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REVIEW OF DECIDABILITY AND REDUCTIONS
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REDUCIBILITY

A reduction is a way of converting one problem to another problem, so
that the solution to the second problem can be used to solve the first
problem.

Finding the area of a rectangle, reduces to measuring its width and height
Solving a set of linear equations, reduces to inverting a matrix.

Reducibility involves two problems A and B.

If A reduces to B, you can use a solution to B to solve A

When A is reducible to B, solving A can not be “harder” than solving B.
If A is reducible to B and B is decidable, then A is also decidable.
If A is undecidable and reducible to B, then B is undecidable.
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PROVING UNDECIDABILITY VIA REDUCTIONS

THEOREM 5.2
ETM = {〈M〉 | M is a TM and L(M) = Φ} is undecidable.

Suppose R decides ETM . We try to construct S to decide ATM using R.

Note that S takes 〈M,w〉 as input.

One idea is to run R on 〈M〉 to check if M accepts some string or not –
but that that does not tell us if M accepts w .
Instead we modify M to M1. M1 rejects all strings other than w but on w ,
it does what M does.
Now we can check if L(M1) = Φ.
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PROVING UNDECIDABILITY VIA REDUCTIONS

THEOREM 5.2
ETM = {〈M〉 | M is a TM and L(M) = Φ} is undecidable.

PROOF

For any w define M1 as
M1 = “On input x :

1 If x 6= w , reject.
2 If x = w , run M on input w and accept if M does.”

Note that M1 either accepts w only or nothing!
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PROVING UNDECIDABILITY VIA REDUCTIONS

PROOF CONTINUED

Assume R decides ETM

S defines below uses R to decide on ATM
S = “On input 〈M,w〉

1 Use 〈M,w〉 to construct M1 above.
2 Run R on input 〈M1〉
3 If R accepts, reject, if R rejects, accept.

So, if R decides L(M1) is empty,

then M does NOT accept w ,
else M accepts w .

If R decides ETM then S decides ATM – Contradiction.
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REDUCTIONS VIA COMPUTATION HISTORIES

An accepting computation history for a TM is a sequence of
configurations

C1,C2, . . . ,Cl

such that

C1 is the start configuration for input w
Cl is an accepting configuration, and
each Ci follows legally from the preceding configuration.

A rejecting computation history is defined similarly.
Computation histories are finite sequences – if M does not halt on M,
there is no computation history.
Deterministic v.s nondeterministic computation histories.
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LINEAR BOUNDED AUTOMATON

Suppose we cripple a TM so that the head never moves outside the
boundaries of the input string.

Such a TM is called a linear bounded automaton (LBA)
Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with q states, g symbols in the tape alphabet. There are
exactly qngn distinct configurations for a tape of length n.

PROOF.

The machine can be in one of q states.
The head can be on one of the n cells.
At most gn distinct strings can occur on the tape.

THEOREM 5.9
ALBA = {〈M,w〉 | M is an LBA that accepts string w} is decidable.
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COMPUTATION OVER “COMPUTATION HISTORIES”

Now for a really wild and crazy idea!

Consider an accepting computation history of a TM M, C1,C2, . . . ,Cl

Note that each Ci is a string.
Consider the string

# ︸ ︷︷ ︸
C1

# ︸ ︷︷ ︸
C2

# ︸ ︷︷ ︸
C3

# · · ·# ︸ ︷︷ ︸
Cl

#

The set of all valid accepting histories is also a language!!
This string has length m and an LBA B can check if this is a valid
computation history for a TM M accepting w .

Check if C1 = q0w1w2 · · ·wn

Check if Cl = · · · qaccept · · ·
Check if each Ci+1 follows from Ci legally.

Note that B is not constructed for the purpose of running it on any input!
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POST CORRESPONDENCE PROBLEM

Undecidability is not just confined to problems concerning automata and
languages.

There are other “natural” problems which can be proved undecidable.
The Post correspondence problem (PCP) is a tiling problem over strings.
A tile or a domino contains two strings, t and b; e.g.,

[ ca
a

]
.

Suppose we have dominos{[
b
ca

]
,

[
a

ab

]
,

[
ca
a

]
,

[
abc

c

]}
A match is a list of these dominos so that when concatenated the top and
the bottom strings are identical. For example,[

a
ab

][
b
ca

][
ca
a

][
a

ab

][
abc

c

]
=

abcaaabc
abcaaabc

The set of dominos
{[

abc
ab

]
,

[
ca
a

]
,

[
acc
ba

]
,

}
does not have a solution.
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POST CORRESPONDENCE PROBLEM

AN INSTANCE OF THE PCP
A PCP instance over Σ is a finite collection P of dominos

P =

{[
t1
b1

]
,

[
t2
b2

]
, · · · ,

[
tk
bk

]}
where for all i ,1 ≤ i ≤ k , ti ,bi ∈ Σ∗.

MATCH

Given a PCP instance P, a match is a nonempty sequence

i1, i2, . . . , i`

of numbers from {1,2, . . . , k} (with repetition) such that
ti1 ti2 · · · ti` = bi1bi2 · · · bi`

( Lecture 17) Slides for 15-453 Spring 2011 11 / 28



POST CORRESPONDENCE PROBLEM

AN INSTANCE OF THE PCP
A PCP instance over Σ is a finite collection P of dominos

P =

{[
t1
b1

]
,

[
t2
b2

]
, · · · ,

[
tk
bk

]}
where for all i ,1 ≤ i ≤ k , ti ,bi ∈ Σ∗.

MATCH

Given a PCP instance P, a match is a nonempty sequence

i1, i2, . . . , i`

of numbers from {1,2, . . . , k} (with repetition) such that
ti1 ti2 · · · ti` = bi1bi2 · · · bi`

( Lecture 17) Slides for 15-453 Spring 2011 11 / 28



POST CORRESPONDENCE PROBLEM

QUESTION:
Does a given PCP instance P have a match?

LANGUAGE FORMULATION:
PCP = {〈P〉 | P is a PCP instance and it has a match}

THEOREM 5.15
PCP is undecidable.

Proof: By reduction using computation histories. If PCP is decidable then so
is ATM . That is, if PCP has a match, then M accepts w .
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PCP – THE STRUCTURE OF THE UNDECIDABILITY

PROOF

The reduction works in two steps:
1 We reduce ATM to Modified PCP (MPCP).

2 We reduce MPCP to PCP.

MPCP AS A LANGUAGE PROBLEM

MPCP = {〈P〉 | P is a PCP instance and it has a match which starts with
index 1}

So the solution to MPCP starts with the domino
[

t1
b1

]
. We later remove

this restriction in the second part of the proof.
We also assume that the decider for M never moves its head to the left of
the input w .
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PCP – THE PROOF

For input 〈M,w〉 of ATM , construct an MPCP instance such that M accepts w
iff P ′ has a match starting with domino 1

The first part of the proof proceeds in 7 stages where we add different
types of dominos to P ′ depending on the TM
M = (Q,Σ, Γ, δ,q0,qaccept ,qreject ).
Using the dominos, we try to construct an accepting computation history
for M accepting w .
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PCP – ADDING THE RIGHT KIND OF DOMINOS

1 The first domino kicks of the computation history[
t1
b1

]
=

[
#

#q0w1w2 · · ·wn#

]
,

2 Handle right moving transitions. For every a,b ∈ Γ and every q, r ∈ Q
where q 6= qreject

if δ(q,a) = (r ,b,R), put
[

qa
br

]
into P ′

3 Handle left moving transitions. For every a,b, c ∈ Γ and every q, r ∈ Q
where q 6= qreject

if δ(q,a) = (r ,b,L), put
[

cqa
rcb

]
into P ′

4 For every a ∈ Γ put
[

a
a

]
into P ′

5 Put
[
#
#

]
and

[
#
t#

]
into P ′.
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PCP - HOW THE DOMINOS WORK

Let us assume Γ = {0,1,2,t},w = 0100 and that δ(q0,0) = (q7,2,R)

Part 1 places the first domino and the match begins

#

q0 0 1 0 0 #

# q0 0 1 0 0 #

2 q7 1 0 0 #

Part 2 places the domino
[

q00
2q7

]
Part 4 places the dominos

[
0
0

] [
1
1

] [
2
2

]
and

[
t
t

]
into P ′ so we can

extend the match.

Part 5 puts in the domino
[
#
#

]
What exactly is going on ?
We force the bottom string to create a copy on the top which is forced to
generate the next configuration on the bottom – We are simulating M on
w !
The process continues until M reaches a halting state and we then pad
the upper string.
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PCP – MORE DOMINO TYPES

6 For every a ∈ Γ,

put
[

aqaccept

qaccept

]
and

[
qaccepta
qaccept

]
into P ′

These dominos “clean-up” by adding any symbols to the top string while
adding just the state symbol to the lower string.

Just before these apply the upper and lower strings are like

. . . #

. . . # 2 1 qaccept 0 2 #

After using these dominos, we end up with

. . . #

. . . # qaccept #

7 Finally we add the domino [
qaccept##

#

]
to complete the match.
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PCP PROOF – SUMMARY OF PART 1

This concludes the construction of P ′.

Thus if M accepts w , the set of MPCP dominos constructed have a
solution to the MPCP problem.
But not yet to the PCP problem.
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PCP PROOF – PART 2

Suppose we have the MPCP instance

P ′ =

{[
t1
b1

]
,

[
t2
b2

]
, · · · ,

[
tk
bk

]}

We let P be the collection

P =

{[
?t1
?b1?

]
,

[
?t2
b2?

]
, · · · ,

[
?tk
bk?

][
?�
�

]}
The only domino that could possibly start a match is the first one!
The last domino just adds the missing ? at the end of the match.

CONCLUSION

PCP is undecidable!
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SUMMARY OF REDUCIBILITY

We know that language A is undecidable. By reducing A to B we want to show
that the language B is also undecidable.

1 Assume that we have a decider MB for B.
2 Using MB we construct a decider MA for the language A:

MA = “On input 〈IA〉

1. Algorithmically construct an input 〈IB〉 for MB , such that

a) Either

If 〈IA〉 ∈ A then 〈IB〉 ∈ B
If 〈IA〉 6∈ A then 〈IB〉 6∈ B

b) or

If 〈IA〉 ∈ A then 〈IB〉 6∈ B
If 〈IA〉 6∈ A then 〈IB〉 ∈ B

2. Run the decider MB on 〈IB〉 for MB

Case a): MA accepts if MB accepts, and rejects if MB rejects
Case b): MA rejects if MB accepts, and accepts if MB reject.

3 We know MA can not exist so MB can not exist.
4 B is undecidable.
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COMPUTABLE FUNCTIONS

IDEA

Turing Machines can also compute function f : Σ∗ −→ Σ∗.

COMPUTABLE FUNCTION

A function f : Σ∗ −→ Σ∗ is a computable function if and only if there exists a
TM Mf , which on any given input w ∈ Σ∗

always halts, and
leaves just f (w) on its tape.

Examples:

Let f (w)
def
= ww be a function. Then f is computable.

Let f (〈n1,n2〉)
def
= 〈n〉 where n1 and n2 are integers and n = n1 ∗ n2. Then

f is computable.
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MAPPING REDUCIBILITY

DEFINITION

Let A,B ⊆ Σ∗. We say that language A is mapping reducible to language B,
written A <m B, if and only if

1 There is a computable function f : Σ∗ −→ Σ∗ such that
2 For every w ∈ Σ∗,w ∈ A if and only if f (w) ∈ B.

The function f is called a reduction of A to B.

THEOREM 5.22
If A <m B and B is decidable, then A is decidable.

PROOF

Let M be a decider for B and f be a mapping from A to B. Then N decides A.
N = “On input w

1 Compute f (w)

2 Run M on input f (w) and output whatever M outputs.”

If A <m B and A is undecidable, then B is undecidable.
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MAPPING REDUCIBILITY

THEOREM

ATM <m HALTTM

PROOF.
Construct a computable function f which maps 〈M,w〉 to 〈M ′,w ′〉 such that

〈M,w〉 ∈ ATM if and only if 〈M ′,w ′〉 ∈ HALTTM

Mf = “On input 〈M,w〉

1. Construct the following machine M ′:
M ′ = “On input x

1. Run M on x .
2. If M accepts accept
3. If M rejects enter a loop.”

2. Output 〈M ′,w〉.”
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MORE EXAMPLES OF MAPPING REDUCIBILITY

Earlier we showed

ATM <m MPCP
MPCP <m PCP

In Theorem 5.4 we showed ETM <m EQTM . The reduction f maps from
〈M〉 to the output 〈M,M1〉 where M1 is the machine that rejects all inputs.

THEOREM 5.24
If A <m B and B is Turing-recognizable, then A is Turing-recognizable.

PROOF

Essentially the same as the previous proof.
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SUMMARY OF MAPPING REDUCIBILITY RESULTS

SUMMARY OF THEOREMS

Assume that A <m B. Then

1 If B is decidable then A is decidable.
2 If A is undecidable then B is undecidable.
3 If B is Turing-recognizable then A is Turing-recognizable.
4 If A is not Turing-recognizable then B is not Turing-recognizable.
5 A <m B

Useful observation:
Suppose you can show ATM <m B
This means ATM <m B
Since ATM is Turing-unrecognizable then B is Turing-unrecognizable.
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EXAMPLE OF USE

THEOREM 5.30
EQTM = {〈M1,M2〉 | M1 and M2 are TMs and L(M1) = L(M2)} is neither Turing
recognizable nor co-Turing-recognizable.

PROOF IDEA

We show

ATM <m EQTM

ATM <m EQTM

These then imply the theorem.
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PROOF FOR ATM <m EQTM

We show ATM <m EQTM (and hence ATM <m EQTM ) with the following f :

F = “On input 〈M,w〉 where M is a TM and w is a string:

1. Construct the following two machines M1 and M2

M1 = “On any input:
1. Reject”

M2 = “On any input:
1. Run M on w . If it accepts, accept.”

2. Output 〈M1,M2〉.”

M1 accepts nothing.

If M accepts w then M2 accepts everything. So M1 and M2 are not
equivalent.
If M does not accept w then M2 accepts nothing. So M1 and M2 are
equivalent.

So ATM <m EQTM (and hence ATM <m EQTM )
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