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SYNOPSIS

Binary Search Trees
Basic Structural Operations on BSTs
Basic Operations on BSTs
Concrete Implementations
Cost Analysis
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BINARY TREES

Trees where each node has at most 2 children
each of which is a binary tree.

I Left child / Left subtree
I Right child / Right subtree

k

kL kR
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BINARY SEARCH TREES

Binary trees with the “search” property
For each node v with key k

I The key of the left child kL < k
I The key of the right child kR > k
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THINGS CAN GET PRETTY BAD
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BALANCED TREES

We try to keep binary search trees balanced.
I Both children are about the same height
I Both subtrees are about the same size

AVL Trees
I Left and right subtree heights differ by at most 1.
I O(log n) root height maintained after each insertion

and deletion.
Splay Trees

I Balanced in the amortized sense
I A sequence of n find, insert, or delete

operations take O(n log n) work.
I So average is O(log n) work.
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BASIC BST OPERATIONS

Data type is defined by structural induction
I Leaf
I Node with a left child, a right child, a key, optional

additional data.

datatype BST = Leaf |
Node of (BST * BST * key * data)
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BASIC BST OPERATIONS

split(T , k) : BST× key→
BST× (data option)× BST

split divides T into two BSTs,
I one consisting of all the keys from T less than k
I the other all the keys greater than k

If k appears in the tree with associated data d
then split returns SOME(d)
Otherwise it returns NONE.
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BASIC BST OPERATIONS

join(L,m,R) : BST× (key× data) option×
BST→ BST

Takes a left subtree (L) an optional key-data pair
m and a right subtree (R)

I Assumes all keys in L are less than all keys in R.
I If present, the optional key is also larger than all keys

in L and smaller than all keys in R.
Creates a new BST that is the union of L and R
and m.
We also assume both split and join maintain
balance.
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BASIC BST OPERATIONS

expose(T ) : BST→
(BST× BST× key× data) option

Returns the components if BST T is not empty.
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BASIC BST OPERATIONS - SEARCH

1 fun search T k =
2 let ( , v , ) = split(T , k)
3 in v
4 end
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BASIC BST OPERATIONS - INSERT

1 fun insert T (k , v) =
2 let (L, v ′,R) = split(T , k)
3 in join(L,SOME(k , v),R)
4 end
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BASIC BST OPERATIONS - DELETE

1 fun delete T k =
2 let (L, ,R) = split(T , k)
3 in join(L,NONE,R)
4 end
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CONCRETE IMPLEMENTATIONS:
SPLIT
datatype BST = Leaf |

Node of (BST * BST * key * data)

1 fun split(T , k) =
2 case T of
3 Leaf ⇒ (Leaf,NONE,Leaf)
4 | Node(L,R, k ′, v)⇒
5 case compare(k , k ′) of
6 LESS⇒
7 let (L′, r ,R′) = split(L, k)
8 in (L′, r ,Node(R′,R, k ′, v)) end
9 EQUAL⇒ (L,SOME(v),R)

10 GREATER⇒
11 let (L′, r ,R′) = split(R, k)
12 in (Node(L,L′, k ′, v), r ,R′) end
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CONCRETE IMPLEMENTATIONS: JOIN

1 fun join(T1,m,T2) =
2 case m of
3 SOME(k , v)⇒ Node(T1,T2, k , v)
4 | NONE⇒
5 case T1 of
6 Leaf⇒ T2
7 | Node(L,R, k , v)⇒ Node(L,join(R,NONE,T2), k , v))
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CONCRETE IMPLEMENTATIONS:
UNION

k1

L1 R1

T1 T2

L2 R2

< k1 > k1 k1

union(L1,L2) union(R1,R2)

For T1 with key k1 and children L1 and R1 at the root, use
k1 to split T2 into L2 and R2.

Recursively find Lu = union(L1,L2) and
Ru = union(R1,R2).

Now join(Lu, k1,Ru).
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CONCRETE IMPLEMENTATIONS:
UNION

1 fun union(T1,T2) =
2 case expose(T1) of
3 NONE⇒ T2
4 | SOME(L1,R1, k1, v1)⇒
5 let (L2, v2,R2) = split(T2, k1)
6 (L,R) = union(L1,L2) || union(R1,R2)
7 in join(L, SOME(k1, v1), R)
8 end

Returns the value from T1 if a key appears in
both trees.
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ANALYSIS OF UNION

1 fun union(T1,T2) =
2 case expose(T1) of
3 NONE⇒ T2
4 | SOME(L1,R1, k1, v1)⇒
5 let (L2, v2,R2) = split(T2, k1)
6 (L,R) = union(L1,L2) || union(R1,R2)
7 in join(L, SOME(k1, v1), R)
8 end

split costs O(log |T2|).
Two recursive calls to union

join costs O(log(|T1|+ |T2|)
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ANALYSIS OF UNION -
ASSUMPTIONS

T1 is perfectly balanced.
I expose return subtrees of size |T1|/2
I Each a key from T1 splits T2, it splits exactly in half.
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ANALYSIS OF UNION

W (|T1|, |T2|) = 2W (|T1|/2, |T2|/2)︸ ︷︷ ︸
recursive union calls

+O(log(|T1|+ |T2|))︸ ︷︷ ︸
split and join

,

and

W (1, |T2|) = O(log(1 + |T2|)).

When |T1| = 1, expose give us two empty
subtrees L1 and R1
union(L1,L2) returns L2, union(R1,R2) returns
R2 immediately!
Joining these costs at most
O(log(|T1|+ |T2|)) = O(log(1 + |T2|)
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ANALYSIS OF UNION

Let m = |T1| and n = |T2| and N = n + m
k1 log N

k1 log (N/2) k1 log (N/2)

k1 log (N/4) k1 log (N/4) k1 log (N/4) k1 log (N/4)

k1 log N

k1 2 log (N/2)

k1 4 log (N/4)

Bottom level: each costs log (1+ (n/m))

Leaf dominated (Why?)
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ANALYSIS OF UNION

How many leaves are there in this recursion
tree?

I T2 has no impact.
I We get m = |T1| leaves.

How deep is the tree?
I 1 + log2 m

What is the size of T2 at the leaves?
I n/2log2 m = n

m

Total cost at the leaves = O(m log(1 + n
m))

Union cost = O(m log(1 + n
m))
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