
FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

TURING MACHINES

Carnegie Mellon University in Qatar

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 1 / 30

TURING MACHINES-SYNOPSIS

The most general model of computation
Computations of a TM are described by a sequence of
configurations.

Accepting Configuration
Rejecting Configuration

Turing-recognizable languages
TM halts in an accepting configuration if w is in the
language.
TM may halt in a rejecting configuration or go on indefinitely
if w is not in the language.

Turing-decidable languages
TM halts in an accepting configuration if w is in the
language.
TM halts in a rejecting configuration if w is not in the
language.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 2 / 30

NONDETERMINISTIC TURING MACHINES

We defined the state transition of the ordinary TM as

δ : Q × Γ→ Q × Γ× {L,R}

A nondeterministic TM would proceed computation with
multiple next cnfigurations. δ for a nondeterministic TM
would be

δ : Q × Γ→ P(Q × Γ× {L,R})

(P(S) is the power set of S.)

This definition is analogous to NFAs and PDAs.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 3 / 30

NONDETERMINISTIC TURING MACHINES

A computation of a Nondeterministic TM is a tree, where
each branch of the tree is looks like a computation of an
ordinary TM.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 4 / 30

NONDETERMINISTIC TURING MACHINES

If a single branch reaches the accepting state, the
Nondeterministic TM accepts, even if other branches reach
the rejecting state.
What is the power of Nondeterministic TMs?

Is there a language that a Nondeterministic TM can accept
but no deterministic TM can accept?

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 5 / 30

NONDETERMINISTIC TURING MACHINES

THEOREM
Every nondeterministic Turing machine has an equivalent
deterministic Turing Machine.

PROOF IDEA
Timeshare a deterministic TM to different branches of the
nondeterministic computation!
Try out all branches of the nondeterministic computation
until an accepting configuration is reached on one branch.
Otherwise the TM goes on forever.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 6 / 30

NONDETERMINISTIC TURING MACHINES

Deterministic TM D simulates the Nondeterministic TM N.
Some of branches of the N ’s computations may be infinite,
hence its computation tree has some infinite branches.
If D starts its simulation by following an infinite branch, D
may loop forever even though N ’s computation may have a
different branch on which it accepts.
This is a very similar problem to processor scheduling in
operating systems.

If you give the CPU to a (buggy) process in an infinite loop,
other processes “starve”.

In order to avoid this unwanted situation, we want D to
execute all of N ’s computations concurrently.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 7 / 30

NONDETERMINISTIC COMPUTATION

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 8 / 30

NONDETERMINISTIC COMPUTATION

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 9 / 30

NONDETERMINISTIC COMPUTATION

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 10 / 30

NONDETERMINISTIC COMPUTATION

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 11 / 30

SIMULATING NONDETERMINISTIC

COMPUTATION

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 12 / 30

SIMULATING NONDETERMINISTIC

COMPUTATION

During simulation, D processes the
configurations of N in a breadth-first
fashion.

Thus D needs to maintain a queue
of N ’s configurations (Remember
queues?)

D gets the next
configuration from the
head of the queue.

D creates copies of this
configuration (as many
as needed)

On each copy, D
simulates one of the
nondeterministic moves
of N.

D places the resulting
configurations to the
back of the queue.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 13 / 30

STRUCTURE OF THE SIMULATING DTM

N is simulated with 2-tape DTM, D
Note that this is different from the construction in the book!

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 14 / 30

HOW D SIMULATES N

Built into the finite control of D is the knowledge of what
choices of moves N has for each state and input.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 15 / 30

HOW D SIMULATES N

1 D examines the state and the input symbol of the current
configuration (right after the dotted separator)

2 If the state of the current configuration is the accept state of
N, then D accepts the input and stops simulating N.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 16 / 30

HOW D SIMULATES N

1 D copies k copies of the current configuration to the scratch
tape.

2 D then applies one nondeterministic move of N to each
copy.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 17 / 30

HOW D SIMULATES N

3 D then copies the new configurations from the scratch tape,
back to the end of tape 1 (so they go to the back of the
queue), and then clears the scratch tape.

4 D then returns to the marked current configuration, and
“erases” the mark, and “marks” the next configuration.

5 D returns to step 1), if there is a next configuration.
Otherwise rejects.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 18 / 30

HOW D SIMULATES N

Let m be the maximum number of choices N has for any of
its states.
Then, after n steps, N can reach at most
1 + m + m2 + · · ·+ mn configurations (which is at most nmn)
Thus D has to process at most this many configurations to
simulate n steps of N.
Thus the simulation can take exponentially more time than
the nondeterministic TM.
It is not known whether or not this exponential slowdown is
necessary.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 19 / 30

IMPLICATIONS

COROLLARY
A language is Turing-recognizable if and only if some
nondeterministic TM recognizes it.

COROLLARY
A language is decidable if and only of some nondeterministic
TM decides it.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 20 / 30

ENUMERATORS

Remember we noted that some books used the term
recursively enumerable for Turing-recognizable.
This term arises from a variant of a TM called an
enumerator.

TM generates strings one by one.
Everytime the TM wants to add a string to the list, it sends it
to the printer.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 21 / 30

ENUMERATORS

The enumerator E starts with a blank input tape.
If it does not halt, it may print an infinite list of strings.
The strings can be enumerated in any order; repetitions are
possible.
The language of the enumerator is the collection of strings it
eventually prints out.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 22 / 30

ENUMERATORS

THEOREM
A language is Turing recognizable if and only if some
enumerator enumerates it.

PROOF.
The If-part: If an enumerator E enumerates the language A then
a TM M recognizes A.
M = “On input w

1 Run E . Everytime E outputs a string, compare it with w .
2 If w ever appears in the output of E , accept.”

Clearly M accepts only those strings that appear on E ’s list.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 23 / 30

ENUMERATORS

THEOREM
A language is Turing recognizable if and only if some
enumerator enumerates it.

PROOF.
The Only-If-part: If a TM M recognizes a language A, we can
construct the following enumerator for A. Assume s1, s2, s3, . . . is
a list of possible strings in Σ∗.
E = “Ignore the input

1 Repeat the following for i = 1,2,3, . . .
2 Run M for i steps on each input s1, s2, s3, . . . si .
3 If any computations accept, print out corresponding sj .”

If M accepts a particular string, it will appear on the list
generated by E (in fact infinitely many times)

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 24 / 30

THE DEFINITION OF ALGORITHM - HISTORY

in 1900, Hilbert posed the following problem:
“Given a polynomial of several variables with
integer coefficients, does it have an integer root –
an assignment of integers to variables, that make
the polynomial evaluate to 0”

For example, 6x3yz2 + 3xy2 − x3 − 10 has a root at
x = 5, y = 3, z = 0.
Hilbert explicitly asked that an algorithm/procedure to be
“devised”. He assumed it existed; somebody needed to find
it!
70 years later it was shown that no algorithm exists.
The intuitive notion of an algorithm may be adequate for
giving algorithms for certain tasks, but was useless for
showing no algorithm exists for a particular task.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 25 / 30

THE DEFINITION OF ALGORITHM - HISTORY

In early 20th century, there was no formal definition of an
algorithm.
In 1936, Alonzo Church and Alan Turing came up with
formalisms to define algorithms. These were shown to be
equivalent, leading to the

CHURCH-TURING THESIS
Intutitive notion of algorithms ≡ Turing Machine Algorithms

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 26 / 30

THE DEFINITION OF AN ALGORITHM

Let D = {p | p is a polynomial with integral roots}
Hilbert’s 10th problem in TM terminology is “Is D
decidable?” (No!)
However D is Turing-recognizable!
Consider a simpler version
D1 = {p | p is a polynomial over x with integral roots}
M1 = “The input is polynomial p over x .

1 Evaluate p with x successively set to 0, 1, -1, 2, -2, 3, -3,
2 If at any point, p evaluates to 0, accept.”

D1 is actually decidable since only a finite number of x
values need to be tested (math!)
D is also recognizable: just try systematically all integer
combinations for all variables.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 27 / 30

DESCRIBING TURING MACHINES AND THEIR

INPUTS

For the rest of the course we will have a rather standard
way of describing TMs and their inputs.
The input to TMs have to be strings.
Every object O that enters a computation will be
represented with an string 〈O〉, encoding the object.
For example if G is a 4 node undirected graph with 4 edges
〈O〉 = (1,2,3,4)((1,2),(2,3),(3,1),(1,4))

Then we can define problems over graphs,e.g., as:

A = {〈G〉 | G is a connected undirected graph}

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 28 / 30

DESCRIBING TURING MACHINES AND THEIR

INPUTS

A TM for this problem can be given as:
M = “On input 〈G〉, the encoding of a graph G:

1 Select the first node of G and mark it.
2 Repeat 3) until no new nodes are marked
3 For each node in G, mark it, if there is edge attaching it to

an already marked node.
4 Scan all the nodes in G. If all are marked, the accept, else

reject”

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 29 / 30

OTHER OBJECT ENCODINGS

DFAs: Represent as a graph with 4 components, q0, F , δ as
a list of labeled edges.
TMs: Represent as a string encoding δ with blocks of 5
components, e.g., qi ,a,qj ,b,L. Assume that q0 is always
the start state and q1 is the final state.

Individual symbols can even be encoded using only two
symbols e.g. just {0,1}.

(LECTURE 14) SLIDES FOR 15-453 SPRING 2011 30 / 30

