove = /\ (the (i, j) window is legal)

1<i<nk 1<j<nk
Where “ (the (i, j) window is legal) “ is actually the following formula
\V (Xij 1,20 A Xijap N Xij1.5 N Xit1 1,25 AN Xi jias A\ Xi1,41,6)
aq ,32,63,84,35,66
is a legal window
o We have O(n?¥) variables (= |C| x n* x n¥)

e The total formula size is O(n?¥), so it is polynomial time reduction.

(LECTURE 20) SLIDES FOR 15-453

SPRING 2011 29/30

3SAT 1S NP-COMPLETE

COROLLARY
3SAT is NP-complete.

—

e Every formula in the construction of the NP-completeness proof of
SAT can actually be written as a conjuctive normal form formula
with 3 literals per clause.

o If a clause has less that 3 literals, repeat one.
e Disjunctive normal form clauses can be transformed into
conjunctive normal form clauses, e.g.,

(anb)v(cnd)=(avec)n(avd)a(bvc)A(bVd)

e Clauses longer than 3 clauses can be rewritten as clauses with 3
variable, e.g.,

(avbvevd)=(avbvz)A(Zzvevd)

(LECTURE 20) SLIDES FOR 15-453 SPRING 2011 30/30

