FORMAL LANGUAGES, AUTOMATA AND COMPUTATION PUMPING LEMMA

PROPERTIES OF CFLS

Carnegie Mellon University in Qatar

(LECTURE 11)

SLIDES FOR 15-453

Spring 2011 1 / 16

SUMMARY

- Context-free Languages and Context-free Grammars
- Pushdown Automata
- PDAs accept all languages CFGs generate.
- CFGs generate all languages that PDAs accept.
- There are languages which are NOT context free.

LEMMA

If L is a CFL, then there is a number p (the pumping length) such that if s is any string in L of length at least p, then s can be divided into 5 pieces s = uvxyz satisfying the conditions:

- |vy| > 0
- $|vxy| \leq p$
- for each $i \ge 0$, $uv^i xy^i z \in L$
 - The pumping length is determined by the number of variables the grammar for *L* has.

APPLICATION OF THE PUMPING LEMMA

- Just as for regular languages we employ the pumping lemma in a two-player game setting.
- If a language violates the CFL pumping lemma, then it can not be a CFL.
- Two Player Proof Strategy:
 - Opponent picks p, the pumping length
 - Given *p*, we pick *s* in *L* such that |*s*| ≥ *p*. We are free to choose *s* as we please, as long as those conditions are satisfied.
 - Opponent picks s = uvxyz the decomposition subject to $|vxy| \le p$ and $|vy| \ge 1$.
 - We try to pick an *i* such that $uv^i xy^i z \notin L$
 - If for all possible decompositions the opponent can pick, we can find an *i*, then *L* is not context-free.

(LECTURE 11)

USING PUMPING LEMMA – EXAMPLE-1

- Consider the language $L = \{a^n b^n c^n \mid n \ge 0\}$
- Opponent picks *p*.
- We pick $s = a^{p}b^{p}c^{p}$. Clearly $|s| \ge p$.
- Opponent may pick the string partitioning in a number of ways.
- Let's look at each of these possibilities:

USING PUMPING LEMMA–EXAMPLE 1

 Cases 1,2 and 3: vxy contains symbols of only one kind

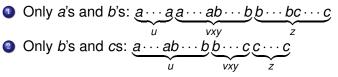
• Only a's:
$$\underbrace{a \cdots a a \cdots a a \cdots a b \cdots b c \cdots c}_{u}$$

• Only b's: $\underbrace{a \cdots a b b \cdots b b \cdots b c \cdots c}_{u}$
• Only c's: $\underbrace{a \cdots a b \cdots b c c \cdots c}_{u}$
• $\underbrace{a \cdots a b \cdots b c c \cdots c}_{vxy}$

- Pumping *v* and *y* will introduce more symbols of one type into the string.
- The resulting strings will not be in the language.

USING PUMPING LEMMA–EXAMPLE 1

 Cases 4 and 5: vxy contains two symbols – crosses symbol boundaries.



- Note that vxy has length at most p so can not have 3 different symbols.
- Pumping *v* and *y* will both upset the symbol counts and the symbol patterns.
- The resulting strings will not be in the language.

USING PUMPING LEMMA–EXAMPLE 2

- Consider the language $L = \{a^n \mid n \text{ is prime}\}$
- Opponent picks *p*.
- We pick $s = a^{p}$. Clearly $|s| \ge p$.
- Opponent may pick any partitioning s = uvxyz.
 - Let *m* = |*uxz*| for the partitioning selected, that is, the length of everything else but *v* and *y*.
 - Any pumped string $uv^i xy^i z$ will have length m + i(p m).
 - We choose i = p + 1.
 - The pumped string has length m + (p + 1)(p m). But:

$$m + (p+1)(p-m) = m + p^2 - pm + p - m$$

= $p^2 + p - pm$
= $p(p-m+1)$

which is not prime since both p and p - m + 1 are greater than 1. (Note $0 \le m \le p - 1$)

(LECTURE 11)

CLOSURE PROPERTIES OF CONTEXT-FREE LANGUAGES

Context-free languages are closed under

- Union
- Concatenation
- Star Closure
- Intersection with a regular language
- We will provide very informal arguments for these.

CLOSURE PROPERTIES OF CFLS-UNION

- Let G₁ and G₂ be the grammars with start variables S₁ and S₂, variables V₁ and V₂, and rules R₁ and R₂.
- Rename the variables in V_2 if they are also used in V_1
- The grammar G for $L = L(G_1) \cup L(G_2)$ has
 - $V = V_1 \cup V_2 \cup \{S\}$ (S is the new start symbol $S \notin V_1$ and $S \notin V_2$
 - $R = R_1 \cup R_2 \cup \{S \rightarrow S_1 \mid S_2\}$

CLOSURE PROPERTIES OF CFLS – CONCATENATION

- Let G₁ and G₂ be the grammars with start variables S₁ and S₂, variables V₁ and V₂, and rules R₁ and R₂.
- Rename the variables in V_2 if they are also used in V_1
- The grammar *G* for

$$L = \{wv \mid w \in L(G_1), v \in L(G_2)\}$$
 has

• $V = V_1 \cup V_2 \cup \{S\}$ (S is the new start symbol $S \notin V_1$ and $S \notin V_2$

•
$$R = R_1 \cup R_2 \cup \{S \rightarrow S_1 S_2\}$$

CLOSURE PROPERTIES OF CFLS – STAR CLOSURE

- Let G_1 be the grammar with start variable S_1 , variables V_1 , rules R_1 .
- The grammar G for $L = \{w \mid w \in L(G_1)^*\}$ has
 - $V = V_1 \cup \{S\}$ (S is the new start symbol $S \notin V_1$).

•
$$R = R_1 \cup \{S \rightarrow S_1 S \mid \epsilon\}$$

CLOSURE PROPERTIES OF CFLS – INTERSECTION WITH A REGULAR LANGUAGE

- Let *P* be the PDA for the CFL *L*_{cfl} and *M* be the *DFA* for the regular language *L*_{regular}
- We have a procedure for building the cross-product PDA from *P* and *M*.
 - Very similar to the cross-product construction for DFAs.
 - Details are not terribly interesting. (Perhaps later.)

CLOSURE PROPERTIES OF CFLS

• CFLs are NOT closed under intersection.

- $L_1 = \{a^n b^n c^m \mid n, m \ge 0\}$ is a CFL.
- $L_2 = \{a^m b^n c^n \mid n, m \ge 0\}$ is a CFL.
- $L = L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$ is NOT a CFL.
- CFLs are not closed under complementation.
 - $L = \{ww \mid w \in \Sigma^*\}$ is NOT a CFL (Prove it using pumping lemma!)
 - \overline{L} is actually a CFL and $L = L_1 \cup L_2$
 - \overline{L} has all strings of odd length (L_1)
 - L
 L
 has all strings where at least one pair of symbols n/2 apart are different (n length of the string!) (L₂)
 - ٩

```
S \rightarrow aA \mid bA \mid a \mid b
A \rightarrow aS \mid bS
generates L_1
```

 $S \rightarrow AB \mid BA$ $A \rightarrow ZAZ \mid a$ $B \rightarrow ZBZ \mid b$ $Z \rightarrow a \mid b$ generates L_2

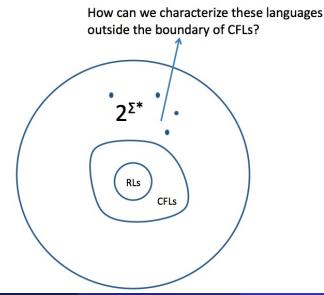
CFL CLOSURE PROPERTIES IN ACTION

• Is
$$L = \{a^{n}b^{n} \mid n \ge 0, n \ne 100\}$$
 a CFL?
• $L = \{a^{n}b^{n} \mid n \ge 0\} \cap (L(a^{*}b^{*}) - \{a^{100}b^{100}\})$
• The intersection of a CFL and a RL is a CFL!

• Is
$$L = \{ w \mid w \in \{a, b, c\}^* \text{ and } n_a(w) = n_b(w) = n_c(w) \}$$
 a CFL?
• $\underbrace{L}_{CFL?} \cap \underbrace{L(a^*b^*c^*)}_{RL} = \underbrace{\{a^n b^n c^n \mid n \ge 0\}}_{Not \ CFL}$
• Thus *L* is NOT a CFL.

MOVING BEYOND THE MILKY WAY

WHAT OTHER KINDS OF LANGUAGES ARE OUT THERE?



(LECTURE 11)