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COMPLEXITY THEORY

QUESTION

Assume that a problem (language) is decidable. Does that mean we
can realistically solve it?

ANSWER

NO, not always. It can require to much of time or memory resources.

Complexity Theory aims to make general conclusions of the resource
requirements of decidable problems (languages).

Henceforth, we only consider decidable languages and deciders.
Our computational model is a Turing Machine.

Time: the number of computation steps a TM machine makes to
decide on an input of size n.
Space: the maximum number of tape cells a TM machine takes to
decide on a input of size n.
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TIME COMPLEXITY – MOTIVATION

How much time (or how many steps) does a single tape TM take
to decide A = {0k1k | k ≥ 0}?

M = “On input w :
1 Scan the tape and reject if w is not of the form 0∗1∗ .
2 Repeat if both 0s and 1s remain on the tape.
3 Scan across the tape crossing off one 0 and one 1.
4 If all 0’s are crossed and some 1’s left, or all 1’s crossed and some

0’s left, then reject; else accept.

QUESTION

How many steps does M take on an input w of length n?

ANSWER (WORST-CASE)

The number of steps M takes ∝ n2.
( LECTURE 19) SLIDES FOR 15-453 SPRING 2011 3 / 41



TIME COMPLEXITY – SOME NOTIONS

The number of steps in measured as a function of n - the size of
the string representing the input.
In worst-case analysis, we consider the longest running time of all
inputs of length n.
In average-case analysis, we consider the average of the running
times of all inputs of length n.

TIME COMPLEXITY

Let M be a deterministic TM that halts on all inputs. The time
complexity of M if the function f : N −→ N , where f (n) is the
maximum number of steps that M uses on any input of length n.
If f (n) is the running time of M we say

M runs in time f (n)

M is an f (n)-time TM.
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ASYMPTOTIC ANALYSIS

We seek to understand the running time when the input is “large”.
Hence we use an asymptotic notation or big-O notation to
characterize the behaviour of f (n) when n is large.
The exact value running time function is not terribly important.
What is important is how f (n) grows as a function of n, for large n.
Differences of a constant factor are not important.
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ASYMPTOTIC UPPER BOUND

DEFINITION – ASYMPTOTIC UPPER BOUND

Let R+ be the set of nonnegative real numbers. Let f and g be
functions f ,g : N −→ R+. We say f (n) = O(g(n)), if there are positive
integers c and n0, such that for every n ≥ n0

f (n) ≤ c g(n).

g(n) is an asymptotic upper bound.
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ASYMPTOTIC UPPER BOUND

5n3 + 2n2 + 5 = O(n3) (what are c and n0?)
5n3 + 2n2 + 5 = O(n4) (what are c and n0?)
log2(n8) = O(log n) (why?)
5n3 + 2n2 + 5 is not O(n2) (why?)

2O(n) means an upper bound O(2cn) for some constant c.
nO(1) is a polynomial upper bound O(nc) for some constant c.
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REALITY CHECK

Assume that your computer/TM can perform 109 steps per second.

n/f (n) n n log(n) n2 n3 2n

10 0.01 µsec 0.03 µsec 0.1 µsec 1 µsec 1 µsec
20 0.02 µsec 0.09 µsec 0.4 µsec 8 µsec 1 msec
50 0.05 µsec 0.28 µsec 2.5 µsec 125 µsec 13 days
100 0.10 µsec 0.66 µsec 10 µsec 1 msec u 4× 1013 years
1000 1 µsec 3 µsec 1 msec 1 sec u 3.4x10281 centuries

Clearly, if the running time of your TM is an exponential function of n, it
does not matter how fast the TM is!
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SMALL-O NOTATION

DEFINITION – STRICT ASYMPTOTIC UPPER BOUND

Let f and g be functions f ,g : N −→ R+. We say f (n) = o(g(n)), if

lim
n→∞

f (n)

g(n)
= 0.

n2 = o(n3)√
n = o(n)

n log n = o(n2)

n100 = o(2n)

f (n) is never o(f (n)).

INTUITION

f (n) = O(g(n)) means “asymptotically f (n) ≤ g(n)”
f (n) = o(g(n)) means “asymptotically f (n) < g(n)”
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COMPLEXITY CLASSES

DEFINITION – TIME COMPLEXITY CLASS TIME(t(n))
Let t : N −→ R+ be a function.
TIME(t(n)) = {L(M) | M is a decider running in time O(t(n))}

TIME(t(n)) is the class (collection) of languages that are
decidable by TMs, running in time O(t(n)).
TIME(n) ⊂ TIME(n2) ⊂ TIME(n3) ⊂ . . . ⊂ TIME(2n) ⊂ . . .
Examples:

{0k 1k | k ≥ 0} ∈ TIME(n2)
{0k 1k | k ≥ 0} ∈ TIME(n log n) (next slide)
{w#w | w ∈ {0,1}∗} ∈ TIME(n2)
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{0k1k | k ≥ 0} ∈ TIME(n log n)

M = “On input w :
1 Scan the tape and reject if w is not of the form 0∗1∗ .
2 Repeat as long as some 0s and some 1s remain on the tape.

Scan across the tape, checking whether the total number of 0s and
1s is even or odd. Reject if it is odd.
Scan across the tape, crossing off every other 0 starting with the
first 0, and every other 1, starting with the first 1.

3 If no 0’s and no 1’s remain on the tape, accept. Otherwise, reject.

Steps 2 take O(n) time.
Step 2 is repeated at most 1 + log2 n times. (why?)
Total time is O(n log n).
Hence, {0k1k | k ≥ 0} ∈ TIME(n log n).
However, {0k1k | k ≥ 0} is decidable on a 2-tape TM in time O(n)
(How ?)
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RELATIONSHIP BETWEEN k -TAPE AND SINGLE-TAPE

TMS

THEOREM 7.8
Let t(n) be a function and t(n) ≥ n. Then every multitape TM has an
equivalent O(t2(n)) single tape TM.

Let’s remind ourselves on how the simulation operates.
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MULTITAPE TURING MACHINES
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MULTITAPE TURING MACHINES

A multitape Turing Machine is like an ordinary TM
There are k tapes
Each tape has its own independent read/write head.

The only fundamental difference from the ordinary TM is δ – the
state transition function.

δ : Q × Γk → Q × Γk × {L,R}k

The δ entry δ(qi ,a1, . . . ,ak ) = (qj ,b1, . . . ,bk ,L,R,L, ...L) reads as
:

If the TM is in state qi and
the heads are reading symbols a1 through ak ,
Then the machine goes to state qj , and
the heads write symbols b1 through bk , and
Move in the specified directions.
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SIMULATING A MULTITAPE TM WITH AN ORDINARY

TM
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SIMULATING A MULTITAPE TM WITH AN ORDINARY

TM

We use # as a delimiter to separate out the different tape
contents.
To keep track of the location of heads, we use additional symbols

Each symbol in Γ (except t) has a “dotted” version.
A dotted symbol indicates that the head is on that symbol.
Between any two #’s there is only one symbol that is dotted.

Thus we have 1 real tape with k “virtual’ tapes, and
1 real read/write head with k “virtual” heads.
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SIMULATING A MULTITAPE TM WITH AN ORDINARY

TM

Given input w = w1 · · ·wn, S puts its tape into the format that
represents all k tapes of M

#
•

w1 w2 · · ·wn#
•
t #

•
t # · · ·#

To simulate a single move of M, S starts at the leftmost # and
scans the tape to the rightmost #.

It determines the symbols under the “virtual” heads.
This is remembered in the finite state control of S. (How many
states are needed?)

S makes a second pass to update the tapes according to M.
If one of the virtual heads, moves right to a #, the rest of tape to
the right is shifted to “open up” space for that “virtual tape”. If it
moves left to a #, it just moves right again.
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ANALYSIS OF THE MULTI-TAPE TM SIMULATION

Preparing the single simulation tape takes O(n) time.
Each step of the simulation makes two passes over the tape:

One pass to see where the heads are.
One pass to update the heads (possibly with some shifting)

Each pass takes at most k × t(n) = O(t(n)) steps (why?)
So each simulation step takes 2 scans + at most k rightward
shifts. So the total time per step is O(t(n)).
Simulation takes O(n) + t(n)×O(t(n)) steps = O(t2(n)).
So, a single-tape TM is only polynomially slower than the
multi-tape TM.
If the multi-tape TM runs in polynomial time, the single-tape TM
will also run in polynomial time (where polynomial time is defined
as O(nm) for some m.)
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NONDETERMINISTIC TMS

DEFINITION – NONDETERMINISTIC RUNNING TIME

Let N be a nondeterministic TM that is a decider. The running time of
N is the function f : N −→ N , where f (n) is the maximum number of
steps that N uses, on any branch of its computation on any input of
length n.
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NONDETERMINISTIC TMS

THEOREM 7.11
Let t(n) be a function and t(n) ≥ n. Then every t(n) time
nondeterministic TM has an equivalent 2O(t(n)) time deterministic
single tape TM.
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NONDETERMINISTIC TMS

THEOREM 7.11
Let t(n) be a function and t(n) ≥ n. Then every t(n) time
nondeterministic TM has an equivalent 2O(t(n)) time deterministic
single tape TM.

PROOF

On an input of n, every branch of N ’s nondeterministic computation has
length at most t(n) (why?)

Every node in the tree can have at most b children where b is the
maximum number of nondeterministic choices a state can have.

So, the computation tree has at most 1 + b2 + · · ·+ bt(n) = O(bt(n))
nodes.

The deterministic machine D takes at most O(bt(n)) = 2O(t(n)) steps.

D has 3 tapes. Converting it to a single tape TM at most squares its
running time (previous Theorem):(2O(t(n)))2 = 22O(t(n)) = 2O(t(n))
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THE CLASS P

DEFINITION

P is the class of languages that are decidable in polynomial time on a
deterministic single-tape TM.

P =
⋃
k

TIME(nk ).

The class P is important for two main reasons:
1 P is robust: The class remains invariant for all models of

computation that are polynomially equivalent to deterministic
single-tape TMs.

2 P (roughly) corresponds to the class of problems that are
realistically solvable on a computer.

Even though the exponents can be large (though most useful
algorithms have “low” exponents), the class P provides a
reasonable definition of practical solvability.
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EXAMPLES OF PROBLEMS IN P

We will give high-level algorithms with numbered stages just as
we gave for decidability arguments.
We analyze such algorithms to show that they run in polynomial
time.

1 We give a polynomial upper bound on the number of stages the
algorithm uses when it runs on an input of length n.

2 We examine each stage, to make sure that each can be
implemented in polynomial time on a reasonable deterministic time.

We assume a “reasonable” encoding of the input.
For example, when we represent a graph G, we assume that 〈G〉
has a size that is poynomial the number of nodes.
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EXAMPLES OF PROBLEMS IN P

THEOREM

PATH = {〈G, s, t〉 | G is a directed graph with n nodes that has a path
from s to t} ∈ P.

PROOF

M = “On input 〈G, s, t〉
1 Place a mark on s.
2 Repeat 3 until no new nodes

are marked
3 Scan edges of G. If (a,b) is

an edge and a is marked and
b is unmarked, mark b.

4 If t is marked, accept else
reject.”

Steps 1 and 4 are
executed once

Each takes at most
O(n) time on a TM.

Step 3 is executed at
most n times

Each execution takes
at most O(n2) steps
(∝ number of edges)

Total execution time is
thus a polynomial in n.
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EXAMPLES OF PROBLEMS IN P

THEOREM

ACFG ∈ P

PROOF.
The CYK algorithm decides ACFG in polynomial time.
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EXAMPLES OF PROBLEMS IN P

DEFINITION

Natural numbers x and y are relatively prime iff gcd(x , y) = 1.

gcd(x , y) is the greatest natural number that evenly divides both x
and y .
RELPRIME = {〈x , y〉 | x and y are relatively prime numbers}
Remember that the length of 〈x , y〉 is log2 x + log2 y = n, that is
the size of the input is logarithmic in the values of the numbers.

So if the number of steps is proportional to the values of x and y , it
is exponential in n.

BRUTE FORCE ALGORITHM IS EXPONENTIAL

Given an input 〈x , y〉 of length n = log2 x + log2 y , going through all
numbers between 2 and min{x , y}, and checking if they divide both x
and y takes time exponential in n.
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EXAMPLES OF PROBLEMS IN P

THEOREM 7.15
RELPRIME ∈ P

PROOF

E implements the Euclidian
algorithm.
E =’ “On input 〈x , y〉

1 Repeat until y = 0
2 Assign x ← x mod y .
3 Exchange x and y .
4 Output x .”

PROOF

R solves RELPRIME , using
E as a subroutine.
R = “On input 〈x , y〉

1 Run E on 〈x , y〉.
2 If the result is 1, accept.

Otherwise, reject.”

If E ∈ P then R ∈ P.

Each of x and y is reduced by a factor of 2 every other time through the
loop.

Loop is executed at most min{2 log2 x ,2 log2 y} times which is O(n).
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THE CLASS NP

For some problems, even though there is a exponentially large
search space of solutions (e.g., for the path problem), we can
avoid a brute force solution and get a polynomial-time algorithm.
For some problems, it is not possible to avoid a brute force
solution and such problems have so far resisted a polynomial time
solution.
We may not yet know the principles that would lead to a
polynomial time algorithm, or they may be “intrinsically difficult.”
How can we characterize such problems?
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THE HAMILTONIAN PATH PROBLEM

DEFINITION – HAMILTONIAN PATH

A Hamiltonian path in a directed graph G is a directed path that goes
through each node exactly once.
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THE HAMILTONIAN PATH PROBLEM

HAMILTONIAN PATH PROBLEM

HAMPATH = {〈G, s, t〉 | G is a directed graph with a Hamiltonian path
from s to t}.

We can easily obtain an exponential time algorithm with a brute
force approach.

Generate all possible paths between s and t and check if all nodes
appear on a path!

The HAMPATH problem has a property called polynomial
verifiability.

If we can (magically) get a Hamiltonian path, we can verify that it is
a Hamiltonian path, in polynomial time.

Verifying the existence of a Hamiltonian path is “easier” than
determining its existence.
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POLYNOMIAL VERIFIABILITY

COMPOSITES PROBLEM

COMPOSITES = {x | x = pq, for integers p,q > 1}

We can easily verify if a number is composite, given a divisor of
that number.
A recent (but very complicated) algorithm for testing whether a
number is prime or composite has been discovered.

HAMPATH PROBLEM

The HAMPATH problem has a solution if there is NO Hamiltonian path
between s and t .

Even if we knew, the graph did not have a Hamiltonian path, there
is no easy way to verify this fact. We may need to take exponential
time to verify it.
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VERIFIERS

VERIFIER

A verifier for a language A is an algorithm V where

A = {w | V accepts 〈w , c〉 for some string c}

We measure the time of a verifier only in terms of the length of w .
A language A is polynomially verifiable if it has a polynomial time
verifier.
c is called certificate or proof of membership in A.

For the HAMPATH problem, the certificate is simply the Hamiltonian
path from s to t .
For the COMPOSITES problem, the certificate is one of the
divisors.

( LECTURE 19) SLIDES FOR 15-453 SPRING 2011 32 / 41



THE CLASS NP

THE CLASS NP
NP is the class of languages that have polynomial time verifiers.

NP stands for nondeterministic polynomial time.
Problems in NP are called NP-Problems.
P ⊂ (⊆?) NP.
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A NONDETERMINISTIC DECIDER FOR HAMPATH

N1 = “On input 〈G, s, t〉
1 Nondeterministically select list of m numbers p1,p2, . . .pm with

1 ≤ pi ≤ m .
2 Check for repetitions in the list; if found, reject.
3 Check whether p1 = s and pm = t , otherwise reject.
4 For 1 ≤ i < m, check if (pi ,pi+1) is an edge of G. If any are not,

reject. Otherwise accept.”

Stage 1 runs in polynomial time.
Stages 2 and 3 take polynomial time.
Stage 4 takes poynomial time.
Thus the algorithm runs in nondeterministic polynomial time.
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THE CLASS NP

THEOREM 7.20
A language is in NP, iff it is decided by some nondeterministic
polynomial time Turing machine.

PROOF IDEA

We show polynomial time verifier⇔ polynomial time decider TM.
NTM simulates the verifier by guessing a certificate.
The verifier simulates the NTM

PROOF: NTM GIVEN THE VERIFIER.
Let A ∈ NP. Let V be a verifier that runs in time O(nk ). N decides A in
nondeterministic polynomial time.
N = “On input w of length n

1 Nondeterministically select string c of length at most nk .
2 Run V on input 〈w , c〉.
3 If V accepts, accept; otherwise reject.”
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THE CLASS NP

THEOREM 7.20
A language is in NP, iff it is decided by some nondeterministic
polynomial time Turing machine.

PROOF IDEA

We show polynomial time verifier⇔ polynomial time decider TM.
NTM simulates the verifier by guessing a certificate.
The verifier simulates the NTM

PROOF: VERIFIER GIVEN THE NTM.
Assume A is decided by a polynomial time NTM N. We construct the
following verifier V
V = “On input 〈w , c〉

1 Simulate N on input w , treating each symbol of c as a description of the
nondeterministic choice at each step.

2 If this branch of N ’s computation accepts, accept; otherwise, reject.”
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THE CLASS NP

DEFINITION

NTIME(t(n)) = {L | L is a language decided by a O(t(n)) time
nondeterministic TM.}

COROLLARY

NP =
⋃

k NTIME(nk ).
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THE CLIQUE PROBLEM

DEFINITION - CLIQUE

A clique in an undirected graph is a subgraph, wherein every two
nodes are connected by an edge.
A k -clique is a clique that contains k nodes.
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THE CLIQUE PROBLEM

THEOREM 7.24
CLIQUE = {〈G, k〉 | G is an undirected graph with a k -clique } ∈ NP.

PROOF

The clique is the certificate.
V = “On input 〈〈G, k〉, c〉:

1 Test whether c is a set of k
nodes in G.

2 Test whether G has all
edges connecting nodes in
c.

3 If both pass, accept;
otherwise reject.”

ALTERNATIVE PROOF

Use a NTM as a decider.
N = “On input 〈G, k〉:

1 Nondeterministically select
a subset c of k nodes of G.

2 Test whether G has all
edges connecting nodes in
c.

3 If yes accept; otherwise
reject.”

All steps take polynomial time.
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THE SUBSET-SUM PROBLEM

THEOREM 7.25
SUBSET-SUM = {〈S, t〉 | S = {x1, . . . , xk} and for some

{y1, . . . , yl} ⊆ S,
∑

yi = t} ∈ NP.

PROOF

The clique is the certificate.
V = “On input 〈〈S, t〉, c〉:

1 Test whether c is a set of
numbers summing to t .

2 Test whether S contains all
numbers in c.

3 If both pass, accept;
otherwise reject.”

ALTERNATIVE PROOF

Use a NTM as a decider.
N = “On input 〈S, k〉:

1 Nondeterministically select
a subset c of numbers in S.

2 Test whether S contains all
numbers in c.

3 If yes accept; otherwise
reject.”

All steps take polynomial time.
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THE CLASS CONP

It turns out CLIQUE or SUBSET-SUM are NOT in NP.
Verifying something is NOT present seems to be more difficult
than verifying it IS present.
The class coNP contains all problems that are complements of
languages in NP.
We do not know if coNP 6= NP.
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