
15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 8

SETS AND TABLES–II

SYNOPSIS

How search engines work
Single-threaded sequences

SETS AND TABLES–II 2/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BUILDING A SEARCH ENGINE

How do search engines work?

What are the inputs?
I (Billions and billions of) documents consisting of

“words”.
How do we interact with the search engine

I (Boolean) Keyword queries
I List of matching documents (URLS)

SETS AND TABLES–II 3/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

HOW DOES THE SEARCH REALLY
WORK?

User inputs a query (say a couple of words)
SE starts searching for the words in each
document one-by-one
Returns documents when they match.

Not really!
I Not scalable (even for one user)

Preprocessing

SETS AND TABLES–II 4/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PREPROCESSING

Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1

Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc75

Preprocessing

Index

Query
ProcessingQuery Result

Crawlers

SETS AND TABLES–II 5/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PLAN

What kinds of queries we want to have.

What is the interface we want to have.

How do we implement all these

SETS AND TABLES–II 6/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

QUERIES

Bingle (:-) supports logical queries on words
involving

I And: “15210” And “course” And “slides”

I Or: “15210” Or “15150”

I AndNot: “15210” AndNot “Pittsburgh”

“CMU” And “fun” And (“courses Or “clubs”)

Result would be a list of webpages/documents
that match.

SETS AND TABLES–II 7/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE INTERFACE

signature INDEX = sig
type word = string
type docId = string
type ’a seq
type index
type docList

val makeIndex : (docId * string) seq -> index

val find : index -> word -> docList
val And : docList * docList -> docList
val AndNot : docList * docList -> docList
val Or : docList * docList -> docList
val size : docList -> int
val toSeq : docList -> docId seq

endSETS AND TABLES–II 8/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DOCUMENTS

Indexing a tweet database.

T = 〈 (“jack”, “chess club was fun”),
(“mary”, “I had a fun time in 210 class today”),
(“nick”, “food at the cafeteria sucks”),
(“sue”, “In 217 class today I had fun reading my email”),
(“peter”, “I had fun at nick’s party”),
(“john”, “tiddlywinks club was no fun, but more fun than 218”),
〉

“jack” is a document id
“chess club was fun” is a document

SETS AND TABLES–II 9/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

USING THE INTERFACE

T = 〈 (“jack”, “chess club was fun”),
(“mary”, “I had a fun time in 210 class today”),
(“nick”, “food at the cafeteria sucks”),
(“sue”, “In 217 class today I had fun reading my email”),
(“peter”, “I had fun at nick’s party”),
(“john”, “tiddlywinks club was no fun, but more fun than 218”),
〉

f = (find (makeIndex(T))) : word→ doclist

toSeq(And(f "fun", Or(f "class", f "club")))

⇒ 〈"jack", "mary", "sue", "john" 〉

SETS AND TABLES–II 10/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

USING THE INTERFACE

T = 〈 (“jack”, “chess club was fun”),
(“mary”, “I had a fun time in 210 class today”),
(“nick”, “food at the cafeteria sucks”),
(“sue”, “In 217 class today I had fun reading my email”),
(“peter”, “I had fun at nick’s party”),
(“john”, “tiddlywinks club was no fun, but more fun than 218”),
〉
size(AndNot(f "fun", f "tiddlywinks"))

⇒ 4

SETS AND TABLES–II 11/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE MAKEINDEX FUNCTION

1 fun makeIndex(docs) =
2 let
3 fun tagWords(id,str) = 〈 (w ,id) : w ∈ tokens(str) 〉
4 Pairs = flatten 〈tagWords(d) : d ∈ docs 〉
5 Words = Table.collect(Pairs)
6 in
7 {w 7→ Set.fromSeq(d) : (w 7→ d) ∈ Words}
8 end

What does tagWords do?

tagWords(“jack”, “chess club was fun”)
⇒ 〈 (“chess”,“jack”),(“club”, “jack”), (“was”, “jack”), (“fun”, “jack”) 〉

SETS AND TABLES–II 12/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE PAIRS FUNCTION

1 fun makeIndex(docs) =
2 let
3 fun tagWords(id,str) = 〈 (w ,id) : w ∈ tokens(str) 〉
4 Pairs = flatten 〈tagWords(d) : d ∈ docs 〉
5 Words = Table.collect(Pairs)
6 in
7 {w 7→ Set.fromSeq(d) : (w 7→ d) ∈ Words}
8 end

What does Pairs do?

Pairs = 〈(“chess”,“jack”),(“club”, “jack”), (“was”, “jack”) ,
(“fun”, “jack”), (“I”, “mary”), (“had”, “mary”),
(“fun”, “mary”), . . .〉

SETS AND TABLES–II 13/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE COLLECT FUNCTION

1 fun makeIndex(docs) =
2 let
3 fun tagWords(id,str) = 〈 (w ,id) : w ∈ tokens(str) 〉
4 Pairs = flatten 〈tagWords(d) : d ∈ docs 〉
5 Words = Table.collect(Pairs)
6 in
7 {w 7→ Set.fromSeq(d) : (w 7→ d) ∈ Words}
8 end

What does collect do?

Words = {(“a” 7→ 〈 “mary” 〉),
(“at” 7→ 〈 “mary”, “peter” 〉),
. . .
(“fun” 7→ 〈 “jack”, “mary”, “sue”, “peter”, “john” 〉),
. . .

SETS AND TABLES–II 14/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

FINAL TOUCHES

1 fun makeIndex(docs) =
2 let
3 fun tagWords(id,str) = 〈 (w ,id) : w ∈ tokens(str) 〉
4 Pairs = flatten 〈tagWords(d) : d ∈ docs 〉
5 Words = Table.collect(Pairs)
6 in
7 {w 7→ Set.fromSeq(d) : (w 7→ d) ∈ Words}
8 end

What is happening here?
Sequences are converted to tables.

SETS AND TABLES–II 15/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MAKEINDEX COSTS

1 fun makeIndex(docs) =
2 let
3 fun tagWords(id,str) = 〈 (w ,id) : w ∈ tokens(str) 〉
4 Pairs = flatten 〈tagWords(d) : d ∈ docs 〉
5 Words = Table.collect(Pairs)
6 in
7 {w 7→ Set.fromSeq(d) : (w 7→ d) ∈ Words}
8 end

Assuming tokens have a upper bound on length
I WmakeIndex(n) ∈ O(n log n), SmakeIndex ∈ O(log2 n)
I What does n represent?

SETS AND TABLES–II 16/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

REST OF THE INTERFACE

fun find T v = Table.find T v

fun And(s1, s2) = s1 ∩ s2

fun Or(s1, s2) = s1 ∪ s2

fun AndNot(s1, s2) = s1 \ s2

fun size(s) = |s|
fun toSeq(s) = Set.toSeq(s)

SETS AND TABLES–II 17/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SINGLE-THREADED ARRAY
SEQUENCES

Updating an array sequence in an imperative
language takes O(1) work.
In a functional setting, everything is persistent.
An update to a sequence of n elements needs

I O(n) work for arraySequence implementation to
copy and update.

I O(log n) work for treeSequence implementation
(because of substructure sharing)

Interfaces do not provide functions for updating
a single position.

I to discourage sequential (and expensive)
computation.

SETS AND TABLES–II 18/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SINGLE-THREADED ARRAY
SEQUENCES

A map can be implemented as follows
fun map f S =

iter (fn ((i ,S′), v)⇒ (i + 1,update (i , f (v)) S′))
(0,S)
S

Iterates n times (i = 0, . . .n − 1)
and updates the value Si with f (Si).
arraySequence: Each update will do O(n)
work for a total O(n2) work
treeSequence: Each update will do O(log n)
work for a total O(n log n) work.

SETS AND TABLES–II 19/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SINGLE-THREADED SEQUENCES

A new ADT: Single Threaded Sequence: stseq
Useful when a bunch of items need to be
updated.
Straigthforward interface
Cost specification imply non-functional stuff
under the hood!

SETS AND TABLES–II 20/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

STSEQ INTERFACE AND COSTS
Work Span

fromSeq(S) : α seq → α stseq O(|S|) O(1)
Converts from a regular sequence to a stseq.

toSeq(ST) : α stseq → α seq O(|S|) O(1)
Converts from a stseq to a regular sequence.

nth ST i : α stseq → int → α O(1) O(1)
Returns the i th element of ST. Same as for seq.

update (i,v) S : (int × α) → O(1) O(1)
α stseq → α stseq

Replaces the i th element of S with v .

inject I S: (int × α) seq O(|I|) O(1)
→ α stseq → α stseq

For each (i, v) ∈ I replaces the i th element of S with v .

Cost bounds for nth and update only valid for
the “current” version of the sequence.

SETS AND TABLES–II 21/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MAP WITH STSEQ

1 fun map f S = let
2 S′ = StSeq.fromSeq(S)
3 R = iter
4 (fn ((i ,S′′), v)⇒ (i + 1, StSeq.update (i , f (v)) S′′))
5 (0,S′)
6 S′

7 in
8 StSeq.toSeq(R)
9 end

Overall work and span is O(n) (Why?)
Multiple updates can be done in O(n) time.

SETS AND TABLES–II 22/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTING STSEQ

Keep two full copies of the sequence
I Original and Current
I We keep a change log: updates to the original to get

Current.
When Current is updated

I We create a “new” Current with the update, and
update change log.

I Mark the previous version as old, remove its Current
and but keep the old change log.

Any item from the current version is accessible
in constant work.
Any item from the any previous version is
accessible but needs more work.

SETS AND TABLES–II 23/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTING STSEQ

Original Current()

Change Log

SETS AND TABLES–II 24/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTING STSEQ

Original Current()

update(3, 5)

Original ()

Original ((3,5)) Current5

Change Log

Old Version1

There really is only one copy of the Original.
All point to that copy.

SETS AND TABLES–II 25/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTING STSEQ

Original ()

Original ((3,5)) Current5

update(6, 7)

Old Version1

Original ()

Original ((3,5))

Original ((6, 7)(3,5)) Current5 7

Old Version1

Old Version2

SETS AND TABLES–II 26/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTING STSEQ

Original ()

Original ((3,5))

Original ((6, 7)(3,5)) Current5 7

Old Version1

Old Version2

updateOldversion2(4, 5)

Original ()

Original ((4, 5)(3,5))

Original ((6, 7)(3,5)) Current5 7

Old Version1

Old Version3

Original ((3,5)) Old Version2

SETS AND TABLES–II 27/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SUMMARY

How search engines work
Single-threaded sequences

SETS AND TABLES–II 28/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

