FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

POST CORRESPONDENCE PROBLEM

(Lecture 17)

REVIEW OF DECIDABILITY AND REDUCTIONS

• A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
 - Finding the area of a rectangle, reduces to measuring its width and height

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
 - Finding the area of a rectangle, reduces to measuring its width and height
 - Solving a set of linear equations, reduces to inverting a matrix.

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
 - Finding the area of a rectangle, reduces to measuring its width and height
 - Solving a set of linear equations, reduces to inverting a matrix.
- Reducibility involves two problems A and B.

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
 - Finding the area of a rectangle, reduces to measuring its width and height
 - Solving a set of linear equations, reduces to inverting a matrix.
- Reducibility involves two problems A and B.
 - If A reduces to B, you can use a solution to B to solve A

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
 - Finding the area of a rectangle, reduces to measuring its width and height
 - Solving a set of linear equations, reduces to inverting a matrix.
- Reducibility involves two problems A and B.
 - If A reduces to B, you can use a solution to B to solve A
- When A is reducible to B, solving A can not be "harder" than solving B.

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
 - Finding the area of a rectangle, reduces to measuring its width and height
 - Solving a set of linear equations, reduces to inverting a matrix.
- Reducibility involves two problems A and B.
 - If A reduces to B, you can use a solution to B to solve A
- When A is reducible to B, solving A can not be "harder" than solving B.
- If A is reducible to B and B is decidable, then A is also decidable.

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
 - Finding the area of a rectangle, reduces to measuring its width and height
 - Solving a set of linear equations, reduces to inverting a matrix.
- Reducibility involves two problems A and B.
 - If A reduces to B, you can use a solution to B to solve A
- When A is reducible to B, solving A can not be "harder" than solving B.
- If A is reducible to B and B is decidable, then A is also decidable.
- If *A* is undecidable and reducible to *B*, then *B* is undecidable.

THEOREM 5.2

$E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \}$ is undecidable.

3 1 4

THEOREM 5.2

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \}$ is undecidable.

• Suppose *R* decides E_{TM} . We try to construct *S* to decide A_{TM} using *R*.

THEOREM 5.2

- Suppose *R* decides E_{TM} . We try to construct *S* to decide A_{TM} using *R*.
 - Note that *S* takes $\langle M, w \rangle$ as input.

THEOREM 5.2

- Suppose *R* decides E_{TM} . We try to construct *S* to decide A_{TM} using *R*.
 - Note that S takes $\langle M, w \rangle$ as input.
- One idea is to run R on ⟨M⟩ to check if M accepts some string or not but that does not tell us if M accepts w.

THEOREM 5.2

- Suppose *R* decides E_{TM} . We try to construct *S* to decide A_{TM} using *R*.
 - Note that *S* takes $\langle M, w \rangle$ as input.
- One idea is to run R on ⟨M⟩ to check if M accepts some string or not but that does not tell us if M accepts w.
- Instead we modify *M* to *M*₁. *M*₁ rejects all strings other than *w* but on *w*, it does what *M* does.

THEOREM 5.2

- Suppose *R* decides E_{TM} . We try to construct *S* to decide A_{TM} using *R*.
 - Note that *S* takes $\langle M, w \rangle$ as input.
- One idea is to run R on ⟨M⟩ to check if M accepts some string or not but that does not tell us if M accepts w.
- Instead we modify *M* to *M*₁. *M*₁ rejects all strings other than *w* but on *w*, it does what *M* does.
- Now we can check if $L(M_1) = \Phi$.

THEOREM 5.2

$E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \}$ is undecidable.

3 1 4

THEOREM 5.2

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \}$ is undecidable.

PROOF

(Lecture 17)

∃ ► ⊀

THEOREM 5.2

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \} \text{ is undecidable.}$

PROOF

• For any *w* define *M*₁ as $M_1 =$ "On input *x*:

THEOREM 5.2

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \} \text{ is undecidable.}$

Proof

- For any *w* define *M*₁ as *M*₁ = "On input *x*:
 - If $x \neq w$, reject.

THEOREM 5.2

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \} \text{ is undecidable.}$

Proof

- For any *w* define *M*₁ as $M_1 =$ "On input *x*:
 - If $x \neq w$, reject.
 - 2 If x = w, run *M* on input *w* and *accept* if *M* does."

THEOREM 5.2

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \} \text{ is undecidable.}$

Proof

- For any *w* define *M*₁ as $M_1 =$ "On input *x*:
 - If $x \neq w$, reject.
 - 2 If x = w, run *M* on input *w* and *accept* if *M* does."
- Note that M₁ either accepts w only or nothing!

PROOF CONTINUED

(Lecture 17)

<ロト < 同ト < 回ト <

PROOF CONTINUED

• Assume *R* decides *E*_{TM}

∃ ► ⊀

- Assume *R* decides *E*_{TM}
- S defines below uses R to decide on A_{TM}
 - S = "On input $\langle M, w \rangle$

- Assume *R* decides *E*_{TM}
- S defines below uses R to decide on A_{TM}
 - S = "On input $\langle M, w \rangle$
 - Use $\langle M, w \rangle$ to construct M_1 above.

- Assume *R* decides *E*_{TM}
- S defines below uses R to decide on ATM
 - S = "On input $\langle M, w \rangle$
 - Use $\langle M, w \rangle$ to construct M_1 above.
 - **2** Run *R* on input $\langle M_1 \rangle$

- Assume *R* decides *E*_{TM}
- S defines below uses R to decide on ATM
 - S = "On input $\langle M, w \rangle$
 - Use $\langle M, w \rangle$ to construct M_1 above.
 - **2** Run *R* on input $\langle M_1 \rangle$
 - If R accepts, reject, if R rejects, accept.

- Assume *R* decides *E*_{TM}
- S defines below uses R to decide on ATM
 - S = "On input $\langle M, w \rangle$
 - Use $\langle M, w \rangle$ to construct M_1 above.
 - **2** Run *R* on input $\langle M_1 \rangle$
 - If R accepts, reject, if R rejects, accept.
- So, if R decides L(M₁) is empty,

- Assume *R* decides *E*_{TM}
- S defines below uses R to decide on ATM
 - S = "On input $\langle M, w \rangle$
 - Use $\langle M, w \rangle$ to construct M_1 above.
 - **2** Run *R* on input $\langle M_1 \rangle$
 - If *R* accepts, *reject*, if *R* rejects, *accept*.
- So, if *R* decides *L*(*M*₁) is empty,
 - then *M* does NOT accept *w*,

- Assume *R* decides *E*_{TM}
- S defines below uses R to decide on ATM
 - S = "On input $\langle M, w \rangle$
 - Use $\langle M, w \rangle$ to construct M_1 above.
 - **2** Run *R* on input $\langle M_1 \rangle$
 - If R accepts, reject, if R rejects, accept.
- So, if *R* decides *L*(*M*₁) is empty,
 - then *M* does NOT accept *w*,
 - else M accepts w.

- Assume *R* decides *E*_{TM}
- S defines below uses R to decide on ATM
 - S = "On input $\langle M, w \rangle$
 - Use $\langle M, w \rangle$ to construct M_1 above.
 - **2** Run *R* on input $\langle M_1 \rangle$
 - If *R* accepts, *reject*, if *R* rejects, *accept*.
- So, if *R* decides *L*(*M*₁) is empty,
 - then *M* does NOT accept *w*,
 - else M accepts w.
- If *R* decides *E*_{TM} then *S* decides *A*_{TM} Contradiction.

An accepting computation history for a TM is a sequence of configurations

$$C_1, C_2, \ldots, C_l$$

such that

 An accepting computation history for a TM is a sequence of configurations

$$C_1, C_2, \ldots, C_l$$

such that

• C₁ is the start configuration for input w

 An accepting computation history for a TM is a sequence of configurations

 C_1, C_2, \ldots, C_l

such that

- C₁ is the start configuration for input w
- C₁ is an accepting configuration, and

 An accepting computation history for a TM is a sequence of configurations

 C_1, C_2, \ldots, C_l

such that

- C₁ is the start configuration for input w
- C₁ is an accepting configuration, and
- each *C_i* follows legally from the preceding configuration.

REDUCTIONS VIA COMPUTATION HISTORIES

 An accepting computation history for a TM is a sequence of configurations

 C_1, C_2, \ldots, C_l

such that

- C_1 is the start configuration for input w
- C₁ is an accepting configuration, and
- each *C_i* follows legally from the preceding configuration.
- A rejecting computation history is defined similarly.

REDUCTIONS VIA COMPUTATION HISTORIES

 An accepting computation history for a TM is a sequence of configurations

 C_1, C_2, \ldots, C_l

such that

- C₁ is the start configuration for input w
- C₁ is an accepting configuration, and
- each *C_i* follows legally from the preceding configuration.
- A rejecting computation history is defined similarly.
- Computation histories are finite sequences if *M* does not halt on *M*, there is no computation history.

REDUCTIONS VIA COMPUTATION HISTORIES

 An accepting computation history for a TM is a sequence of configurations

 C_1, C_2, \ldots, C_l

such that

- C₁ is the start configuration for input w
- C₁ is an accepting configuration, and
- each *C_i* follows legally from the preceding configuration.
- A rejecting computation history is defined similarly.
- Computation histories are finite sequences if *M* does not halt on *M*, there is no computation history.
- Deterministic v.s nondeterministic computation histories.

• Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

Lemma

Let *M* be a LBA with *q* states, *g* symbols in the tape alphabet. There are exactly qng^n distinct configurations for a tape of length *n*.

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

Lemma

Let *M* be a LBA with *q* states, *g* symbols in the tape alphabet. There are exactly qng^n distinct configurations for a tape of length *n*.

PROOF.

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

Lemma

Let *M* be a LBA with *q* states, *g* symbols in the tape alphabet. There are exactly qng^n distinct configurations for a tape of length *n*.

PROOF.

• The machine can be in one of *q* states.

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

Lemma

Let *M* be a LBA with *q* states, *g* symbols in the tape alphabet. There are exactly qng^n distinct configurations for a tape of length *n*.

PROOF.

- The machine can be in one of *q* states.
- The head can be on one of the *n* cells.

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let *M* be a LBA with *q* states, *g* symbols in the tape alphabet. There are exactly qng^n distinct configurations for a tape of length *n*.

PROOF.

- The machine can be in one of *q* states.
- The head can be on one of the *n* cells.
- At most *gⁿ* distinct strings can occur on the tape.

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

Lemma

Let *M* be a LBA with *q* states, *g* symbols in the tape alphabet. There are exactly qng^n distinct configurations for a tape of length *n*.

PROOF.

- The machine can be in one of *q* states.
- The head can be on one of the *n* cells.
- At most g^n distinct strings can occur on the tape.

THEOREM 5.9

 $A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is an LBA that accepts string } w \} \text{ is decidable.}$

(Lecture 17)

• Now for a really wild and crazy idea!

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM M, C₁, C₂,..., C_l

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM M, C₁, C₂,..., C_l
- Note that each *C_i* is a string.

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM M, C₁, C₂,..., C_l
- Note that each *C_i* is a string.
- Consider the string

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM M, C₁, C₂,..., C_l
- Note that each *C_i* is a string.
- Consider the string

• The set of all valid accepting histories is also a language!!

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM M, C₁, C₂,..., C_l
- Note that each C_i is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!
- This string has length *m* and an LBA *B* can check if this is a valid computation history for a TM *M* accepting *w*.

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM M, C₁, C₂,..., C_l
- Note that each C_i is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!
- This string has length *m* and an LBA *B* can check if this is a valid computation history for a TM *M* accepting *w*.
 - Check if $C_1 = q_0 w_1 w_2 \cdots w_n$

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM M, C₁, C₂,..., C_l
- Note that each C_i is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!
- This string has length *m* and an LBA *B* can check if this is a valid computation history for a TM *M* accepting *w*.
 - Check if $C_1 = q_0 w_1 w_2 \cdots w_n$
 - Check if $C_l = \cdots q_{accept} \cdots$

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM M, C₁, C₂,..., C_l
- Note that each C_i is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!
- This string has length *m* and an LBA *B* can check if this is a valid computation history for a TM *M* accepting *w*.
 - Check if $C_1 = q_0 w_1 w_2 \cdots w_n$
 - Check if C_l = · · · q_{accept} · · ·
 - Check if each C_{i+1} follows from C_i legally.

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM M, C₁, C₂,..., C_l
- Note that each C_i is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!
- This string has length *m* and an LBA *B* can check if this is a valid computation history for a TM *M* accepting *w*.
 - Check if $C_1 = q_0 w_1 w_2 \cdots w_n$
 - Check if $C_l = \cdots q_{accept} \cdots$
 - Check if each C_{i+1} follows from C_i legally.
- Note that B is not constructed for the purpose of running it on any input!

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM M, C₁, C₂,..., C_l
- Note that each C_i is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!
- This string has length *m* and an LBA *B* can check if this is a valid computation history for a TM *M* accepting *w*.
 - Check if $C_1 = q_0 w_1 w_2 \cdots w_n$
 - Check if $C_l = \cdots q_{accept} \cdots$
 - Check if each C_{i+1} follows from C_i legally.
- Note that B is not constructed for the purpose of running it on any input!
- If $L(B) \neq \Phi$ then *M* accepts *w*

 Undecidability is not just confined to problems concerning automata and languages.

- Undecidability is not just confined to problems concerning automata and languages.
- There are other "natural" problems which can be proved undecidable.

- Undecidability is not just confined to problems concerning automata and languages.
- There are other "natural" problems which can be proved undecidable.
- The Post correspondence problem (PCP) is a tiling problem over strings.

- Undecidability is not just confined to problems concerning automata and languages.
- There are other "natural" problems which can be proved undecidable.
- The Post correspondence problem (PCP) is a tiling problem over strings.
- A tile or a domino contains two strings, *t* and *b*; e.g., $\begin{bmatrix} ca \\ a \end{bmatrix}$.

- Undecidability is not just confined to problems concerning automata and languages.
- There are other "natural" problems which can be proved undecidable.
- The Post correspondence problem (PCP) is a tiling problem over strings.
- A tile or a domino contains two strings, *t* and *b*; e.g., $\begin{bmatrix} ca \\ a \end{bmatrix}$.
- Suppose we have dominos

$$\left\{ \left[\frac{b}{ca}\right], \left[\frac{a}{ab}\right], \left[\frac{ca}{a}\right], \left[\frac{abc}{c}\right] \right\}$$

- Undecidability is not just confined to problems concerning automata and languages.
- There are other "natural" problems which can be proved undecidable.
- The Post correspondence problem (PCP) is a tiling problem over strings.
- A tile or a domino contains two strings, *t* and *b*; e.g., $\begin{bmatrix} ca \\ a \end{bmatrix}$.
- Suppose we have dominos

$$\left\{ \left[\frac{b}{ca}\right], \left[\frac{a}{ab}\right], \left[\frac{ca}{a}\right], \left[\frac{abc}{c}\right] \right\}$$

• A match is a list of these dominos so that when concatenated the top and the bottom strings are identical. For example,

$$\begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} b \\ ca \end{bmatrix} \begin{bmatrix} ca \\ a \end{bmatrix} \begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} abc \\ c \end{bmatrix} = \frac{abcaaabc}{abcaaabc}$$

- Undecidability is not just confined to problems concerning automata and languages.
- There are other "natural" problems which can be proved undecidable.
- The Post correspondence problem (PCP) is a tiling problem over strings.
- A tile or a domino contains two strings, *t* and *b*; e.g., $\begin{bmatrix} ca \\ a \end{bmatrix}$.
- Suppose we have dominos

$$\left\{ \left[\frac{b}{ca}\right], \left[\frac{a}{ab}\right], \left[\frac{ca}{a}\right], \left[\frac{abc}{c}\right] \right\}$$

• A match is a list of these dominos so that when concatenated the top and the bottom strings are identical. For example,

$$\left[\frac{a}{ab}\right] \left[\frac{b}{ca}\right] \left[\frac{ca}{a}\right] \left[\frac{a}{ab}\right] \left[\frac{abc}{c}\right] = \frac{abcaaabc}{abcaaabc}$$

e set of dominos $\left\{ \left[\frac{abc}{ab}\right], \left[\frac{ca}{a}\right], \left[\frac{acc}{ba}\right], \right\}$ does not have a solution.

(Lecture 17)

Th

AN INSTANCE OF THE PCP

A PCP instance over Σ is a finite collection P of dominos

$$\boldsymbol{P} = \left\{ \begin{bmatrix} \underline{t_1} \\ \overline{b_1} \end{bmatrix}, \begin{bmatrix} \underline{t_2} \\ \overline{b_2} \end{bmatrix}, \cdots, \begin{bmatrix} \underline{t_k} \\ \overline{b_k} \end{bmatrix} \right\}$$

where for all $i, 1 \leq i \leq k, t_i, b_i \in \Sigma^*$.

AN INSTANCE OF THE PCP

A PCP instance over Σ is a finite collection P of dominos

$$\boldsymbol{P} = \left\{ \begin{bmatrix} \underline{t}_1 \\ \overline{b}_1 \end{bmatrix}, \begin{bmatrix} \underline{t}_2 \\ \overline{b}_2 \end{bmatrix}, \cdots, \begin{bmatrix} \underline{t}_k \\ \overline{b}_k \end{bmatrix} \right\}$$

where for all $i, 1 \leq i \leq k, t_i, b_i \in \Sigma^*$.

MATCH

Given a PCP instance *P*, a match is a nonempty sequence

 $\textit{i}_1,\textit{i}_2,\ldots,\textit{i}_\ell$

of numbers from $\{1, 2, ..., k\}$ (with repetition) such that $t_{i_1}t_{i_2}\cdots t_{i_\ell} = b_{i_1}b_{i_2}\cdots b_{i_\ell}$

QUESTION:

Does a given PCP instance P have a match?

QUESTION:

Does a given PCP instance P have a match?

LANGUAGE FORMULATION:

 $PCP = \{ \langle P \rangle \mid P \text{ is a PCP instance and it has a match} \}$

QUESTION:

Does a given PCP instance P have a match?

LANGUAGE FORMULATION:

 $PCP = \{ \langle P \rangle \mid P \text{ is a PCP instance and it has a match} \}$

THEOREM 5.15

PCP is undecidable.

QUESTION:

Does a given PCP instance P have a match?

LANGUAGE FORMULATION:

 $PCP = \{ \langle P \rangle \mid P \text{ is a PCP instance and it has a match} \}$

Theorem 5.15

PCP is undecidable.

Proof: By reduction using computation histories. If PCP is decidable then so is A_{TM} . That is, if PCP has a match, then *M* accepts *w*.

PCP – THE STRUCTURE OF THE UNDECIDABILITY PROOF

The reduction works in two steps:

• We reduce A_{TM} to Modified PCP (MPCP).

PCP – THE STRUCTURE OF THE UNDECIDABILITY PROOF

The reduction works in two steps:

- We reduce *A_{TM}* to Modified PCP (MPCP).
- We reduce MPCP to PCP.

PCP – THE STRUCTURE OF THE UNDECIDABILITY PROOF

The reduction works in two steps:

- We reduce *A_{TM}* to Modified PCP (MPCP).
- We reduce MPCP to PCP.

MPCP AS A LANGUAGE PROBLEM

 $MPCP = \{ \langle P \rangle \mid P \text{ is a PCP instance and it has a match which starts with index 1} \}$

PCP – THE STRUCTURE OF THE UNDECIDABILITY PROOF

The reduction works in two steps:

- We reduce *A_{TM}* to Modified PCP (MPCP).
- We reduce MPCP to PCP.

MPCP AS A LANGUAGE PROBLEM

 $MPCP = \{ \langle P \rangle \mid P \text{ is a PCP instance and it has a match which starts with index 1} \}$

• So the solution to MPCP starts with the domino $\left\lfloor \frac{t_1}{b_1} \right\rfloor$. We later remove this restriction in the second part of the proof.

PCP – THE STRUCTURE OF THE UNDECIDABILITY PROOF

The reduction works in two steps:

- We reduce A_{TM} to Modified PCP (MPCP).
- We reduce MPCP to PCP.

MPCP AS A LANGUAGE PROBLEM

 $MPCP = \{ \langle P \rangle \mid P \text{ is a PCP instance and it has a match which starts with index 1} \}$

- So the solution to MPCP starts with the domino $\left\lfloor \frac{t_1}{b_1} \right\rfloor$. We later remove this restriction in the second part of the proof.
- We also assume that the decider for *M* never moves its head to the left of the input *w*.

PCP – THE PROOF

For input $\langle M, w \rangle$ of A_{TM} , construct an MPCP instance such that M accepts w iff P' has a match starting with domino 1

PCP – THE PROOF

For input $\langle M, w \rangle$ of A_{TM} , construct an MPCP instance such that M accepts w iff P' has a match starting with domino 1

 The first part of the proof proceeds in 7 stages where we add different types of dominos to P' depending on the TM M = (Q, Σ, Γ, δ, q₀, q_{accept}, q_{reject}).

PCP – THE PROOF

For input $\langle M, w \rangle$ of A_{TM} , construct an MPCP instance such that M accepts w iff P' has a match starting with domino 1

- The first part of the proof proceeds in 7 stages where we add different types of dominos to P' depending on the TM M = (Q, Σ, Γ, δ, q₀, q_{accept}, q_{reject}).
- Using the dominos, we try to construct an accepting computation history for *M* accepting *w*.

The first domino kicks of the computation history

$$\left[\frac{t_1}{b_1}\right] = \left[\frac{\#}{\#q_0w_1w_2\cdots w_n\#}\right],$$

The first domino kicks of the computation history

$$\left[\frac{t_1}{b_1}\right] = \left[\frac{\#}{\#q_0w_1w_2\cdots w_n\#}\right],$$

e Handle right moving transitions. For every a, b ∈ Γ and every q, r ∈ Q where q ≠ q_{reject}

if
$$\delta(\boldsymbol{q}, \boldsymbol{a}) = (r, b, R), \; \mathsf{put} \left[\frac{qa}{br} \right]$$
into P'

The first domino kicks of the computation history

$$\left[\frac{t_1}{b_1}\right] = \left[\frac{\#}{\#q_0w_1w_2\cdots w_n\#}\right]$$

e Handle right moving transitions. For every a, b ∈ Γ and every q, r ∈ Q where q ≠ q_{reject}

if
$$\delta(q, a) = (r, b, R)$$
, put $\left[\frac{qa}{br}\right]$ into P'

Solution Provide the second strength of the second strength of

if
$$\delta(q, a) = (r, b, L)$$
, put $\left[\frac{cqa}{rcb}\right]$ into P'

The first domino kicks of the computation history

$$\left[\frac{t_1}{b_1}\right] = \left[\frac{\#}{\#q_0w_1w_2\cdots w_n\#}\right]$$

e Handle right moving transitions. For every a, b ∈ Γ and every q, r ∈ Q where q ≠ q_{reject}

if
$$\delta(q, a) = (r, b, R)$$
, put $\left[\frac{qa}{br}\right]$ into P'

Solution Provide the image of the image

if
$$\delta(q, a) = (r, b, L)$$
, put $\left[\frac{cqa}{rcb}\right]$ into P'
For every $a \in \Gamma$ put $\left[\frac{a}{a}\right]$ into P'

The first domino kicks of the computation history

$$\left[\frac{t_1}{b_1}\right] = \left[\frac{\#}{\#q_0w_1w_2\cdots w_n\#}\right]$$

e Handle right moving transitions. For every a, b ∈ Γ and every q, r ∈ Q where q ≠ q_{reject}

if
$$\delta(q, a) = (r, b, R)$$
, put $\left[\frac{qa}{br}\right]$ into P'

Solution Provide the image of the second state of the second

if
$$\delta(q, a) = (r, b, L)$$
, put $\left[\frac{cqa}{rcb}\right]$ into P'

• For every $a \in \Gamma$ put $\begin{bmatrix} a \\ a \end{bmatrix}$ into P'• Put $\begin{bmatrix} \# \\ \# \end{bmatrix}$ and $\begin{bmatrix} \# \\ \sqcup \# \end{bmatrix}$ into P'.

• Let us assume $\Gamma = \{0, 1, 2, \sqcup\}, w = 0100$ and that $\delta(q_0, 0) = (q_7, 2, R)$

- Let us assume $\Gamma = \{0, 1, 2, \sqcup\}, w = 0100$ and that $\delta(q_0, 0) = (q_7, 2, R)$
- Part 1 places the first domino and the match begins

```
#
# q<sub>0</sub> 0 1 0 0 #
```

- Let us assume $\Gamma = \{0, 1, 2, \sqcup\}, w = 0100$ and that $\delta(q_0, 0) = (q_7, 2, R)$
- Part 1 places the first domino and the match begins

- Let us assume $\Gamma = \{0, 1, 2, \sqcup\}, w = 0100$ and that $\delta(q_0, 0) = (q_7, 2, R)$
- Part 1 places the first domino and the match begins

- Let us assume Γ = {0, 1, 2, ⊔}, w = 0100 and that δ(q₀, 0) = (q₇, 2, R)
 Part 1 places the first domino and the match begins

- Let us assume Γ = {0, 1, 2, ⊔}, w = 0100 and that δ(q₀, 0) = (q₇, 2, R)
 Part 1 places the first domino and the match begins
- What exactly is going on ?

- Let us assume Γ = {0, 1, 2, ⊔}, w = 0100 and that δ(q₀, 0) = (q₇, 2, R)
 Part 1 places the first domino and the match begins
- What exactly is going on ?
- We force the bottom string to create a copy on the top which is forced to generate the next configuration on the bottom – We are simulating *M* on *w*!

- Let us assume Γ = {0, 1, 2, ⊔}, w = 0100 and that δ(q₀, 0) = (q₇, 2, R)
 Part 1 places the first domino and the match begins
- Part 5 puts in the domino $\frac{\#}{\#}$
- What exactly is going on ?
- We force the bottom string to create a copy on the top which is forced to generate the next configuration on the bottom We are simulating *M* on *w*!
- The process continues until *M* reaches a halting state and we then pad the upper string.

(Lecture 17)

• For every
$$a \in \Gamma$$
,

$$\mathsf{put}\left[\frac{aq_{\mathsf{accept}}}{q_{\mathsf{accept}}}\right]\mathsf{and}\left[\frac{q_{\mathsf{accept}}a}{q_{\mathsf{accept}}}\right]\mathsf{into}\ \mathsf{P}'$$

These dominos "clean-up" by adding any symbols to the top string while adding just the state symbol to the lower string.

• For every
$$a \in \Gamma$$
,

$$\mathsf{put}\left[\frac{aq_{\mathsf{accept}}}{q_{\mathsf{accept}}}\right]\mathsf{and}\left[\frac{q_{\mathsf{accept}}a}{q_{\mathsf{accept}}}\right]\mathsf{into}\ \mathsf{P}'$$

These dominos "clean-up" by adding any symbols to the top string while adding just the state symbol to the lower string.

Just before these apply the upper and lower strings are like

For every
$$a \in \Gamma$$
,

$$\mathsf{put}\left[\frac{aq_{\mathsf{accept}}}{q_{\mathsf{accept}}}\right]\mathsf{and}\left[\frac{q_{\mathsf{accept}}a}{q_{\mathsf{accept}}}\right]\mathsf{into}\ \mathsf{P}'$$

These dominos "clean-up" by adding any symbols to the top string while adding just the state symbol to the lower string.

Just before these apply the upper and lower strings are like

....##21q_{accept}02#

After using these dominos, we end up with

) For every
$$a \in \Gamma$$
,

$$\mathsf{put}\left[\frac{aq_{\mathsf{accept}}}{q_{\mathsf{accept}}}\right]\mathsf{and}\left[\frac{q_{\mathsf{accept}}a}{q_{\mathsf{accept}}}\right]\mathsf{into}\ \mathsf{P}'$$

These dominos "clean-up" by adding any symbols to the top string while adding just the state symbol to the lower string.

Just before these apply the upper and lower strings are like

....##21q_{accept}02#

After using these dominos, we end up with

Finally we add the domino

$$\left[\frac{\mathsf{q}_{\mathsf{accept}} \# \#}{\#}\right]$$

to complete the match.

(Lecture 17)

PCP PROOF – SUMMARY OF PART 1

• This concludes the construction of P'.

∃ ≻

PCP PROOF – SUMMARY OF PART 1

- This concludes the construction of P'.
- Thus if *M* accepts *w*, the set of MPCP dominos constructed have a solution to the MPCP problem.

PCP PROOF – SUMMARY OF PART 1

- This concludes the construction of P'.
- Thus if *M* accepts *w*, the set of MPCP dominos constructed have a solution to the MPCP problem.
- But not yet to the PCP problem.

• Suppose we have the MPCP instance

$$P' = \left\{ \left[\frac{t_1}{b_1} \right], \left[\frac{t_2}{b_2} \right], \cdots, \left[\frac{t_k}{b_k} \right] \right\}$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

• Suppose we have the MPCP instance

$$\mathcal{P}' = \left\{ \left[\frac{t_1}{b_1} \right], \left[\frac{t_2}{b_2} \right], \cdots, \left[\frac{t_k}{b_k} \right] \right\}$$

• We let *P* be the collection

$$\boldsymbol{P} = \left\{ \left[\frac{\star t_1}{\star b_1 \star} \right], \left[\frac{\star t_2}{b_2 \star} \right], \cdots, \left[\frac{\star t_k}{b_k \star} \right] \left[\frac{\star \diamond}{\diamond} \right] \right\}$$

• Suppose we have the MPCP instance

$$\mathcal{P}' = \left\{ \left[\frac{t_1}{b_1} \right], \left[\frac{t_2}{b_2} \right], \cdots, \left[\frac{t_k}{b_k} \right] \right\}$$

• We let P be the collection

$$\boldsymbol{P} = \left\{ \left[\frac{\star t_1}{\star b_1 \star} \right], \left[\frac{\star t_2}{b_2 \star} \right], \cdots, \left[\frac{\star t_k}{b_k \star} \right] \left[\frac{\star \diamond}{\diamond} \right] \right\}$$

• The only domino that could possibly start a match is the first one!

• Suppose we have the MPCP instance

$$\mathcal{P}' = \left\{ \left[\frac{t_1}{b_1} \right], \left[\frac{t_2}{b_2} \right], \cdots, \left[\frac{t_k}{b_k} \right] \right\}$$

• We let P be the collection

$$\boldsymbol{P} = \left\{ \left[\frac{\star t_1}{\star b_1 \star} \right], \left[\frac{\star t_2}{b_2 \star} \right], \cdots, \left[\frac{\star t_k}{b_k \star} \right] \left[\frac{\star \diamond}{\diamond} \right] \right\}$$

- The only domino that could possibly start a match is the first one!
- The last domino just adds the missing \star at the end of the match.

• Suppose we have the MPCP instance

$$\mathcal{P}' = \left\{ \left[\frac{t_1}{b_1} \right], \left[\frac{t_2}{b_2} \right], \cdots, \left[\frac{t_k}{b_k} \right] \right\}$$

• We let P be the collection

$$\boldsymbol{P} = \left\{ \left[\frac{\star t_1}{\star b_1 \star} \right], \left[\frac{\star t_2}{b_2 \star} \right], \cdots, \left[\frac{\star t_k}{b_k \star} \right] \left[\frac{\star \diamond}{\diamond} \right] \right\}$$

- The only domino that could possibly start a match is the first one!
- The last domino just adds the missing \star at the end of the match.

CONCLUSION

PCP is undecidable!

We know that language *A* is undecidable. By reducing *A* to *B* we want to show that the language *B* is also undecidable.

We know that language *A* is undecidable. By reducing *A* to *B* we want to show that the language *B* is also undecidable.

• Assume that we have a decider M_B for B.

We know that language *A* is undecidable. By reducing *A* to *B* we want to show that the language *B* is also undecidable.

- Assume that we have a decider M_B for B.
- **2** Using M_B we construct a decider M_A for the language A:

- Assume that we have a decider M_B for B.
- **2** Using M_B we construct a decider M_A for the language A:

 M_A = "On input $\langle I_A \rangle$

- Assume that we have a decider M_B for B.
- **2** Using M_B we construct a decider M_A for the language A:

 M_A = "On input $\langle I_A \rangle$

1. Algorithmically construct an input $\langle I_B \rangle$ for M_B , such that

- Assume that we have a decider M_B for B.
- **2** Using M_B we construct a decider M_A for the language A:

 M_A = "On input $\langle I_A \rangle$

1. Algorithmically construct an input $\langle I_B \rangle$ for M_B , such that

- Assume that we have a decider M_B for B.
- **2** Using M_B we construct a decider M_A for the language A:

 M_A = "On input $\langle I_A \rangle$

1. Algorithmically construct an input $\langle I_B \rangle$ for M_B , such that a) Either

- Assume that we have a decider M_B for B.
- **2** Using M_B we construct a decider M_A for the language A:

```
M_A = "On input \langle I_A \rangle
```

1. Algorithmically construct an input $\langle I_B \rangle$ for M_B , such that a) Either

If $\langle I_A \rangle \in A$ then $\langle I_B \rangle \in B$ If $\langle I_A \rangle \notin A$ then $\langle I_B \rangle \notin B$

- Assume that we have a decider M_B for B.
- **2** Using M_B we construct a decider M_A for the language A:

```
M_A = "On input \langle I_A \rangle
```

1. Algorithmically construct an input $\langle I_B \rangle$ for M_B , such that a) Either b) or

```
If \langle I_A \rangle \in A then \langle I_B \rangle \in B
If \langle I_A \rangle \notin A then \langle I_B \rangle \notin B
```

- Assume that we have a decider M_B for B.
- **2** Using M_B we construct a decider M_A for the language A:

 M_A = "On input $\langle I_A \rangle$

1. Algorithmically construct an input $\langle I_B \rangle$ for M_B , such that a) Either b) or

> If $\langle I_A \rangle \in A$ then $\langle I_B \rangle \in B$ If $\langle I_A \rangle \notin A$ then $\langle I_B \rangle \notin B$

- Assume that we have a decider M_B for B.
- **2** Using M_B we construct a decider M_A for the language A:

 M_A = "On input $\langle I_A \rangle$

1. Algorithmically construct an input $\langle I_B \rangle$ for M_B , such that a) Either b) or

```
If \langle I_A \rangle \in A then \langle I_B \rangle \in B
If \langle I_A \rangle \notin A then \langle I_B \rangle \notin B
```

If $\langle I_A \rangle \in A$ then $\langle I_B \rangle \notin B$ If $\langle I_A \rangle \notin A$ then $\langle I_B \rangle \in B$

2. Run the decider M_B on $\langle I_B \rangle$ for M_B Case a): M_A accepts if M_B accepts, and rejects if M_B rejects Case b): M_A rejects if M_B accepts, and accepts if M_B reject.

- Assume that we have a decider M_B for B.
- **2** Using M_B we construct a decider M_A for the language A:

 M_A = "On input $\langle I_A \rangle$

1. Algorithmically construct an input $\langle I_B \rangle$ for M_B , such that a) Either b) or

```
If \langle I_A \rangle \in A then \langle I_B \rangle \in B
If \langle I_A \rangle \notin A then \langle I_B \rangle \notin B
```

If $\langle I_A \rangle \in A$ then $\langle I_B \rangle \notin B$ If $\langle I_A \rangle \notin A$ then $\langle I_B \rangle \in B$

2. Run the decider M_B on $\langle I_B \rangle$ for M_B Case a): M_A accepts if M_B accepts, and rejects if M_B rejects Case b): M_A rejects if M_B accepts, and accepts if M_B reject.

• We know M_A can not exist so M_B can not exist.

(Lecture 17)

- Assume that we have a decider M_B for B.
- **2** Using M_B we construct a decider M_A for the language A:

 M_A = "On input $\langle I_A \rangle$

1. Algorithmically construct an input $\langle I_B \rangle$ for M_B , such that a) Either b) or

```
If \langle I_A \rangle \in A then \langle I_B \rangle \in B
If \langle I_A \rangle \notin A then \langle I_B \rangle \notin B
```

If $\langle I_A \rangle \in A$ then $\langle I_B \rangle \notin B$ If $\langle I_A \rangle \notin A$ then $\langle I_B \rangle \in B$

2. Run the decider M_B on $\langle I_B \rangle$ for M_B Case a): M_A accepts if M_B accepts, and rejects if M_B rejects Case b): M_A rejects if M_B accepts, and accepts if M_B reject.

• We know M_A can not exist so M_B can not exist.

B is undecidable.

(Lecture 17)

Turing Machines can also compute function $f : \Sigma^* \longrightarrow \Sigma^*$.

∃ ≻

Turing Machines can also compute function $f : \Sigma^* \longrightarrow \Sigma^*$.

COMPUTABLE FUNCTION

A function $f : \Sigma^* \longrightarrow \Sigma^*$ is a computable function if and only if there exists a TM M_f , which on any given input $w \in \Sigma^*$

Turing Machines can also compute function $f : \Sigma^* \longrightarrow \Sigma^*$.

COMPUTABLE FUNCTION

A function $f : \Sigma^* \longrightarrow \Sigma^*$ is a computable function if and only if there exists a TM M_f , which on any given input $w \in \Sigma^*$

always halts, and

Turing Machines can also compute function $f: \Sigma^* \longrightarrow \Sigma^*$.

COMPUTABLE FUNCTION

A function $f : \Sigma^* \longrightarrow \Sigma^*$ is a computable function if and only if there exists a TM M_f , which on any given input $w \in \Sigma^*$

- always halts, and
- leaves just f(w) on its tape.

Idea

Turing Machines can also compute function $f: \Sigma^* \longrightarrow \Sigma^*$.

COMPUTABLE FUNCTION

A function $f : \Sigma^* \longrightarrow \Sigma^*$ is a computable function if and only if there exists a TM M_f , which on any given input $w \in \Sigma^*$

- always halts, and
- leaves just f(w) on its tape.

Examples:

• Let $f(w) \stackrel{\text{def}}{=} ww$ be a function. Then f is computable.

Turing Machines can also compute function $f: \Sigma^* \longrightarrow \Sigma^*$.

COMPUTABLE FUNCTION

A function $f : \Sigma^* \longrightarrow \Sigma^*$ is a computable function if and only if there exists a TM M_f , which on any given input $w \in \Sigma^*$

- always halts, and
- leaves just f(w) on its tape.

Examples:

- Let $f(w) \stackrel{\text{def}}{=} ww$ be a function. Then f is computable.
- Let $f(\langle n_1, n_2 \rangle) \stackrel{\text{def}}{=} \langle n \rangle$ where n_1 and n_2 are integers and $n = n_1 * n_2$. Then *f* is computable.

DEFINITION

Let $A, B \subseteq \Sigma^*$. We say that language A is mapping reducible to language B, written $A <_m B$, if and only if

DEFINITION

Let $A, B \subseteq \Sigma^*$. We say that language A is mapping reducible to language B, written $A <_m B$, if and only if

O There is a computable function $f : \Sigma^* \longrightarrow \Sigma^*$ such that

DEFINITION

Let $A, B \subseteq \Sigma^*$. We say that language A is mapping reducible to language B, written $A <_m B$, if and only if

- **①** There is a computable function $f : \Sigma^* \longrightarrow \Sigma^*$ such that
- **2** For every $w \in \Sigma^*$, $w \in A$ if and only if $f(w) \in B$.

DEFINITION

Let $A, B \subseteq \Sigma^*$. We say that language A is mapping reducible to language B, written $A <_m B$, if and only if

- **O** There is a computable function $f : \Sigma^* \longrightarrow \Sigma^*$ such that
- **2** For every $w \in \Sigma^*$, $w \in A$ if and only if $f(w) \in B$.

The function *f* is called a reduction of *A* to *B*.

THEOREM 5.22

If $A <_m B$ and B is decidable, then A is decidable.

DEFINITION

Let $A, B \subseteq \Sigma^*$. We say that language A is mapping reducible to language B, written $A <_m B$, if and only if

- **O** There is a computable function $f : \Sigma^* \longrightarrow \Sigma^*$ such that
- **2** For every $w \in \Sigma^*$, $w \in A$ if and only if $f(w) \in B$.

The function *f* is called a reduction of *A* to *B*.

THEOREM 5.22

If $A <_m B$ and B is decidable, then A is decidable.

Proof

Let *M* be a decider for *B* and *f* be a mapping from *A* to *B*. Then *N* decides *A*. N = "On input *w*

DEFINITION

Let $A, B \subseteq \Sigma^*$. We say that language A is mapping reducible to language B, written $A <_m B$, if and only if

- **O** There is a computable function $f : \Sigma^* \longrightarrow \Sigma^*$ such that
- **2** For every $w \in \Sigma^*$, $w \in A$ if and only if $f(w) \in B$.

The function *f* is called a reduction of *A* to *B*.

THEOREM 5.22

If $A <_m B$ and B is decidable, then A is decidable.

Proof

Let *M* be a decider for *B* and *f* be a mapping from *A* to *B*. Then *N* decides *A*. N = "On input *w*

• Compute f(w)

DEFINITION

Let $A, B \subseteq \Sigma^*$. We say that language A is mapping reducible to language B, written $A <_m B$, if and only if

- **O** There is a computable function $f : \Sigma^* \longrightarrow \Sigma^*$ such that
- **2** For every $w \in \Sigma^*$, $w \in A$ if and only if $f(w) \in B$.

The function *f* is called a reduction of *A* to *B*.

THEOREM 5.22

If $A <_m B$ and B is decidable, then A is decidable.

Proof

Let *M* be a decider for *B* and *f* be a mapping from *A* to *B*. Then *N* decides *A*. N = "On input *w*

- Compute f(w)
- **2** Run *M* on input f(w) and output whatever *M* outputs."

DEFINITION

Let $A, B \subseteq \Sigma^*$. We say that language A is mapping reducible to language B, written $A <_m B$, if and only if

- **O** There is a computable function $f : \Sigma^* \longrightarrow \Sigma^*$ such that
- **2** For every $w \in \Sigma^*$, $w \in A$ if and only if $f(w) \in B$.

The function *f* is called a reduction of *A* to *B*.

THEOREM 5.22

If $A <_m B$ and B is decidable, then A is decidable.

Proof

Let *M* be a decider for *B* and *f* be a mapping from *A* to *B*. Then *N* decides *A*. N = "On input *w*

- Compute f(w)
- **2** Run *M* on input f(w) and output whatever *M* outputs."

DEFINITION

Let $A, B \subseteq \Sigma^*$. We say that language A is mapping reducible to language B, written $A <_m B$, if and only if

- **Q** There is a computable function $f : \Sigma^* \longrightarrow \Sigma^*$ such that
- **2** For every $w \in \Sigma^*$, $w \in A$ if and only if $f(w) \in B$.

The function *f* is called a reduction of *A* to *B*.

THEOREM 5.22

If $A <_m B$ and B is decidable, then A is decidable.

Proof

Let *M* be a decider for *B* and *f* be a mapping from *A* to *B*. Then *N* decides *A*. N = "On input *w*

- Compute f(w)
- **2** Run *M* on input f(w) and output whatever *M* outputs."

If $A <_m B$ and A is undecidable, then B is undecidable.

(Lecture 17)

THEOREM

 $A_{TM} <_m HALT_{TM}$

イロト イヨト イヨト イヨ

Theorem

 $A_{TM} <_m HALT_{TM}$

PROOF.

Construct a computable function *f* which maps $\langle M, w \rangle$ to $\langle M', w' \rangle$ such that

 $\langle M, w \rangle \in A_{TM}$ if and only if $\langle M', w' \rangle \in HALT_{TM}$

 $M_f =$ "On input $\langle M, w \rangle$

Theorem

 $A_{TM} <_m HALT_{TM}$

PROOF.

Construct a computable function *f* which maps $\langle M, w \rangle$ to $\langle M', w' \rangle$ such that

- $M_f =$ "On input $\langle M, w \rangle$
- 1. Construct the following machine M': M' = "On input x

Theorem

 $A_{TM} <_m HALT_{TM}$

PROOF.

Construct a computable function *f* which maps $\langle M, w \rangle$ to $\langle M', w' \rangle$ such that

- $M_f =$ "On input $\langle M, w \rangle$
- 1. Construct the following machine M': M' = "On input x
 - 1. Run *M* on *x*.

Theorem

 $A_{TM} <_m HALT_{TM}$

PROOF.

Construct a computable function *f* which maps $\langle M, w \rangle$ to $\langle M', w' \rangle$ such that

- $M_f =$ "On input $\langle M, w \rangle$
- 1. Construct the following machine M': M' = "On input x
 - 1. Run *M* on *x*.
 - 2. If M accepts accept

Theorem

 $A_{TM} <_m HALT_{TM}$

PROOF.

Construct a computable function *f* which maps $\langle M, w \rangle$ to $\langle M', w' \rangle$ such that

- $M_f =$ "On input $\langle M, w \rangle$
- 1. Construct the following machine M': M' = "On input x
 - 1. Run *M* on *x*.
 - 2. If M accepts accept
 - 3. If M rejects enter a loop."

Theorem

 $A_{TM} <_m HALT_{TM}$

PROOF.

Construct a computable function *f* which maps $\langle M, w \rangle$ to $\langle M', w' \rangle$ such that

- $M_f =$ "On input $\langle M, w \rangle$
- 1. Construct the following machine M': M' = "On input x
 - 1. Run *M* on *x*.
 - 2. If M accepts accept
 - 3. If M rejects enter a loop."
- 2. Output $\langle M', w \rangle$."

More examples of Mapping Reducibility

Earlier we showed

∃ **>** ∢

More examples of Mapping Reducibility

- Earlier we showed
 - *A*_{*TM*} < *m MPCP*

4 3 > 4 3

More examples of Mapping Reducibility

- Earlier we showed
 - $A_{TM} <_m MPCP$
 - MPCP <_m PCP

4 3 > 4 3

- Earlier we showed
 - A_{TM} <_m MPCP
 - MPCP <_m PCP
- In Theorem 5.4 we showed $E_{TM} <_m EQ_{TM}$. The reduction *f* maps from $\langle M \rangle$ to the output $\langle M, M_1 \rangle$ where M_1 is the machine that rejects all inputs.

- Earlier we showed
 - A_{TM} <_m MPCP
 - MPCP <_m PCP
- In Theorem 5.4 we showed $E_{TM} <_m EQ_{TM}$. The reduction *f* maps from $\langle M \rangle$ to the output $\langle M, M_1 \rangle$ where M_1 is the machine that rejects all inputs.

THEOREM 5.24

If $A <_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

- Earlier we showed
 - A_{TM} <_m MPCP
 - MPCP <_m PCP
- In Theorem 5.4 we showed $E_{TM} <_m EQ_{TM}$. The reduction *f* maps from $\langle M \rangle$ to the output $\langle M, M_1 \rangle$ where M_1 is the machine that rejects all inputs.

THEOREM 5.24

If $A <_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Proof

Essentially the same as the previous proof.

SUMMARY OF THEOREMS

Assume that $A <_m B$. Then

∃ ► ⊀

SUMMARY OF THEOREMS

Assume that $A <_m B$. Then

• If *B* is decidable then *A* is decidable.

SUMMARY OF THEOREMS

- If *B* is decidable then *A* is decidable.
- **2** If *A* is undecidable then *B* is undecidable.

SUMMARY OF THEOREMS

- If *B* is decidable then *A* is decidable.
- If *A* is undecidable then *B* is undecidable.
- If *B* is Turing-recognizable then *A* is Turing-recognizable.

SUMMARY OF THEOREMS

- If *B* is decidable then *A* is decidable.
- If *A* is undecidable then *B* is undecidable.
- If *B* is Turing-recognizable then *A* is Turing-recognizable.
- If A is not Turing-recognizable then B is not Turing-recognizable.

SUMMARY OF THEOREMS

- If *B* is decidable then *A* is decidable.
- If A is undecidable then B is undecidable.
- If *B* is Turing-recognizable then *A* is Turing-recognizable.
- If A is not Turing-recognizable then B is not Turing-recognizable.
- $\mathbf{O} \ \overline{A} <_m \overline{B}$

SUMMARY OF THEOREMS

Assume that $A <_m B$. Then

- If *B* is decidable then *A* is decidable.
- If *A* is undecidable then *B* is undecidable.
- If *B* is Turing-recognizable then *A* is Turing-recognizable.
- If A is not Turing-recognizable then B is not Turing-recognizable.
- $\bullet \ \overline{A} <_m \overline{B}$

Useful observation:

• Suppose you can show $A_{TM} <_m \overline{B}$

SUMMARY OF THEOREMS

Assume that $A <_m B$. Then

- If *B* is decidable then *A* is decidable.
- If *A* is undecidable then *B* is undecidable.
- If *B* is Turing-recognizable then *A* is Turing-recognizable.
- If A is not Turing-recognizable then B is not Turing-recognizable.
- $\mathbf{O} \ \overline{A} <_m \overline{B}$

Useful observation:

- Suppose you can show $A_{TM} <_m \overline{B}$
- This means $\overline{A_{TM}} <_m B$

SUMMARY OF THEOREMS

Assume that $A <_m B$. Then

- If *B* is decidable then *A* is decidable.
- If *A* is undecidable then *B* is undecidable.
- If *B* is Turing-recognizable then *A* is Turing-recognizable.
- If A is not Turing-recognizable then B is not Turing-recognizable.
- $\mathbf{O} \ \overline{A} <_m \overline{B}$

Useful observation:

- Suppose you can show $A_{TM} <_m \overline{B}$
- This means $\overline{A_{TM}} <_m B$
- Since $\overline{A_{TM}}$ is Turing-unrecognizable then *B* is Turing-unrecognizable.

THEOREM 5.30

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ is neither Turing recognizable nor co-Turing-recognizable.

3 🕨 🖌 3

THEOREM 5.30

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ is neither Turing recognizable nor co-Turing-recognizable.

PROOF IDEA

We show

∃ > < ∃

THEOREM 5.30

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ is neither Turing recognizable nor co-Turing-recognizable.

PROOF IDEA

We show

• $\overline{A_{TM}} <_m EQ_{TM}$

∃ > < ∃

THEOREM 5.30

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ is neither Turing recognizable nor co-Turing-recognizable.

PROOF IDEA

We show

- $\overline{A_{TM}} <_m EQ_{TM}$
- $\overline{A_{TM}} <_m \overline{EQ_{TM}}$

∃ > < ∃

THEOREM 5.30

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ is neither Turing recognizable nor co-Turing-recognizable.

PROOF IDEA

We show

- $\overline{A_{TM}} <_m EQ_{TM}$
- $\overline{A_{TM}} <_m \overline{EQ_{TM}}$
- These then imply the theorem.

PROOF FOR $\overline{A_{TM}} <_m EQ_{TM}$

We show $A_{TM} <_m \overline{EQ_{TM}}$ (and hence $\overline{A_{TM}} <_m EQ_{TM}$) with the following *f*:

F = "On input $\langle M, w \rangle$ where M is a TM and w is a string:

We show $A_{TM} <_m \overline{EQ_{TM}}$ (and hence $\overline{A_{TM}} <_m EQ_{TM}$) with the following *f*:

- F = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2

PROOF FOR $\overline{A_{TM}} <_m \overline{EQ_{TM}}$

We show $A_{TM} <_m \overline{EQ_{TM}}$ (and hence $\overline{A_{TM}} <_m EQ_{TM}$) with the following *f*:

- F = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2 M_1 = "On any input:
 - 1. Reject"

We show $A_{TM} <_m \overline{EQ_{TM}}$ (and hence $\overline{A_{TM}} <_m EQ_{TM}$) with the following *f*:

- F = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2 M_1 = "On any input:
 - 1. Reject"
 - $M_2 =$ "On any input:
 - 1. Run M on w. If it accepts, accept."

We show $A_{TM} <_m \overline{EQ_{TM}}$ (and hence $\overline{A_{TM}} <_m EQ_{TM}$) with the following *f*:

- F = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2 M_1 = "On any input:
 - 1. Reject"

- 1. Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."

We show $A_{TM} <_m \overline{EQ_{TM}}$ (and hence $\overline{A_{TM}} <_m EQ_{TM}$) with the following *f*:

- F = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2 M_1 = "On any input:
 - 1. Reject"

- 1. Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."
 - M₁ accepts nothing.

We show $A_{TM} <_m \overline{EQ_{TM}}$ (and hence $\overline{A_{TM}} <_m EQ_{TM}$) with the following *f*:

- F = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2 M_1 = "On any input:
 - 1. Reject"

- 1. Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."
 - M₁ accepts nothing.
 - If M accepts w then M_2 accepts everything. So M_1 and M_2 are not equivalent.

We show $A_{TM} <_m \overline{EQ_{TM}}$ (and hence $\overline{A_{TM}} <_m EQ_{TM}$) with the following *f*:

- F = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2 M_1 = "On any input:
 - 1. Reject"

- 1. Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."
 - M₁ accepts nothing.
 - If M accepts w then M_2 accepts everything. So M_1 and M_2 are not equivalent.
 - If *M* does not accept *w* then M_2 accepts nothing. So M_1 and M_2 are equivalent.

We show $A_{TM} <_m \overline{EQ_{TM}}$ (and hence $\overline{A_{TM}} <_m EQ_{TM}$) with the following *f*:

- F = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2 M_1 = "On any input:
 - 1. Reject"

 $M_2 =$ "On any input:

- 1. Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."
 - M₁ accepts nothing.
 - If M accepts w then M_2 accepts everything. So M_1 and M_2 are not equivalent.
 - If *M* does not accept *w* then *M*₂ accepts nothing. So *M*₁ and *M*₂ are equivalent.
 - So $A_{TM} <_m \overline{EQ_{TM}}$ (and hence $\overline{A_{TM}} <_m EQ_{TM}$)

(Lecture 17)

We show $A_{TM} <_m EQ_{TM}$ (and hence $\overline{A_{TM}} <_m \overline{EQ_{TM}}$) with the following *g*:

G = "On input $\langle M, w \rangle$ where M is a TM and w is a string:

- G = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2

- G = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2 $M_1 =$ "On any input:
 - 1. Accept"

- G = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2 $M_1 =$ "On any input:
 - 1. Accept"
 - $M_2 =$ "On any input:
 - 1. Run M on w. If it accepts, accept."

- G = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2 $M_1 =$ "On any input:
 - 1. Accept"
 - $M_2 =$ "On any input:
 - 1. Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."

- G = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2 $M_1 =$ "On any input:
 - 1. Accept"
 - $M_2 =$ "On any input:
 - 1. Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."
 - M₁ accepts everything.

- G = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2 M_1 = "On any input:
 - 1. Accept"
 - $M_2 =$ "On any input:
 - 1. Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."
 - M₁ accepts everything.
 - If *M* accepts *w* then M_2 accepts everything. So M_1 and M_2 are equivalent.

- G = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2 M_1 = "On any input:
 - 1. Accept"
 - $M_2 =$ "On any input:
 - 1. Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."
 - M₁ accepts everything.
 - If M accepts w then M_2 accepts everything. So M_1 and M_2 are equivalent.
 - If *M* does not accept *w* then M_2 accepts nothing. So M_1 and M_2 are not equivalent.

- G = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
- 1. Construct the following two machines M_1 and M_2 M_1 = "On any input:
 - 1. Accept"
 - $M_2 =$ "On any input:
 - 1. Run M on w. If it accepts, accept."
- 2. Output $\langle M_1, M_2 \rangle$."
 - M₁ accepts everything.
 - If M accepts w then M_2 accepts everything. So M_1 and M_2 are equivalent.
 - If *M* does not accept *w* then M_2 accepts nothing. So M_1 and M_2 are not equivalent.
 - So $A_{TM} <_m EQ_{TM}$ (and hence $\overline{A_{TM}} <_m \overline{EQ_{TM}}$)