FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

ADVANCED TOPICS IN COMPUTABILITY

RICE'S THEOREM – MOTIVATION

Consider the following undecidable languages:

- $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \}$
- $TOTAL_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Sigma^* \}$
- $REGULAR_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \}$
- $L_{0101010} = \{ \langle M \rangle \mid M \text{ is a TM and } 0101010 \in L(M) \}$

QUESTION

What do these questions about languages have in common, so that they are all undecidable?

- They ask whether the language defined by a TM has a certain property.
- The properties are "nontrivial".
 - What is a "nontrivial" property?

IDEA

We can generalize the undecidability proofs into a meta-theorem that works for all languages that talk about nontrivial properties of Turing machine languages.

(LECTURE 18)

WHAT IS A NONTRIVIAL PROPERTY?

DEFINITION (PROPERTY)

A language \mathcal{P} is called a property of Turing machine languages iff

• $\mathcal{P} \subseteq \{ \langle M \rangle \mid M \text{ is a TM} \}$

• For any two TMs M_1 , M_2 , if $L(M_1) = L(M_2)$ then $\langle M_1 \rangle \in \mathcal{P}$ iff $\langle M_2 \rangle \in \mathcal{P}$.

DEFINITION (NONTRIVIAL PROPERTY)

A language \mathcal{P} which is a property of Turing machine languages is nontrivial iff:

- There is a TM M_1 such that $\langle M_1 \rangle \in \mathcal{P}$, and
- There is a TM M_2 such that $\langle M_2 \rangle \notin \mathcal{P}$.

All these languages are nontrivial

- $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \}$
- $TOTAL_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Sigma^* \}$
- $L_{0101010} = \{ \langle M \rangle \mid M \text{ is a TM and } 0101010 \in L(M) \}$

THEOREM

Every language \mathcal{P} which is a nontrivial property of Turing machine languages is undecidable!

PROOF – PRELIMINARIES

Assume a nontrivial property language $\mathcal{P} \subseteq \{ \langle M \rangle \mid M \text{ is a TM} \}$. We want to show \mathcal{P} is undecidable.

Consider the following two Turing machines:

- Let M_{ϕ} = "On input x: *reject*".
 - We can assume $\langle M_{\phi} \rangle \notin \mathcal{P}$.
- Let M_P be a TM such that $\langle M_P \rangle \in \mathcal{P}$.
 - M_P exists because P is nontrivial.

Proof by reduction from A_{TM} to \mathcal{P}

- Assume we have a decider R_P for \mathcal{P} .
- **2** We show that using R_P we can construct a decider S for A_{TM} .
- S = "On input $\langle M, w \rangle$
 - Construct a TM M_w as follows: M_w = "On input x:
 - 1. Run *M* on *w*. If *M* rejects then *reject*
 - 2. Else run *M_P* on *x*. If *M_P* accepts then *accept*."
 - 2. Run R_P (the decider for \mathcal{P}) on $\langle M_w \rangle$
 - If *R_P* accepts then *accept* If *R_P* rejects then *reject*"

- If *M* accepts *w*, then $L(M_w) = L(M_P)$. So $\langle M_w \rangle \in \mathcal{P}$.
- If *M* does not accept *w*, then $L(M_w) = \Phi.$ So $\langle M_w \rangle \notin \mathcal{P}.$
- So if R_P decides \mathcal{P} , then S decides A_{TM} .
- But we know the *S* does not exist, so *R*_P can not exist either.
- Conclusion: \mathcal{P} is an undecidable language.

APPLYING RICE'S THEOREM

- The following languages are all undecidable:
 - *EPSILON*_{TM} = { $\langle M \rangle \mid M$ is a TM and $\epsilon \in L(M)$ }
 - $CFL_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a CFL} \}$
 - $DECIDABLE_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is decidable} \}$
 - $PAL_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ contains all palindromes} \}$
- Rice's Theorem is a very powerful tool
 - Very Important: we need to be checking a property of the language of the TM, not a property of the TM and the behaviour of the TM.

COMMON PITFALLS

Rice's Theorem can not be applied to the following languages:

• $ALL = \{ \langle M \rangle \mid M \text{ is a TM } \}$

- Note that ALL is decidable!
- There is no language property involved here.We need to check a property of the representation!
- $TWICE = \{ \langle M \rangle \mid M \text{ is a TM that visits the initial state more than twice} \}$
 - Again, this is not a question about the language defined by *M* but rather on the behaviour of *M* (Undecidable)
- $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$
 - Again, this is not a question about the property of a language. (Undecidable)

SELF-REFERENCE

- Can automata self-reproduce?
 - What do you mean?
 - Living things are "machines" and they reproduce!

Lemma

There is a computable function $q: \Sigma^* \longrightarrow \Sigma^*$ where

- if w is any string,
- *q*(*w*) is the description of a Turing machine *P_w* that prints out *w* and halt.

(LECTURE 18)

Lemma

There is a computable function $q : \Sigma^* \longrightarrow \Sigma^*$ where if *w* is any string, q(w) is the description of a Turing machine P_w that prints out *w* and halt.

PROOF:

The following TM Q computes q(w).

Q = "On input string *w*:

1. Construct the following Turing machine P_w

- P_w = "On any input:
 - 1. Erase input.
 - 2. Write w on tape.
 - 3. Halt."
- 2. Output $\langle P_w \rangle$."

- Next we build a TM, SELF, that ignores its own input and prints out a copy of its description.
- Print out this sentence.
 - Not clear what "this" refers to.
- Print out two copies of the following, the second one in quotes:
 "Print out two copies of the following, the second one in quotes:"
- ((lambda (x) (list x (list (quote quote) x))) (quote (lambda (x) (list x (list (quote quote) x))))) (Lisp)

STk> ((lambda (x) (list x (list (quote quote) x))) (quote (lambda (x) (list x (list (quote quote) x))))) ((lambda (x) (list x (list (quote quote) x))) (quote (lambda (x) (list x (list (quote quote) x))))) STk>

A TM THAT PRINTS ITSELF

- Part A runs first and upon completion passes control to part B.
- The job of A is to print a description of B on the tape (hence $A = P_{\langle B \rangle}$).
- The job of *B* is to print out a description of *A*.
- The tasks are similar, but are carried out differently.

A TM THAT PRINTS ITSELF

- If *B* can obtain $\langle B \rangle$, it can apply *q* to that and obtain $\langle A \rangle$.
- What how can *B* obtain $\langle B \rangle$?
- Well, it was printed on the tape, just before A passed control to B.
- So, B computes q((B)) = (A) and combines these and writes its own description (AB).

A TM THAT PRINTS ITSELF

- A = P_(B): A is the TM that prints out the description of B (But we do not have B yet!)
- B = "On input $\langle M \rangle$ where *M* is a portion of a TM:
 - 1. Compute $q(\langle M \rangle)$, (find the description of the machine which prints $\langle M \rangle$)
 - 2. Combine the result with $\langle M \rangle$ to make a complete TM.
 - 3. Print the description of this TM and halt."

HOW SELF BEHAVES

- First *A* runs. It prints $\langle B \rangle$.
- **2** *B* starts. It looks at the tape and finds its input $\langle B \rangle$.
- B computes q(\langle B\rangle) = \langle A\rangle and combines that with \langle B\rangle into a TM description \langle SELF \rangle.
- B prints this description and halts.

THEOREM 6.3 – THE RECURSION THEOREM

Let *T* be a TM that computes a function $t : \Sigma^* \times \Sigma^* \longrightarrow \Sigma^*$. There is a TM *R* that computes $r : \Sigma^* \longrightarrow \Sigma^*$, where for every *w*,

$$r(w) = t(\langle R \rangle, w)$$

- What is this Theorem saying?
- Informally, a TM can obtain its own description and compute with it.
- To make a TM, that can obtain its own description and then compute with it
 - Make a TM T that receives the description of the machine as an extra input.
 - Then the recursion theorem produces a new machine, R which operates as T does, with R's, description filled in automatically.

PROOF OF THE RECURSION THEOREM

We construct a machine with 3 parts: A, B and T.

- A is the TM P_(BT), described by q((BT))
 Technical point: We redesign q so that P_(BT) writes its output following any preexisting string on the tape.
- So, after A runs, the tape contains w(BT)
- B examines the tape and applies q to $\langle BT \rangle$ getting $\langle A \rangle$.
- B then combines A, B and T into a single machine and obtains its description $\langle ABT \rangle = \langle R \rangle$
- It encodes these as $\langle R, w \rangle$ and places it on the tape and passes the control to T. (LECTURE 18) SLIDES FOR 15-453

SPRING 2011 16/23

SIGNIFICANCE OF THE RECURSION THEOREM

- It is yet another handy tool for solving certain problems in the theory of algorithms.
- When you are designing a TM *M*, you can "make a call" to "obtain own description (*M*)" and use this description in the computation.
 - Just print out the description
 - Count the number of states in *M*.
 - Simulate M.
- Consider the TM
 - T = "On input $\langle M, w \rangle$:
 - 1. Print $\langle M \rangle$ and halt."

The recursion theorem tells us how to construct *R* which on input *w*, behaves just like *T* on input $\langle R, w \rangle$.

- Thus *R* prints the description of *R*, exactly what is required of the machine *SELF*.
- Technology for Computer Viruses (:-)

SIGNIFICANCE OF THE RECURSION THEOREM

THEOREM 6.5

ATM is undecidable.

Proof

- Suppose *H* decides *A*_{*TM*}, we construct *B*:
- *B* = "On input *w*:
 - **Obtain**, via the recursion theorem, own description $\langle B \rangle$.
 - **2** Run *H* on input $\langle B, w \rangle$.
 - O the opposite of what H says.
 - accept if H rejects.
 - reject if H accepts.
- B conflicts with itself hence can not exist
- H can not exist.

THE FIXED-POINT VERSION OF THE RECURSION THEOREM

- A fixed-point of a function is a value, that is not changed by the application of a function, e.g.,
 - $f(x) = \sqrt{x}$ has a fixed-point 1.
 - f(y(x)) = y'(x) has a fixed-point $y(x) = e^x$.
- We consider functions that are computable transformations of TM descriptions.
- The Fixed-point version of the Recursion Theorem shows that
 - whatever the transformation is
 - there is some TM whose behaviour is unchanged by the transformation!

THE FIXED-POINT VERSION OF THE RECURSION THEOREM

THEOREM 6.8

Let $t : \Sigma^* \longrightarrow \Sigma^*$. Then, there is a TM *F* such that $t(\langle F \rangle)$ describes a TM equivalent to *F*. (*t* is the transformation and *F* is the fixed point.)

Proof

- Let F be the following TM:
- *F* = "On input w
 - **Obtain via the recursion theorem, own description** $\langle F \rangle$.
 - Occupie $t(\langle F \rangle)$ to obtain the description of a TM *G*.
 - Simulate G on w."
- It is clear that (F) and (G) describe equivalent TMs: they both compute what G computes with w.

- Reducibility: If *A* is reducible to *B* then we can solve *A* by solving *B*.
- Mapping Reducibility $(A \leq_m B)$: Use a computable mapping *f* to transform an instance of *A* to an instance of *B*.
- It turns out that Mapping Reducibility is not general enough!
 - Consider A_{TM} and $\overline{A_{TM}}$
 - Clearly the solution to one can be used as a solution to the other, by simply reversing the answer.
 - But $\overline{A_{TM}}$ is not mapping reducible to A_{TM} because A_{TM} is Turing-recognizable while $\overline{A_{TM}}$ is not.
- We need a more general notion of reducibility.

DEFINITION – ORACLE

An oracle for a language *B* is an external device that is capable of answering the question "Is $w \in B$?"

DEFINITION – ORACLE TURING MACHINE

An oracle TM is a modified TM, M^B , that has the capability of querying an oracle for language B.

(LECTURE 18)

DEFINITION

Language *A* is Turing reducible to language *B*, written as $A \leq_T B$, if *A* is decidable relative to *B* (that is, using an oracle for *B*)

THEOREM

If $A \leq_T B$ and B is decidable, then A is decidable.

Proof

If *B* is decidable, then replace the oracle with the TM for *B*.

• Turing reducibility is a generalization of mapping reducibility $A \leq_M B$