FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

REDUCIBILITY

THE LANDSCAPE OF THE CHOMSKY HIERARCHY

REDUCIBILITY

- A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.
 - Finding the area of a rectangle, reduces to measuring its width and height
 - Solving a set of linear equations, reduces to inverting a matrix.
- Reducibility involves two problems A and B.
 - If A reduces to B, you can use a solution to B to solve A
- When A is reducible to B solving A can not be "harder" than solving B.
- If A is reducible to B and B is decidable, then A is also decidable.
- If *A* is undecidable and reducible to *B*, then *B* is undecidable.

THEOREM 5.1

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \text{ is undecidable.}$

- Use the idea that " If A is undecidable and reducible to B, then B is undecidable."
- Suppose *R* decides *HALT_{TM}*. We construct *S* to decide *A_{TM}*.
 S = "On input (*M*, *w*)
- - Run *R* on input $\langle M, w \rangle$.
 - If R rejects reject.
 - If R accepts, simulate M on w until it halts.
 - If M has accepted, accept; If M has rejected, reject."
- Since A_{TM} is reduced to $HALT_{TM}$, $HALT_{TM}$ is undecidable.

THEOREM 5.2

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \} \text{ is undecidable.}$

- Suppose *R* decides *E_{TM}*. We try to construct *S* to decide *A_{TM}* using *R*.
 Note that *S* takes (*M*, *w*) as input.
- One idea is to run *R* on ⟨*M*⟩ to check if *M* accepts some string or not but that does not tell us if *M* accepts *w*.
- Instead we modify *M* to *M*₁. *M*₁ rejects all strings other than *w* but on *w*, it does what *M* does.
- Now we can check if $L(M_1) = \Phi$.

THEOREM 5.2

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \} \text{ is undecidable.}$

- For any *w* define *M*₁ as $M_1 =$ "On input *x*:
 - If $x \neq w$, reject.
 - If x = w, run *M* on input *w* and *accept* if *M* does."
- Note that *M*₁ either accepts *w* only or nothing!

PROOF CONTINUED

- Assume *R* decides *E*_{TM}
- S defines below uses R to decide on ATM
 - S = "On input $\langle M, w \rangle$
 - Use $\langle M, w \rangle$ to construct M_1 above.
 - **2** Run *R* on input $\langle M_1 \rangle$
 - If *R* accepts, *reject*, if *R* rejects, *accept*.
- So, if *R* decides *M*₁ is empty,
 - then *M* does NOT accept *w*,
 - else M accepts w.
- If *R* decides E_{TM} then *S* decides A_{TM} Contradiction.

TESTING FOR REGULARITY (OR OTHER PROPERTIES)

- Can we find out if a language accepted by a Turing machine *M* is accepted by a simpler computational model?
 - Is the language of a TM actually a regular language? (REGULAR_{TM})
 - Is the language of a TM actually a CFL? (CFL_{TM})
 - Does that language of a TM have an "interesting" property?
 - Rice's Theorem.

 $REGULAR_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language } \}$ is undecidable.

PROOF IDEA

- We assume *REGULAR_{TM}* is decidable by a TM *R* and use this assumption to construct a TM *S* that decides *A_{TM}*.
- The basic idea is for *S* to take as input $\langle M \rangle$ and modify *M* into M_2 so that the resulting TM recognizes a regular language if and only if *M* accepts *w*.

• *M*₂

- accepts $\{0^n 1^n \mid n \ge 0\}$ if *M* does not accept *w*,
- but recognizes Σ^* if *M* accepts *w*.

PROOF IDEA – CONTINUED

- *M*₂ accepts {0ⁿ1ⁿ | n ≥ 0} if *M* does not accept *w*, but recognizes Σ* if *M* accepts *w*.
- What does M₂ look like?
- *M*₂ = "On input *x*
 - If x has the form $0^n 1^n$, accept.
 - If x does not have this form, run M on input w and accept if M accepts w."
- All strings x (that is Σ^*) are accepted if M accepts w.

TESTING FOR REGULARITY

TESTING FOR REGULARITY

- S = "On input $\langle M, w \rangle$, where *M* is a TM and *w* is a string:
 - Construct the following TM M₂.
 - $O M_2 = "On input x]$
 - 1. If x has the form $0^n 1^n$, accept.
 - 2. If x does not have this form, run M on input w and accept if M accepts w."
 - **③** Run *R* on $\langle M_2 \rangle$
 - If R accepts, accept, if R rejects, reject.
- So, *R* will say M_2 is a regular language, if *M* accepts *w*.
- S says "M accepts w" if R decides M₂ is regular Contradiction!

TESTING FOR LANGUAGE EQUALITY

THEOREM 5.4

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ is undecidable.

PROOF IDEA

- We reduce E_{TM} (the emptiness problem) to this problem.
- If one of the languages is empty, determining equality is the same as determining if the second language is empty!
- In fact, the *E_{TM}* is a special case of the *EQ_{TM}* problem!!

TESTING FOR LANGUAGE EQUALITY

THEOREM 5.4

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ is undecidable.

- Assume R decides EQ_{TM}
- S = "On input $\langle M \rangle$ where M is a TM:
 - **O** Run *R* on input $\langle M, M_1 \rangle$ where M_1 is a TM that rejects all inputs.
 - If R accepts, accept; if R rejects reject"
- Thus, if *R* decides *EQ*_{TM}, then *S* decides *E*_{TM}
- But E_{TM} is undecidable, so EQ_{TM} , must be undecidable.

REDUCTIONS VIA COMPUTATION HISTORIES

 An accepting computation history for a TM is a sequence of configurations

 C_1, C_2, \ldots, C_l

such that

- C_1 is the start configuration for input w
- C₁ is an accepting configuration, and
- each *C_i* follows legally from the preceding configuration.
- A rejecting computation history is defined similarly.
- Computation histories are finite sequences if *M* does not halt on *w*, there is no computation history.
- Deterministic v.s nondeterministic computation histories.

LINEAR BOUNDED AUTOMATON

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

Lemma

Let *M* be a LBA with *q* states, *g* symbols in the tape alphabet. There are exactly qng^n distinct configurations for a tape of length *n*.

PROOF.

- The machine can be in one of *q* states.
- The head can be on one of the *n* cells.
- At most *gⁿ* distinct strings can occur on the tape.

DECIDABILITY OF LBA PROBLEMS

Theorem 5.9

 $A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is an LBA that accepts string } w \} \text{ is decidable.}$

PROOF IDEA

- We simulate LBA *M* on *w* with a TM *L* (which is NOT an LBA!)
- If during simulation *M* accepts or rejects, we accept or reject accordingly.
- What happens if the LBA M loops?
 - Can we detect if it loops?
- *M* has a finite number of configurations.
 - If it repeats any configuration during simulation, it is in a loop.
 - If *M* is in a loop, we will know this after a finite number of steps.
 - So if the LBA *M* has not halted by then, it is looping.

DECIDABILITY OF LBA PROBLEMS

Theorem 5.9

 $A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is an LBA that accepts string } w \} \text{ is decidable.}$

- The following TM decides A_{LBA}.
- L = "On input $\langle M, w \rangle$
 - Simulate *M* on for *qngⁿ* steps or until it halts.
 - If M has halted, accept if it has accepted, and reject if it has rejected. If it has NOT halted, reject."
- LBAs and TMs differ in one important way. A_{LBA} is decidable.

COMPUTATION OVER "COMPUTATION HISTORIES"

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM M, C₁, C₂,..., C_l
- Note that each C_i is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!
- This string has length *m* and an LBA *B* can check if this is a valid computation history for a TM *M* accepting *w*.
 - Check if $C_1 = q_0 w_1 w_2 \cdots w_n$
 - Check if $C_l = \cdots q_{accept} \cdots$
 - Check if each C_{i+1} follows from C_i legally.
- Note that B is not constructed for the purpose of running it on any input!
- If $L(B) \neq \Phi$ then *M* accepts *w*

DECIDABILITY OF LBA PROBLEMS

THEOREM 5.10

 $E_{LBA} = \{ \langle M \rangle \mid M \text{ is an LBA and } L(M) = \Phi \} \text{ is undecidable.}$

- Suppose TM R decides E_{LBA} , we can construct a TM S which decides A_{TM}
- S = "On input $\langle M, w \rangle$, where *M* is a TM and *w* is a string
 - Oconstruct LBA B from M and w as described earlier.
 - **2** Run *R* on $\langle B \rangle$.
 - If R rejects, accept; if R accepts, reject."
- So if *R* says $L(B) = \Phi$, the *M* does NOT accept *w*.
- If *R* says $L(B) \neq \Phi$, the *M* accepts *w*.
- But, A_{TM} is undecidable contradiction.