FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

TURING MACHINES

Carnegie Mellon University in Qatar

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011

TURING MACHINES-SYNOPSIS

e The most general model of computation
e Computations of a TM are described by a sequence of
configurations.
e Accepting Configuration
e Rejecting Configuration
e Turing-recognizable languages
e TM halts in an accepting configuration if w is in the
language.
e TM may halt in a rejecting configuration or go on indefinitely
if w is not in the language.
e Turing-decidable languages
e TM halts in an accepting configuration if w is in the
language.
e TM halts in a rejecting configuration if w is not in the
language.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 2/32

EXAMPLE TM-2

e A Turing machine that decides A = {0%" | n > 0}
e M = “On Input string w
@ Sweep left-to-right across the tape, crossing off every other
0.
© Ifin 1) that tape has one 0 left, accept (Why?)
@ Ifin 1) tape has more than one 0, and the number of 0’s is
odd, reject. (Why?)
© Return the head to the left end of the tape.
@ Goto1)

o Basically every sweep cuts the number of 0’s by two.

e At the end only 1 should remain and if so the original
number of zeroes was a power of 2

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 3/32

EXAMPLE TM-2

@ ugsxxxu

@ g5 LU

. . . @ Lgxxu

Configurations for input 0000. @ Lrapxell

@ gi0000u Q@ ux0gsxu @ Lxq0xu @ LixxgxL

@ Lg000u @ Lxgs0xu @ Lxxgsxu @ UxxxquL

@ Lxg;00u © vugsxoxu @ LxxxgsU @ Lixxx U Gaccept

Q ux0g,0U Q g5 L xoxu @ uxxgsxu
© Lix0xgsL @ ugoxoxu @ Lixgsxxu

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 4/32

EXAMPLE TM-3

e ATMto add 1 to a binary number (with a 0 in front)
e M ="“On input w
© Go to the right end of the input string
@ Move left as long as a 1 is seen, changing itto a 0.
© Change the 0to a 1, and halt”
e For example, to add 1 to w = 0110011
e Change all the ending 1’s to 0’s = 0110000
e Changethe nextOtoa 1= 0110100

e Now let’s design a TM for this problem.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011

VARIANTS OF TMS

e We defined the basic Turing Machine

e Single tape (infinite in one direction)

e Deterministic state transitions
e We could have defined many other variants:

e Ordinary TMs which need not move after every move.
Multiple tapes — each with its own independent head
Nondeterministic state transitions
Single tape infinite in both directions
Multiple tapes but with a single head
Multidimensional tape (move up/down/left/right)

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011

EQUIVALENCE OF POWER

e A computational model is robust if the class of languages it
accepts does not change under variants.
e We have seen that DFA’s are robust for nondeterminism.
o But not PDASs!

e The robustness of Turing Machines is by far greater than
the robustness of DFAs and PDAs.

e We introduce several variants on Turing machines and show
that all these variants have equal computational power.

e When we prove that a TM exists with some properties, we
do not deal with questions like

e How large is the TM? or
e How complex is it to “program” that TM?

e At this point we only seek existential proofs.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 7132

TURING MACHINES WITH THE STAY OPTION

e Suppose in addition moving Left or Right, we give the
option to the TM to stay (S) on the current cell, that is:

§:QxI=QxTI x{LR,S}

e Such a TM can easily simulate an ordinary TM: just do not
use the S option in any move.

e An ordinary TM can easily simulate a TM with the stay
option.
e For each transition with the S option, introduce a new state,
and two transitions
o One transition moves the head right, and transits to the new
state.
e The next transition moves the head back to left, and transits
to the previous state.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 8/32

MULTITAPE TURING MACHINES

Finite control of ‘1 ‘1 |— l— ‘— |— ‘— [%
M Tapel

alb [[[[| [_¢
‘—J, Tape2

uiv [_ |- |- |2 ‘_?

MULTITAPE TURING MACHINES

e A multitape Turing Machine is like an ordinary TM
e There are k tapes
e Each tape has its own independent read/write head.
e The only fundamental difference from the ordinary TM is § —
the state transition function.

§:QxTh 5 QxThx{L R

e The o entry 6(qgi, ai,...,ak) = (g, b1,..., b, LR, L, ..L)
reads as :

If the TM is in state g; and

the heads are reading symbols a; through ay,

Then the machine goes to state g;, and

the heads write symbols by through by, and

Move in the specified directions.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

Finite control of ‘1 ‘1 |— l— ‘— |— ‘— [%

M p—

Finite control of

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

Finite control of
S

wlafifulafblelufv] ¢

e We use # as a delimiter to separate out the different tape
contents.

e To keep track of the location of heads, we use additional
symbols

e Each symbol in I has a “dotted” version.
e A dotted symbol indicates that the head is on that symbol.
o Between any two #’s there is only one symbol that is dotted.

e Thus we have 1 real tape with k “virtual’ tapes, and
e 1 real read/write head with k “virtual” heads.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 12 /32

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

e Given input w = w; - - - w,, S puts its tape into the format
that represents all k tapes of M

By oWt D

e To simulate a single move of M, S starts at the leftmost #
and scans the tape to the rightmost #.
o It determines the symbols under the “virtual” heads.
e This is remembered in the finite state control of S. (How
many states are needed?)
e S makes a second pass to update the tapes according to M.
e If one of the virtual heads, moves right to a #, the rest of
tape to the right is shifted to “open up” space for that “virtual
tape”. If it moves left to a #, it just moves right again.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 13732

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

e Thus from now on, whenever needed or convenient we will
use multiple tapes in our constructions.

e You can assume that these can always be converted to a
single tape standard TM.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 14/32

NONDETERMINISTIC TURING MACHINES

e We defined the state transition of the ordinary TM as
§:QxT—=QxTIx{L R}

e A nondeterministic TM would proceed computation with
multiple next cnfigurations. ¢ for a nondeterministic TM
would be

§:QxT—=PQ@xT x{L R})

(P(S) is the power set of S.)
e This definition is analogous to NFAs and PDAs.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 15732

NONDETERMINISTIC TURING MACHINES

e A computation of a Nondeterministic TM is a tree, where

each branch of the tree is looks like a computation of an
ordinary TM.

Deterministic
Computation

Non-Deterministic
Computation

St S S+

accept or reject

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 16 /32

NONDETERMINISTIC TURING MACHINES

e If a single branch reaches the accepting state, the
Nondeterministic TM accepts, even if other branches reach
the rejecting state.

e What is the power of Nondeterministic TMs?

e Is there a language that a Nondeterministic TM can accept
but no deterministic TM can accept?

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 17732

NONDETERMINISTIC TURING MACHINES

Every nondeterministic Turing machine has an equivalent
deterministic Turing Machine.

PROOF IDEA
e Timeshare a deterministic TM to different branches of the
nondeterministic computation!
e Try out all branches of the nondeterministic computation
until an accepting configuration is reached on one branch.

e Otherwise the TM goes on forever.

18732

SLIDES FOR 15-453 SPRING 2011

(LECTURE 13)

NONDETERMINISTIC TURING MACHINES

@ Deterministic TM D simulates the Nondeterministic TM N.

e Some of branches of the N’s computations may be infinite,
hence its computation tree has some infinite branches.

e If D starts its simulation by following an infinite branch, D
may loop forever even though N’s computation may have a
different branch on which it accepts.

e This is a very similar problem to processor scheduling in
operating systems.

e If you give the CPU to a (buggy) process in an infinite loop,
other processes “starve”.

e In order to avoid this unwanted situation, we want D to
execute all of N’s computations concurrently.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 19732

NONDETERMINISTIC COMPUTATION

QoW Wsern W, 44— |Initial Configuration

Configurations of the e
nondeterministic

computation

Nondeterministic choices

/ available from C4

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 20/32

NONDETERMINISTIC COMPUTATION

Configurations of the -'_“"'—-;"\ Wy W w, & |nitial Configuration

nondeterministic
computation

Nondeterministic choices

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 WAV

NONDETERMINISTIC COMPUTATION

Configurations of the \\ _____ W, 44— |Initial Configuration
A

nondeterministic
computation

Nondeterministic choices
available from C4

Accepting Configuration

- A
1
O ‘\I u qaccepr v
1
v,
’

SPRING 2011 22/32

NONDETERMINISTIC COMPUTATION

Configurations of the N W W w, 4— |Initial Configuration
nondeterministic
computation
Nondeterministic choices
available from C4

SPRING 2011 23/32

SIMULATING NONDETERMINISTIC
COMPUTATION

w. a@— |Initial Configuration
..... i

Order of simulation

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 24/32

SIMULATING NONDETERMINISTIC

COMPUTATION

ERTAT— < Initial Configuration
Wy

Order of simulation

X O\ﬁ
(4
@ During simulation, D processes the
configurations of N in a breadth-first
fashion.

@ Thus D needs to maintain a queue
of N’s configurations (Remember
queues?)

SLIDES FOR 15-453

(LECTURE 13)

D gets the next
configuration from the
head of the queue.

D creates copies of this
configuration (as many
as needed)

On each copy, D
simulates one of the
nondeterministic moves
of N.

D places the resulting
configurations to the
back of the queue.

SPRING 2011 25/32

STRUCTURE OF THE SIMULATING DTM

e N is simulated with 2-tape DTM, D
e Note that this is different from the construction in the book!

D

Finite Control

Queue of Configurations

Tape 1

Tape 2

Scratch Tape

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 26/32

How D SIMULATES N

D

Finite Control

/\ Queue of Configurations

.
wer] of -] @ 1] & I-] = [-]
iaanElNENNEEEEREEEEE

Scratch Tape

e Built into the finite control of D is the knowledge of what
choices of moves N has for each state and input.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 27132

How D SIMULATES N

D
Finite Control
/\ Queue of Configurations
.
tper || af [+] @ [*] & [¢] o |.]
wer [JTTLTTTTPTTETTT
Scratch Tape

@ D examines the state and the input symbol of the current
configuration (right after the dotted separator)

@ If the state of the current configuration is the accept state of
N, then D accepts the input and stops simulating N.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 28 /32

How D SIMULATES N

D

Finite Control

/\ Queue of Configurations

.
wer] of -] @ 1] & I-] = [-]
iaanElNENNEEEEREEEEE

Scratch Tape

@ D copies k copies of the current configuration to the scratch
tape.

@ D then applies one nondeterministic move of N to each
copy.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 29/32

How D SIMULATES N

D

Finite Control

/\ Queue of Configurations

= [T TTe [Te [
we [T}

Scratch Tape

@ D then copies the new configurations from the scratch tape,
back to the end of tape 1 (so they go to the back of the
gueue), and then clears the scratch tape.

@ D then returns to the marked current configuration, and
“erases” the mark, and “marks” the next configuration.

@ D returns to step 1), if there is a next configuration.
Otherwise rejects.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 30/32

How D SIMULATES N

e Let m be the maximum number of choices N has for any of
its states.

e Then, after n steps, N can reach at most
14+ m+ m?+ ...+ m" configurations (which is at most nm")
e Thus D has to process at most this many configurations to
simulate n steps of N.

e Thus the simulation can take exponentially more time than
the nondeterministic TM.

e Itis not known whether or not this exponential slowdown is
necessary.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 31/32

IMPLICATIONS

COROLLARY

A language is Turing-recognizable if and only if some
nondeterministic TM recognizes it.

COROLLARY

A language is decidable if and only of some nondeterministic
TM decides it.

(LECTURE 13) SLIDES FOR 15-453 SPRING 2011 32/32

