
FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

ADVANCED TOPICS IN COMPUTABILITY

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 1 / 23

RICE’S THEOREM – MOTIVATION

Consider the following undecidable languages:
ETM = {〈M〉 | M is a TM and L(M) = Φ}
TOTALTM = {〈M〉 | M is a TM and L(M) = Σ∗}
REGULARTM = {〈M〉 | M is a TM and L(M) is regular}
L0101010 = {〈M〉 | M is a TM and 0101010 ∈ L(M)}

QUESTION

What do these questions about languages have in common, so that
they are all undecidable?

They ask whether the language defined by a TM has a certain
property.
The properties are “nontrivial”.

What is a “nontrivial” property?
IDEA

We can generalize the undecidability proofs into a meta-theorem that
works for all languages that talk about nontrivial properties of Turing
machine languages.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 2 / 23

WHAT IS A NONTRIVIAL PROPERTY?

DEFINITION (PROPERTY)
A language P is called a property of Turing machine languages iff
P ⊆ {〈M〉 | M is a TM}
For any two TMs M1, M2, if L(M1) = L(M2) then
〈M1〉 ∈ P iff 〈M2〉 ∈ P.

DEFINITION (NONTRIVIAL PROPERTY)
A language P which is a property of Turing machine languages is
nontrivial iff:

There is a TM M1 such that 〈M1〉 ∈ P, and
There is a TM M2 such that 〈M2〉 6∈ P.

All these languages are nontrivial
ETM = {〈M〉 | M is a TM and L(M) = Φ}
TOTALTM = {〈M〉 | M is a TM and L(M) = Σ∗}
L0101010 = {〈M〉 | M is a TM and 0101010 ∈ L(M)}

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 3 / 23

RICE’S THEOREM

THEOREM

Every language P which is a nontrivial property of Turing machine
languages is undecidable!

PROOF – PRELIMINARIES

Assume a nontrivial property language P ⊆ {〈M〉 | M is a TM}. We
want to show P is undecidable.
Consider the following two Turing machines:

Let Mφ = “On input x: reject”.
We can assume 〈Mφ〉 6∈ P.

Let MP be a TM such that 〈MP〉 ∈ P.
MP exists because P is nontrivial.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 4 / 23

PROOF BY REDUCTION FROM ATM TO P

1 Assume we have a decider RP for P.
2 We show that using RP we can construct a decider S for ATM .

S = “On input 〈M,w〉

1. Construct a TM Mw as
follows:
Mw = “On input x :

1. Run M on w .
If M rejects then reject

2. Else run MP on x .
If MP accepts then
accept.”

2. Run RP (the decider for P)
on 〈Mw 〉

3. If RP accepts then accept
If RP rejects then reject”

If M accepts w , then
L(Mw) = L(MP). So 〈Mw 〉 ∈ P.
If M does not accept w , then
L(Mw) = Φ.
So 〈Mw 〉 6∈ P.
So if RP decides P, then S
decides ATM .
But we know the S does not
exist, so RP can not exist
either.
Conclusion: P is an
undecidable language.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 5 / 23

APPLYING RICE’S THEOREM

The following languages are all undecidable:
EPSILONTM = {〈M〉 | M is a TM and ε ∈ L(M)}
CFLTM = {〈M〉 | M is a TM and L(M) is a CFL}
DECIDABLETM = {〈M〉 | M is a TM and L(M) is decidable}
PALTM = {〈M〉 | M is a TM and L(M) contains all palindromes}

Rice’s Theorem is a very powerful tool
Very Important: we need to be checking a property of the language
of the TM, not a property of the TM and the behaviour of the TM.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 6 / 23

COMMON PITFALLS

Rice’s Theorem can not be applied to the following languages:
ALL = {〈M〉 | M is a TM }

Note that ALL is decidable!
There is no language property involved here.We need to check a
property of the representation!

TWICE = {〈M〉 | M is a TM that visits the initial state
more than twice}

Again, this is not a question about the language defined by M but
rather on the behaviour of M (Undecidable)

EQTM = {〈M1,M2〉 | M1 and M2 are TMs and L(M1) = L(M2)}
Again, this is not a question about the property of a language.
(Undecidable)

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 7 / 23

SELF-REFERENCE

Can automata self-reproduce?
What do you mean?

Living things are “machines” and they reproduce!

LEMMA

There is a computable function q : Σ∗ −→ Σ∗ where
if w is any string,
q(w) is the description of a Turing machine Pw that prints out w
and halt.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 8 / 23

SELF-REFERENCE

LEMMA

There is a computable function q : Σ∗ −→ Σ∗ where if w is any string,
q(w) is the description of a Turing machine Pw that prints out w and
halt.

PROOF:
The following TM Q computes q(w).
Q = “On input string w :
1. Construct the following Turing machine Pw

Pw = “On any input:
1. Erase input.
2. Write w on tape.
3. Halt.”

2. Output 〈Pw 〉.”

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 9 / 23

THE TM SELF

Next we build a TM, SELF , that ignores its own input and prints
out a copy of its description.
Print out this sentence.

Not clear what “this” refers to.
Print out two copies of the following, the second one in quotes:
“Print out two copies of the following, the second one in quotes:”
((lambda (x) (list x (list (quote quote) x)))
(quote (lambda (x) (list x (list (quote quote)
x))))) (Lisp)

STk> ((lambda (x) (list x (list (quote
quote) x))) (quote (lambda (x) (list x
(list (quote quote) x)))))
((lambda (x) (list x (list (quote quote)
x))) (quote (lambda (x) (list x (list
(quote quote) x)))))
STk>

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 10 / 23

A TM THAT PRINTS ITSELF

Part A runs first and upon completion passes control to part B.
The job of A is to print a description of B on the tape (hence
A = P〈B〉).
The job of B is to print out a description of A.
The tasks are similar, but are carried out differently.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 11 / 23

A TM THAT PRINTS ITSELF

If B can obtain 〈B〉, it can apply q to that and obtain 〈A〉.
What how can B obtain 〈B〉?
Well, it was printed on the tape, just before A passed control to B.
So, B computes q(〈B〉) = 〈A〉 and combines these and writes its
own description 〈AB〉.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 12 / 23

A TM THAT PRINTS ITSELF

A = P〈B〉: A is the TM that prints out the description of B (But we
do not have B yet!)
B = “On input 〈M〉 where M is a portion of a TM:

1. Compute q(〈M〉), (find the description of the machine which prints
〈M〉)

2. Combine the result with 〈M〉 to make a complete TM.
3. Print the description of this TM and halt.”

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 13 / 23

HOW SELF BEHAVES

1 First A runs. It prints 〈B〉.
2 B starts. It looks at the tape and finds its input 〈B〉.
3 B computes q(〈B〉) = 〈A〉 and combines that with 〈B〉 into a TM

description 〈SELF 〉.
4 B prints this description and halts.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 14 / 23

THE RECURSION THEOREM

THEOREM 6.3 – THE RECURSION THEOREM

Let T be a TM that computes a function t : Σ∗ × Σ∗ −→ Σ∗. There is a
TM R that computes r : Σ∗ −→ Σ∗, where for every w ,

r(w) = t(〈R〉,w)

What is this Theorem saying?
Informally, a TM can obtain its own
description and compute with it.
To make a TM, that can obtain its own
description and then compute with it

1 Make a TM T that receives the description
of the machine as an extra input.

2 Then the recursion theorem produces a
new machine, R which operates as T does,
with R′s, description filled in automatically.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 15 / 23

PROOF OF THE RECURSION THEOREM

We construct a machine with 3 parts: A,B and T .

A is the TM P〈BT 〉, described by q(〈BT 〉)
Technical point: We redesign q so that P〈BT 〉 writes its output
following any preexisting string on the tape.

So, after A runs, the tape contains w〈BT 〉
B examines the tape and applies q to 〈BT 〉 getting 〈A〉.
B then combines A, B and T into a single machine and obtains its
description 〈ABT 〉 = 〈R〉
It encodes these as 〈R,w〉 and places it on the tape and passes
the control to T .

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 16 / 23

SIGNIFICANCE OF THE RECURSION THEOREM

It is yet another handy tool for solving certain problems in the
theory of algorithms.
When you are designing a TM M, you can “make a call” to “obtain
own description 〈M〉” and use this description in the computation.

Just print out the description
Count the number of states in M.
Simulate M.

Consider the TM
T = “On input 〈M,w〉:

1. Print 〈M〉 and halt.”
The recursion theorem tells us how to construct R which on input
w , behaves just like T on input 〈R,w〉.
Thus R prints the description of R, exactly what is required of the
machine SELF .
Technology for Computer Viruses (:-)

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 17 / 23

SIGNIFICANCE OF THE RECURSION THEOREM

THEOREM 6.5
ATM is undecidable.

PROOF

Suppose H decides ATM , we construct B:
B = “On input w :

1 Obtain, via the recursion theorem, own description 〈B〉.
2 Run H on input 〈B,w〉.
3 Do the opposite of what H says.

accept if H rejects.
reject if H accepts.

B conflicts with itself – hence can not exist
H can not exist.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 18 / 23

THE FIXED-POINT VERSION OF THE RECURSION

THEOREM

A fixed-point of a function is a value, that is not changed by the
application of a function, e.g.,

f (x) =
√

x has a fixed-point 1.
f (y(x)) = y ′(x) has a fixed-point y(x) = ex .

We consider functions that are computable transformations of TM
descriptions.
The Fixed-point version of the Recursion Theorem shows that

whatever the transformation is
there is some TM whose behaviour is unchanged by the
transformation!

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 19 / 23

THE FIXED-POINT VERSION OF THE RECURSION

THEOREM

THEOREM 6.8
Let t : Σ∗ −→ Σ∗. Then, there is a TM F such that t(〈F 〉) describes a
TM equivalent to F . (t is the transformation and F is the fixed point.)

PROOF

Let F be the following TM:
F = “On input w

1 Obtain via the recursion theorem, own description 〈F 〉.
2 Compute t(〈F 〉) to obtain the description of a TM G.
3 Simulate G on w .”

It is clear that 〈F 〉 and 〈G〉 describe equivalent TMs: they both
compute what G computes with w .

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 20 / 23

TURING REDUCIBILITY

Reducibility: If A is reducible to B then we can solve A by solving
B.
Mapping Reducibility (A ≤m B) : Use a computable mapping f to
transform an instance of A to an instance of B.
It turns out that Mapping Reducibility is not general enough!

Consider ATM and ATM
Clearly the solution to one can be used as a solution to the other,
by simply reversing the answer.
But ATM is not mapping reducible to ATM because ATM is
Turing-recognizable while ATM is not.

We need a more general notion of reducibility.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 21 / 23

ORACLES

DEFINITION – ORACLE

An oracle for a language B is an external device that is capable of
answering the question “Is w ∈ B?”

DEFINITION – ORACLE TURING MACHINE

An oracle TM is a modified TM, MB, that has the capability of querying
an oracle for language B.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 22 / 23

TURING REDUCIBILITY

DEFINITION

Language A is Turing reducible to language B, written as A ≤T B, if A
is decidable relative to B (that is, using an oracle for B)

THEOREM

If A ≤T B and B is decidable, then A is decidable.

PROOF

If B is decidable, then replace the oracle with the TM for B.

Turing reducibility is a generalization of mapping reducibility
A ≤M B

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 23 / 23

