Formal Languages, Automata and Computation Lecture Slides

Carnegie Mellon University in Qatar

January 9, 2011

(Carnegie Mellon University in Qatar)

Slides for 15-453 Lecture 1

Administrative Stuff

- Textbook: Introduction to the Theory of Computation by Michael Sipser (MIT)
- Evaluation:
 - I Midterm Exam
 - 1 Final Exam
 - 6-8 Homeworks

What is this course about? – Formal Languages

- An abstraction of the notion of a "problem"
- Problems are cast either as Languages (= sets of "Strings")
 - "Solutions" determine if a given "string" is in the set or not
 - e.g., Is a given integer, n, prime?
- Or, as transductions between languages
 - "Solutions" transduce/transform the input string to an output string
 - e.g., What is 3+5?

What is this course about? – Formal Languages

- So essentially all computational processes can be reduced to one of
 - Determining membership in a set (of strings)
 - Mapping between sets (of strings)
- We will formalize the concept of mechanical computation by
 - giving a precise definition of the term "algorithm"
 - characterizing problems that are or are not suitable for mechanical computation.

What is this course about? - Automata

- Automata (singular *Automaton*) are abstract mathematical devices that can
 - Determine membership in a set of strings
 - Transduce strings from one set to another
- They have all the aspects of a computer
 - input and output
 - memory
 - ability to make decisions
 - transform input to output
- Memory is crucial:
 - Finite Memory
 - Infinite Memory
 - Limited Access
 - Unlimited Access

What is this course about?- Automata

- We have different types of automata for different classes of languages.
- They differ in
 - the amount of memory then have (finite vs infinite)
 - what kind of access to the memory they allow.

• Automata can behave **non-deterministically**

- A non-deterministic automaton can at any point, among possible next steps, pick one step and proceed
- This gives the conceptual illusion of (infinitely) parallel computation for some classes of automata
 - All branches of a computation proceed in parallel (sort of)
- More on this later

What is this course about?- Complexity

- How much resource does a computation consume?
 - Time and Space
- What are the implications of nondeterminism for complexity?
- How can we classify problems into classes based on their resource use?
 - Are there problems with very unreasonable resource usage (Intractable problems)?
 - How can we characterize such problems?
 - P vs. NP, PSPACE, Log Space

What is this course about?- Computability

- What is computational power?
 - Automaton 1 tells Automaton 2
 "Tell me what kinds of problems you can solve and I will tell you how powerful you are? "
- What does computational power depend on? (it turns out, not "speed")
- What does it mean for a problem to be computable ?
- Are there any uncomputable functions or unsolvable problems?
 - What does this mean?
 - Why do we care?

Applications/Relevance

Pattern matching

- Perl Hacking
- Bioinformatics
- Lexical analysis

Design and Verification

- Hardware
- Software
- Communication Protocols
- Parsing Languages
 - Compiler construction
 - XML Analysis
 - Natural language processing, Machine Translation
- Algorithm design and analysis

Decision Problems

- A decision problem is a function with a YES/NO output
- We need to specify
 - the set A of possible inputs (usually A is infinite)
 - the subset $B \subseteq A$ of YES instances (usually B is also infinite)
- The subset *B* should have a finite description!

Decision Problems – Examples

• A: integers

- is_even?(x)
- is_prime?(x)

• A: integers × integers

is_relatively_prime?(x,y)

Decision Problems – Examples

- A: set of all pairs (G, t)
 - G is a {finite set of triples of the sort (*i*, *j*, *w*)},
 - *i* and *j* are integers and *w* is real
 - The finite set encodes the edges of a weighted directed graph *G*.
 - $A = \{\dots (\{\dots, (3, 4, 5.6), \dots\}, 8.0), \dots\}$
- Each pair in *A*, (*G*, *t*), represents a graph *G* and a threshold *t*
- Does *G* have a path that goes through all nodes once with total weight < *t*?
 - Travelling Salesperson Problem
- A is the set of all TSP instances.

Encoding Sets

Sets can be

- Finite
- Infinite
 - Countably Infinite: can be put in one-to-one correspondence with natural numbers (e.g., rational numbers, integers)
 - Uncountably Infinite: can NOT be put in one-to-one correspondence with natural numbers (e.g., real numbers)

Encoding Sets

- In real life, we use many different types of data: integers, reals, vectors, complex numbers, graphs, programs (your program is somebody else's data).
- These can all be encoded as strings
- So we will have only one data type: strings

• An alphabet is any finite set of distinct symbols

- $\{0, 1\}, \{0,1,2,\ldots,9\}, \{a,b,c\}$
- We denote a generic alphabet by Σ
- A string is any finite-length sequence of elements of Σ.
- e.g., if $\Sigma = \{a, b\}$ then *a*, *aba*, *aaaa*,, *abababbaab* are some strings over the alphabet Σ

- The length of a string ω is the number of symbols in ω. We denote it by |ω|. |aba| = 3.
- - ϵ has length 0
- String concatenation
 - If $\omega = a_1, \dots, a_n$ and $\nu = b_1, \dots, b_m$ then $\omega \cdot \nu$ (or $\omega \nu$) = $a_1, \dots, a_n b_1, \dots, b_m$
 - Concatenation is associative with ϵ as the identity element.
- If a ∈ Σ, we use aⁿ to denote a string of n a's concatenated

•
$$\Sigma = \{0, 1\}, 0^5 = 00000$$

•
$$a^0 =_{def} \epsilon$$

• $a^{n+1} =_{def} a^n a$

(Carnegie Mellon University in Qatar)

The reverse of a string ω is denoted by ω^R. ω^R = a_n,..., a₁

- A substring y of a string ω is a string such that $\omega = xyz$ with $|x|, |y|, |z| \ge 0$ and $|x| + |y| + |z| = |\omega|$
- If $\omega = xy$ with $|x|, |y| \ge 0$ and $|x| + |y| = |\omega|$, then *x* is prefix of ω and *y* is a suffix of ω .

• For $\omega = abaab$,

- ϵ , *a*, *aba*, and *abaab* are some prefixes
- ϵ , *abaab*, *aab*, and *baab* are some suffixes.

- The set of all possible strings over Σ is denoted by Σ*.
- We define $\Sigma^0 = \{\epsilon\}$ and $\Sigma^n = \Sigma^{n-1} \cdot \Sigma$
 - with some abuse of the concatenation notation applying to sets of strings now

• So
$$\Sigma^n = \{ \omega | \omega = xy \text{ and } x \in \Sigma^{n-1} \text{ and } y \in \Sigma \}$$

• $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots \Sigma^n \cup \cdots = \bigcup_0^\infty \Sigma^i$

• Alternatively, $\Sigma^* = \{x_1, \ldots, x_n | n \ge 0 \text{ and } x_i \in \Sigma \text{ for all } i\}$

• Φ denotes the empty set of strings $\Phi = \{\},\$

- Σ* is a countably infinite set of finite length strings
- If x is a string, we write xⁿ for the string obtained by concatenating n copies of x.
 - $(aab)^3 = aabaabaab$
 - $(aab)^0 = \epsilon$

A language L over Σ is any subset of Σ*

• L can be finite or (countably) infinite

Some Languages

- $L = \Sigma^*$ The mother of all languages!
- $L = \{a, ab, aab\} A$ fine finite language.
 - Description by enumeration

•
$$L = \{a^n b^n : n \ge 0\} = \{\epsilon, ab, aabb, aabbb, \ldots\}$$

•
$$L = \{\omega | n_a(\omega) \text{ is even}\}$$

- n_x(ω) denotes the number of occurrences of x in ω
- all strings with even number of *a*'s.

•
$$L = \{\omega | \omega = \omega^R\}$$

• All strings which are the same as their reverses – palindromes.

•
$$L = \{\omega | \omega = xx\}$$

All strings formed by duplicating some string once.

• $L = \{\omega | \omega \text{ is a syntactically correct Java program } \}$

Languages

- Since languages are sets, all usual set operations such as intersection and union, etc. are defined.
- Complementation is defined with respect to the universe Σ* : *L* = Σ* *L*

Languages

• If L, L_1 and L_2 are languages:

•
$$L_1 \cdot L_2 = \{xy | x \in L_1 \text{ and } y \in L_2$$

• $L^0 = \{\epsilon\} \text{ and } L^n = L^{n-1} \cdot L$
• $L^* = \bigcup_0^\infty L^i$
• $L^+ = \bigcup_1^\infty L^i = L^* - \{\epsilon\}$

ł

Sets of Languages

 The power set of Σ*, the set of all its subsets, is denoted as 2^{Σ*}

Describing Languages

- Interesting languages are infinite
- We need finite descriptions of infinite sets
 - $L = \{a^n b^n : n \ge 0\}$ is fine but not terribly useful!
- We need to be able to use these descriptions in mechanizable procedures