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REDUCIBILITY

e A reduction is a way of converting one problem to another problem, so
that the solution to the second problem can be used to solve the first
problem.
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e A reduction is a way of converting one problem to another problem, so
that the solution to the second problem can be used to solve the first
problem.

e Finding the area of a rectangle, reduces to measuring its width and height
e Solving a set of linear equations, reduces to inverting a matrix.

e Reducibility involves two problems A and B.
e If Areduces to B, you can use a solution to B to solve A

e When A s reducible to B, solving A can not be “harder” than solving B.
o If Ais reducible to B and B is decidable, then A is also decidable.
e If Ais undecidable and reducible to B, then B is undecidable.
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PROVING UNDECIDABILITY VIA REDUCTIONS

Em = {(M) | MisaTM and L(M) = ¢} is undecidable.
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Em = {(M) | MisaTM and L(M) = ¢} is undecidable.

e Suppose R decides Ery. We try to construct S to decide Amy using R.
o Note that S takes (M, w) as input.

e Oneideais to run R on (M) to check if M accepts some string or not —
but that that does not tell us if M accepts w.

o Instead we modify M to M;. M; rejects all strings other than w but on w,
it does what M does.

o Now we can check if L(M;) = .
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PROVING UNDECIDABILITY VIA REDUCTIONS

Em = {(M) | MisaTM and L(M) = ¢} is undecidable.

e For any w define M, as
M; = “On input x:
Q If x # w, reject.
@ If x = w, run M on input w and accept if M does.”

o Note that M; either accepts w only or nothing!
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PROVING UNDECIDABILITY VIA REDUCTIONS
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PROOF CONTINUED

e Assume R decides E7y

e S defines below uses R to decide on Ary
S =“On input (M, w)
@ Use (M, w) to construct M; above.
© Run R on input (M;)
© |If R accepts, reject, if R rejects, accept.
e So, if R decides L(M;) is empty,
e then M does NOT accept w,
e else M accepts w.
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PROVING UNDECIDABILITY VIA REDUCTIONS

PROOF CONTINUED

e Assume R decides E7y

e S defines below uses R to decide on Ary
S =“On input (M, w)
@ Use (M, w) to construct M; above.
© Run R on input (M;)
© |If R accepts, reject, if R rejects, accept.
e So, if R decides L(M;) is empty,
e then M does NOT accept w,
e else M accepts w.

o If R decides Ery then S decides A7y — Contradiction.
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REDUCTIONS VIA COMPUTATION HISTORIES

e An accepting computation history for a TM is a sequence of
configurations
Ci,Cyp,...,C

such that
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REDUCTIONS VIA COMPUTATION HISTORIES

e An accepting computation history for a TM is a sequence of
configurations
Ci,Cyp,...,C
such that

e C; is the start configuration for input w
e C;is an accepting configuration, and
e each C; follows legally from the preceding configuration.

e A rejecting computation history is defined similarly.

e Computation histories are finite sequences — if M does not halt on M,
there is no computation history.

e Deterministic v.s nondeterministic computation histories.
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LINEAR BOUNDED AUTOMATON

e Suppose we cripple a TM so that the head never moves outside the
boundaries of the input string.
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LINEAR BOUNDED AUTOMATON

e Suppose we cripple a TM so that the head never moves outside the
boundaries of the input string.

e Such a TMis called a linear bounded automaton (LBA)

o Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with g states, g symbols in the tape alphabet. There are
exactly gng” distinct configurations for a tape of length n.

PROOF.
e The machine can be in one of g states.
e The head can be on one of the n cells.
e At most g” distinct strings can occur on the tape.

| \

THEOREM 5.9
Aiga = {(M,w) | M is an LBA that accepts string w} is decidable.
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COMPUTATION OVER “COMPUTATION HISTORIES”

e Now for a really wild and crazy idea!
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COMPUTATION OVER “COMPUTATION HISTORIES”

e Now for a really wild and crazy idea!
o Consider an accepting computation history of a TM M, Cy, Cs, ..., C;
o Note that each C; is a string.
e Consider the string
# # # #H# #

—_— Y Y
Cy C Cs G
e The set of all valid accepting histories is also a language!!

e This string has length m and an LBA B can check if this is a valid
computation history for a TM M accepting w.
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COMPUTATION OVER “COMPUTATION HISTORIES”

e Now for a really wild and crazy idea!
o Consider an accepting computation history of a TM M, Cy, Cs, ..., C;
o Note that each C; is a string.
e Consider the string
# # # #H# #

—_— Y Y
Cy C Cs G
e The set of all valid accepting histories is also a language!!

e This string has length m and an LBA B can check if this is a valid
computation history for a TM M accepting w.

o Check if C1 = Qowiwa---Wp
e Check if C[ =+ Qaccept * * *
e Check if each C;.1 follows from C; legally.

o Note that B is not constructed for the purpose of running it on any input!
e If L(B) # ¢ then M accepts w
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POST CORRESPONDENCE PROBLEM

e Undecidability is not just confined to problems concerning automata and
languages.
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e Undecidability is not just confined to problems concerning automata and
languages.

e There are other “natural” problems which can be proved undecidable.

e The Post correspondence problem (PCP) is a tiling problem over strings.
e Atile or a domino contains two strings, t and b; e.g., [£].

e Suppose we have dominos

el [ (5[]

e A match is a list of these dominos so that when concatenated the top and
the bottom strings are identical. For example,

a|[b]fcalla]labc| _ abcaaabc
ab||cal| al|lab|| ¢ | abcaaabc
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POST CORRESPONDENCE PROBLEM

e Undecidability is not just confined to problems concerning automata and
languages.

e There are other “natural” problems which can be proved undecidable.

e The Post correspondence problem (PCP) is a tiling problem over strings.
e Atile or a domino contains two strings, t and b; e.g., [£].

e Suppose we have dominos

el [ (5[]

e A match is a list of these dominos so that when concatenated the top and
the bottom strings are identical. For example,

a|[b]fcalla]labc| _ abcaaabc
ab||cal| al|lab|| ¢ | abcaaabc

o The set of dominos { [z”f} [“’} [%ﬂ , } does not have a solution.

a
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POST CORRESPONDENCE PROBLEM

AN INSTANCE OF THE PCP
A PCP instance over % is a finite collection P of dominos

(&) 4]

where forall i,1 < i < Kk, t;, bj € *.
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POST CORRESPONDENCE PROBLEM

AN INSTANCE OF THE PCP

A PCP instance over % is a finite collection P of dominos

(&) 4]

where forall i,1 < i < Kk, t;, bj € *.

y

MATCH
Given a PCP instance P, a match is a nonempty sequence

I,y ooyl

of numbers from {1,2,..., k} (with repetition) such that
tit, - ti, = b by, - - by,
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POST CORRESPONDENCE PROBLEM

Does a given PCP instance P have a match? I

LANGUAGE FORMULATION:
PCP = {(P) | P is a PCP instance and it has a match}

PCP is undecidable. I

Proof: By reduction using computation histories. If PCP is decidable then so
is Ary. That is, if PCP has a match, then M accepts w.
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PCP — THE STRUCTURE OF THE UNDECIDABILITY

PROOF

The reduction works in two steps:
@ We reduce Ay to Modified PCP (MPCP).

(Lecture 17) Slides for 15-453 Spring2011  13/28



PCP — THE STRUCTURE OF THE UNDECIDABILITY

PROOF

The reduction works in two steps:
@ We reduce Ay to Modified PCP (MPCP).
@ We reduce MPCP to PCP.

(Lecture 17) Slides for 15-453 Spring2011  13/28



PCP — THE STRUCTURE OF THE UNDECIDABILITY

PROOF

The reduction works in two steps:
@ We reduce Ay to Modified PCP (MPCP).
@ We reduce MPCP to PCP.
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PCP — THE STRUCTURE OF THE UNDECIDABILITY

PROOF

The reduction works in two steps:
@ We reduce Ay to Modified PCP (MPCP).
@ We reduce MPCP to PCP.

MPCP AS A LANGUAGE PROBLEM

MPCP = {(P) | P is a PCP instance and it has a match which starts with
index 1}

e So the solution to MPCP starts with the domino [g} . We later remove
this restriction in the second part of the proof.
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PCP — THE STRUCTURE OF THE UNDECIDABILITY

PROOF

The reduction works in two steps:
@ We reduce Ay to Modified PCP (MPCP).
@ We reduce MPCP to PCP.

MPCP AS A LANGUAGE PROBLEM

MPCP = {(P) | P is a PCP instance and it has a match which starts with
index 1}

@ So the solution to MPCP starts with the domino [g} . We later remove

this restriction in the second part of the proof.

e We also assume that the decider for M never moves its head to the left of
the input w.
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PCP — THE PROOF

For input (M, w) of Ary, construct an MPCP instance such that M accepts w
iff P’ has a match starting with domino 1 J
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PCP — THE PROOF

For input (M, w) of Ary, construct an MPCP instance such that M accepts w
iff P’ has a match starting with domino 1 J

e The first part of the proof proceeds in 7 stages where we add different
types of dominos to P’ depending on the TM

M= (Q, Za ra 63 Qo, Qaccepta Qreject)-
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PCP — THE PROOF

For input (M, w) of Ary, construct an MPCP instance such that M accepts w
iff P’ has a match starting with domino 1 J

e The first part of the proof proceeds in 7 stages where we add different
types of dominos to P’ depending on the TM
M = (Q,%,T,6,qo, Gaccept: Qreject)-

e Using the dominos, we try to construct an accepting computation history
for M accepting w.
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PCP — ADDING THE RIGHT KIND OF DOMINOS

@ The first domino kicks of the computation history

A
b #HQoWiWo - - Wn# |’
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PCP — ADDING THE RIGHT KIND OF DOMINOS

@ The first domino kicks of the computation history

5] - 7wt

bi]  [#gowiwz - W]’

@ Handle right moving transitions. For every a,b € I and every q,r € Q
where g # Qreject

if 6(q, a) = (r, b, R), put [Zf] into P’
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PCP — ADDING THE RIGHT KIND OF DOMINOS

@ The first domino kicks of the computation history

5] - 7wt

bi]  [#gowiwz - W]’

@ Handle right moving transitions. For every a,b € I and every q,r € Q
where g # Qreject

it 6(q, a) = (r, b, R), put [Z ]mto P

© Handle left moving transitions. For every a,b,c € I and every q,r € Q
where g # Qreject

if 6(g,a) = (r, b, L), put [ng] into P’
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PCP — ADDING THE RIGHT KIND OF DOMINOS

@ The first domino kicks of the computation history

5] - 7wt

bi]  [#gowiwz - W]’

@ Handle right moving transitions. For every a,b € I and every q,r € Q
where g # Qreject

it 6(q, a) = (r, b, R), put [Z ]mto P

© Handle left moving transitions. For every a,b,c € I and every q,r € Q
where g # Qreject

if 6(g,a) = (r, b, L), put [ng] into P’

Q Forevery ac T put { ]lnto P’
# # |
@ Put {#] and [u#] into P'.
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PCP - HOW THE DOMINOS WORK

o Letusassume = {0,1,2, U}, w = 0100 and that 6(qo,0) = (97,2, R)
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PCP - HOW THE DOMINOS WORK

o Letusassume = {0,1,2, U}, w = 0100 and that 6(qo,0) = (97,2, R)
e Part 1 places the first domino and the match begins

#
# g 0 1 0 0 #
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PCP - HOW THE DOMINOS WORK

o Letusassume = {0,1,2, U}, w = 0100 and that 6(qo,0) = (97,2, R)
e Part 1 places the first domino and the match begins

# qo O
# go 0 1 0 0 # 2 qr

e Part 2 places the domino [gg‘j}
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PCP - HOW THE DOMINOS WORK

o Letusassume = {0,1,2, U}, w = 0100 and that 6(qo,0) = (97,2, R)
e Part 1 places the first domino and the match begins

# q 0 1 0 0
# g 0 1 0 0 # 2 g, 1 0 0

e Part 2 places the domino [gg‘j}

e Part 4 places the dominos g} {]} [g] and [ﬂ into P’ so we can
extend the match.
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o Letusassume = {0,1,2, U}, w = 0100 and that 6(qo,0) = (97,2, R)
e Part 1 places the first domino and the match begins

# q 0 1 0 0 #
# qo 0 1 0 0 # 2 g7 1 0 0 #

e Part 2 places the domino [gg‘j}

e Part 4 places the dominos g} {]} [g] and [ﬂ into P’ so we can
extend the match.
e Part 5 puts in the domino {:}
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PCP - HOW THE DOMINOS WORK

o Letusassume = {0,1,2, U}, w = 0100 and that 6(qo,0) = (97,2, R)
e Part 1 places the first domino and the match begins

# q 0 1 0 0 #
# qo 0 1 0 0 # 2 g7 1 0 0 #

Part 2 places the domino [gﬂ

Part 4 places the dominos g} {]} [g] and [ﬂ into P’ so we can
extend the match.
Part 5 puts in the domino {:}

e What exactly is going on ?
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PCP - HOW THE DOMINOS WORK

o Letusassume = {0,1,2, U}, w = 0100 and that 6(qo,0) = (97,2, R)
e Part 1 places the first domino and the match begins

# q 0 1 0 0 #
# qo 0 1 0 0 # 2 g7 1 0 0 #

e Part 2 places the domino [gﬂ

e Part 4 places the dominos g} {]} [g] and [ﬂ into P’ so we can
extend the match.
e Part 5 puts in the domino {:}

e What exactly is going on ?

o We force the bottom string to create a copy on the top which is forced to
generate the next configuration on the bottom — We are simulating M on
w!
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PCP - HOW THE DOMINOS WORK

o Letusassume = {0,1,2, U}, w = 0100 and that 6(qo,0) = (97,2, R)
e Part 1 places the first domino and the match begins

# q 0 1 0 0 #
# qo 0 1 0 0 # 2 g7 1 0 0 #

e Part 2 places the domino [gﬂ

e Part 4 places the dominos g} {]} [g] and [ﬂ into P’ so we can

extend the match.
e Part 5 puts in the domino {:}

e What exactly is going on ?

o We force the bottom string to create a copy on the top which is forced to
generate the next configuration on the bottom — We are simulating M on
w!

e The process continues until M reaches a halting state and we then pad
the upper string.
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PCP — MORE DOMINO TYPES

Q Foreveryacerl,

pt [ g [
Qaccept Qaccept

These dominos “clean-up” by adding any symbols to the top string while
adding just the state symbol to the lower string.
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Q Foreveryacerl,
[ 20| [
Qaccept Qaccept

These dominos “clean-up” by adding any symbols to the top string while
adding just the state symbol to the lower string.

Just before these apply the upper and lower strings are like

o #
“ee #21qaccep102#
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PCP — MORE DOMINO TYPES

Q Foreveryacerl,
[ 20| [
Qaccept Qaccept

These dominos “clean-up” by adding any symbols to the top string while
adding just the state symbol to the lower string.

Just before these apply the upper and lower strings are like

o #
“ee #21qaccep102#

After using these dominos, we end up with
o H#
s #qaccept #
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PCP — MORE DOMINO TYPES

Q Foreveryacerl,

pt [ g [
Qaccept Qaccept

These dominos “clean-up” by adding any symbols to the top string while
adding just the state symbol to the lower string.

Just before these apply the upper and lower strings are like
L #
o e #21 qacceptoz#

After using these dominos, we end up with

L #
s #qaccept #
@ Finally we add the domino
qaccept##
#

to complete the match.
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PCP PROOF — SUMMARY OF PART 1

@ This concludes the construction of P’.
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PCP PROOF — SUMMARY OF PART 1

@ This concludes the construction of P’.

e Thus if M accepts w, the set of MPCP dominos constructed have a
solution to the MPCP problem.
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PCP PROOF — SUMMARY OF PART 1

@ This concludes the construction of P’.

e Thus if M accepts w, the set of MPCP dominos constructed have a
solution to the MPCP problem.

e But not yet to the PCP problem.
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PCP PROOF — PART 2

@ Suppose we have the MPCP instance

{88 )
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@ Suppose we have the MPCP instance

{5 ) 3]

o We let P be the collection

{3 - )

e The only domino that could possibly start a match is the first one!
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PCP PROOF — PART 2

@ Suppose we have the MPCP instance

7] to b
PI: T R .
][5}
o We let P be the collection
po ([t ] [x] . [t [x
Tl xbix | ok | T kx| | ©

e The only domino that could possibly start a match is the first one!
e The last domino just adds the missing = at the end of the match.
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PCP PROOF — PART 2

@ Suppose we have the MPCP instance

{5 ) 3]

o We let P be the collection

{3 - )

e The only domino that could possibly start a match is the first one!
e The last domino just adds the missing = at the end of the match.

PCP is undecidable! I
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SUMMARY OF REDUCIBILITY

We know that language A is undecidable. By reducing A to B we want to show
that the language B is also undecidable. J
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We know that language A is undecidable. By reducing A to B we want to show
that the language B is also undecidable. J

@ Assume that we have a decider Mg for B.
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© Using Mg we construct a decider My for the language A:
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© Using Mg we construct a decider My for the language A:
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© Using Mg we construct a decider My for the language A:

Mp = “On input (/)
1. Algorithmically construct an input (/g) for Mg, such that
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SUMMARY OF REDUCIBILITY

We know that language A is undecidable. By reducing A to B we want to show
that the language B is also undecidable. J

@ Assume that we have a decider Mg for B.
© Using Mg we construct a decider My for the language A:

Mp = “On input (/)

1. Algorithmically construct an input (/g) for Mg, such that
a) Either
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SUMMARY OF REDUCIBILITY

We know that language A is undecidable. By reducing A to B we want to show
that the language B is also undecidable. J

@ Assume that we have a decider Mg for B.
© Using Mg we construct a decider My for the language A:

Mp = “On input (/)
1. Algorithmically construct an input (/g) for Mg, such that
a) Either

If (Ia) € Athen (I5) € B
If (1) & Athen (l5) ¢ B J
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SUMMARY OF REDUCIBILITY

We know that language A is undecidable. By reducing A to B we want to show
that the language B is also undecidable. J

@ Assume that we have a decider Mg for B.
© Using Mg we construct a decider My for the language A:

Mp = “On input (/)
1. Algorithmically construct an input (/g) for Mg, such that
a) Either b) or

If (Ia) € Athen (I5) € B
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SUMMARY OF REDUCIBILITY

We know that language A is undecidable. By reducing A to B we want to show
that the language B is also undecidable. J

@ Assume that we have a decider Mg for B.
© Using Mg we construct a decider My for the language A:

Mp = “On input (/)
1. Algorithmically construct an input (/g) for Mg, such that

a) Either b) or
If (Ia) € Athen (Ig) € B If (Is) € Athen (Ig) Z B
If (Ia) ¢ Athen (Ig) ¢ B J If (Ia) & Athen (Ig) € B J
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SUMMARY OF REDUCIBILITY

We know that language A is undecidable. By reducing A to B we want to show
that the language B is also undecidable. J

@ Assume that we have a decider Mg for B.
© Using Mg we construct a decider My for the language A:

Mp = “On input (/)
1. Algorithmically construct an input (/g) for Mg, such that

a) Either b) or
If (Ia) € Athen (Ig) € B If (Is) € Athen (Ig) Z B
If (Ia) ¢ Athen (Ig) ¢ B J If (Ia) ¢ Athen (Ig) € B J

2. Run the decider Mg on (/g) for Mg
Case a): My accepts if Mg accepts, and rejects if Mg rejects
Case b): M, rejects if Mg accepts, and accepts if Mg reject.

( Lecture 17) Slides for 15-453 Spring 2011 20/28



SUMMARY OF REDUCIBILITY

We know that language A is undecidable. By reducing A to B we want to show
that the language B is also undecidable. J

@ Assume that we have a decider Mg for B.
© Using Mg we construct a decider My for the language A:

Mp = “On input (/)
1. Algorithmically construct an input (/g) for Mg, such that

a) Either b) or
If (Ia) € Athen (Ig) € B If (Is) € Athen (Ig) Z B
If (Ia) ¢ Athen (Ig) ¢ B J If (Ia) ¢ Athen (Ig) € B J

2. Run the decider Mg on (/g) for Mg
Case a): My accepts if Mg accepts, and rejects if Mg rejects
Case b): M, rejects if Mg accepts, and accepts if Mg reject.

@ We know M, can not exist so Mg can not exist.
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SUMMARY OF REDUCIBILITY

We know that language A is undecidable. By reducing A to B we want to show
that the language B is also undecidable. J

@ Assume that we have a decider Mg for B.
© Using Mg we construct a decider My for the language A:

Mp = “On input (/)
1. Algorithmically construct an input (/g) for Mg, such that

a) Either b) or
If (Ia) € Athen (Ig) € B If (Is) € Athen (Ig) Z B
If (Ia) ¢ Athen (Ig) ¢ B J If (Ia) ¢ Athen (Ig) € B J

2. Run the decider Mg on (/g) for Mg
Case a): My accepts if Mg accepts, and rejects if Mg rejects
Case b): M, rejects if Mg accepts, and accepts if Mg reject.

@ We know M, can not exist so Mg can not exist.
© B s undecidable.
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COMPUTABLE FUNCTIONS

Turing Machines can also compute function f : ¥* — ¥*. l
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A function f: ©* — ¥* is a computable function if and only if there exists a
TM My, which on any given input w € *
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Turing Machines can also compute function f : ¥* — ¥*.

COMPUTABLE FUNCTION

A function f: ©* — ¥* is a computable function if and only if there exists a
TM My, which on any given input w € *

e always halts, and
e leaves just f(w) on its tape.
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Turing Machines can also compute function f : ¥* — ¥*.

COMPUTABLE FUNCTION
A function f: ©* — ¥* is a computable function if and only if there exists a
TM My, which on any given input w € *

e always halts, and
e leaves just f(w) on its tape.

Examples:
o Letf(w) % ww be a function. Then f is computable.
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COMPUTABLE FUNCTIONS

Turing Machines can also compute function f : ¥* — ¥*.

COMPUTABLE FUNCTION
A function f: ©* — ¥* is a computable function if and only if there exists a
TM My, which on any given input w € *

e always halts, and
e leaves just f(w) on its tape.

Examples:
o Letf(w) % ww be a function. Then f is computable.

o Let f((ny,n2)) def (ny where ny and n, are integers and n = ny * no. Then

f is computable.
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MAPPING REDUCIBILITY

Let A, B C Y*. We say that language A is mapping reducible to language B,
written A <, B, if and only if
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MAPPING REDUCIBILITY

Let A, B C Y*. We say that language A is mapping reducible to language B,
written A <, B, if and only if

@ There is a computable function f : ¥* — ¥* such that
@ Forevery w e X*, w € Aif and only if f(w) € B.
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MAPPING REDUCIBILITY

Let A, B C Y*. We say that language A is mapping reducible to language B,
written A <, B, if and only if

@ There is a computable function f : ¥* — ¥* such that
@ Forevery w e X*, w € Aif and only if f(w) € B.
The function f is called a reduction of Ato B.

If A<, Band B is decidable, then A is decidable. I
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N = “On input w

( Lecture 17) Slides for 15-453 Spring 2011 22/28



MAPPING REDUCIBILITY

Let A, B C Y*. We say that language A is mapping reducible to language B,
written A <, B, if and only if

@ There is a computable function f : ¥* — ¥* such that
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MAPPING REDUCIBILITY

Let A, B C Y*. We say that language A is mapping reducible to language B,
written A <, B, if and only if

@ There is a computable function f : ¥* — ¥* such that
@ Forevery w e X*, w € Aif and only if f(w) € B.
The function f is called a reduction of Ato B.

If A<, Band B is decidable, then A is decidable. \

Let M be a decider for B and f be a mapping from Ato B. Then N decides A.
N = “On input w
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© Run M on input f(w) and output whatever M outputs.”

( Lecture 17) Slides for 15-453 Spring 2011 22/28



MAPPING REDUCIBILITY

Let A, B C Y*. We say that language A is mapping reducible to language B,
written A <, B, if and only if

@ There is a computable function f : ¥* — ¥* such that
@ Forevery w e X*, w € Aif and only if f(w) € B.
The function f is called a reduction of Ato B.

If A<, Band B is decidable, then A is decidable. \

Let M be a decider for B and f be a mapping from Ato B. Then N decides A.
N = “On input w

@ Compute f(w)

© Run M on input f(w) and output whatever M outputs.”

( Lecture 17) Slides for 15-453 Spring 2011 22/28



MAPPING REDUCIBILITY

Let A, B C Y*. We say that language A is mapping reducible to language B,
written A <, B, if and only if

@ There is a computable function f : ¥* — ¥* such that
@ Forevery w e X*, w € Aif and only if f(w) € B.
The function f is called a reduction of Ato B.

If A<, B and B is decidable, then A is decidable. \

Let M be a decider for B and f be a mapping from Ato B. Then N decides A.
N = “On input w

@ Compute f(w)
© Run M on input f(w) and output whatever M outputs.”

If A <, Band Ais undecidable, then B is undecidable.
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MAPPING REDUCIBILITY
A <m HALT 7y l
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MAPPING REDUCIBILITY
Am <m HALT 1y \

Construct a computable function f which maps (M, w) to (M’, w’) such that

(M, w) € Any if and only if (M', w') € HALTy

M; = “On input (M, w)

O

v
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MAPPING REDUCIBILITY
Am <m HALT 1y \

Construct a computable function f which maps (M, w) to (M’, w’) such that

(M, w) € Any if and only if (M', w') € HALTy

M; = “On input (M, w)

1. Construct the following machine M’:
M’ = “On input x

O

v
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MAPPING REDUCIBILITY
Am <m HALT 1y \

Construct a computable function f which maps (M, w) to (M’, w’) such that
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Construct a computable function f which maps (M, w) to (M’, w’) such that

(M, w) € Any if and only if (M', w') € HALTy

M; = “On input (M, w)
1. Construct the following machine M’:
M’ = “On input x
1. Run Mon x.

2. If M accepts accept
3. If M rejects enter a loop.”

2. Output (M', w).
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MORE EXAMPLES OF MAPPING REDUCIBILITY

o Earlier we showed

o Amm <m MPCP
e MPCP <, PCP

@ In Theorem 5.4 we showed E7y <m EQry. The reduction f maps from
(M) to the output (M, My) where M is the machine that rejects all inputs.

If A <, B and B is Turing-recognizable, then A is Turing-recognizable. I
PROOF
Essentially the same as the previous proof.
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SUMMARY OF THEOREMS

Assume that A <, B. Then
@ If Bis decidable then A is decidable.
@ If Ais undecidable then B is undecidable.
@ If Bis Turing-recognizable then A is Turing-recognizable.
@ If Ais not Turing-recognizable then B is not Turing-recognizable.
Q@ A<, B

Useful observation:
e Suppose you can show A7y <m B
e This means Ay <m B
e Since Aqy is Turing-unrecognizable then B is Turing-unrecognizable.
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EXAMPLE OF USE

EQm = {(M1, M2) | My and M, are TMs and L(M;) = L(Mz)} is neither Turing
recognizable nor co-Turing-recognizable.
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EXAMPLE OF USE

THEOREM 5.30

EQm = {(M1, M2) | My and M, are TMs and L(M;) = L(Mz)} is neither Turing
recognizable nor co-Turing-recognizable.

y

PROOF IDEA
We show
o A <m EQru
o Ay <m EQm
e These then imply the theorem.
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EXAMPLE OF USE

PROOF FOR A7y <m EQ7y

We show A7y <m EQry (and hence Ary <m EQmy) with the following f:

F ="“On input (M, w) where M is a TM and w is a string:
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We show A7y <m EQy (and hence Ary <, EQmy) with the following g:

G = “On input (M, w) where M is a TM and w is a string:

1. Construct the following two machines M; and M-
M; = “On any input:

1. Accept’
M, = “On any input:
1. Run M on w. If it accepts, accept.”
2. Output (My, Mp)”

e M; accepts everything.

o If M accepts w then M. accepts everything. So M; and M, are equivalent.

o |f M does not accept w then M» accepts nothing. So M; and M. are not
equivalent.

o So Ay <m EQmy (and hence Aty <m EQmu)
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