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SUMMARY

Alphabet Σ,
Set of all Strings, Σ∗,
Language L ⊆ Σ∗,
Set of all languages 2Σ∗
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AUTOMATA

Abstract Models of computing devices

Each step of operation is like:
If the current input symbol is X then output Y, move (left/right)
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AUTOMATA

The control unit has some finite memory and it
keeps track of what step to execute next.
Additional memory (if any) is infinite - we never
run out of memory!

Infinite but like a stack - only the top item is accessible at a
given time.
Infinite but like a tape, any cell is (sequentially) accessible.
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FINITE STATE AUTOMATA

Finite State Automata (FSA) are the simplest
automata.
Only the finite memory in the control unit is
available.
The memory can be in one of finite states at a
given time – hence the name.

One can remember only a (fixed) finite number of properties
of the past input.
Since input strings can be of arbitrary length, it is not
possible to remember unbounded portions of the input string.

It comes in Deterministic and Nondeterministic
flavors.
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DETERMINISTIC FINITE STATE AUTOMATA

(DFA)

A DFA starts in a start state and is presented with
an input string.
It moves from state to state, reading the input
string one symbol at a time.
What state the DFA moves next depends on

the current state,
current input symbol

When the last input symbol is read, the DFA
decides whether it should accept the input string
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A SIMPLE DFA EXAMPLE

States are shown with circles. We usually have
labels on the states.

One designated state is the start state, (State q0 here).
States with double circles denote the accepting or final
states (State q1 here)

Directed and labeled arrows between states
denote state transitions.
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A SIMPLE DFA EXAMPLE

This DFA stays in the same state when the next input symbol is a

0.

In state q0, an input of 1 moves the DFA to state q1.

In state q1, an input of 1 moves the DFA to state q2.

In state q2, an input of 1 moves the DFA back to state q0.

If the DFA is in state q1 when the input is finished, the DFA

accepts the input string.
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A SIMPLE DFA EXAMPLE

What kinds of strings does this DFA accept?
It accepts ω = 00010000
It accepts ω = 00010011001
It accepts ω = 1
It rejects ω = 1100001
It rejects ω = 0110000

It accepts all strings ω ∈ {0,1}∗ such that
n1(ω) = 1 mod 3
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DFA – FORMAL DEFINITION

A Deterministic Finite State Acceptor (DFA) is
defined as the 5-tuple M = (Q,Σ, δ,q0,F ) where

Q is a finite set of states
Σ is a finite set of symbols – the alphabet
δ : Q × Σ→ Q is the next-state function
q0 ∈ Q is the (label of the) start state
F ⊆ Q is the set of final (accepting) states
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FORMAL DESCRIPTION OF THE EXAMPLE DFA

Q = {q0,q1,q2}

Σ = {0,1}

δ :

δ 0 1
q0 q0 q1
q1 q1 q2
q2 q2 q0

q0

F = {q1}

We will almost always use the graphical

description for δ. The other components

will always be implicit!
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HOW THE DFA WORKS

The DFA accepts a string ω = x1x2 · · · xn if a
sequence of states r0r1r2 · · · rn, ri ∈ Q, exists, such
that

1 r0 = q0 (Start in the initial state)
2 ri = δ(ri−1, xi) for i = 1,2, . . .n

Move from state to state.
3 rn ∈ F

End up in a final state.

If the DFA is NOT in an accepting state when the
input string is exhausted, then the string is
rejected.
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DFA EXAMPLE

This DFA accepts strings that have aba
somewhere in it.
Once the existence of aba is ascertained, the rest
of the input is ignored!
What do the states “remember”?
What does it remind you of from string matching
algorithms?
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DFA EXAMPLE

This DFA accepts strings that start with ab
Once the string starts with ab the rest is ignored!
The state q1 is known as a sink state.

Once a machine enters a sink state, there is no getting out!
It is rejected.
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DFA EXAMPLE

This DFA accepts strings of the sort anbm such
that n + m is odd.
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A MORE INTERESTING DFA EXAMPLE

Input is a string over Σ = {0,1}
We interpret the string as a binary number.
We want to accept strings where the
corresponding binary number is divisible by 3.

Accept e.g., 0, 11, 1001, 1100, 1111, 111100, . . .
Reject e.g., 1, 10, 101, 10000, . . .

The most significant (leftmost) digit comes first!
No obvious pattern at first sight!
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A MORE INTERESTING DFA EXAMPLE

How do we find the decimal equivalent of binary
number digit-by-digit?

1 value=0
2 repeat as long as there are more binary
digits

value=value*2+input

11012 → 0 · 2 + 1 = 1→ 1 · 2 + 1 = 3→
3 · 2 + 0 = 6→ 6 · 2 + 1 = 1310

We can not compute this number with a DFA,
since the number can be arbitrarily large!
However, for our problem, we can compute a
running modulo 3 with a DFA!!
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COMPUTING A RUNNING MODULO 3
REMAINDER

Consider any number n = 3p + r . It has remainder r when divided by 3

Multiply by 2 and add 0

r = 0 : 2n + 0 = 2(3p + 0) + 0 = 3(2p) + 0→ New r is 0.
r = 1 : 2n + 0 = 2(3p + 1) + 0 = 3(2p) + 2→ New r is 2.
r = 2 : 2n + 0 = 2(3p + 2) + 0 = 3(2p + 1) + 1→ New r is 1.

Multiply by 2 and add 1

r = 0 : 2n + 1 = 2(3p + 0) + 0 = 3(2p) + 1→ New r is 1.
r = 1 : 2n + 1 = 2(3p + 1) + 0 = 3(2p + 1) + 0→ New r is 0.
r = 2 : 2n + 1 = 2(3p + 2) + 0 = 3(2p + 1) + 2→ New r is 2.

This information now defines the state transition function

We let each state denote the remainder. So δ maps each
remainder and input digit combination, to a new remainder.
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A DFA FOR BINARY NUMBERS DIVISIBLE BY 3

Running some examples:
For 112 = 310 ⇒ 0→ 1→ 0⇒ Accept
For 11002 = 1210 ⇒ 0→ 1→ 2→ 1⇒ 0 Accept
For 11112 = 1510 ⇒ 0→ 1→ 0→ 1⇒ 0 Accept
For 10102 = 1010 ⇒ 0→ 1→ 0→ 1⇒ 2 Reject
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THE EXTENDED STATE TRANSITION FUNCTION

δ : Q × Σ→ Q is the state transition function. The
input is a symbol.
δ∗ : Q × Σ∗ → Q is the extended state transition
function.

δ∗(q, ε) = q
δ∗(q, ω · a) = δ(δ∗(q, ω),a), where a ∈ Σ and ω ∈ Σ∗

First, go (sort of recursively) where ω (a string) takes you,
(δ∗(q, ω) = q′)
Then, make a single transition with symbol a (δ(q′,a))
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THE LANGUAGE ACCEPTED BY A DFA

L(M) denotes the language accepted by a DFA M

L(M) = {ω|ω ∈ Σ∗ and δ∗(q0, ω) ∈ F}
Similarly

L(M) = {ω|ω ∈ Σ∗ and δ∗(q0, ω) 6∈ F}
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REGULAR LANGUAGES

A language L is called a regular language if and only
if there exists a DFA M such that L(M) = L.
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SAMPLE PROBLEMS

Design a DFA for all strings over the alphabet
Σ = {a,b} that contain aba but not abaa as a
substring.1

Design a DFA for the language
L = {w | w contains at least one 0 and at most one 1}
Design a DFA for the language
L = {w | w does not contain 100 as a substring}

1A substring is any consecutive sequence of symbols that occurs
anywhere in a string. For example, ab and bc are substrings in abc
while cb or ac are not.
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SAMPLE PROBLEMS

Design a DFA for all strings over the alphabet
A = {a,b, c} in which no two consecutive
positions are the same symbol. (5 states should
be sufficient)
Design a DFA for all strings over the alphabet
{0,1} where the 3rd symbol from the end is a 0.
Design a DFA all strings over the alphabet {0,1}
where the leftmost and the rightmost symbols are
different.
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SAMPLE PROBLEMS

Design a DFA all strings over the alphabet
{a,b, c} where only two of the symbols occur odd
number of times.
Design a DFA all strings over the alphabet {a,b}
in which every substring of length four has at
least two b’s. For example, abbababbbaabbabba
is accepted, while abbaaabbbb is not, because
the substring aaab does not contain two b’s. (At
most 8 states should suffice.)
Design a DFA all strings over {a,b} in which
every pair of adjacent 0’s appears before any pair
of adjacent 1’s.
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