FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

Post Correspondence Problem

Review of Decidability and Reductions

Reducibility

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.

Reducibility

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
- Finding the area of a rectangle, reduces to measuring its width and height

Reducibility

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
- Finding the area of a rectangle, reduces to measuring its width and height
- Solving a set of linear equations, reduces to inverting a matrix.

Reducibility

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
- Finding the area of a rectangle, reduces to measuring its width and height
- Solving a set of linear equations, reduces to inverting a matrix.
- Reducibility involves two problems A and B.

Reducibility

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
- Finding the area of a rectangle, reduces to measuring its width and height
- Solving a set of linear equations, reduces to inverting a matrix.
- Reducibility involves two problems A and B.
- If A reduces to B, you can use a solution to B to solve A

Reducibility

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
- Finding the area of a rectangle, reduces to measuring its width and height
- Solving a set of linear equations, reduces to inverting a matrix.
- Reducibility involves two problems A and B.
- If A reduces to B, you can use a solution to B to solve A
- When A is reducible to B, solving A can not be "harder" than solving B.

Reducibility

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
- Finding the area of a rectangle, reduces to measuring its width and height
- Solving a set of linear equations, reduces to inverting a matrix.
- Reducibility involves two problems A and B.
- If A reduces to B, you can use a solution to B to solve A
- When A is reducible to B, solving A can not be "harder" than solving B.
- If A is reducible to B and B is decidable, then A is also decidable.

REDUCIBILITY

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
- Finding the area of a rectangle, reduces to measuring its width and height
- Solving a set of linear equations, reduces to inverting a matrix.
- Reducibility involves two problems A and B.
- If A reduces to B, you can use a solution to B to solve A
- When A is reducible to B, solving A can not be "harder" than solving B.
- If A is reducible to B and B is decidable, then A is also decidable.
- If A is undecidable and reducible to B, then B is undecidable.

Proving Undecidability via Reductions

THEOREM 5.2

$E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\Phi\}$ is undecidable.

Proving Undecidability via Reductions

THEOREM 5.2

$E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\Phi\}$ is undecidable.

- Suppose R decides $E_{T M}$. We try to construct S to decide $A_{T M}$ using R.

Proving Undecidability via Reductions

Theorem 5.2

$E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\Phi\}$ is undecidable.

- Suppose R decides $E_{T M}$. We try to construct S to decide $A_{T M}$ using R.
- Note that S takes $\langle M, w\rangle$ as input.

Proving Undecidability via Reductions

Theorem 5.2

$E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\Phi\}$ is undecidable.

- Suppose R decides $E_{T M}$. We try to construct S to decide $A_{T M}$ using R. - Note that S takes $\langle M, w\rangle$ as input.
- One idea is to run R on $\langle M\rangle$ to check if M accepts some string or not but that that does not tell us if M accepts w.

Proving Undecidability via Reductions

THEOREM 5.2

$E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\Phi\}$ is undecidable.

- Suppose R decides $E_{T M}$. We try to construct S to decide $A_{T M}$ using R. - Note that S takes $\langle M, w\rangle$ as input.
- One idea is to run R on $\langle M\rangle$ to check if M accepts some string or not but that that does not tell us if M accepts w.
- Instead we modify M to M_{1}. M_{1} rejects all strings other than w but on w, it does what M does.

Proving Undecidability via Reductions

THEOREM 5.2

$E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\Phi\}$ is undecidable.

- Suppose R decides $E_{T M}$. We try to construct S to decide $A_{T M}$ using R. - Note that S takes $\langle M, w\rangle$ as input.
- One idea is to run R on $\langle M\rangle$ to check if M accepts some string or not but that that does not tell us if M accepts w.
- Instead we modify M to M_{1}. M_{1} rejects all strings other than w but on w, it does what M does.
- Now we can check if $L\left(M_{1}\right)=\Phi$.

Proving Undecidability via Reductions

THEOREM 5.2

$E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\Phi\}$ is undecidable.

Proving Undecidability via Reductions

THEOREM 5.2

$E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\Phi\}$ is undecidable.

PROOF

Proving Undecidability via Reductions

THEOREM 5.2

$E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\Phi\}$ is undecidable.

Proof

- For any w define M_{1} as $M_{1}=$ "On input x :

Proving Undecidability via Reductions

THEOREM 5.2

$E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\Phi\}$ is undecidable.

Proof

- For any w define M_{1} as
$M_{1}=$ "On input x :
(1) If $x \neq w$, reject.

Proving Undecidability via Reductions

THEOREM 5.2

$E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\Phi\}$ is undecidable.

Proof

- For any w define M_{1} as $M_{1}=$ "On input x :
(1) If $x \neq w$, reject.
(2) If $x=w$, run M on input w and accept if M does."

Proving Undecidability via Reductions

THEOREM 5.2

$E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\Phi\}$ is undecidable.

Proof

- For any w define M_{1} as $M_{1}=$ "On input x :
(1) If $x \neq w$, reject.
(2) If $x=w$, run M on input w and accept if M does."
- Note that M_{1} either accepts w only or nothing!

Proving Undecidability via Reductions

Proof continued

Proving Undecidability via Reductions

Proof continued

- Assume R decides $E_{T M}$

Proving Undecidability via Reductions

Proof continued

- Assume R decides $E_{T M}$
- S defines below uses R to decide on $A_{T M}$ $S=$ "On input $\langle M, w\rangle$

Proving Undecidability via Reductions

Proof continued

- Assume R decides $E_{T M}$
- S defines below uses R to decide on $A_{T M}$ $S=$ "On input $\langle M, w\rangle$
(1) Use $\langle M, w\rangle$ to construct M_{1} above.

Proving Undecidability via Reductions

Proof continued

- Assume R decides $E_{T M}$
- S defines below uses R to decide on $A_{T M}$ $S=$ "On input $\langle M, w\rangle$
(1) Use $\langle M, w\rangle$ to construct M_{1} above.
(c) Run R on input $\left\langle M_{1}\right\rangle$

Proving Undecidability via Reductions

PROOF CONTINUED

- Assume R decides $E_{T M}$
- S defines below uses R to decide on $A_{T M}$ $S=$ "On input $\langle M, w\rangle$
(1) Use $\langle M, w\rangle$ to construct M_{1} above.
(2) Run R on input $\left\langle M_{1}\right\rangle$
(If R accepts, reject, if R rejects, accept.

Proving Undecidability via Reductions

PROOF CONTINUED

- Assume R decides $E_{T M}$
- S defines below uses R to decide on $A_{T M}$ $S=$ "On input $\langle M, w\rangle$
(1) Use $\langle M, w\rangle$ to construct M_{1} above.
(2) Run R on input $\left\langle M_{1}\right\rangle$
(0) If R accepts, reject, if R rejects, accept.
- So, if R decides $L\left(M_{1}\right)$ is empty,

Proving Undecidability via Reductions

PROOF CONTINUED

- Assume R decides $E_{T M}$
- S defines below uses R to decide on $A_{T M}$ $S=$ "On input $\langle M, w\rangle$
(1) Use $\langle M, w\rangle$ to construct M_{1} above.
(2) Run R on input $\left\langle M_{1}\right\rangle$
(If R accepts, reject, if R rejects, accept.
- So, if R decides $L\left(M_{1}\right)$ is empty,
- then M does NOT accept w,

Proving Undecidability via Reductions

PROOF CONTINUED

- Assume R decides $E_{T M}$
- S defines below uses R to decide on $A_{T M}$ $S=$ "On input $\langle M, w\rangle$
(1) Use $\langle M, w\rangle$ to construct M_{1} above.
(2) Run R on input $\left\langle M_{1}\right\rangle$
(If R accepts, reject, if R rejects, accept.
- So, if R decides $L\left(M_{1}\right)$ is empty,
- then M does NOT accept w,
- else M accepts w.

Proving Undecidability via Reductions

PROOF CONTINUED

- Assume R decides $E_{T M}$
- S defines below uses R to decide on $A_{T M}$ $S=$ "On input $\langle M, w\rangle$
(1) Use $\langle M, w\rangle$ to construct M_{1} above.
(2) Run R on input $\left\langle M_{1}\right\rangle$
(3) If R accepts, reject, if R rejects, accept.
- So, if R decides $L\left(M_{1}\right)$ is empty,
- then M does NOT accept w,
- else M accepts w.
- If R decides $E_{T M}$ then S decides $A_{T M}$ - Contradiction.

Reductions via Computation Histories

- An accepting computation history for a TM is a sequence of configurations

$$
C_{1}, C_{2}, \ldots, C_{l}
$$

such that

Reductions via Computation Histories

- An accepting computation history for a TM is a sequence of configurations

$$
C_{1}, C_{2}, \ldots, C_{l}
$$

such that

- C_{1} is the start configuration for input w

Reductions via Computation Histories

- An accepting computation history for a TM is a sequence of configurations

$$
C_{1}, C_{2}, \ldots, C_{l}
$$

such that

- C_{1} is the start configuration for input w
- C_{l} is an accepting configuration, and

Reductions via Computation Histories

- An accepting computation history for a TM is a sequence of configurations

$$
C_{1}, C_{2}, \ldots, C_{l}
$$

such that

- C_{1} is the start configuration for input w
- C_{l} is an accepting configuration, and
- each C_{i} follows legally from the preceding configuration.

Reductions via Computation Histories

- An accepting computation history for a TM is a sequence of configurations

$$
C_{1}, C_{2}, \ldots, C_{l}
$$

such that

- C_{1} is the start configuration for input w
- C_{l} is an accepting configuration, and
- each C_{i} follows legally from the preceding configuration.
- A rejecting computation history is defined similarly.

Reductions via Computation Histories

- An accepting computation history for a TM is a sequence of configurations

$$
C_{1}, C_{2}, \ldots, C_{l}
$$

such that

- C_{1} is the start configuration for input w
- C_{l} is an accepting configuration, and
- each C_{i} follows legally from the preceding configuration.
- A rejecting computation history is defined similarly.
- Computation histories are finite sequences - if M does not halt on M, there is no computation history.

Reductions via Computation Histories

- An accepting computation history for a TM is a sequence of configurations

$$
C_{1}, C_{2}, \ldots, C_{l}
$$

such that

- C_{1} is the start configuration for input w
- C_{l} is an accepting configuration, and
- each C_{i} follows legally from the preceding configuration.
- A rejecting computation history is defined similarly.
- Computation histories are finite sequences - if M does not halt on M, there is no computation history.
- Deterministic v.s nondeterministic computation histories.

Linear Bounded Automaton

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.

Linear Bounded Automaton

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)

Linear Bounded Automaton

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

Linear Bounded Automaton

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with q states, g symbols in the tape alphabet. There are exactly $q^{n} g^{n}$ distinct configurations for a tape of length n.

Linear Bounded Automaton

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with q states, g symbols in the tape alphabet. There are exactly $q^{n} g^{n}$ distinct configurations for a tape of length n.

PRoof.

Linear Bounded Automaton

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with q states, g symbols in the tape alphabet. There are exactly $q^{n} g^{n}$ distinct configurations for a tape of length n.

PRoof.

- The machine can be in one of q states.

Linear Bounded Automaton

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with q states, g symbols in the tape alphabet. There are exactly $q^{n} g^{n}$ distinct configurations for a tape of length n.

PRoof.

- The machine can be in one of q states.
- The head can be on one of the n cells.

Linear Bounded Automaton

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with q states, g symbols in the tape alphabet. There are exactly $q^{n} g^{n}$ distinct configurations for a tape of length n.

PRoof.

- The machine can be in one of q states.
- The head can be on one of the n cells.
- At most g^{n} distinct strings can occur on the tape.

Linear Bounded Automaton

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with q states, g symbols in the tape alphabet. There are exactly $q^{n} g^{n}$ distinct configurations for a tape of length n.

PRoof.

- The machine can be in one of q states.
- The head can be on one of the n cells.
- At most g^{n} distinct strings can occur on the tape.

THEOREM 5.9

$A_{L B A}=\{\langle M, w\rangle \mid M$ is an LBA that accepts string $w\}$ is decidable.

Computation over "Computation Histories"

- Now for a really wild and crazy idea!

Computation over "Computation Histories"

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM $M, C_{1}, C_{2}, \ldots, C_{l}$

Computation over "Computation Histories"

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM $M, C_{1}, C_{2}, \ldots, C_{l}$
- Note that each C_{i} is a string.

Computation over "Computation Histories"

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM $M, C_{1}, C_{2}, \ldots, C_{l}$
- Note that each C_{i} is a string.
- Consider the string

Computation over "Computation Histories"

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM $M, C_{1}, C_{2}, \ldots, C_{l}$
- Note that each C_{i} is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!

Computation over "Computation Histories"

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM $M, C_{1}, C_{2}, \ldots, C_{l}$
- Note that each C_{i} is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!
- This string has length m and an LBA B can check if this is a valid computation history for a TM M accepting w.

Computation over "Computation Histories"

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM $M, C_{1}, C_{2}, \ldots, C_{l}$
- Note that each C_{i} is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!
- This string has length m and an LBA B can check if this is a valid computation history for a TM M accepting w.
- Check if $C_{1}=q_{0} w_{1} w_{2} \cdots w_{n}$

Computation over "Computation Histories"

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM $M, C_{1}, C_{2}, \ldots, C_{l}$
- Note that each C_{i} is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!
- This string has length m and an LBA B can check if this is a valid computation history for a TM M accepting w.
- Check if $C_{1}=q_{0} w_{1} w_{2} \cdots w_{n}$
- Check if $C_{l}=\cdots q_{\text {accept }} \cdots$

Computation over "Computation Histories"

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM $M, C_{1}, C_{2}, \ldots, C_{l}$
- Note that each C_{i} is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!
- This string has length m and an LBA B can check if this is a valid computation history for a TM M accepting w.
- Check if $C_{1}=q_{0} w_{1} w_{2} \cdots w_{n}$
- Check if $C_{l}=\cdots q_{\text {accept }} \cdots$
- Check if each C_{i+1} follows from C_{i} legally.

Computation over "Computation Histories"

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM $M, C_{1}, C_{2}, \ldots, C_{l}$
- Note that each C_{i} is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!
- This string has length m and an LBA B can check if this is a valid computation history for a TM M accepting w.
- Check if $C_{1}=q_{0} w_{1} w_{2} \cdots w_{n}$
- Check if $C_{l}=\cdots q_{\text {accept }} \cdots$
- Check if each C_{i+1} follows from C_{i} legally.
- Note that B is not constructed for the purpose of running it on any input!

Computation over "Computation Histories"

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM $M, C_{1}, C_{2}, \ldots, C_{l}$
- Note that each C_{i} is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!
- This string has length m and an LBA B can check if this is a valid computation history for a TM M accepting w.
- Check if $C_{1}=q_{0} w_{1} w_{2} \cdots w_{n}$
- Check if $C_{I}=\cdots q_{\text {accept }} \cdots$
- Check if each C_{i+1} follows from C_{i} legally.
- Note that B is not constructed for the purpose of running it on any input!
- If $L(B) \neq \Phi$ then M accepts w

Post Correspondence Problem

- Undecidability is not just confined to problems concerning automata and languages.

Post Correspondence Problem

- Undecidability is not just confined to problems concerning automata and languages.
- There are other "natural" problems which can be proved undecidable.

Post Correspondence Problem

- Undecidability is not just confined to problems concerning automata and languages.
- There are other "natural" problems which can be proved undecidable.
- The Post correspondence problem (PCP) is a tiling problem over strings.

Post Correspondence Problem

- Undecidability is not just confined to problems concerning automata and languages.
- There are other "natural" problems which can be proved undecidable.
- The Post correspondence problem (PCP) is a tiling problem over strings.
- A tile or a domino contains two strings, t and $b ;$ e.g., $\left[\frac{c a}{a}\right]$.

Post Correspondence Problem

- Undecidability is not just confined to problems concerning automata and languages.
- There are other "natural" problems which can be proved undecidable.
- The Post correspondence problem (PCP) is a tiling problem over strings.
- A tile or a domino contains two strings, t and b; e.g., $\left[\frac{c a}{a}\right]$.
- Suppose we have dominos

$$
\left\{\left[\frac{b}{c a}\right],\left[\frac{a}{a b}\right],\left[\frac{c a}{a}\right],\left[\frac{a b c}{c}\right]\right\}
$$

Post Correspondence Problem

- Undecidability is not just confined to problems concerning automata and languages.
- There are other "natural" problems which can be proved undecidable.
- The Post correspondence problem (PCP) is a tiling problem over strings.
- A tile or a domino contains two strings, t and b; e.g., $\left[\frac{c a}{a}\right]$.
- Suppose we have dominos

$$
\left\{\left[\frac{b}{c a}\right],\left[\frac{a}{a b}\right],\left[\frac{c a}{a}\right],\left[\frac{a b c}{c}\right]\right\}
$$

- A match is a list of these dominos so that when concatenated the top and the bottom strings are identical. For example,

$$
\left[\frac{a}{a b}\right]\left[\frac{b}{c a}\right]\left[\frac{c a}{a}\right]\left[\frac{a}{a b}\right]\left[\frac{a b c}{c}\right]=\frac{a b c a a a b c}{a b c a a a b c}
$$

Post Correspondence Problem

- Undecidability is not just confined to problems concerning automata and languages.
- There are other "natural" problems which can be proved undecidable.
- The Post correspondence problem (PCP) is a tiling problem over strings.
- A tile or a domino contains two strings, t and b; e.g., $\left[\frac{c a}{a}\right]$.
- Suppose we have dominos

$$
\left\{\left[\frac{b}{c a}\right],\left[\frac{a}{a b}\right],\left[\frac{c a}{a}\right],\left[\frac{a b c}{c}\right]\right\}
$$

- A match is a list of these dominos so that when concatenated the top and the bottom strings are identical. For example,

$$
\left[\frac{a}{a b}\right]\left[\frac{b}{c a}\right]\left[\frac{c a}{a}\right]\left[\frac{a}{a b}\right]\left[\frac{a b c}{c}\right]=\frac{a b c a a a b c}{a b c a a a b c}
$$

- The set of dominos $\left\{\left[\frac{a b c}{a b}\right],\left[\frac{c a}{a}\right],\left[\frac{a c c}{b a}\right],\right\}$ does not have a solution.

Post Correspondence Problem

AN INSTANCE OF THE PCP

A PCP instance over Σ is a finite collection P of dominos

$$
P=\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \cdots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

where for all $i, 1 \leq i \leq k, t_{i}, b_{i} \in \Sigma^{*}$.

Post Correspondence Problem

AN INSTANCE OF THE PCP

A PCP instance over Σ is a finite collection P of dominos

$$
P=\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \cdots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

where for all $i, 1 \leq i \leq k, t_{i}, b_{i} \in \Sigma^{*}$.

MATCH

Given a PCP instance P, a match is a nonempty sequence

$$
i_{1}, i_{2}, \ldots, i_{\ell}
$$

of numbers from $\{1,2, \ldots, k\}$ (with repetition) such that $t_{i_{1}} t_{i_{2}} \cdots t_{i_{\ell}}=b_{i_{1}} b_{i_{2}} \cdots b_{i_{\ell}}$

Post Correspondence Problem

Question:

Does a given PCP instance P have a match?

Post Correspondence Problem

Question:

Does a given PCP instance P have a match?

LANGUAGE FORMULATION:

$P C P=\{\langle P\rangle \mid P$ is a PCP instance and it has a match $\}$

Post Correspondence Problem

Question:

Does a given PCP instance P have a match?

LANGUAGE FORMULATION:

$P C P=\{\langle P\rangle \mid P$ is a PCP instance and it has a match $\}$

THEOREM 5.15

PCP is undecidable.

Post Correspondence Problem

Question:

Does a given PCP instance P have a match?

LANGUAGE FORMULATION:

$P C P=\{\langle P\rangle \mid P$ is a PCP instance and it has a match $\}$

THEOREM 5.15

PCP is undecidable.
Proof: By reduction using computation histories. If PCP is decidable then so is $A_{T M}$. That is, if PCP has a match, then M accepts w.

PCP - The Structure of the Undecidability Proof

The reduction works in two steps:
(1) We reduce $A_{T M}$ to Modified PCP (MPCP).

PCP - The Structure of the Undecidability Proof

The reduction works in two steps:
(1) We reduce $A_{T M}$ to Modified PCP (MPCP).
(2) We reduce MPCP to PCP.

PCP - The Structure of the Undecidability Proof

The reduction works in two steps:
(1) We reduce $A_{T M}$ to Modified PCP (MPCP).
(2) We reduce MPCP to PCP.

MPCP AS A LANGUAGE PROBLEM

$M P C P=\{\langle P\rangle \mid P$ is a PCP instance and it has a match which starts with index 1\}

PCP - The Structure of the Undecidability Proof

The reduction works in two steps:
(1) We reduce $A_{T M}$ to Modified PCP (MPCP).
(2) We reduce MPCP to PCP.

MPCP AS A LANGUAGE PROBLEM

$M P C P=\{\langle P\rangle \mid P$ is a PCP instance and it has a match which starts with index 1\}

- So the solution to MPCP starts with the domino $\left[\frac{t_{1}}{b_{1}}\right]$. We later remove this restriction in the second part of the proof.

PCP - The Structure of the Undecidability Proof

The reduction works in two steps:
(1) We reduce $A_{T M}$ to Modified PCP (MPCP).
(2) We reduce MPCP to PCP.

MPCP AS A LANGUAGE PROBLEM

$M P C P=\{\langle P\rangle \mid P$ is a PCP instance and it has a match which starts with index 1\}

- So the solution to MPCP starts with the domino $\left[\frac{t_{1}}{b_{1}}\right]$. We later remove this restriction in the second part of the proof.
- We also assume that the decider for M never moves its head to the left of the input w.

PCP - The Proof

For input $\langle M, w\rangle$ of $A_{T M}$, construct an MPCP instance such that M accepts w iff P^{\prime} has a match starting with domino 1

PCP - The Proof

For input $\langle M, w\rangle$ of $A_{T M}$, construct an MPCP instance such that M accepts w iff P^{\prime} has a match starting with domino 1

- The first part of the proof proceeds in 7 stages where we add different types of dominos to P^{\prime} depending on the TM

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{r e j e c t}\right)
$$

PCP - The Proof

For input $\langle M, w\rangle$ of $A_{T M}$, construct an MPCP instance such that M accepts w iff P^{\prime} has a match starting with domino 1

- The first part of the proof proceeds in 7 stages where we add different types of dominos to P^{\prime} depending on the TM

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{r e j e c t}\right)
$$

- Using the dominos, we try to construct an accepting computation history for M accepting w.

PCP - ADDING THE RIGHT KIND OF DOMINOS

(1) The first domino kicks of the computation history

$$
\left[\frac{t_{1}}{b_{1}}\right]=\left[\frac{\#}{\# q_{0} w_{1} w_{2} \cdots w_{n} \#}\right],
$$

PCP - ADDING THE RIGHT KIND OF DOMINOS

(1) The first domino kicks of the computation history

$$
\left[\frac{t_{1}}{b_{1}}\right]=\left[\frac{\#}{\# q_{0} w_{1} w_{2} \cdots w_{n} \#}\right],
$$

(2) Handle right moving transitions. For every $a, b \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\text {reject }}$

$$
\text { if } \delta(q, a)=(r, b, R), \text { put }\left[\frac{q a}{b r}\right] \text { into } P^{\prime}
$$

PCP - ADDING THE RIGHT KIND OF DOMINOS

(1) The first domino kicks of the computation history

$$
\left[\frac{t_{1}}{b_{1}}\right]=\left[\frac{\#}{\# q_{0} w_{1} w_{2} \cdots w_{n} \#}\right],
$$

(2) Handle right moving transitions. For every $a, b \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\text {reject }}$

$$
\text { if } \delta(q, a)=(r, b, R), \text { put }\left[\frac{q a}{b r}\right] \text { into } P^{\prime}
$$

(0) Handle left moving transitions. For every $a, b, c \in \Gamma$ and every $a, r \in Q$ where $q \neq q_{\text {reject }}$

$$
\text { if } \delta(q, a)=(r, b, L) \text {, put }\left[\frac{c q a}{r c b}\right] \text { into } P^{\prime}
$$

PCP - ADDING THE RIGHT KIND OF DOMINOS

(1) The first domino kicks of the computation history

$$
\left[\frac{t_{1}}{b_{1}}\right]=\left[\frac{\#}{\# q_{0} w_{1} w_{2} \cdots w_{n} \#}\right],
$$

(2) Handle right moving transitions. For every $a, b \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\text {reject }}$

$$
\text { if } \delta(q, a)=(r, b, R), \text { put }\left[\frac{q a}{b r}\right] \text { into } P^{\prime}
$$

(3) Handle left moving transitions. For every $a, b, c \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\text {reject }}$

$$
\text { if } \delta(q, a)=(r, b, L) \text {, put }\left[\frac{c q a}{r c b}\right] \text { into } P^{\prime}
$$

- For every $a \in \Gamma$ put $\left[\frac{\mathbf{a}}{\mathbf{a}}\right]$ into P^{\prime}

PCP - ADDING THE RIGHT KIND OF DOMINOS

(1) The first domino kicks of the computation history

$$
\left[\frac{t_{1}}{b_{1}}\right]=\left[\frac{\#}{\# q_{0} w_{1} w_{2} \cdots w_{n} \#}\right],
$$

(2) Handle right moving transitions. For every $a, b \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\text {reject }}$

$$
\text { if } \delta(q, a)=(r, b, R), \text { put }\left[\frac{q a}{b r}\right] \text { into } P^{\prime}
$$

(3) Handle left moving transitions. For every $a, b, c \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\text {reject }}$

$$
\text { if } \delta(q, a)=(r, b, L) \text {, put }\left[\frac{c q a}{r c b}\right] \text { into } P^{\prime}
$$

- For every $a \in \Gamma$ put $\left[\frac{\mathbf{a}}{\mathbf{a}}\right]$ into P^{\prime}
- Put $\left[\frac{\#}{\#}\right]$ and $\left[\frac{\#}{\square \#}\right]$ into P^{\prime}.

PCP - How THE DOMINOS WORK

- Let us assume $\Gamma=\{0,1,2, \sqcup\}, w=0100$ and that $\delta\left(q_{0}, 0\right)=\left(q_{7}, 2, R\right)$

PCP - How THE DOMINOS WORK

- Let us assume $\Gamma=\{0,1,2, \sqcup\}, w=0100$ and that $\delta\left(q_{0}, 0\right)=\left(q_{7}, 2, R\right)$
- Part 1 places the first domino and the match begins

```
#
# qu 0
```


PCP - How THE DOMINOS WORK

- Let us assume $\Gamma=\{0,1,2, \sqcup\}, w=0100$ and that $\delta\left(q_{0}, 0\right)=\left(q_{7}, 2, R\right)$
- Part 1 places the first domino and the match begins

$\#$	q_{0}	0					
$\#$	q_{0}	0	1	0	0	$\#$	2

PCP - How THE DOMINOS WORK

- Let us assume $\Gamma=\{0,1,2, \sqcup\}, w=0100$ and that $\delta\left(q_{0}, 0\right)=\left(q_{7}, 2, R\right)$
- Part 1 places the first domino and the match begins

$\#$	\mathbf{q}_{0}	0	1	0	0						
$\#$	q_{0}	0	1	0	0	$\#$	$\mathbf{2}$	\mathbf{q}_{7}	1	0	0

- Part 2 places the domino $\left[\begin{array}{l}\frac{q_{0}}{2 q_{7}} \\ \hline\end{array}\right]$
- Part 4 places the dominos $\left[\begin{array}{l}0 \\ 0\end{array}\right]\left[\begin{array}{l}\frac{1}{1}\end{array}\right]\left[\begin{array}{c}\frac{2}{2}\end{array}\right]$ and $\left[\frac{U}{U}\right]$ into P^{\prime} so we can extend the match.

PCP - How THE DOMINOS WORK

- Let us assume $\Gamma=\{0,1,2, \sqcup\}, w=0100$ and that $\delta\left(q_{0}, 0\right)=\left(q_{7}, 2, R\right)$
- Part 1 places the first domino and the match begins

\#	q_{0}	$\mathbf{0}$	1	0	0	$\#$						
\#	q_{0}	$\mathbf{0}$	1	0	0	$\#$	2	q_{7}	1	0	0	\#

- Part 2 places the domino $\left[\begin{array}{l}\frac{q_{0}}{2 q_{7}} \\ \hline\end{array}\right]$ extend the match.
- Part 5 puts in the domino $\left[\frac{\#}{\#}\right]$

PCP - HOW THE DOMINOS WORK

- Let us assume $\Gamma=\{0,1,2, \sqcup\}, w=0100$ and that $\delta\left(q_{0}, 0\right)=\left(q_{7}, 2, R\right)$
- Part 1 places the first domino and the match begins

\#	q_{0}	$\mathbf{0}$	1	0	0	$\#$						
\#	q_{0}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\#$	$\mathbf{2}$	\mathbf{q}_{7}	1	0	0	$\#$

- Part 2 places the domino $\left[\begin{array}{l}\frac{q_{0}}{2 q_{7}} \\ \hline\end{array}\right]$ extend the match.
- Part 5 puts in the domino $\left[\frac{\#}{\#}\right]$
- What exactly is going on ?

PCP - How THE DOMINOS WORK

- Let us assume $\Gamma=\{0,1,2, \sqcup\}, w=0100$ and that $\delta\left(q_{0}, 0\right)=\left(q_{7}, 2, R\right)$
- Part 1 places the first domino and the match begins

| $\#$ | \mathbf{q}_{0} | $\mathbf{0}$ | 1 | 0 | 0 | $\#$ | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\#$ | \mathbf{q}_{0} | 0 | 1 | 0 | 0 | $\#$ | $\mathbf{2}$ | \mathbf{q}_{7} | 1 | 0 | 0 | $\#$ |

- Part 2 places the domino $\left[\begin{array}{l}\frac{q_{0}}{2 q_{7}} \\ \hline\end{array}\right]$
- Part 4 places the dominos $\left[\begin{array}{l}0 \\ 0\end{array}\right]\left[\begin{array}{c}\frac{1}{1} \\ 1\end{array}\right]\left[\begin{array}{c}\frac{2}{2}\end{array}\right]$ and $\left[\frac{U}{U}\right]$ into P^{\prime} so we can extend the match.
- Part 5 puts in the domino
- What exactly is going on ?
- We force the bottom string to create a copy on the top which is forced to generate the next configuration on the bottom - We are simulating M on w !

PCP - How THE DOMINOS WORK

- Let us assume $\Gamma=\{0,1,2, \sqcup\}, w=0100$ and that $\delta\left(q_{0}, 0\right)=\left(q_{7}, 2, R\right)$
- Part 1 places the first domino and the match begins

| $\#$ | \mathbf{q}_{0} | $\mathbf{0}$ | 1 | 0 | 0 | $\#$ | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\#$ | \mathbf{q}_{0} | 0 | 1 | 0 | 0 | $\#$ | $\mathbf{2}$ | \mathbf{q}_{7} | 1 | 0 | 0 | $\#$ |

- Part 2 places the domino $\left[\frac{q_{0} 0}{2 q_{7}}\right]$
- Part 4 places the dominos $\left[\begin{array}{l}0 \\ 0\end{array}\right]\left[\begin{array}{l}\frac{1}{1} \\ 1\end{array}\right]\left[\begin{array}{c}\frac{2}{2}\end{array}\right]$ and $\left[\frac{U}{U}\right]$ into P^{\prime} so we can extend the match.
- Part 5 puts in the domino
- What exactly is going on ?
- We force the bottom string to create a copy on the top which is forced to generate the next configuration on the bottom - We are simulating M on w !
- The process continues until M reaches a halting state and we then pad the upper string.

PCP - MORE DOMINO TYPES

(c) For every $a \in \Gamma$,

$$
\text { put }\left[\frac{\mathbf{a q}_{\text {accept }}}{\boldsymbol{q}_{\text {accept }}}\right] \text { and }\left[\frac{\boldsymbol{q}_{\text {accept }} \mathbf{a}}{\boldsymbol{q}_{\text {accept }}}\right] \text { into } P^{\prime}
$$

These dominos "clean-up" by adding any symbols to the top string while adding just the state symbol to the lower string.

PCP - MORE DOMINO TYPES

(c) For every $a \in \Gamma$,

$$
\text { put }\left[\frac{\mathbf{a q}_{\text {accept }}}{\boldsymbol{q}_{\text {accept }}}\right] \text { and }\left[\frac{\boldsymbol{q}_{\text {accept }} \mathbf{a}}{\boldsymbol{q}_{\text {accept }}}\right] \text { into } P^{\prime}
$$

These dominos "clean-up" by adding any symbols to the top string while adding just the state symbol to the lower string.

Just before these apply the upper and lower strings are like
... \#
... \# 21 qaccept 02 \#

PCP - MORE DOMINO TYPES

(0) For every $a \in \Gamma$,

$$
\text { put }\left[\frac{\mathbf{a q}_{\text {accept }}}{\boldsymbol{q}_{\text {accept }}}\right] \text { and }\left[\frac{\boldsymbol{q}_{\text {accept }} \mathbf{a}}{\boldsymbol{q}_{\text {accept }}}\right] \text { into } P^{\prime}
$$

These dominos "clean-up" by adding any symbols to the top string while adding just the state symbol to the lower string.

Just before these apply the upper and lower strings are like
... \#
... \# 21 qaccept 02 \#
After using these dominos, we end up with
... \#
... \# qaccept \#

PCP - MORE DOMINO TYPES

- For every $a \in \Gamma$,

$$
\text { put }\left[\frac{\mathbf{a q}_{\text {accept }}}{\boldsymbol{q}_{\text {accept }}}\right] \text { and }\left[\frac{\boldsymbol{q}_{\text {accept }} \mathbf{a}}{\boldsymbol{q}_{\text {accept }}}\right] \text { into } P^{\prime}
$$

These dominos "clean-up" by adding any symbols to the top string while adding just the state symbol to the lower string.

Just before these apply the upper and lower strings are like
... \#
... \# 21 qaccept 02 \#
After using these dominos, we end up with

$$
\begin{aligned}
& \ldots \# \\
& \ldots \# \text { qaccept } \#
\end{aligned}
$$

- Finally we add the domino

$$
\left[\frac{\mathbf{q}_{\text {accept }} \# \#}{\#}\right]
$$

to complete the match.

PCP PRoof - Summary of Part 1

- This concludes the construction of P^{\prime}.

PCP PROOF - SUMMARY OF PART 1

- This concludes the construction of P^{\prime}.
- Thus if M accepts w, the set of MPCP dominos constructed have a solution to the MPCP problem.

PCP PRoof - Summary of Part 1

- This concludes the construction of P^{\prime}.
- Thus if M accepts w, the set of MPCP dominos constructed have a solution to the MPCP problem.
- But not yet to the PCP problem.

PCP PROOF - PART 2

- Suppose we have the MPCP instance

$$
P^{\prime}=\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \cdots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

PCP PROOF - PART 2

- Suppose we have the MPCP instance

$$
P^{\prime}=\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \cdots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

- We let P be the collection

$$
P=\left\{\left[\frac{\star t_{1}}{\star b_{1 \star}}\right],\left[\frac{\star t_{2}}{b_{2 \star}}\right], \cdots,\left[\frac{\star t_{k}}{b_{k} \star}\right]\left[\frac{\star \diamond}{\diamond}\right]\right\}
$$

PCP PROOF - PART 2

- Suppose we have the MPCP instance

$$
P^{\prime}=\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \cdots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

- We let P be the collection

$$
P=\left\{\left[\frac{\star t_{1}}{\star b_{1 \star}}\right],\left[\frac{\star t_{2}}{b_{2 \star}}\right], \cdots,\left[\frac{\star t_{k}}{b_{k \star}}\right]\left[\frac{\star \diamond}{\diamond}\right]\right\}
$$

- The only domino that could possibly start a match is the first one!

PCP PROOF - PART 2

- Suppose we have the MPCP instance

$$
P^{\prime}=\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \cdots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

- We let P be the collection

$$
P=\left\{\left[\frac{\star t_{1}}{\star b_{1} \star}\right],\left[\frac{\star t_{2}}{b_{2} \star}\right], \cdots,\left[\frac{\star t_{k}}{b_{k} \star}\right]\left[\frac{\star \diamond}{\diamond}\right]\right\}
$$

- The only domino that could possibly start a match is the first one!
- The last domino just adds the missing \star at the end of the match.

PCP PROOF - PART 2

- Suppose we have the MPCP instance

$$
P^{\prime}=\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \cdots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

- We let P be the collection

$$
P=\left\{\left[\frac{\star t_{1}}{\star b_{1} \star}\right],\left[\frac{\star t_{2}}{b_{2 \star}}\right], \cdots,\left[\frac{\star t_{k}}{b_{k} \star}\right]\left[\frac{\star \diamond}{\diamond}\right]\right\}
$$

- The only domino that could possibly start a match is the first one!
- The last domino just adds the missing \star at the end of the match.

CONCLUSION

PCP is undecidable!

Summary of Reducibility

We know that language A is undecidable. By reducing A to B we want to show that the language B is also undecidable.

Summary of Reducibility

We know that language A is undecidable. By reducing A to B we want to show that the language B is also undecidable.
(1) Assume that we have a decider M_{B} for B.

Summary of Reducibility

We know that language A is undecidable. By reducing A to B we want to show that the language B is also undecidable.
(1) Assume that we have a decider M_{B} for B.
(2) Using M_{B} we construct a decider M_{A} for the language A :

Summary of Reducibility

We know that language A is undecidable. By reducing A to B we want to show that the language B is also undecidable.
(1) Assume that we have a decider M_{B} for B.
(2) Using M_{B} we construct a decider M_{A} for the language A :
$M_{A}=$ "On input $\left\langle I_{A}\right\rangle$

Summary of Reducibility

We know that language A is undecidable. By reducing A to B we want to show that the language B is also undecidable.
(1) Assume that we have a decider M_{B} for B.
(2) Using M_{B} we construct a decider M_{A} for the language A :
$M_{A}=$ "On input $\left\langle I_{A}\right\rangle$

1. Algorithmically construct an input $\left\langle I_{B}\right\rangle$ for M_{B}, such that

Summary of Reducibility

We know that language A is undecidable. By reducing A to B we want to show that the language B is also undecidable.
(1) Assume that we have a decider M_{B} for B.
(2) Using M_{B} we construct a decider M_{A} for the language A :
$M_{A}=$ "On input $\left\langle I_{A}\right\rangle$

1. Algorithmically construct an input $\left\langle I_{B}\right\rangle$ for M_{B}, such that

Summary of Reducibility

We know that language A is undecidable. By reducing A to B we want to show that the language B is also undecidable.
(1) Assume that we have a decider M_{B} for B.
(2) Using M_{B} we construct a decider M_{A} for the language A :
$M_{A}=$ "On input $\left\langle I_{A}\right\rangle$

1. Algorithmically construct an input $\left\langle I_{B}\right\rangle$ for M_{B}, such that
a) Either

Summary of Reducibility

We know that language A is undecidable. By reducing A to B we want to show that the language B is also undecidable.
(1) Assume that we have a decider M_{B} for B.
(2) Using M_{B} we construct a decider M_{A} for the language A :
$M_{A}=$ "On input $\left\langle I_{A}\right\rangle$

1. Algorithmically construct an input $\left\langle I_{B}\right\rangle$ for M_{B}, such that
a) Either

If $\left\langle I_{A}\right\rangle \in A$ then $\left\langle I_{B}\right\rangle \in B$
If $\left\langle I_{A}\right\rangle \notin \boldsymbol{A}$ then $\left\langle I_{B}\right\rangle \notin \boldsymbol{B}$

Summary of Reducibility

We know that language A is undecidable. By reducing A to B we want to show that the language B is also undecidable.
(1) Assume that we have a decider M_{B} for B.
(2) Using M_{B} we construct a decider M_{A} for the language A :
$M_{A}=$ "On input $\left\langle I_{A}\right\rangle$

1. Algorithmically construct an input $\left\langle I_{B}\right\rangle$ for M_{B}, such that
a) Either
b) or

If $\left\langle I_{A}\right\rangle \in A$ then $\left\langle I_{B}\right\rangle \in B$
If $\left\langle I_{A}\right\rangle \notin \boldsymbol{A}$ then $\left\langle I_{B}\right\rangle \notin \boldsymbol{B}$

Summary of Reducibility

We know that language A is undecidable. By reducing A to B we want to show that the language B is also undecidable.
(1) Assume that we have a decider M_{B} for B.
(2) Using M_{B} we construct a decider M_{A} for the language A :
$M_{A}=$ "On input $\left\langle I_{A}\right\rangle$

1. Algorithmically construct an input $\left\langle I_{B}\right\rangle$ for M_{B}, such that
a) Either
b) or

If $\left\langle I_{A}\right\rangle \in A$ then $\left\langle I_{B}\right\rangle \in B$
If $\left\langle I_{A}\right\rangle \notin \boldsymbol{A}$ then $\left\langle I_{B}\right\rangle \notin \boldsymbol{B}$
If $\left\langle I_{A}\right\rangle \in A$ then $\left\langle I_{B}\right\rangle \notin B$
If $\left\langle I_{A}\right\rangle \notin A$ then $\left\langle I_{B}\right\rangle \in B$

Summary of Reducibility

We know that language A is undecidable. By reducing A to B we want to show that the language B is also undecidable.
(1) Assume that we have a decider M_{B} for B.
(2) Using M_{B} we construct a decider M_{A} for the language A :
$M_{A}=$ "On input $\left\langle I_{A}\right\rangle$

1. Algorithmically construct an input $\left\langle I_{B}\right\rangle$ for M_{B}, such that
a) Either
b) or

$$
\begin{array}{ll}
\text { If }\left\langle I_{A}\right\rangle \in A \text { then }\left\langle I_{B}\right\rangle \in B & \text { If }\left\langle I_{A}\right\rangle \in A \text { then }\left\langle I_{B}\right\rangle \notin B \\
\text { If }\left\langle I_{A}\right\rangle \notin A \text { then }\left\langle I_{B}\right\rangle \notin B & \text { If }\left\langle I_{A}\right\rangle \notin A \text { then }\left\langle I_{B}\right\rangle \in B
\end{array}
$$

2. Run the decider M_{B} on $\left\langle I_{B}\right\rangle$ for M_{B}

Case a): M_{A} accepts if M_{B} accepts, and rejects if M_{B} rejects
Case b): M_{A} rejects if M_{B} accepts, and accepts if M_{B} reject.

SUMMARY OF REDUCIBILITY

We know that language A is undecidable. By reducing A to B we want to show that the language B is also undecidable.
(1) Assume that we have a decider M_{B} for B.
(2) Using M_{B} we construct a decider M_{A} for the language A :
$M_{A}=$ "On input $\left\langle I_{A}\right\rangle$

1. Algorithmically construct an input $\left\langle I_{B}\right\rangle$ for M_{B}, such that
a) Either
b) or
```
If }\langle\mp@subsup{I}{A}{}\rangle\inA\mathrm{ then }\langle\mp@subsup{I}{B}{}\rangle\in
If }\langle\mp@subsup{I}{A}{}\rangle\not\in\boldsymbol{A}\mathrm{ then }\langle\mp@subsup{I}{B}{}\rangle\not\in\boldsymbol{B
If }\langle\mp@subsup{I}{A}{}\rangle\inA\mathrm{ then }\langle\mp@subsup{I}{B}{}\rangle\not\in
If }\langle\mp@subsup{I}{A}{}\rangle\not\inA\mathrm{ then }\langle\mp@subsup{I}{B}{}\rangle\in
```

2. Run the decider M_{B} on $\left\langle I_{B}\right\rangle$ for M_{B}

Case a): M_{A} accepts if M_{B} accepts, and rejects if M_{B} rejects
Case b): M_{A} rejects if M_{B} accepts, and accepts if M_{B} reject.
(We know M_{A} can not exist so M_{B} can not exist.

Summary of Reducibility

We know that language A is undecidable. By reducing A to B we want to show that the language B is also undecidable.
(1) Assume that we have a decider M_{B} for B.
(2) Using M_{B} we construct a decider M_{A} for the language A :
$M_{A}=$ "On input $\left\langle I_{A}\right\rangle$

1. Algorithmically construct an input $\left\langle I_{B}\right\rangle$ for M_{B}, such that
a) Either
b) or

If $\left\langle I_{A}\right\rangle \in A$ then $\left\langle I_{B}\right\rangle \in B$
If $\left\langle I_{A}\right\rangle \notin \boldsymbol{A}$ then $\left\langle I_{B}\right\rangle \notin \boldsymbol{B}$
If $\left\langle I_{A}\right\rangle \in A$ then $\left\langle I_{B}\right\rangle \notin B$
If $\left\langle I_{A}\right\rangle \notin A$ then $\left\langle I_{B}\right\rangle \in B$
2. Run the decider M_{B} on $\left\langle I_{B}\right\rangle$ for M_{B}

Case a): M_{A} accepts if M_{B} accepts, and rejects if M_{B} rejects
Case b): M_{A} rejects if M_{B} accepts, and accepts if M_{B} reject.
(3) We know M_{A} can not exist so M_{B} can not exist.
(B is undecidable.

Computable Functions

IDEA

Turing Machines can also compute function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$.

Computable Functions

IDEA

Turing Machines can also compute function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$.

COMPUTABLE FUNCTION

A function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a computable function if and only if there exists a TM M_{f}, which on any given input $w \in \Sigma^{*}$

Computable Functions

IDEA

Turing Machines can also compute function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$.

Computable Function

A function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a computable function if and only if there exists a TM M_{f}, which on any given input $w \in \Sigma^{*}$

- always halts, and

Computable Functions

IDEA

Turing Machines can also compute function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$.

Computable Function

A function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a computable function if and only if there exists a TM M_{f}, which on any given input $w \in \Sigma^{*}$

- always halts, and
- leaves just $f(w)$ on its tape.

Computable Functions

IDEA

Turing Machines can also compute function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$.

Computable Function

A function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a computable function if and only if there exists a TM M_{f}, which on any given input $w \in \Sigma^{*}$

- always halts, and
- leaves just $f(w)$ on its tape.

Examples:

- Let $f(w) \stackrel{\text { def }}{=} w w$ be a function. Then f is computable.

Computable Functions

IDEA

Turing Machines can also compute function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$.

Computable Function

A function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a computable function if and only if there exists a TM M_{f}, which on any given input $w \in \Sigma^{*}$

- always halts, and
- leaves just $f(w)$ on its tape.

Examples:

- Let $f(w) \stackrel{\text { def }}{=} w w$ be a function. Then f is computable.
- Let $f\left(\left\langle n_{1}, n_{2}\right\rangle\right) \stackrel{\text { def }}{=}\langle n\rangle$ where n_{1} and n_{2} are integers and $n=n_{1} * n_{2}$. Then f is computable.

MAPPING Reducibility

Definition

Let $A, B \subseteq \Sigma^{*}$. We say that language A is mapping reducible to language B, written $A<_{m} B$, if and only if

MAPPING Reducibility

DEFINITION

Let $A, B \subseteq \Sigma^{*}$. We say that language A is mapping reducible to language B, written $A<_{m} B$, if and only if
(1) There is a computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ such that

MAPPING Reducibility

Definition

Let $A, B \subseteq \Sigma^{*}$. We say that language A is mapping reducible to language B, written $A<_{m} B$, if and only if
(1) There is a computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ such that
(2) For every $w \in \Sigma^{*}, w \in A$ if and only if $f(w) \in B$.

MAPPING Reducibility

DEFINITION

Let $A, B \subseteq \Sigma^{*}$. We say that language A is mapping reducible to language B, written $A<_{m} B$, if and only if
(1) There is a computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ such that
(2) For every $w \in \Sigma^{*}, w \in A$ if and only if $f(w) \in B$.

The function f is called a reduction of A to B.

THEOREM 5.22

If $A<_{m} B$ and B is decidable, then A is decidable.

Mapping Reducibility

DEFINITION

Let $A, B \subseteq \Sigma^{*}$. We say that language A is mapping reducible to language B, written $A<_{m} B$, if and only if
(1) There is a computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ such that
(2) For every $w \in \Sigma^{*}, w \in A$ if and only if $f(w) \in B$.

The function f is called a reduction of A to B.

THEOREM 5.22

If $A<_{m} B$ and B is decidable, then A is decidable.

PROOF

Let M be a decider for B and f be a mapping from A to B. Then N decides A. $N=$ "On input w

MAPPING Reducibility

DEFINITION

Let $A, B \subseteq \Sigma^{*}$. We say that language A is mapping reducible to language B, written $A<_{m} B$, if and only if
(1) There is a computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ such that
(2) For every $w \in \Sigma^{*}, w \in A$ if and only if $f(w) \in B$.

The function f is called a reduction of A to B.

THEOREM 5.22

If $A<_{m} B$ and B is decidable, then A is decidable.

PROOF

Let M be a decider for B and f be a mapping from A to B. Then N decides A.
$N=$ "On input w
(1) Compute $f(w)$

Mapping Reducibility

DEFINITION

Let $A, B \subseteq \Sigma^{*}$. We say that language A is mapping reducible to language B, written $A<_{m} B$, if and only if
(1) There is a computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ such that
(2) For every $w \in \Sigma^{*}, w \in A$ if and only if $f(w) \in B$.

The function f is called a reduction of A to B.

THEOREM 5.22

If $A<_{m} B$ and B is decidable, then A is decidable.

PROOF

Let M be a decider for B and f be a mapping from A to B. Then N decides A.
$N=$ "On input w
(1) Compute $f(w)$
c Run M on input $f(w)$ and output whatever M outputs."

Mapping Reducibility

DEFINITION

Let $A, B \subseteq \Sigma^{*}$. We say that language A is mapping reducible to language B, written $A<_{m} B$, if and only if
(1) There is a computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ such that
(2) For every $w \in \Sigma^{*}, w \in A$ if and only if $f(w) \in B$.

The function f is called a reduction of A to B.

THEOREM 5.22

If $A<_{m} B$ and B is decidable, then A is decidable.

PROOF

Let M be a decider for B and f be a mapping from A to B. Then N decides A.
$N=$ "On input w
(1) Compute $f(w)$
c Run M on input $f(w)$ and output whatever M outputs."

Mapping Reducibility

DEFINITION

Let $A, B \subseteq \Sigma^{*}$. We say that language A is mapping reducible to language B, written $A<_{m} B$, if and only if
(1) There is a computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ such that
(2) For every $w \in \Sigma^{*}, w \in A$ if and only if $f(w) \in B$.

The function f is called a reduction of A to B.

THEOREM 5.22

If $A<_{m} B$ and B is decidable, then A is decidable.

PROOF

Let M be a decider for B and f be a mapping from A to B. Then N decides A.
$N=$ "On input w
(1) Compute $f(w)$
c Run M on input $f(w)$ and output whatever M outputs."
If $A<_{m} B$ and A is undecidable, then B is undecidable.

Mapping Reducibility

THEOREM

$A_{T M}<_{m} H A L T_{T M}$

MAPPING Reducibility

THEOREM

$A_{T M}<_{m} H A L T_{T M}$

PROOF.

Construct a computable function f which maps $\langle M, w\rangle$ to $\left\langle M^{\prime}, w^{\prime}\right\rangle$ such that

$$
\langle M, w\rangle \in A_{T M} \text { if and only if }\left\langle M^{\prime}, w^{\prime}\right\rangle \in H A L T_{T M}
$$

$M_{f}=$ "On input $\langle M, w\rangle$

MAPPING Reducibility

THEOREM

$A_{T M}<_{m} H A L T_{T M}$

PROOF.

Construct a computable function f which maps $\langle M, w\rangle$ to $\left\langle M^{\prime}, w^{\prime}\right\rangle$ such that

$$
\langle M, w\rangle \in A_{T M} \text { if and only if }\left\langle M^{\prime}, w^{\prime}\right\rangle \in H A L T_{T M}
$$

$M_{f}=$ "On input $\langle M, w\rangle$

1. Construct the following machine M^{\prime} : $M^{\prime}=$ "On input x

MAPPING Reducibility

THEOREM

$A_{T M}<_{m} \operatorname{HALT}_{T M}$

PRoof.

Construct a computable function f which maps $\langle M, w\rangle$ to $\left\langle M^{\prime}, w^{\prime}\right\rangle$ such that

$$
\langle M, w\rangle \in A_{T M} \text { if and only if }\left\langle M^{\prime}, w^{\prime}\right\rangle \in H A L T_{T M}
$$

$M_{f}=$ "On input $\langle M, w\rangle$

1. Construct the following machine M^{\prime} : $M^{\prime}=$ "On input x
2. Run M on x.

MAPPING Reducibility

THEOREM

$A_{T M}<_{m} \operatorname{HALT}_{T M}$

PROOF.

Construct a computable function f which maps $\langle M, w\rangle$ to $\left\langle M^{\prime}, w^{\prime}\right\rangle$ such that

$$
\langle M, w\rangle \in A_{T M} \text { if and only if }\left\langle M^{\prime}, w^{\prime}\right\rangle \in H A L T_{T M}
$$

$M_{f}=$ "On input $\langle M, w\rangle$

1. Construct the following machine M^{\prime} : $M^{\prime}=$ "On input x
2. Run M on x.
3. If M accepts accept

MAPPING Reducibility

THEOREM

$A_{T M}<_{m} \operatorname{HALT}_{T M}$

PROOF.

Construct a computable function f which maps $\langle M, w\rangle$ to $\left\langle M^{\prime}, w^{\prime}\right\rangle$ such that

$$
\langle M, w\rangle \in A_{T M} \text { if and only if }\left\langle M^{\prime}, w^{\prime}\right\rangle \in H A L T_{T M}
$$

$M_{f}=$ "On input $\langle M, w\rangle$

1. Construct the following machine M^{\prime} : $M^{\prime}=$ "On input x
2. Run M on x.
3. If M accepts accept
4. If M rejects enter a loop."

MAPPING Reducibility

THEOREM

$A_{T M}<_{m} \operatorname{HALT}_{T M}$

PROOF.

Construct a computable function f which maps $\langle M, w\rangle$ to $\left\langle M^{\prime}, w^{\prime}\right\rangle$ such that

$$
\langle M, w\rangle \in A_{T M} \text { if and only if }\left\langle M^{\prime}, w^{\prime}\right\rangle \in H A L T_{T M}
$$

$M_{f}=$ "On input $\langle M, w\rangle$

1. Construct the following machine M^{\prime} : $M^{\prime}=$ "On input x
2. Run M on x.
3. If M accepts accept
4. If M rejects enter a loop."
5. Output $\left\langle M^{\prime}, w\right\rangle$."

More examples of Mapping Reducibility

- Earlier we showed

More examples of Mapping Reducibility

- Earlier we showed
- $A_{T M}<m$ MPCP

More examples of Mapping Reducibility

- Earlier we showed
- $A_{T M}<m$ MPCP
- $M P C P<_{m} P C P$

More examples of Mapping Reducibility

- Earlier we showed
- $A_{T M}<_{m}$ MPCP
- MPCP $<_{m} P C P$
- In Theorem 5.4 we showed $E_{T M}<_{m} E Q_{T M}$. The reduction f maps from $\langle M\rangle$ to the output $\left\langle M, M_{1}\right\rangle$ where M_{1} is the machine that rejects all inputs.

More examples of Mapping Reducibility

- Earlier we showed
- $A_{T M}<m$ MPCP
- MPCP $<_{m} P C P$
- In Theorem 5.4 we showed $E_{T M}<_{m} E Q_{T M}$. The reduction f maps from $\langle M\rangle$ to the output $\left\langle M, M_{1}\right\rangle$ where M_{1} is the machine that rejects all inputs.

THEOREM 5.24

If $A<_{m} B$ and B is Turing-recognizable, then A is Turing-recognizable.

More examples of Mapping Reducibility

- Earlier we showed
- $A_{T M}<m$ MPCP
- MPCP $<_{m} P C P$
- In Theorem 5.4 we showed $E_{T M}<_{m} E Q_{T M}$. The reduction f maps from $\langle M\rangle$ to the output $\left\langle M, M_{1}\right\rangle$ where M_{1} is the machine that rejects all inputs.

THEOREM 5.24

If $A<_{m} B$ and B is Turing-recognizable, then A is Turing-recognizable.

Proof

Essentially the same as the previous proof.

Summary of Mapping Reducibility Results

SUMMARY OF THEOREMS

Assume that $A<_{m} B$. Then

Summary of Mapping Reducibility Results

SUMMARY OF THEOREMS

Assume that $A<_{m} B$. Then
(1) If B is decidable then A is decidable.

Summary of Mapping Reducibility Results

SUMMARY OF THEOREMS

Assume that $A<_{m} B$. Then
(1) If B is decidable then A is decidable.
(2) If A is undecidable then B is undecidable.

Summary of Mapping Reducibility Results

SUMMARY OF THEOREMS

Assume that $A<_{m} B$. Then
(1) If B is decidable then A is decidable.
(2) If A is undecidable then B is undecidable.
(If B is Turing-recognizable then A is Turing-recognizable.

Summary of Mapping Reducibility Results

SUMMARY OF THEOREMS

Assume that $A<_{m} B$. Then
(1) If B is decidable then A is decidable.
(2) If A is undecidable then B is undecidable.
(3) If B is Turing-recognizable then A is Turing-recognizable.
(- If A is not Turing-recognizable then B is not Turing-recognizable.

Summary of Mapping Reducibility Results

SUMMARY OF THEOREMS

Assume that $A<_{m} B$. Then
(1) If B is decidable then A is decidable.
(2) If A is undecidable then B is undecidable.
(3) If B is Turing-recognizable then A is Turing-recognizable.
(- If A is not Turing-recognizable then B is not Turing-recognizable.
(-) $\bar{A}<_{m} \bar{B}$

Summary of Mapping Reducibility Results

SUMMARY OF THEOREMS

Assume that $A<_{m} B$. Then
(1) If B is decidable then A is decidable.
(2) If A is undecidable then B is undecidable.
(3) If B is Turing-recognizable then A is Turing-recognizable.
(-) If A is not Turing-recognizable then B is not Turing-recognizable.
(-) $\bar{A}<_{m} \bar{B}$
Useful observation:

- Suppose you can show $A_{T M}<_{m} \bar{B}$

Summary of Mapping Reducibility Results

SUMMARY OF THEOREMS

Assume that $A<_{m} B$. Then
(1) If B is decidable then A is decidable.
(2) If A is undecidable then B is undecidable.
(3) If B is Turing-recognizable then A is Turing-recognizable.
(-) If A is not Turing-recognizable then B is not Turing-recognizable.
(-) $\bar{A}<_{m} \bar{B}$
Useful observation:

- Suppose you can show $A_{T M}<_{m} \bar{B}$
- This means $\overline{A_{T M}}<_{m} B$

Summary of Mapping Reducibility Results

Summary of Theorems

Assume that $A<{ }_{m} B$. Then
(1) If B is decidable then A is decidable.
(2) If A is undecidable then B is undecidable.
(If B is Turing-recognizable then A is Turing-recognizable.
(-) If A is not Turing-recognizable then B is not Turing-recognizable.
(-) $\bar{A}<_{m} \bar{B}$
Useful observation:

- Suppose you can show $A_{T M}<_{m} \bar{B}$
- This means $\overline{A_{T M}}<_{m} B$
- Since $\overline{A_{T M}}$ is Turing-unrecognizable then B is Turing-unrecognizable.

EXAMPLE OF UsE

THEOREM 5.30

$E Q_{T M}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}\right.$ and M_{2} are TMs and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$ is neither Turing recognizable nor co-Turing-recognizable.

Example of Use

THEOREM 5.30

$E Q_{T M}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}\right.$ and M_{2} are TMs and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$ is neither Turing recognizable nor co-Turing-recognizable.

Proof IdEA

We show

EXAMPLE OF UsE

THEOREM 5.30

$E Q_{T M}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}\right.$ and M_{2} are TMs and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$ is neither Turing recognizable nor co-Turing-recognizable.

PROOF IDEA

We show

- $\overline{A_{T M}}<_{m} E Q_{T M}$

EXAMPLE OF UsE

THEOREM 5.30

$E Q_{T M}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}\right.$ and M_{2} are TMs and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$ is neither Turing recognizable nor co-Turing-recognizable.

PROOF IDEA

We show

- $\overline{A_{T M}}<{ }_{m} E Q_{T M}$
- $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$

EXAMPLE OF UsE

THEOREM 5.30

$E Q_{T M}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}\right.$ and M_{2} are TMs and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$ is neither Turing recognizable nor co-Turing-recognizable.

PROOF IDEA

We show

- $\overline{A_{T M}}<{ }_{m} E Q_{T M}$
- $\overline{A_{T M}}<{ }_{m} \overline{E Q_{T M}}$
- These then imply the theorem.

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} E Q_{T M}$

We show $A_{T M}<_{m} \overline{E Q_{T M}}$ (and hence $\overline{A_{T M}}<_{m} E Q_{T M}$) with the following f : $F=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

Example of Use

PROOF FOR $\overline{A_{T M}}<_{m} E Q_{T M}$

We show $A_{T M}<_{m} \overline{E Q_{T M}}$ (and hence $\overline{A_{T M}}<_{m} E Q_{T M}$) with the following f : $F=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2}

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} E Q_{T M}$

We show $A_{T M}<_{m} \overline{E Q_{T M}}$ (and hence $\overline{A_{T M}}<_{m} E Q_{T M}$) with the following f : $F=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2} $M_{1}=$ "On any input:
2. Reject"

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} E Q_{T M}$

We show $A_{T M}<_{m} \overline{E Q_{T M}}$ (and hence $\overline{A_{T M}}<_{m} E Q_{T M}$) with the following f :
$F=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2} $M_{1}=$ "On any input:
2. Reject"
$M_{2}=$ "On any input:
3. Run M on w. If it accepts, accept."

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} E Q_{T M}$

We show $A_{T M}<_{m} \overline{E Q_{T M}}$ (and hence $\overline{A_{T M}}<_{m} E Q_{T M}$) with the following f :
$F=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2} $M_{1}=$ "On any input:
2. Reject"
$M_{2}=$ "On any input:
3. Run M on w. If it accepts, accept."
4. Output $\left\langle M_{1}, M_{2}\right\rangle$."

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} E Q_{T M}$

We show $A_{T M}<_{m} \overline{E Q_{T M}}$ (and hence $\overline{A_{T M}}<_{m} E Q_{T M}$) with the following f :
$F=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2} $M_{1}=$ "On any input:
2. Reject"
$M_{2}=$ "On any input:
3. Run M on w. If it accepts, accept."
4. Output $\left\langle M_{1}, M_{2}\right\rangle$."

- M_{1} accepts nothing.

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} E Q_{T M}$

We show $A_{T M}<_{m} \overline{E Q_{T M}}$ (and hence $\overline{A_{T M}}<_{m} E Q_{T M}$) with the following f :
$F=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2} $M_{1}=$ "On any input:
2. Reject"
$M_{2}=$ "On any input:
3. Run M on w. If it accepts, accept."
4. Output $\left\langle M_{1}, M_{2}\right\rangle$."

- M_{1} accepts nothing.
- If M accepts w then M_{2} accepts everything. So M_{1} and M_{2} are not equivalent.

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} E Q_{T M}$

We show $A_{T M}<_{m} \overline{E Q_{T M}}$ (and hence $\overline{A_{T M}}<_{m} E Q_{T M}$) with the following f :
$F=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2} $M_{1}=$ "On any input:
2. Reject"
$M_{2}=$ "On any input:
3. Run M on w. If it accepts, accept."
4. Output $\left\langle M_{1}, M_{2}\right\rangle$."

- M_{1} accepts nothing.
- If M accepts w then M_{2} accepts everything. So M_{1} and M_{2} are not equivalent.
- If M does not accept w then M_{2} accepts nothing. So M_{1} and M_{2} are equivalent.

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} E Q_{T M}$

We show $A_{T M}<_{m} \overline{E Q_{T M}}$ (and hence $\overline{A_{T M}}<_{m} E Q_{T M}$) with the following f :
$F=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2} $M_{1}=$ "On any input:
2. Reject"
$M_{2}=$ "On any input:
3. Run M on w. If it accepts, accept."
4. Output $\left\langle M_{1}, M_{2}\right\rangle$."

- M_{1} accepts nothing.
- If M accepts w then M_{2} accepts everything. So M_{1} and M_{2} are not equivalent.
- If M does not accept w then M_{2} accepts nothing. So M_{1} and M_{2} are equivalent.
- So $A_{T M}<_{m} \overline{E Q_{T M}}$ (and hence $\overline{A_{T M}}<_{m} E Q_{T M}$)

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$

We show $A_{T M}<_{m} E Q_{T M}$ (and hence $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$) with the following g : $G=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$

We show $A_{T M}<_{m} E Q_{T M}$ (and hence $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$) with the following g :
$G=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2}

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$

We show $A_{T M}<_{m} E Q_{T M}$ (and hence $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$) with the following g :
$G=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2} $M_{1}=$ "On any input:
2. Accept"

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$

We show $A_{T M}<_{m} E Q_{T M}$ (and hence $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$) with the following g :
$G=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2} $M_{1}=$ "On any input:
2. Accept"
$M_{2}=$ "On any input:
3. Run M on w. If it accepts, accept."

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$

We show $A_{T M}<_{m} E Q_{T M}$ (and hence $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$) with the following g :
$G=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2} $M_{1}=$ "On any input:
2. Accept"
$M_{2}=$ "On any input:
3. Run M on w. If it accepts, accept."
4. Output $\left\langle M_{1}, M_{2}\right\rangle$."

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$

We show $A_{T M}<_{m} E Q_{T M}$ (and hence $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$) with the following g :
$G=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2} $M_{1}=$ "On any input:
2. Accept"
$M_{2}=$ "On any input:
3. Run M on w. If it accepts, accept."
4. Output $\left\langle M_{1}, M_{2}\right\rangle$."

- M_{1} accepts everything.

Example of Use

PROOF FOR $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$

We show $A_{T M}<_{m} E Q_{T M}$ (and hence $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$) with the following g :
$G=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2} $M_{1}=$ "On any input:
2. Accept"
$M_{2}=$ "On any input:
3. Run M on w. If it accepts, accept."
4. Output $\left\langle M_{1}, M_{2}\right\rangle$."

- M_{1} accepts everything.
- If M accepts w then M_{2} accepts everything. So M_{1} and M_{2} are equivalent.

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$

We show $A_{T M}<_{m} E Q_{T M}$ (and hence $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$) with the following g :
$G=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2} $M_{1}=$ "On any input:
2. Accept"
$M_{2}=$ "On any input:
3. Run M on w. If it accepts, accept."
4. Output $\left\langle M_{1}, M_{2}\right\rangle$."

- M_{1} accepts everything.
- If M accepts w then M_{2} accepts everything. So M_{1} and M_{2} are equivalent.
- If M does not accept w then M_{2} accepts nothing. So M_{1} and M_{2} are not equivalent.

EXAMPLE OF UsE

PROOF FOR $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$

We show $A_{T M}<_{m} E Q_{T M}$ (and hence $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$) with the following g :
$G=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:

1. Construct the following two machines M_{1} and M_{2} $M_{1}=$ "On any input:
2. Accept"
$M_{2}=$ "On any input:
3. Run M on w. If it accepts, accept."
4. Output $\left\langle M_{1}, M_{2}\right\rangle$."

- M_{1} accepts everything.
- If M accepts w then M_{2} accepts everything. So M_{1} and M_{2} are equivalent.
- If M does not accept w then M_{2} accepts nothing. So M_{1} and M_{2} are not equivalent.
- So $A_{T M}<_{m} E Q_{T M}$ (and hence $\overline{A_{T M}}<_{m} \overline{E Q_{T M}}$)

