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SYNOPSIS

Minimum Spanning Trees
Kruskal’s and Prim’s Algorithms
Using Star Contraction for MST
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MINIMUM SPANNING TREES

Given a connected undirected graph G = (V ,E)
I Each edge e has we ≥ 0

Find a spanning tree, T that minimizes

w(T ) =
∑

e∈E(T )

we.

Sequential algorithms:
I Kruskal’s Algorithm
I Prim’s Algorithm
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LIGHT EDGE RULE

Given G = (V ,E), U ( V partitions the graph
into two parts with vertices U and V \ U.
The edges between U and V \ U are called the
cut edges E(U,U).
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LIGHT EDGE RULE
THEOREM
Let G = (V ,E ,w) be a connected undirected weighted graph
with distinct edge weights.

For any nonempty U ( V

the minimum weight edge e between U and V \ U is in the
minimum spanning tree MST(G) of G.
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LIGHT EDGE RULE

u
v

U V\U

Assume e = (u, v) is the minimum edge in the cut but not
in the MST.

MST should have at least another edge in the cut.

Adding e to the path between u and v creates a cycle.

Removing the max edge from path (blue line) and adding e
should give a ST with less weight.

Original (claimed) MST (through blue line) can not be a
MST!
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KRUSKAL’S ALGORITHM

Greedy
Each vertex is a subtree by itself initially
Combine the two sub-trees on both sides of the
next smallest edge (if they are different)
Uses the union-find data structure.
O(m log n) work and span!
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KRUSKAL’S ALGORITHM
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PRIM’S ALGORITHM

Greedy
Based on Priority-based Search – Variant of
Dijsktra’s Algorithm
Maintain visited X and frontier F vertices.
Visit the nearest unvisited vertex in the frontier.
O(m log n) work and span!
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PRIM’S ALGORITHM
1 fun prim(G) =
2 let
3 fun enqueue v (Q, (u,w)) = PQ.insert (w , (v ,u)) Q
4 fun prim’(X , Q, T ) =
5 case PQ.deleteMin(Q) of
6 (NONE, )⇒ T
7 | (SOME(d , (u, v)),Q′)⇒
8 if (v ∈? X ) then prim’(X , Q′, T )
9 else let

10 X ′ = X ∪ {v}
11 T ′ = T ∪ {(u, v)}
12 Q′′ = iter (enqueue v) Q′ NG(v)
13 in prim’(X ′, Q′′, T ′) end

14 s = an arbitrary vertex from G
15 Q = iter (enqueue s) {} NG(s)
16 in
17 prim’({s} , Q, {})
18 end
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PRIM’S ALGORITHM
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PARALLEL MST ALGORITHMS

OBSERVATION
The minimum weight edge out of every vertex of
a weighted graph G belongs to its MST.

Why should this be the case?
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MST can contain other edges!
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PARALLEL MST - IDEA #1

Throw all minimum weight edges into MST
Tree contract the vertices for all these edges
Repeat until no edges remain!
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Each rounds removes at least 1/2 of the vertices
(Why?)
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PARALLEL MST - IDEA #2

Let minE be the set of minimum weight edges.
Let H = (V ,minE) be a subgraph of G
We apply (modified) star contraction to H

I The tails hook up through the minimum weight edge!

1 fun minStarContract(G = (V ,E), i) =
2 let
3 minE = minEdges(G)
4 P = {u 7→ (v ,w) ∈ minE | ¬heads(u, i) ∧ heads(v,i)}
5 V ′ = V \ domain(P)

6 in (V ′,P) end
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PARALLEL MST - IDEA #2

Even though we are working with a subgraph, the
star contract lemma still applies.

LEMMA
For a graph G with n non-isolated vertices, let Xn be
the random variable indicating the number of vertices
removed by minStarContract(G, r). Then,
E(Xn) ≥ n/4.

MST will take expected O(log n) rounds.
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BOOKKEEPING

As the graph contracts, the end point of each
edge changes!
At the end, the edges may not have the original
end points.
Associate a unique label to each edge initially:

I (vertex× vertex× weight× label)
I The end points change but the label does not!
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MODIFIED STAR CONTRACT

1 fun minStarContract(G = (V ,E), i) =
2 let
3 minE = minEdges(G)
4 P = {(u 7→ (v ,w , `)) ∈ minE | ¬heads(u, i) ∧ heads(v , i)}
5 V ′ = V \ domain(P)

6 in (V ′,P) end

Line 3: Finds min edge for each vertex.
I All these belong to the MST

Line 4: Picks tails and heads, and the creates
mapping from tails to heads.
Line 5: Removes all tail vertices from the vertex
set.
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THE MST ALGORITHM

1 fun MST((V ,E), T , i) =
2 if |E | = 0 then T
3 else let
4 (V ′,PT ) = minStarContract((V ,E), i)
5 P = {u 7→ v : u 7→ (v ,w , `) ∈ PT} ∪ {v 7→ v : v ∈ V ′}
6 T ′ = {` : u 7→ (v ,w , `) ∈ PT}
7 E ′ = {(P[u],P[v ],w , l) : (u, v ,w , l) ∈ E | P[u] 6= P[v ]}
8 in
9 MST((V ′,E ′), T ∪ T ′, i + 1)

10 end

Invoked by MST(G, {},1).
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IMPLEMENTING MINEDGES(G)

fun joinEdges((v1,w1, l1), (v2,w2, l2)) =
if (w1 ≤ w2) then (v1,w1, l1) else (v2,w2, l2)

fun minEdges(E) =
let

ET = {u 7→ (v ,w , l) : (u, v ,w , l) ∈ E}
in

(merge joinEdges) {} ET
end
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