FORMAL LANGUAGES, AUTOMATA AND
COMPUTATION

PUSHDOWN AUTOMATA

PROPERTIES OF CFLS

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PUSHDOWN AUTOMATA-SUMMARY

o Pushdown automata (PDA) are abstract automata

that accept all context-free languages.
o PDAs are essentially NFAs with an additional
infinite stack memory.
e (Or NFAs are PDAs with no additional memory!)

finite top
control |0

L@

(1}

input tape
stack

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PDA 10 CFG

LEMMA

If a PDA recognizes some language, then it is context
free.

| \

PROOF IDEA
Create from P a CFG G that generates all strings that
P accepts, i.e., G generates a string if that string
takes PDA from the start state to some accepting
state.

\

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PDA 1O CFG-PRELIMINARIES

Let us modify the PDA P slightly
o The PDA has a single accept state qaccept
o Easy — use additional ¢, ¢ — ¢ transitions.
o The PDA empties its stack before accepting.
e Easy — add an additional loop to flush the stack.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PDA 10O CFG-PRELIMINARIES

More modifications to the PDA P:

e Each transition either pushes a symbol to the
gtacr;]lf or pops a symbol from the stack, but not
oth!.

@ Replace each transition with a pop-push, with a
two-transition sequence.
e For example replace a, b — ¢ with a, b — ¢ followed by
€, € — C, using an intermediate state.
© Replace each transition with no pop-push, with a transition
that pops and pushes a random symbol.
e For example, replace a, ¢ — ¢ with a,¢ — x followed by
€, X — €, using an intermediate state.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 5/29

PDA 1O CFG-PRELIMINARIES

o For each pair of states p and g in P, the grammar
with have a variable Ay.
o Apg generates all strings that take P from p with an empty
stack, to g, leaving the stack empty.
o Apg also takes P from p to q, leaving the stack as it was
before p!

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 6/29

PDA 1O CFG-PRELIMINARIES

o Let x be a string that takes P from p to g with an
empty stack.

e First move of the PDA should involve a push! (Why?)
e Last move of the PDA should involve a pop! (Why?)

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PDA 1O CFG-PRELIMINARIES

o There are two cases:
@ Symbol pushed after p, is the same symbol popped just
before q
@ If not, that symbol should be popped at some point before!
(Why?)
o First case can be simulated by rule A,; — aAisb
e Read a, go to state r, then transit to state s somehow, and
then read b.
e Second case can be simulated by rule
Apg — AprArg
e ris the state the stack becomes empty on the way from p to
q

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 8/29

PDA 10 CFG — PROOF

o Assume P = (Q, DI IN 57 Qo, {Qaccept})'
o The variables of G are {A,q | p.g € Q}
o The start variable is Ag; q.cce

o The rules of G are as follows:
e Foreachp,q,r,sc Q,tel,andabe %, if
e J(p, a,) contains (r,t) and
e 4(s,b,t) contains (q,¢)
Add rule Apq — aArsbto G.
e Foreach p,q,r € Q, add rule Apg — AprArg to G.
o Foreach, p € Q, add the rule Ay, — ¢ to G.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PDA 10O CFG INTUITION

o PDA computation for A,q — aArsb

T

Stack

height __— generated

by Apq

Input string

-

generated
by Ay

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 10/29

PDA 10O CFG INTUITION

T

Stack
height

— generated
by Apg

Input string

—_
\ I\ J
Y Y
generated generated
by Ay, by Arq

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 11/29

PDA TO CFG PROOF (CONT’D)

If Apg generates x, then x can bring P from p with
empty stack to g with empty stack.

o Basis Case: Derivation has 1 step.
e This can only be possible with a production of the sort
App — €. We have such a rule!

o Assume true for derivations of length at most k,
kK> 1

o Suppose that Apg = x with k + 1 steps. The first step in this
derivation would either be Apy — aArsb or Apg — AprArg

o We handle these cases separately.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 12729

PDA TO CFG PROOF (CONT’D)

Case Apqg — aAisb :

o Ais = y in k steps where x = ayb and by
induction hypothesis, P can go from r to s with an
empty stack.

o If P pushes t onto the stack after p, after
processing y it will leave t back on stack.

o Reading b will have to pop the t to leave an empty
stack.

e Thus, x can bring P from p to g with an empty
stack.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 13729

PDA TO CFG PROOF (CONT’D)

Case Apqg — AprAg
o Suppose A, = y and A, = z, where x = yz.
o Since these derivations are at most k steps,

before p and after r we have empty stacks, and
thus also after g.

e Thus x can bring P from p to g with an empty
stack.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 14729

PDA TO CFG PROOF (CONT’D)

If x can bring P from p to g with empty stack,
Apg = X.

o Basis Case: Suppose PDA takes 0 steps.
e It should stay in the same state. Since we have a rule in the
grammar Ap, — ¢, App = .
o Assume true for all computations of P of length at
most k, k > 0.
e Suppose with x, P can go from p to g with an empty stack.
Either the stack is empty only at the beginning and at the
end, or it becomes empty elsewhere, too.

o We handle these two cases separately.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 15729

PDA TO CFG PROOF (CONT’D)

Case: Stack is empty only at the beginning and at the
end of a derivation of length k + 1

e Suppose x = ayb. a and b are consumed at the
beginning and at the end of the computation (with
t being pushed and popped).

o Ptakes k — 2 steps on y.

o By hypothesis, A;s = y where (r, t) € §(q, a,¢)
and (q,¢) € 6(s, b, 1).

o Thus, using rule Apg — aArsb, Apg = X.

SLIDES FOR 15-453 SPRING 2011 16729

PDA TO CFG PROOF (CONT’D)

Case: Stack becomes empty at some intermediate
stage in the computation of x

e Suppose x = yz, such that P has the stack empty
after consuming y.

o By induction hypothesis A, = y and A = z
since P takes at most k steps on y and z.

e Since rule Apq — AprArq is in the grammar,
Apg = X.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

REGULAR LANGUAGES ARE CONTEXT FREE

COROLLARY

Every regular language is context free.

| A

PROOF.

Since a regular language L is reconized by a DFA
and every DFA is a PDA that ignores it stack, there is
aCFGfor L 1]

e Right-linear grammars
o Left-linear grammars

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 18729

NON-CONTEXT-FREE LANGUAGES

e There are non-context-free languages.
o For example L = {a"b"c" | n > 0} is not
context-free.
e Intuitively, once the PDA reads the a's and the matches the
b’s, it “forgets” what the n was, so can not properly check the

c’s.
e There is an analogue of the Pumping Lemma we
studied earlier for regular languages.

o It states that there is a pumping length, such that all longer
strings can be pumped.

e For regular languages, we related the pumping length to the
number of states of the DFA.

e For CFLs, we relate the pumping length to the properties of
the grammar!.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 19729

PUMPING LEMMA FOR CFLS - INTUITION

o Let s be a “sufficiently long” string in L.

e S = uvxyz should have a parse tree of the
following sort:

_——DH===d W0

o Some variable R must repeat somewhere on the
path from S to some leaf. (Why?)

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PUMPING LEMMA FOR CFLS - INTUITION

o Then the string s’ = uvvxyyz, should also be in
the language.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PUMPING LEMMA FOR CFLS - INTUITION

e Also the string s” = uxz, should also be in the
language.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PUMPING LEMMA FOR CFLS - INTUITION

LEMMA
If L is a CFL, then there is a number p (the pumping
length) such that if s is any string in L of length at
least p, then s can be divided into 5 pieces s = uvxyz
satisfying the conditions:

Q |vwy|>0

@ vy <p

Q@ foreachi >0, uvixy'ze L

v

o Either v or y is not e otherwise, it would be trivially
true.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PROOF — THE PUMPING LENGTH

o Let G be the grammar for L. Let b be the
maximum number of symbols of any rule in G.

e Assume b is at least 2, that is every grammar has some rule
with at least 2 symbols on the RHS.

o In any parse tree, a node can have at most b
children.
o At most b" leaves are within h steps of the start variable.
o If the parse tree has height h, the length of the
string generated is at most b".

o Conversely, if the string is at least b” + 1 long,
each of its parse trees must be at least h+ 1 high.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PROOF — THE PUMPING LENGTH

A
v

Length at most b"

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PROOF - THE PUMPING LENGTH

o Let |V| be the number of variables in G.
o We set the pumping length p = blVI+1,
o If sisastringin L and |s| > p, its parse tree must

be at least | V| + 1 high.
o bIVI+T > pIVI | 1

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PROOF - HOW TO PUMP A STRING

o Let 7 be the parse tree of s that has the smallest
number of nodes. T must be at least | V| + 1 high.

o This means some path from the root to some leaf
has length at least | V| + 1.

o So the path has at least | V| + 2 nodes: 1 terminal
and at least | V| + 1 variables.

e Some variable R must appear more than once on
that path (Pigeons!)
e Choose R as the variable that repeats among the lowest
|V| + 1 variables on this path.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PROOF - HOW TO CHOOSE A STRING

o Upper R generates
vxy while the lower R
generates x.

v x oy s o Since the same

o We divide s variable generates
into uvxyz both subtrees, they are
according to interchangeable!
this figure. o So all strings of the

form uv'xy’z should
also be in the
language for i > 0.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

PROOF — HOW TO CHOOSE A STRING

o We must make sure both v and y are not both e.

o If they were, then 7 would not be smallest tree for
S.
e We could get a smaller tree for s by substituting the smaller
tree!

o R= vxy.

o We chose R so that both its occurrences were
within the last | V| + 1 variables on the path.

o We chose the longest path in the tree, so the
subtree for R = vxy is at most | V| + 1 high.

o A tree of this height can generate a string of
length at most b!VI+! = p.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011

