FORMAL LANGUAGES, AUTOMATA AND COMPUTATION PUSHDOWN AUTOMATA

PROPERTIES OF CFLS

PUSHDOWN AUTOMATA-SUMMARY

- Pushdown automata (PDA) are abstract automata that accept all context-free languages.
- PDAs are essentially NFAs with an additional infinite stack memory.
 - (Or NFAs are PDAs with no additional memory!)

PDA TO CFG

LEMMA

If a PDA recognizes some language, then it is context free.

PROOF IDEA

Create from *P* a CFG *G* that generates all strings that *P* accepts, i.e., *G* generates a string if that string takes PDA from the start state to some accepting state.

Let us modify the PDA *P* slightly

- The PDA has a single accept state q_{accept}
 - Easy use additional $\epsilon, \epsilon \rightarrow \epsilon$ transitions.
- The PDA empties its stack before accepting.
 - Easy add an additional loop to flush the stack.

More modifications to the PDA *P*:

- Each transition either pushes a symbol to the stack or pops a symbol from the stack, but not both!.
 - Replace each transition with a pop-push, with a two-transition sequence.
 - For example replace $a, b \rightarrow c$ with $a, b \rightarrow \epsilon$ followed by
 - $\epsilon, \epsilon \rightarrow c$, using an intermediate state.
 - Replace each transition with no pop-push, with a transition that pops and pushes a random symbol.
 - For example, replace $a, \epsilon \rightarrow \epsilon$ with $a, \epsilon \rightarrow x$ followed by
 - $\epsilon, \mathbf{X} \rightarrow \epsilon$, using an intermediate state.

PDA TO CFG-PRELIMINARIES

- For each pair of states *p* and *q* in P, the grammar with have a variable *A_{pq}*.
 - *A_{pq}* generates all strings that take *P* from *p* with an empty stack, to *q*, leaving the stack empty.
 - *A_{pq}* also takes *P* from *p* to *q*, leaving the stack as it was before *p*!

PDA TO CFG-PRELIMINARIES

- Let *x* be a string that takes *P* from *p* to *q* with an empty stack.
 - First move of the PDA should involve a push! (Why?)
 - Last move of the PDA should involve a pop! (Why?)

PDA TO CFG-PRELIMINARIES

• There are two cases:

- Symbol pushed after *p*, is the same symbol popped just before *q*
- If not, that symbol should be popped at some point before! (Why?)
- First case can be simulated by rule $A_{pq} \rightarrow aA_{rs}b$
 - Read *a*, go to state *r*, then transit to state *s* somehow, and then read *b*.
- Second case can be simulated by rule $A_{pq} \rightarrow A_{pr}A_{rq}$
 - *r* is the state the stack becomes empty on the way from *p* to

q

PDA TO CFG – PROOF

- Assume $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{accept}\}).$
- The variables of G are $\{A_{pq} \mid p, q \in Q\}$
- The start variable is $A_{q_0,q_{accept}}$
- The rules of *G* are as follows:
 - For each $p, q, r, s \in Q, t \in \Gamma$, and $a, b \in \Sigma_{\epsilon}$, if
 - $\delta(p, a, \epsilon)$ contains (r, t) and
 - $\delta(s, b, t)$ contains (q, ϵ)

Add rule $A_{pq} \rightarrow aA_{rs}b$ to G.

- For each $p, q, r \in Q$, add rule $A_{pq} \rightarrow A_{pr}A_{rq}$ to G.
- For each, $p \in Q$, add the rule $A_{pp} \rightarrow \epsilon$ to G.

PDA TO CFG INTUITION

• PDA computation for $A_{ ho q} ightarrow aA_{ ho s}b$

PDA TO CFG INTUITION

CLAIM

If A_{pq} generates x, then x can bring P from p with empty stack to q with empty stack.

- Basis Case: Derivation has 1 step.
 - This can only be possible with a production of the sort $A_{pp} \rightarrow \epsilon$. We have such a rule!
- Assume true for derivations of length at most k, k ≥ 1
 - Suppose that $A_{pq} \stackrel{*}{\Rightarrow} x$ with k + 1 steps. The first step in this derivation would either be $A_{pq} \rightarrow aA_{rs}b$ or $A_{pq} \rightarrow A_{pr}A_{rq}$
- We handle these cases separately.

Case
$$A_{pq}
ightarrow aA_{rs}b$$
 :

- A_{rs} ^{*}⇒ y in k steps where x = ayb and by induction hypothesis, P can go from r to s with an empty stack.
- If *P* pushes *t* onto the stack after *p*, after processing *y* it will leave *t* back on stack.
- Reading *b* will have to pop the *t* to leave an empty stack.
- Thus, *x* can bring P from *p* to *q* with an empty stack.

Case
$$A_{pq}
ightarrow A_{pr} A_{rq}$$

- Suppose $A_{pr} \stackrel{*}{\Rightarrow} y$ and $A_{rq} \stackrel{*}{\Rightarrow} z$, where x = yz.
- Since these derivations are at most k steps, before p and after r we have empty stacks, and thus also after q.
- Thus *x* can bring *P* from *p* to *q* with an empty stack.

CLAIM

If x can bring P from p to q with empty stack, $A_{pq} \stackrel{*}{\Rightarrow} x.$

- Basis Case: Suppose PDA takes 0 steps.
 - It should stay in the same state. Since we have a rule in the grammar $A_{pp} \rightarrow \epsilon$, $A_{pp} \stackrel{*}{\Rightarrow} \epsilon$.
- Assume true for all computations of *P* of length at most *k*, *k* ≥ 0.
 - Suppose with *x*, *P* can go from *p* to *q* with an empty stack. Either the stack is empty only at the beginning and at the end, or it becomes empty elsewhere, too.
- We handle these two cases separately.

Case: Stack is empty only at the beginning and at the end of a derivation of length k + 1

- Suppose x = ayb. a and b are consumed at the beginning and at the end of the computation (with t being pushed and popped).
- *P* takes k 2 steps on *y*.
- By hypothesis, $A_{rs} \stackrel{*}{\Rightarrow} y$ where $(r, t) \in \delta(q, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, t)$.
- Thus, using rule $A_{\rho q}
 ightarrow a A_{rs} b$, $A_{\rho q} \stackrel{*}{\Rightarrow} x$.

Case: Stack becomes empty at some intermediate stage in the computation of x

- Suppose *x* = *yz*, such that *P* has the stack empty after consuming *y*.
- By induction hypothesis A_{pr} ^{*}⇒ y and A_{rq} ^{*}⇒ z since P takes at most k steps on y and z.
- Since rule $A_{pq} \rightarrow A_{pr}A_{rq}$ is in the grammar, $A_{pq} \stackrel{*}{\Rightarrow} x$.

REGULAR LANGUAGES ARE CONTEXT FREE

COROLLARY

Every regular language is context free.

PROOF.

Since a regular language L is reconized by a DFA and every DFA is a PDA that ignores it stack, there is a CFG for L

- Right-linear grammars
- Left-linear grammars

NON-CONTEXT-FREE LANGUAGES

- There are non-context-free languages.
- For example $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free.
 - Intuitively, once the PDA reads the *a*'s and the matches the *b*'s, it "forgets" what the *n* was, so can not properly check the *c*'s.
- There is an analogue of the Pumping Lemma we studied earlier for regular languages.
 - It states that there is a pumping length, such that all longer strings can be pumped.
 - For regular languages, we related the pumping length to the number of states of the DFA.
 - For CFLs, we relate the pumping length to the properties of the grammar!.

PUMPING LEMMA FOR CFLS - INTUITION

- Let *s* be a "sufficiently long" string in *L*.
- *s* = *uvxyz* should have a parse tree of the following sort:

• Some variable *R* must repeat somewhere on the path from *S* to some leaf. (Why?)

PUMPING LEMMA FOR CFLS - INTUITION

• Then the string s' = uvvxyyz, should also be in the language.

PUMPING LEMMA FOR CFLS - INTUITION

• Also the string s'' = uxz, should also be in the language.

LEMMA

If L is a CFL, then there is a number p (the pumping length) such that if s is any string in L of length at least p, then s can be divided into 5 pieces s = uvxyz satisfying the conditions:

- |vy| > 0
- $|vxy| \leq p$
- for each $i \ge 0$, $uv^i xy^i z \in L$
 - Either v or y is not e otherwise, it would be trivially true.

PROOF – THE PUMPING LENGTH

- Let *G* be the grammar for *L*. Let *b* be the maximum number of symbols of any rule in *G*.
 - Assume *b* is at least 2, that is every grammar has some rule with at least 2 symbols on the RHS.
- In any parse tree, a node can have at most *b* children.
 - At most b^h leaves are within h steps of the start variable.
- If the parse tree has height *h*, the length of the string generated is at most *b*^{*h*}.
- Conversely, if the string is at least $b^h + 1$ long, each of its parse trees must be at least h + 1 high.

PROOF – THE PUMPING LENGTH

PROOF - THE PUMPING LENGTH

- Let |V| be the number of variables in *G*.
- We set the pumping length $p = b^{|V|+1}$.
- If *s* is a string in *L* and $|s| \ge p$, its parse tree must be at least |V| + 1 high.

•
$$b^{|V|+1} \ge b^{|V|} + 1$$

PROOF - HOW TO PUMP A STRING

- Let τ be the parse tree of s that has the smallest number of nodes. τ must be at least |V| + 1 high.
- This means some path from the root to some leaf has length at least |V| + 1.
- So the path has at least |V| + 2 nodes: 1 terminal and at least |V| + 1 variables.
- Some variable *R* must appear more than once on that path (Pigeons!)
 - Choose *R* as the variable that repeats among the lowest |V| + 1 variables on this path.

PROOF - HOW TO CHOOSE A STRING

• We divide *s* into *uvxyz* according to this figure.

- Upper *R* generates *vxy* while the lower *R* generates *x*.
- Since the same variable generates both subtrees, they are interchangeable!
- So all strings of the form uvⁱxyⁱz should also be in the language for i > 0.

PROOF – HOW TO CHOOSE A STRING

- We must make sure both v and y are not both ϵ .
- If they were, then τ would not be smallest tree for *s*.
 - We could get a smaller tree for *s* by substituting the smaller tree!
- $R \stackrel{*}{\Rightarrow} vxy$.
- We chose *R* so that both its occurrences were within the last |V| + 1 variables on the path.
- We chose the longest path in the tree, so the subtree for R ⇒ vxy is at most |V| + 1 high.
- A tree of this height can generate a string of length at most b^{|V|+1} = p.