FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

ADVANCED ToPICS IN COMPUTABILITY

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 1/23

RICE’S THEOREM — MOTIVATION

Consider the following undecidable languages:
Emmy={(M) | MisaTMand L(M) = ¢}

TOTALty = {(M) | MisaTM and L(M) = X*}
REGULAR7y = {(M) | Mis a TM and L(M) is regular}
L0101010 = {<M> ‘ MisaTM and 0101010 € L(M)}

What do these questions about languages have in common, so that
they are all undecidable?

e They ask whether the language defined by a TM has a certain

property.
e The properties are “nontrivial”.
o What is a “nontrivial” property?

We can generalize the undecidability proofs into a meta-theorem that
works for all languages that talk about nontrivial properties of Turing
machine languages.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 2/23

WHAT IS A NONTRIVIAL PROPERTY?

DEFINITION (PROPERTY)

A language P is called a property of Turing machine languages iff
o PC{(M)|MisaTM}

e For any two TMs My, Mo, if L(M;) = L(M>) then
<M1> € P iff <M2> eP.

v

DEFINITION (NONTRIVIAL PROPERTY)

A language P which is a property of Turing machine languages is
nontrivial iff:

e Thereis a TM My such that (M;) € P, and
e Thereis a TM M, such that (M,) & P.

A\

e All these languages are nontrivial
o Ery={(M)| MisaTMand L(M) = ¢}
o TOTALty = {(M)|MisaTMand L(M) = £*}
° L0101010 = {<M> | MisaTM and 0101010 € L(M)}

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011

RICE’S THEOREM

Every language ‘P which is a nontrivial property of Turing machine
languages is undecidable!

PROOF — PRELIMINARIES

Assume a nontrivial property language P C {(M) | M is a TM}. We
want to show P is undecidable.
Consider the following two Turing machines:
o Let M, =“On input x: reject’.
o We can assume (M,) & P.
e Let Mp be a TM such that (Mp) € P.
e Mp exists because P is nontrivial.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 4/23

PROOF BY REDUCTION FROM A7y TO P

@ Assume we have a decider Rp for P.
@ We show that using Rp we can construct a decider S for Aqy,.

S = “Oninput (M, w) e If M accepts w, then
1. Constructa TM M,, as L(Mw) = L(Mp). So (My) € P.
follows: e If M does not accept w, then
My, = “On input x: L(My) = .
1. Run Mon w. So (My) € P.

If M rejects then reject e So if Rp decides P, then S

2. Else run Mp on x.)
If Mp accepts then decides Ary.
accept” e But we know the S does not

2. Run Rp (the decider for P) DAL S 7} EIT Ml T

on (M) either.
e Conclusion: P is an

3. IfR ts th t .
P 80CEpIS on a5cep undecidable language.

If Rp rejects then reject’

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 5/23

APPLYING RICE’S THEOREM

e The following languages are all undecidable:

o EPSILONmy = {(M) | MisaTMand e € L(M)}

o CFLpy = {(M)| MisaTMand L(M) is a CFL}

o DECIDABLEmy = {(M) | MisaTM and L(M) is decidable}
PALmy = {(M) | Mis a TM and L(M) contains all palindromes}

e Rice’s Theorem is a very powerful tool

e Very Important: we need to be checking a property of the language
of the TM, not a property of the TM and the behaviour of the TM.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 6/23

COMMON PITFALLS

Rice’s Theorem can not be applied to the following languages:
o ALL={(M) | MisaTM}
o Note that ALL is decidable!

e There is no language property involved here.We need to check a
property of the representation!
o TWICE = {{(M) | M is a TM that visits the initial state
more than twice}
e Again, this is not a question about the language defined by M but
rather on the behaviour of M (Undecidable)
] EQTM = {<M1,M2> | M, and M» are TMs and L(M1) = L(Mg)}
e Again, this is not a question about the property of a language.
(Undecidable)

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 7/23

SELF-REFERENCE

e Can automata self-reproduce?
e What do you mean?
e Living things are “machines” and they reproduce!

There is a computable function g : ¥* — ¥* where
e if wis any string,

e g(w) is the description of a Turing machine P, that prints out w
and halt.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 8/23

SELF-REFERENCE

LEMMA

There is a computable function g : ¥* — ¥* where if w is any string,
g(w) is the description of a Turing machine Py, that prints out w and
halt.

| A\

PROOF:
The following TM Q computes g(w).
Q = “On input string w:
1. Construct the following Turing machine Py,
Py = “On any input:
1. Erase input.

2. Write w on tape.
3. Halt”

2. Output (Py).”

\

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 9/23

THE TM SELF

Next we build a TM, SELF, that ignores its own input and prints

out a copy of its description.
Print out this sentence.
o Not clear what “this” refers to.

Print out two copies of the following, the second one in quotes:
“Print out two copies of the following, the second one in quotes:”
((lambda (x) (list x (list (quote quote) x)))
(quote (lambda (x) (list x (list (quote quote)
x))))) (Lisp)
STk> ((lambda (x) (list x (list (quote
quote) x))) (quote (lambda (x) (list x
(list (quote quote) x)))))
((lambda (x) (list x (list (quote quote)
x))) (quote (lambda (x) (list x (list

(quote quote) x)))))
STk>

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 10/23

A TM THAT PRINTS ITSELF

A B
[=P{s1)

control for SELF

e Part A runs first and upon completion passes control to part B.
e The job of Ais to print a description of B on the tape (hence

e The job of B is to print out a description of A.

e The tasks are similar, but are carried out differently.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 11723

A TM THAT PRINTS ITSELF

A B
[=P{51)

control for SELF

e If B can obtain (B), it can apply g to that and obtain (A).
e What how can B obtain (B)?
o Well, it was printed on the tape, just before A passed control to B.

e So, B computes q((B)) = (A) and combines these and writes its
own description (AB).

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 12/23

A TM THAT PRINTS ITSELF

o A= Pig: Ais the TM that prints out the description of B (But we
do not have B yet!)
e B ="0On input (M) where M is a portion of a TM:
1. Compute q({M)), (find the description of the machine which prints
M
2. éo?%bine the result with (M) to make a complete TM.
3. Print the description of this TM and halt.”

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 13723

How SELF BEHAVES

Q@ First Aruns. It prints (B).
@ B starts. It looks at the tape and finds its input (B).

@ B computes q((B)) = (A) and combines that with (B) into a TM
description (SELF).

@ B prints this description and halts.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 14/23

THE RECURSION THEOREM

THEOREM 6.3 — THE RECURSION THEOREM

Let T be a TM that computes a function ¢ : ¥* x ¥* — ¥*. There is a
TM R that computes r : ¥* — ¥*, where for every w,

e What is this Theorem saying?

e Informally, a TM can obtain its own
description and compute with it.

o To make a TM, that can obtain its own
description and then compute with it
@ Make a TM T that receives the description
of the machine as an extra input.
© Then the recursion theorem produces a
new machine, R which operates as T does,
with R’s, description filled in automatically.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 15723

PROOF OF THE RECURSION THEOREM

e We construct a machine with 3 parts: A,Band T.

A3 BLT
(=P(5'r))

control for R

o Aisthe TM Pgr), described by q((BT))
o Technical point: We redesign g so that P gry writes its output
following any preexisting string on the tape.

e So, after A runs, the tape contains w(BT)

e B examines the tape and applies g to (BT) getting (A).

e Bthen combines A, B and T into a single machine and obtains its
description (ABT) = (R)

e It encodes these as (R, w) and places it on the tape and passes
the control to 7.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 16 /23

SIGNIFICANCE OF THE RECURSION THEOREM

e ltis yet another handy tool for solving certain problems in the
theory of algorithms.
e When you are designing a TM M, you can “make a call” to “obtain
own description (M)” and use this description in the computation.
e Just print out the description
e Count the number of states in M.
e Simulate M.
e Consider the TM
T ="“Oninput (M, w):
1. Print (M) and halt”
The recursion theorem tells us how to construct R which on input
w, behaves just like T on input (R, w).

e Thus R prints the description of R, exactly what is required of the
machine SELF.

e Technology for Computer Viruses (:-)

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 17723

SIGNIFICANCE OF THE RECURSION THEOREM

A7y is undecidable.

PROOF

e Suppose H decides Ay, we construct B:
e B="Oninput w:
@ Obtain, via the recursion theorem, own description (B).
© Run H on input (B, w).
@ Do the opposite of what H says.
e acceptif H rejects.
e rejectif H accepts.
e B conflicts with itself — hence can not exist

@ H can not exist.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011

THE FIXED-POINT VERSION OF THE RECURSION

THEOREM

e A fixed-point of a function is a value, that is not changed by the
application of a function, e.g.,
o f(x) = v/x has a fixed-point 1.
o f(y(x)) = y'(x) has a fixed-point y(x) = e*.
e We consider functions that are computable transformations of TM
descriptions.
e The Fixed-point version of the Recursion Theorem shows that
e whatever the transformation is

e there is some TM whose behaviour is unchanged by the
transformation!

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 19/23

THE FIXED-POINT VERSION OF THE RECURSION
THEOREM

Lett:X* — X*. Then, there is a TM F such that {((F)) describes a
TM equivalent to F. (¢ is the transformation and F is the fixed point.)

| A

PROOF

o Let F be the following TM:

e F="Oninputw
@ Obtain via the recursion theorem, own description (F).
@ Compute t((F)) to obtain the description of a TM G.
© Simulate Gon w.”

e ltis clear that (F) and (G) describe equivalent TMs: they both

compute what G computes with w.

A

20/23

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011

TURING REDUCIBILITY

e Reducibility: If Ais reducible to B then we can solve A by solving
B.

e Mapping Reducibility (A <, B) : Use a computable mapping f to
transform an instance of A to an instance of B.

e It turns out that Mapping Reducibility is not general enough!

o Consider A7y and Ay

o Clearly the solution to one can be used as a solution to the other,
by simply reversing the answer.

e But A7y is not mapping reducible to A7y because Ay is
Turing-recognizable while A7y is not.

e We need a more general notion of reducibility.

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011 21/23

ORACLES

DEFINITION — ORACLE

An oracle for a language B is an external device that is capable of
answering the question “ls w € B?”

DEFINITION — ORACLE TURING MACHINE

An oracle TM is a modified TM, M5, that has the capability of querying
an oracle for language B.

Is (M,w) in Is (M,w) in
q. —_— \
I I YES
LiwleJolef PET T] [InTeJol=TTTTT]
INFINITE TAPE INFINITE TAPE

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011

TURING REDUCIBILITY

Language A is Turing reducible to language B, written as A <7 B, if A
is decidable relative to B (that is, using an oracle for B)

If A<7 Band B is decidable, then A is decidable.

PROOF
If B is decidable, then replace the oracle with the TM for B.

e Turing reducibility is a generalization of mapping reducibility
A<y B

(LECTURE 18) SLIDES FOR 15-453 SPRING 2011

