
FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION
PUSHDOWN AUTOMATA

PROPERTIES OF CFLS

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 1 / 29

PUSHDOWN AUTOMATA-SUMMARY

Pushdown automata (PDA) are abstract automata
that accept all context-free languages.
PDAs are essentially NFAs with an additional
infinite stack memory.

(Or NFAs are PDAs with no additional memory!)

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 2 / 29

PDA TO CFG

LEMMA

If a PDA recognizes some language, then it is context
free.

PROOF IDEA

Create from P a CFG G that generates all strings that
P accepts, i.e., G generates a string if that string
takes PDA from the start state to some accepting
state.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 3 / 29

PDA TO CFG–PRELIMINARIES

Let us modify the PDA P slightly
The PDA has a single accept state qaccept

Easy – use additional ε, ε→ ε transitions.
The PDA empties its stack before accepting.

Easy – add an additional loop to flush the stack.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 4 / 29

PDA TO CFG-PRELIMINARIES

More modifications to the PDA P:
Each transition either pushes a symbol to the
stack or pops a symbol from the stack, but not
both!.

1 Replace each transition with a pop-push, with a
two-transition sequence.

For example replace a,b → c with a,b → ε followed by
ε, ε→ c, using an intermediate state.

2 Replace each transition with no pop-push, with a transition
that pops and pushes a random symbol.

For example, replace a, ε→ ε with a, ε→ x followed by
ε, x → ε, using an intermediate state.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 5 / 29

PDA TO CFG–PRELIMINARIES

For each pair of states p and q in P, the grammar
with have a variable Apq.

Apq generates all strings that take P from p with an empty
stack, to q, leaving the stack empty.
Apq also takes P from p to q, leaving the stack as it was
before p!

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 6 / 29

PDA TO CFG–PRELIMINARIES

Let x be a string that takes P from p to q with an
empty stack.

First move of the PDA should involve a push! (Why?)
Last move of the PDA should involve a pop! (Why?)

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 7 / 29

PDA TO CFG–PRELIMINARIES

There are two cases:
1 Symbol pushed after p, is the same symbol popped just

before q
2 If not, that symbol should be popped at some point before!

(Why?)
First case can be simulated by rule Apq → aArsb

Read a, go to state r , then transit to state s somehow, and
then read b.

Second case can be simulated by rule
Apq → AprArq

r is the state the stack becomes empty on the way from p to
q

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 8 / 29

PDA TO CFG – PROOF

Assume P = (Q,Σ, Γ, δ,q0, {qaccept}).
The variables of G are {Apq | p,q ∈ Q}
The start variable is Aq0,qaccept

The rules of G are as follows:
For each p,q, r , s ∈ Q, t ∈ Γ, and a,b ∈ Σε, if

δ(p,a, ε) contains (r , t) and
δ(s,b, t) contains (q, ε)

Add rule Apq → aArsb to G.
For each p,q, r ∈ Q, add rule Apq → Apr Arq to G.
For each, p ∈ Q, add the rule App → ε to G.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 9 / 29

PDA TO CFG INTUITION

PDA computation for Apq → aArsb

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 10 / 29

PDA TO CFG INTUITION

PDA computation for Apq → AprArq

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 11 / 29

PDA TO CFG PROOF (CONT’D)

CLAIM

If Apq generates x , then x can bring P from p with
empty stack to q with empty stack.

Basis Case: Derivation has 1 step.
This can only be possible with a production of the sort
App → ε. We have such a rule!

Assume true for derivations of length at most k ,
k ≥ 1

Suppose that Apq
∗⇒ x with k + 1 steps. The first step in this

derivation would either be Apq → aArsb or Apq → Apr Arq

We handle these cases separately.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 12 / 29

PDA TO CFG PROOF (CONT’D)

Case Apq → aArsb :

Ars
∗⇒ y in k steps where x = ayb and by

induction hypothesis, P can go from r to s with an
empty stack.
If P pushes t onto the stack after p, after
processing y it will leave t back on stack.
Reading b will have to pop the t to leave an empty
stack.
Thus, x can bring P from p to q with an empty
stack.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 13 / 29

PDA TO CFG PROOF (CONT’D)

Case Apq → AprArq

Suppose Apr
∗⇒ y and Arq

∗⇒ z, where x = yz.
Since these derivations are at most k steps,
before p and after r we have empty stacks, and
thus also after q.
Thus x can bring P from p to q with an empty
stack.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 14 / 29

PDA TO CFG PROOF (CONT’D)

CLAIM

If x can bring P from p to q with empty stack,
Apq

∗⇒ x .

Basis Case: Suppose PDA takes 0 steps.
It should stay in the same state. Since we have a rule in the
grammar App → ε, App

∗⇒ ε.

Assume true for all computations of P of length at
most k , k ≥ 0.

Suppose with x , P can go from p to q with an empty stack.
Either the stack is empty only at the beginning and at the
end, or it becomes empty elsewhere, too.

We handle these two cases separately.
(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 15 / 29

PDA TO CFG PROOF (CONT’D)

Case: Stack is empty only at the beginning and at the
end of a derivation of length k + 1

Suppose x = ayb. a and b are consumed at the
beginning and at the end of the computation (with
t being pushed and popped).
P takes k − 2 steps on y .
By hypothesis, Ars

∗⇒ y where (r , t) ∈ δ(q,a, ε)
and (q, ε) ∈ δ(s,b, t).
Thus, using rule Apq → aArsb, Apq

∗⇒ x .

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 16 / 29

PDA TO CFG PROOF (CONT’D)

Case: Stack becomes empty at some intermediate
stage in the computation of x

Suppose x = yz, such that P has the stack empty
after consuming y .
By induction hypothesis Apr

∗⇒ y and Arq
∗⇒ z

since P takes at most k steps on y and z.
Since rule Apq → AprArq is in the grammar,
Apq

∗⇒ x .

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 17 / 29

REGULAR LANGUAGES ARE CONTEXT FREE

COROLLARY

Every regular language is context free.

PROOF.
Since a regular language L is reconized by a DFA
and every DFA is a PDA that ignores it stack, there is
a CFG for L

Right-linear grammars
Left-linear grammars

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 18 / 29

NON-CONTEXT-FREE LANGUAGES

There are non-context-free languages.
For example L = {anbncn | n ≥ 0} is not
context-free.

Intuitively, once the PDA reads the a’s and the matches the
b’s, it “forgets” what the n was, so can not properly check the
c’s.

There is an analogue of the Pumping Lemma we
studied earlier for regular languages.

It states that there is a pumping length, such that all longer
strings can be pumped.
For regular languages, we related the pumping length to the
number of states of the DFA.
For CFLs, we relate the pumping length to the properties of
the grammar!.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 19 / 29

PUMPING LEMMA FOR CFLS - INTUITION

Let s be a “sufficiently long” string in L.
s = uvxyz should have a parse tree of the
following sort:

Some variable R must repeat somewhere on the
path from S to some leaf. (Why?)

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 20 / 29

PUMPING LEMMA FOR CFLS - INTUITION

Then the string s′ = uvvxyyz, should also be in
the language.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 21 / 29

PUMPING LEMMA FOR CFLS - INTUITION

Also the string s′′ = uxz, should also be in the
language.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 22 / 29

PUMPING LEMMA FOR CFLS - INTUITION

LEMMA

If L is a CFL, then there is a number p (the pumping
length) such that if s is any string in L of length at
least p, then s can be divided into 5 pieces s = uvxyz
satisfying the conditions:

1 |vy | > 0
2 |vxy | ≤ p
3 for each i ≥ 0, uv ixy iz ∈ L

Either v or y is not ε otherwise, it would be trivially
true.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 23 / 29

PROOF – THE PUMPING LENGTH

Let G be the grammar for L. Let b be the
maximum number of symbols of any rule in G.

Assume b is at least 2, that is every grammar has some rule
with at least 2 symbols on the RHS.

In any parse tree, a node can have at most b
children.

At most bh leaves are within h steps of the start variable.

If the parse tree has height h, the length of the
string generated is at most bh.
Conversely, if the string is at least bh + 1 long,
each of its parse trees must be at least h + 1 high.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 24 / 29

PROOF – THE PUMPING LENGTH

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 25 / 29

PROOF - THE PUMPING LENGTH

Let |V | be the number of variables in G.
We set the pumping length p = b|V |+1.
If s is a string in L and |s| ≥ p, its parse tree must
be at least |V |+ 1 high.

b|V |+1 ≥ b|V | + 1

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 26 / 29

PROOF - HOW TO PUMP A STRING

Let τ be the parse tree of s that has the smallest
number of nodes. τ must be at least |V |+ 1 high.
This means some path from the root to some leaf
has length at least |V |+ 1.
So the path has at least |V |+ 2 nodes: 1 terminal
and at least |V |+ 1 variables.
Some variable R must appear more than once on
that path (Pigeons!)

Choose R as the variable that repeats among the lowest
|V |+ 1 variables on this path.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 27 / 29

PROOF - HOW TO CHOOSE A STRING

We divide s
into uvxyz
according to
this figure.

Upper R generates
vxy while the lower R
generates x .
Since the same
variable generates
both subtrees, they are
interchangeable!
So all strings of the
form uv ixy iz should
also be in the
language for i ≥ 0.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 28 / 29

PROOF – HOW TO CHOOSE A STRING

We must make sure both v and y are not both ε.
If they were, then τ would not be smallest tree for
s.

We could get a smaller tree for s by substituting the smaller
tree!

R ∗⇒ vxy .
We chose R so that both its occurrences were
within the last |V |+ 1 variables on the path.
We chose the longest path in the tree, so the
subtree for R ∗⇒ vxy is at most |V |+ 1 high.
A tree of this height can generate a string of
length at most b|V |+1 = p.

(LECTURE 10) SLIDES FOR 15-453 SPRING 2011 29 / 29

