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Administrative Stuff

Textbook: Introduction to the Theory of
Computation by Michael Sipser (MIT)
Evaluation:

1 Midterm Exam
1 Final Exam
6-8 Homeworks
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What is this course about? – Formal
Languages

An abstraction of the notion of a “problem”
Problems are cast either as Languages (= sets of
“Strings”)

”Solutions” determine if a given “string” is in the set or not
e.g., Is a given integer, n, prime?

Or, as transductions between languages
“Solutions” transduce/transform the input string to an output
string

e.g., What is 3+5?
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What is this course about? – Formal
Languages

So essentially all computational processes can be
reduced to one of

Determining membership in a set (of strings)
Mapping between sets (of strings)

We will formalize the concept of mechanical
computation by

giving a precise definition of the term “algorithm”
characterizing problems that are or are not suitable for
mechanical computation.
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What is this course about? – Automata

Automata (singular Automaton) are abstract
mathematical devices that can

Determine membership in a set of strings
Transduce strings from one set to another

They have all the aspects of a computer
input and output
memory
ability to make decisions
transform input to output

Memory is crucial:
Finite Memory
Infinite Memory

Limited Access
Unlimited Access
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What is this course about?– Automata

We have different types of automata for different
classes of languages.
They differ in

the amount of memory then have (finite vs infinite)
what kind of access to the memory they allow.

Automata can behave non-deterministically
A non-deterministic automaton can at any point, among
possible next steps, pick one step and proceed
This gives the conceptual illusion of (infinitely) parallel
computation for some classes of automata

All branches of a computation proceed in parallel (sort of)

More on this later
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What is this course about?– Complexity

How much resource does a computation
consume?

Time and Space

What are the implications of nondeterminism for
complexity?
How can we classify problems into classes based
on their resource use?

Are there problems with very unreasonable resource usage
(Intractable problems)?
How can we characterize such problems?

P vs. NP, PSPACE, Log Space
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What is this course about?– Computability

What is computational power?
Automaton 1 tells Automaton 2
“Tell me what kinds of problems you can solve and I will tell
you how powerful you are? “

What does computational power depend on? (it
turns out, not “speed”)
What does it mean for a problem to be
computable ?
Are there any uncomputable functions or
unsolvable problems?

What does this mean?
Why do we care?
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Applications/Relevance

Pattern matching
Perl Hacking
Bioinformatics
Lexical analysis

Design and Verification
Hardware
Software
Communication Protocols

Parsing Languages
Compiler construction
XML Analysis
Natural language processing, Machine Translation

Algorithm design and analysis
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Decision Problems

A decision problem is a function with a YES/NO
output
We need to specify

the set A of possible inputs (usually A is infinite)
the subset B ⊆ A of YES instances (usually B is also infinite)

The subset B should have a finite description!
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Decision Problems – Examples

A: integers
is even?(x)
is prime?(x)

A: integers × integers
is relatively prime?(x,y)
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Decision Problems – Examples

A: set of all pairs (G, t)
G is a {finite set of triples of the sort (i , j ,w)},
i and j are integers and w is real
The finite set encodes the edges of a weighted directed
graph G.
A = {. . . ({. . . , (3,4,5.6), . . .},8.0), . . .}

Each pair in A, (G, t), represents a graph G and a
threshold t
Does G have a path that goes through all nodes
once with total weight < t?

Travelling Salesperson Problem

A is the set of all TSP instances.

(Carnegie Mellon University in Qatar) Slides for 15-453 Lecture 1 Spring 2011 12 / 25



Encoding Sets

Sets can be
Finite
Infinite

Countably Infinite: can be put in one-to-one correspondence
with natural numbers (e.g., rational numbers, integers)
Uncountably Infinite: can NOT be put in one-to-one
correspondence with natural numbers (e.g., real numbers)
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Encoding Sets

In real life, we use many different types of data:
integers, reals, vectors, complex numbers,
graphs, programs (your program is somebody
else’s data).
These can all be encoded as strings
So we will have only one data type: strings
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Strings

An alphabet is any finite set of distinct symbols
{0, 1}, {0,1,2,. . . ,9}, {a,b,c}
We denote a generic alphabet by Σ

A string is any finite-length sequence of elements
of Σ.
e.g., if Σ = {a,b} then a, aba, aaaa, ....,
abababbaab are some strings over the alphabet Σ
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Strings

The length of a string ω is the number of symbols
in ω. We denote it by |ω|. |aba| = 3.
The symbol ε denotes a special string called the
empty string

ε has length 0
String concatenation

If ω = a1, . . . ,an and ν = b1, . . . ,bm then ω · ν (or ων)
= a1, . . . ,anb1, . . . ,bm
Concatenation is associative with ε as the identity element.

If a ∈ Σ, we use an to denote a string of n a’s
concatenated

Σ = {0,1},05 = 00000
a0 =def ε
an+1 =def ana
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Strings

The reverse of a string ω is denoted by ωR.
ωR = an, . . . ,a1

A substring y of a string ω is a string such that
ω = xyz with |x |, |y |, |z| ≥ 0 and
|x |+ |y |+ |z| = |ω|

If ω = xy with |x |, |y | ≥ 0 and |x |+ |y | = |ω|, then
x is prefix of ω and y is a suffix of ω.

For ω = abaab,
ε, a, aba, and abaab are some prefixes
ε, abaab, aab, and baab are some suffixes.
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Strings

The set of all possible strings over Σ is denoted
by Σ∗.
We define Σ0 = {ε} and Σn = Σn−1 · Σ

with some abuse of the concatenation notation applying to
sets of strings now

So Σn = {ω|ω = xy and x ∈ Σn−1 and y ∈ Σ}
Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · ·Σn ∪ · · · =

⋃∞
0 Σi

Alternatively, Σ∗ = {x1, . . . , xn|n ≥ 0 and xi ∈ Σ for all i}
Φ denotes the empty set of strings Φ = {},

but Φ∗ = {ε}
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Strings

Σ∗ is a countably infinite set of finite length strings
If x is a string, we write xn for the string obtained
by concatenating n copies of x .

(aab)3 = aabaabaab
(aab)0 = ε
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Languages

A language L over Σ is any subset of Σ∗

L can be finite or (countably) infinite

(Carnegie Mellon University in Qatar) Slides for 15-453 Lecture 1 Spring 2011 20 / 25



Some Languages

L = Σ∗ – The mother of all languages!
L = {a,ab,aab} – A fine finite language.

Description by enumeration

L = {anbn : n ≥ 0} = {ε, ab, aabb, aaabbb, . . .}
L = {ω|na(ω) is even}

nx (ω) denotes the number of occurrences of x in ω
all strings with even number of a’s.

L = {ω|ω = ωR}
All strings which are the same as their reverses –
palindromes.

L = {ω|ω = xx}
All strings formed by duplicating some string once.

L = {ω|ω is a syntactically correct Java program }
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Languages

Since languages are sets, all usual set operations
such as intersection and union, etc. are defined.
Complementation is defined with respect to the
universe Σ∗ : L = Σ∗ − L
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Languages

If L, L1 and L2 are languages:
L1 · L2 = {xy |x ∈ L1 and y ∈ L2}
L0 = {ε} and Ln = Ln−1 · L
L∗ =

⋃∞
0 Li

L+ =
⋃∞

1 Li = L∗ − {ε}
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Sets of Languages

The power set of Σ∗, the set of all its subsets, is
denoted as 2Σ∗
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Describing Languages

Interesting languages are infinite
We need finite descriptions of infinite sets

L = {anbn : n ≥ 0} is fine but not terribly useful!

We need to be able to use these descriptions in
mechanizable procedures
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