# Formal Languages, Automata and Computation 

COMPLEXITY

## Complexity Theory

## Question

Assume that a problem (language) is decidable. Does that mean we can realistically solve it?

## ANSWER

NO, not always. It can require to much of time or memory resources.

Complexity Theory aims to make general conclusions of the resource requirements of decidable problems (languages).

- Henceforth, we only consider decidable languages and deciders.
- Our computational model is a Turing Machine.
- Time: the number of computation steps a TM machine makes to decide on an input of size $n$.
- Space: the maximum number of tape cells a TM machine takes to decide on a input of size $n$.


## Time Complexity - Motivation

- How much time (or how many steps) does a single tape TM take to decide $A=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ ?
$M=$ "On input $w$ :
(1) Scan the tape and reject if $w$ is not of the form $0^{*} 1^{*}$.
(2) Repeat if both 0 s and 1 s remain on the tape.
(3) Scan across the tape crossing off one 0 and one 1.
(9) If all 0's are crossed and some 1's left, or all 1's crossed and some 0's left, then reject; else accept.


## QuESTION

How many steps does $M$ take on an input $w$ of length $n$ ?
ANSWER (WORST-CASE)
The number of steps $M$ takes $\propto n^{2}$.

## Time Complexity - Some notions

- The number of steps in measured as a function of $n$ - the size of the string representing the input.
- In worst-case analysis, we consider the longest running time of all inputs of length $n$.
- In average-case analysis, we consider the average of the running times of all inputs of length $n$.


## Time Complexity

Let $M$ be a deterministic TM that halts on all inputs. The time complexity of $M$ if the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where $f(n)$ is the maximum number of steps that $M$ uses on any input of length $n$.
If $f(n)$ is the running time of $M$ we say

- $M$ runs in time $f(n)$
- $M$ is an $f(n)$-time TM.


## AsYMPTOTIC ANALYSIS

- We seek to understand the running time when the input is "large".
- Hence we use an asymptotic notation or big-O notation to characterize the behaviour of $f(n)$ when $n$ is large.
- The exact value running time function is not terribly important.
- What is important is how $f(n)$ grows as a function of $n$, for large $n$.
- Differences of a constant factor are not important.


## Asymptotic Upper Bound

## DEFINITION - ASYMPTOTIC UPPER BOUND

Let $\mathcal{R}^{+}$be the set of nonnegative real numbers. Let $f$ and $g$ be functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^{+}$. We say $f(n)=O(g(n))$, if there are positive integers $c$ and $n_{0}$, such that for every $n \geq n_{0}$

$$
f(n) \leq c g(n)
$$

$g(n)$ is an asymptotic upper bound.


## Asymptotic Upper Bound

- $5 n^{3}+2 n^{2}+5=O\left(n^{3}\right)$ (what are $c$ and $n_{0}$ ?)
- $5 n^{3}+2 n^{2}+5=O\left(n^{4}\right)$ (what are $c$ and $n_{0}$ ?)
- $\log _{2}\left(n^{8}\right)=O(\log n)(w h y ?)$
- $5 n^{3}+2 n^{2}+5$ is not $O\left(n^{2}\right)$ (why?)
- $2^{O(n)}$ means an upper bound $O\left(2^{c n}\right)$ for some constant $c$.
- $n^{O(1)}$ is a polynomial upper bound $O\left(n^{c}\right)$ for some constant $c$.


## Reality Check

Assume that your computer/TM can perform $10^{9}$ steps per second.

| $n / f(n)$ | $n$ | $n \log (n)$ | $n^{2}$ | $n^{3}$ | $2^{n}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 10 | $0.01 \mu \mathrm{sec}$ | $0.03 \mu \mathrm{sec}$ | $0.1 \mu \mathrm{sec}$ | $1 \mu \mathrm{sec}$ | $1 \mu \mathrm{sec}$ |
| 20 | $0.02 \mu \mathrm{sec}$ | $0.09 \mu \mathrm{sec}$ | $0.4 \mu \mathrm{sec}$ | $8 \mu \mathrm{sec}$ | 1 msec |
| 50 | $0.05 \mu \mathrm{sec}$ | $0.28 \mu \mathrm{sec}$ | $2.5 \mu \mathrm{sec}$ | $125 \mu \mathrm{sec}$ | 13 days |
| 100 | $0.10 \mu \mathrm{sec}$ | $0.66 \mu \mathrm{sec}$ | $10 \mu \mathrm{sec}$ | 1 msec | $\approx 4 \times 10^{13}$ years |
| 1000 | $1 \mu \mathrm{sec}$ | $3 \mu \mathrm{sec}$ | 1 msec | 1 sec | $\approx 3.4 \times 10^{281}$ centuries |

Clearly, if the running time of your TM is an exponential function of $n$, it does not matter how fast the TM is!

## Small-o Notation

## DEFINITION - STRICT ASYMPTOTIC UPPER B OUND

Let $f$ and $g$ be functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^{+}$. We say $f(n)=o(g(n))$, if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

- $n^{2}=o\left(n^{3}\right)$
- $\sqrt{n}=o(n)$
- $n \log n=o\left(n^{2}\right)$
- $n^{100}=o\left(2^{n}\right)$
- $f(n)$ is never o $(f(n))$.


## INTUITION

- $f(n)=O(g(n))$ means "asymptotically $f(n) \leq g(n)$ "
- $f(n)=o(g(n))$ means "asymptotically $f(n)<g(n)$ "


## Complexity Classes

## Definition - Time Complexity Class TIME $(t(n))$

Let $t: \mathcal{N} \longrightarrow \mathcal{R}^{+}$be a function.
$\operatorname{TIME}(t(n))=\{L(M) \mid M$ is a decider running in time $O(t(n))\}$

- $\operatorname{TIME}(t(n))$ is the class (collection) of languages that are decidable by TMs, running in time $O(t(n))$.
- $\operatorname{TIME}(n) \subset \operatorname{TIME}\left(n^{2}\right) \subset \operatorname{TIME}\left(n^{3}\right) \subset \ldots \subset \operatorname{TIME}\left(2^{n}\right) \subset \ldots$
- Examples:
- $\left\{0^{k} 1^{k} \mid k \geq 0\right\} \in \operatorname{TIME}\left(n^{2}\right)$
- $\left\{0^{k} 1^{k} \mid k \geq 0\right\} \in \operatorname{TIME}(n \log n)$ (next slide)
- $\left\{w \# w \mid w \in\{0,1\}^{*}\right\} \in \operatorname{TIME}\left(n^{2}\right)$


## $\left\{0^{k} 1^{k} \mid k \geq 0\right\} \in \operatorname{TIME}(n \log n)$

$\mathrm{M}=$ "On input $w$ :
(1) Scan the tape and reject if $w$ is not of the form $0^{*} 1^{*}$.
(2) Repeat as long as some 0 s and some 1 s remain on the tape.

- Scan across the tape, checking whether the total number of 0s and 1s is even or odd. Reject if it is odd.
- Scan across the tape, crossing off every other 0 starting with the first 0 , and every other 1 , starting with the first 1.
(3) If no 0's and no 1's remain on the tape, accept. Otherwise, reject.
- Steps 2 take $O(n)$ time.
- Step 2 is repeated at most $1+\log _{2} n$ times. (why?)
- Total time is $O(n \log n)$.
- Hence, $\left\{0^{k} 1^{k} \mid k \geq 0\right\} \in \operatorname{TIME}(n \log n)$.
- However, $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ is decidable on a 2-tape TM in time $O(n)$ (How ?)


## ReLATIONSHIP BETWEEN $k$-TAPE AND SINGLE-TAPE TMS

## THEOREM 7.8 <br> Let $t(n)$ be a function and $t(n) \geq n$. Then every multitape TM has an equivalent $O\left(t^{2}(n)\right.$ ) single tape TM .

- Let's remind ourselves on how the simulation operates.


## Multitape Turing Machines



Tape3

## Multitape Turing Machines

- A multitape Turing Machine is like an ordinary TM
- There are $k$ tapes
- Each tape has its own independent read/write head.
- The only fundamental difference from the ordinary TM is $\delta$ - the state transition function.

$$
\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k}
$$

- The $\delta$ entry $\delta\left(q_{i}, a_{1}, \ldots, a_{k}\right)=\left(a_{j}, b_{1}, \ldots, b_{k}, L, R, L, \ldots L\right)$ reads as
- If the TM is in state $q_{i}$ and
- the heads are reading symbols $a_{1}$ through $a_{k}$,
- Then the machine goes to state $q_{j}$, and
- the heads write symbols $b_{1}$ through $b_{k}$, and
- Move in the specified directions.


## Simulating a Multitape TM with an Ordinary TM



Tape3


## Simulating a Multitape TM with an Ordinary TM



- We use \# as a delimiter to separate out the different tape contents.
- To keep track of the location of heads, we use additional symbols
- Each symbol in $\Gamma$ (except $\sqcup$ ) has a "dotted" version.
- A dotted symbol indicates that the head is on that symbol.
- Between any two \#'s there is only one symbol that is dotted.
- Thus we have 1 real tape with $k$ "virtual' tapes, and
- 1 real read/write head with $k$ "virtual" heads.


## Simulating a Multitape TM with an Ordinary TM

- Given input $w=w_{1} \cdots w_{n}, S$ puts its tape into the format that represents all $k$ tapes of $M$

$$
\# \dot{w}_{1} w_{2} \cdots w_{n} \# \dot{\sqcup} \# \dot{\bullet} \# \cdots \#
$$

- To simulate a single move of $M, S$ starts at the leftmost $\#$ and scans the tape to the rightmost \#.
- It determines the symbols under the "virtual" heads.
- This is remembered in the finite state control of $S$. (How many states are needed?)
- S makes a second pass to update the tapes according to $M$.
- If one of the virtual heads, moves right to a \#, the rest of tape to the right is shifted to "open up" space for that "virtual tape". If it moves left to a \#, it just moves right again.


## Analysis of the Multi-tape TM Simulation

- Preparing the single simulation tape takes $O(n)$ time.
- Each step of the simulation makes two passes over the tape:
- One pass to see where the heads are.
- One pass to update the heads (possibly with some shifting)
- Each pass takes at most $k \times t(n)=O(t(n))$ steps (why?)
- So each simulation step takes 2 scans + at most $k$ rightward shifts. So the total time per step is $O(t(n))$.
- Simulation takes $O(n)+t(n) \times O(t(n))$ steps $=O\left(t^{2}(n)\right)$.
- So, a single-tape TM is only polynomially slower than the multi-tape TM.
- If the multi-tape TM runs in polynomial time, the single-tape TM will also run in polynomial time (where polynomial time is defined as $O\left(n^{m}\right)$ for some $m$.)


## Nondeterministic TMs

## DEFINITION - NONDETERMINISTIC RUNNING TIME

Let $N$ be a nondeterministic TM that is a decider. The running time of $N$ is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where $f(n)$ is the maximum number of steps that $N$ uses, on any branch of its computation on any input of length $n$.


## Nondeterministic TMs

## THEOREM 7.11

Let $t(n)$ be a function and $t(n) \geq n$. Then every $t(n)$ time nondeterministic TM has an equivalent $2^{O(t(n))}$ time deterministic single tape TM.


## Nondeterministic TMs

## THEOREM 7.11

Let $t(n)$ be a function and $t(n) \geq n$. Then every $t(n)$ time nondeterministic TM has an equivalent $2^{O(t(n))}$ time deterministic single tape TM.

## Proof

- On an input of $n$, every branch of $N$ 's nondeterministic computation has length at most $t(n)$ (why?)
- Every node in the tree can have at most $b$ children where $b$ is the maximum number of nondeterministic choices a state can have.
- So, the computation tree has at most $1+b^{2}+\cdots+b^{t(n)}=O\left(b^{t(n)}\right)$ nodes.
- The deterministic machine $D$ takes at most $O\left(b^{t(n)}\right)=2^{O(t(n))}$ steps.
- $D$ has 3 tapes. Converting it to a single tape TM at most squares its running time (previous Theorem): $\left(2^{O(t(n))}\right)^{2}=2^{2 O(t(n))}=2^{O(t(n))}$


## The Class P

## DEFINITION

$P$ is the class of languages that are decidable in polynomial time on a deterministic single-tape TM.

$$
\mathrm{P}=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

- The class P is important for two main reasons:
(1) P is robust: The class remains invariant for all models of computation that are polynomially equivalent to deterministic single-tape TMs.
(2) P (roughly) corresponds to the class of problems that are realistically solvable on a computer.
- Even though the exponents can be large (though most useful algorithms have "low" exponents), the class P provides a reasonable definition of practical solvability.


## EXAMPLES OF PROBLEMS IN P

- We will give high-level algorithms with numbered stages just as we gave for decidability arguments.
- We analyze such algorithms to show that they run in polynomial time.
(1) We give a polynomial upper bound on the number of stages the algorithm uses when it runs on an input of length $n$.
(2) We examine each stage, to make sure that each can be implemented in polynomial time on a reasonable deterministic time.
- We assume a "reasonable" encoding of the input.
- For example, when we represent a graph $G$, we assume that $\langle G\rangle$ has a size that is poynomial the number of nodes.


## EXAMPLES OF PROBLEMS IN P

## THEOREM

PATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph with $n$ nodes that has a path from $s$ to $t\} \in \mathrm{P}$.

## PROOF

$M=$ "On input $\langle G, s, t\rangle$
(1) Place a mark on $s$.
(2) Repeat 3 until no new nodes are marked
(3) Scan edges of G. If $(a, b)$ is an edge and $a$ is marked and $b$ is unmarked, mark $b$.
(9) If $t$ is marked, accept else reject."

- Steps 1 and 4 are executed once
- Each takes at most $O(n)$ time on a TM.
- Step 3 is executed at most $n$ times
- Each execution takes at most $O\left(n^{2}\right)$ steps ( $\propto$ number of edges)
- Total execution time is thus a polynomial in $n$.


## EXAMPLES OF PROBLEMS IN P

## THEOREM $A_{C F G} \in \mathrm{P}$

## Proof.

The CYK algorithm decides $A_{C F G}$ in polynomial time.

## EXAMPLES OF PROBLEMS IN P

## DEFINITION

Natural numbers $x$ and $y$ are relatively prime iff $\operatorname{gcd}(x, y)=1$.

- $\operatorname{gcd}(x, y)$ is the greatest natural number that evenly divides both $x$ and $y$.
- RELPRIME $=\{\langle x, y\rangle \mid x$ and $y$ are relatively prime numbers $\}$
- Remember that the length of $\langle x, y\rangle$ is $\log _{2} x+\log _{2} y=n$, that is the size of the input is logarithmic in the values of the numbers.
- So if the number of steps is proportional to the values of $x$ and $y$, it is exponential in $n$.


## BRUTE FORCE ALGORITHM IS EXPONENTIAL

Given an input $\langle x, y\rangle$ of length $n=\log _{2} x+\log _{2} y$, going through all numbers between 2 and $\min \{x, y\}$, and checking if they divide both $x$ and $y$ takes time exponential in $n$.

## EXAMPLES OF PROBLEMS IN P

## THEOREM 7.15

## RELPRIME $\in \mathrm{P}$

## Proof

E implements the Euclidian algorithm.
$E=$ ' "On input $\langle x, y\rangle$
(1) Repeat until $y=0$
(2) Assign $x \leftarrow x \bmod y$.
(3) Exchange $x$ and $y$.
(9) Output $x$."

- If $E \in \mathrm{P}$ then $R \in \mathrm{P}$.
- Each of $x$ and $y$ is reduced by a factor of 2 every other time through the loop.
- Loop is executed at most $\min \left\{2 \log _{2} x, 2 \log _{2} y\right\}$ times which is $O(n)$.


## The Class NP

- For some problems, even though there is a exponentially large search space of solutions (e.g., for the path problem), we can avoid a brute force solution and get a polynomial-time algorithm.
- For some problems, it is not possible to avoid a brute force solution and such problems have so far resisted a polynomial time solution.
- We may not yet know the principles that would lead to a polynomial time algorithm, or they may be "intrinsically difficult."
- How can we characterize such problems?


## The Hamiltonian Path Problem

## DEFINITION - HAMILTONIAN PATH

A Hamiltonian path in a directed graph $G$ is a directed path that goes through each node exactly once.


## The Hamiltonian Path Problem

## Hamiltonian Path Problem

HAMPATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph with a Hamiltonian path from $s$ to $t\}$.

- We can easily obtain an exponential time algorithm with a brute force approach.
- Generate all possible paths between $s$ and $t$ and check if all nodes appear on a path!
- The HAMPATH problem has a property called polynomial verifiability.
- If we can (magically) get a Hamiltonian path, we can verify that it is a Hamiltonian path, in polynomial time.
- Verifying the existence of a Hamiltonian path is "easier" than determining its existence.


## POLYNOMIAL VERIFIABILITY

## COMPOSITES PROBLEM

COMPOSITES $=\{x \mid x=p q$, for integers $p, q>1\}$

- We can easily verify if a number is composite, given a divisor of that number.
- A recent (but very complicated) algorithm for testing whether a number is prime or composite has been discovered.


## HAMPATH PROBLEM

The HAMPATH problem has a solution if there is NO Hamiltonian path between $s$ and $t$.

- Even if we knew, the graph did not have a Hamiltonian path, there is no easy way to verify this fact. We may need to take exponential time to verify it.


## VERIFIERS

## VERIFIER

A verifier for a language $A$ is an algorithm $V$ where

$$
A=\{w \mid V \text { accepts }\langle w, c\rangle \text { for some string } c\}
$$

- We measure the time of a verifier only in terms of the length of $w$.
- A language $A$ is polynomially verifiable if it has a polynomial time verifier.
- $c$ is called certificate or proof of membership in $A$.
- For the HAMPATH problem, the certificate is simply the Hamiltonian path from $s$ to $t$.
- For the COMPOSITES problem, the certificate is one of the divisors.


## The Class NP

## THE CLASs NP

NP is the class of languages that have polynomial time verifiers.

- NP stands for nondeterministic polynomial time.
- Problems in NP are called NP-Problems.
- $\mathrm{P} \subset(\subseteq$ ? $) \mathrm{NP}$.


## A Nondeterministic decider for Hampath

$N_{1}=$ "On input $\langle G, s, t\rangle$
(- Nondeterministically select list of $m$ numbers $p_{1}, p_{2}, \ldots p_{m}$ with $1 \leq p_{i} \leq m$.
(0) Check for repetitions in the list; if found, reject.

- Check whether $p_{1}=s$ and $p_{m}=t$, otherwise reject.
- For $1 \leq i<m$, check if $\left(p_{i}, p_{i+1}\right)$ is an edge of $G$. If any are not, reject. Otherwise accept."
- Stage 1 runs in polynomial time.
- Stages 2 and 3 take polynomial time.
- Stage 4 takes poynomial time.
- Thus the algorithm runs in nondeterministic polynomial time.


## The Class NP

## THEOREM 7.20

A language is in NP, iff it is decided by some nondeterministic polynomial time Turing machine.

## Proof IdEA

- We show polynomial time verifier $\Leftrightarrow$ polynomial time decider TM.
- NTM simulates the verifier by guessing a certificate.
- The verifier simulates the NTM


## PROOF: NTM GIVEN THE VERIFIER.

Let $A \in$ NP. Let $V$ be a verifier that runs in time $O\left(n^{k}\right) . N$ decides $A$ in nondeterministic polynomial time.
$N=$ "On input $w$ of length $n$
(1) Nondeterministically select string $c$ of length at most $n^{k}$.
(2) Run $V$ on input $\langle w, c\rangle$.
(3) If $V$ accepts, accept; otherwise reject."

## The Class NP

## THEOREM 7.20

A language is in NP, iff it is decided by some nondeterministic polynomial time Turing machine.

## Proof IdEA

- We show polynomial time verifier $\Leftrightarrow$ polynomial time decider TM.
- NTM simulates the verifier by guessing a certificate.
- The verifier simulates the NTM


## PROOF: VERIFIER GIVEN THE NTM.

Assume $A$ is decided by a polynomial time NTM N. We construct the following verifier $V$
$V=$ "On input $\langle w, c\rangle$
(1) Simulate $N$ on input $w$, treating each symbol of $c$ as a description of the nondeterministic choice at each step.
(2) If this branch of N's computation accepts, accept; otherwise, reject."

## THE CLASS NP

## DEFINITION

$\operatorname{NTIME}(t(n))=\{L \mid L$ is a language decided by a $O(t(n))$ time nondeterministic TM.\}

## Corollary

$\mathrm{NP}=U_{k} \operatorname{NTIME}\left(n^{k}\right)$.

## The Clique Problem

## Definition - Clique

A clique in an undirected graph is a subgraph, wherein every two nodes are connected by an edge. A $k$-clique is a clique that contains $k$ nodes.


## The Clique Problem

## THEOREM 7.24

CLIQUE $=\{\langle G, k\rangle \mid G$ is an undirected graph with a $k$-clique $\} \in N P$.

## PROOF

The clique is the certificate.
$V=$ "On input $\langle\langle G, k\rangle, c\rangle$ :
(1) Test whether $c$ is a set of $k$ nodes in $G$.
(2) Test whether $G$ has all edges connecting nodes in c.
(3) If both pass, accept; otherwise reject."

- All steps take polynomial time.


## AlTERNATIVE PROOF

Use a NTM as a decider.
$N=$ "On input $\langle G, k\rangle$ :
(1) Nondeterministically select a subset $c$ of $k$ nodes of $G$.
(2) Test whether $G$ has all edges connecting nodes in c.
(3) If yes accept; otherwise reject."

## The Subset-sum Problem

## THEOREM 7.25

$$
\begin{aligned}
& \text { SUBSET-SUM }=\{\langle S, t\rangle \mid S=\left\{x_{1}, \ldots, x_{k}\right\} \text { and for some } \\
&\left.\left\{y_{1}, \ldots, y_{l}\right\} \subseteq S, \sum y_{i}=t\right\} \in \text { NP. }
\end{aligned}
$$

## PROOF

The clique is the certificate.
$V=$ "On input $\langle\langle S, t\rangle, c\rangle$ :
(1) Test whether $c$ is a set of numbers summing to $t$.
(2) Test whether $S$ contains all numbers in $c$.
(3) If both pass, accept; otherwise reject."

## Alternative Proof

Use a NTM as a decider. $N=$ "On input $\langle S, k\rangle$ :
(1) Nondeterministically select a subset $c$ of numbers in $S$.
(2) Test whether $S$ contains all numbers in $c$.
(3) If yes accept; otherwise reject."

- All steps take polynomial time.


## THE CLASS CONP

- It turns out $\overline{C L I Q U E}$ or $\overline{\text { SUBSET-SUM }}$ are NOT in NP.
- Verifying something is NOT present seems to be more difficult than verifying it IS present.
- The class coNP contains all problems that are complements of languages in NP.
- We do not know if coNP $\neq \mathrm{NP}$.

