
FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

TURING MACHINES

Carnegie Mellon University in Qatar

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 1 / 32

TURING MACHINES-SYNOPSIS

The most general model of computation
Computations of a TM are described by a sequence of
configurations.

Accepting Configuration
Rejecting Configuration

Turing-recognizable languages
TM halts in an accepting configuration if w is in the
language.
TM may halt in a rejecting configuration or go on indefinitely
if w is not in the language.

Turing-decidable languages
TM halts in an accepting configuration if w is in the
language.
TM halts in a rejecting configuration if w is not in the
language.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 2 / 32

EXAMPLE TM-2

A Turing machine that decides A = {02n | n ≥ 0}
M = “On Input string w

1 Sweep left-to-right across the tape, crossing off every other
0.

2 If in 1) that tape has one 0 left, accept (Why?)
3 If in 1) tape has more than one 0, and the number of 0’s is

odd, reject. (Why?)
4 Return the head to the left end of the tape.
5 Go to 1)”

Basically every sweep cuts the number of 0’s by two.
At the end only 1 should remain and if so the original
number of zeroes was a power of 2.’

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 3 / 32

EXAMPLE TM-2

Configurations for input 0000.
1 q10000t
2 tq2000t
3 txq300t
4 tx0q40t
5 tx0xq3t

6 tx0q5xt
7 txq50xt
8 tq5x0xt
9 q5 t x0xt

10 tq2x0xt

11 txq20xt
12 txxq3xt
13 txxxq3t
14 txxq5xt
15 txq5xxt

16 tq5xxxt
17 q5 t xxxt
18 tq2xxxt
19 txq2xxt
20 txxq2xt
21 txxxq2t
22 txxx t qaccept

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 4 / 32

EXAMPLE TM-3

A TM to add 1 to a binary number (with a 0 in front)
M = “On input w

1 Go to the right end of the input string
2 Move left as long as a 1 is seen, changing it to a 0.
3 Change the 0 to a 1, and halt.”

For example, to add 1 to w = 0110011
Change all the ending 1’s to 0’s⇒ 0110000
Change the next 0 to a 1⇒ 0110100

Now let’s design a TM for this problem.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 5 / 32

VARIANTS OF TMS

We defined the basic Turing Machine
Single tape (infinite in one direction)
Deterministic state transitions

We could have defined many other variants:
Ordinary TMs which need not move after every move.
Multiple tapes – each with its own independent head
Nondeterministic state transitions
Single tape infinite in both directions
Multiple tapes but with a single head
Multidimensional tape (move up/down/left/right)

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 6 / 32

EQUIVALENCE OF POWER

A computational model is robust if the class of languages it
accepts does not change under variants.

We have seen that DFA’s are robust for nondeterminism.
But not PDAs!

The robustness of Turing Machines is by far greater than
the robustness of DFAs and PDAs.
We introduce several variants on Turing machines and show
that all these variants have equal computational power.
When we prove that a TM exists with some properties, we
do not deal with questions like

How large is the TM? or
How complex is it to “program” that TM?

At this point we only seek existential proofs.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 7 / 32

TURING MACHINES WITH THE STAY OPTION

Suppose in addition moving Left or Right, we give the
option to the TM to stay (S) on the current cell, that is:

δ : Q × Γ = Q × Γ× {L,R,S}

Such a TM can easily simulate an ordinary TM: just do not
use the S option in any move.
An ordinary TM can easily simulate a TM with the stay
option.

For each transition with the S option, introduce a new state,
and two transitions

One transition moves the head right, and transits to the new
state.
The next transition moves the head back to left, and transits
to the previous state.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 8 / 32

MULTITAPE TURING MACHINES

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 9 / 32

MULTITAPE TURING MACHINES

A multitape Turing Machine is like an ordinary TM
There are k tapes
Each tape has its own independent read/write head.

The only fundamental difference from the ordinary TM is δ –
the state transition function.

δ : Q × Γk → Q × Γk × {L,R}k

The δ entry δ(qi ,a1, . . . ,ak) = (qj ,b1, . . . ,bk ,L,R,L, ...L)
reads as :

If the TM is in state qi and
the heads are reading symbols a1 through ak ,
Then the machine goes to state qj , and
the heads write symbols b1 through bk , and
Move in the specified directions.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 10 / 32

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 11 / 32

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

We use # as a delimiter to separate out the different tape
contents.
To keep track of the location of heads, we use additional
symbols

Each symbol in Γ has a “dotted” version.
A dotted symbol indicates that the head is on that symbol.
Between any two #’s there is only one symbol that is dotted.

Thus we have 1 real tape with k “virtual’ tapes, and
1 real read/write head with k “virtual” heads.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 12 / 32

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

Given input w = w1 · · ·wn, S puts its tape into the format
that represents all k tapes of M

#
•

w1 w2 · · ·wn#
•
t #

•
t # · · ·#

To simulate a single move of M, S starts at the leftmost #
and scans the tape to the rightmost #.

It determines the symbols under the “virtual” heads.
This is remembered in the finite state control of S. (How
many states are needed?)

S makes a second pass to update the tapes according to M.
If one of the virtual heads, moves right to a #, the rest of
tape to the right is shifted to “open up” space for that “virtual
tape”. If it moves left to a #, it just moves right again.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 13 / 32

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

Thus from now on, whenever needed or convenient we will
use multiple tapes in our constructions.
You can assume that these can always be converted to a
single tape standard TM.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 14 / 32

NONDETERMINISTIC TURING MACHINES

We defined the state transition of the ordinary TM as

δ : Q × Γ→ Q × Γ× {L,R}

A nondeterministic TM would proceed computation with
multiple next cnfigurations. δ for a nondeterministic TM
would be

δ : Q × Γ→ P(Q × Γ× {L,R})

(P(S) is the power set of S.)

This definition is analogous to NFAs and PDAs.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 15 / 32

NONDETERMINISTIC TURING MACHINES

A computation of a Nondeterministic TM is a tree, where
each branch of the tree is looks like a computation of an
ordinary TM.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 16 / 32

NONDETERMINISTIC TURING MACHINES

If a single branch reaches the accepting state, the
Nondeterministic TM accepts, even if other branches reach
the rejecting state.
What is the power of Nondeterministic TMs?

Is there a language that a Nondeterministic TM can accept
but no deterministic TM can accept?

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 17 / 32

NONDETERMINISTIC TURING MACHINES

THEOREM
Every nondeterministic Turing machine has an equivalent
deterministic Turing Machine.

PROOF IDEA
Timeshare a deterministic TM to different branches of the
nondeterministic computation!
Try out all branches of the nondeterministic computation
until an accepting configuration is reached on one branch.
Otherwise the TM goes on forever.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 18 / 32

NONDETERMINISTIC TURING MACHINES

Deterministic TM D simulates the Nondeterministic TM N.
Some of branches of the N ’s computations may be infinite,
hence its computation tree has some infinite branches.
If D starts its simulation by following an infinite branch, D
may loop forever even though N ’s computation may have a
different branch on which it accepts.
This is a very similar problem to processor scheduling in
operating systems.

If you give the CPU to a (buggy) process in an infinite loop,
other processes “starve”.

In order to avoid this unwanted situation, we want D to
execute all of N ’s computations concurrently.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 19 / 32

NONDETERMINISTIC COMPUTATION

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 20 / 32

NONDETERMINISTIC COMPUTATION

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 21 / 32

NONDETERMINISTIC COMPUTATION

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 22 / 32

NONDETERMINISTIC COMPUTATION

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 23 / 32

SIMULATING NONDETERMINISTIC

COMPUTATION

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 24 / 32

SIMULATING NONDETERMINISTIC

COMPUTATION

During simulation, D processes the
configurations of N in a breadth-first
fashion.

Thus D needs to maintain a queue
of N ’s configurations (Remember
queues?)

D gets the next
configuration from the
head of the queue.

D creates copies of this
configuration (as many
as needed)

On each copy, D
simulates one of the
nondeterministic moves
of N.

D places the resulting
configurations to the
back of the queue.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 25 / 32

STRUCTURE OF THE SIMULATING DTM

N is simulated with 2-tape DTM, D
Note that this is different from the construction in the book!

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 26 / 32

HOW D SIMULATES N

Built into the finite control of D is the knowledge of what
choices of moves N has for each state and input.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 27 / 32

HOW D SIMULATES N

1 D examines the state and the input symbol of the current
configuration (right after the dotted separator)

2 If the state of the current configuration is the accept state of
N, then D accepts the input and stops simulating N.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 28 / 32

HOW D SIMULATES N

1 D copies k copies of the current configuration to the scratch
tape.

2 D then applies one nondeterministic move of N to each
copy.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 29 / 32

HOW D SIMULATES N

3 D then copies the new configurations from the scratch tape,
back to the end of tape 1 (so they go to the back of the
queue), and then clears the scratch tape.

4 D then returns to the marked current configuration, and
“erases” the mark, and “marks” the next configuration.

5 D returns to step 1), if there is a next configuration.
Otherwise rejects.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 30 / 32

HOW D SIMULATES N

Let m be the maximum number of choices N has for any of
its states.
Then, after n steps, N can reach at most
1 + m + m2 + · · ·+ mn configurations (which is at most nmn)
Thus D has to process at most this many configurations to
simulate n steps of N.
Thus the simulation can take exponentially more time than
the nondeterministic TM.
It is not known whether or not this exponential slowdown is
necessary.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 31 / 32

IMPLICATIONS

COROLLARY
A language is Turing-recognizable if and only if some
nondeterministic TM recognizes it.

COROLLARY
A language is decidable if and only of some nondeterministic
TM decides it.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 32 / 32

