
15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 23

MORE WITH TREES

SYNOPSIS

Ordered Sets and Tables
Bingle Revisited
Augmenting Balanced Trees
Ordered Tables with Reduced Values
Application Examples

MORE WITH TREES 2/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ORDERED SETS AND TABLES

So far, we did not worry about the ordering of the
values/keys in sets and tables.

I Find, union, intersect, merge, etc.
For many applications, exploiting any order is
very important!

I Find all elements between 3 and 17.
I Find all customers who bought more that 5 of one

item.
I Find all emails in the week of March 31st.

Ordered sets and tables.

MORE WITH TREES 3/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ORDERED SET ADT

We have a totally ordered universe U, and S
represents the set of all subsets of U.
With the following operations

all operations supported by the Set ADT, and

last(S) : S→ U = max S
first(S) : S→ U = min S

split(S, k) : S× U→ S = ({k ′ ∈ S | k ′ < k} , k
?
∈ S,

×bool × S {k ′ ∈ S | k ′ > k})
join(S1,S2) : S× S→ S = S1 ∪ S2,assuming

max S1 < min S2
getRange(S, k1, k2) : S× U× U→ S = {k ∈ S | k1 ≤ k ≤ k2}

MORE WITH TREES 4/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ORDERED SET ADT

Underlying implementation uses trees.
first and last are easy

I first traverses down the left spine to the minimum
value.

I last traverses down the right spine to the maximum
value.

getRange involves two splits.

MORE WITH TREES 5/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPROVISING BINGLE
signature INDEX = sig
type word = string
type docId = string
type ’a seq
type index
type docList

val makeIndex : (docId * string) seq -> index
val find : index -> word -> docList
val And : docList * docList -> docList
val AndNot : docList * docList -> docList
val Or : docList * docList -> docList
val size : docList -> int
val toSeq : docList -> docId seq

end

docList is a set.
index is a table.

MORE WITH TREES 6/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPROVISING BINGLE

We want to limit the search to certain domains
(e.g., cmu.edu)

I or docs with a certain name.
We want to add
val inDomain : domain * docList -> docList

For example
inDomain("cs.cmu.edu",

and(find idx "cool", find idx "TAs"))

MORE WITH TREES 7/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPROVISING BINGLE

Assume doc ids are URLs.
Assume they are “reverse” lexicographically
ordered.

I The last character is the most important!

1 fun inDomain(domain,L) =
2 getRange(L,domain,string.prepend(domain,"$"))

$ is a character that is greater than any character.

MORE WITH TREES 8/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AUGMENTING BALANCED TREES

Sets (and underlying trees) hold the key and any
associated values.
We can add other additional values to help with
other search operations.

I Track key positions and certain subset sizes.

rank(S, k): How many elements in S are less
than k?
select(S, i): Which element in S has rank i?
splitIdx(S,i): Split S into two sets: first i
keys and the remaining n − i keys.

MORE WITH TREES 9/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AUGMENTING BALANCED TREES

rank(S, k) : S× U→ int = | {k ′ ∈ S | k ′ < k} |

select(S, i) : S× int → U = k such that | {k ′ ∈ S | k ′ < k} | = i

splitIdx(S, i) : S× int → = ({k ∈ S | k < select(S, i)} ,
S× S {k ∈ S | k ≥ select(S, i)})

Without additional information stored with the
keys, these operations would take θ(|S|) work.

MORE WITH TREES 10/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AUGMENTING BALANCED TREES

Let S = {1,2,3,4,5,6}
rank(S, 4) = |{1,2,3}| = 3
select(S, 3) = 4 since rank(S, 4) = 3
splitIdx(S, 3) = ({1,2,3}, {4,5,6})

MORE WITH TREES 11/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AUGMENTING BALANCED TREES

At each node keep the size of the subtree.
This allows size and the three other operations
in O(d) work with d as the depth of the tree.
Size can be computed on the fly by adding 1 to
the sum of the subtree sizes!

MORE WITH TREES 12/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SELECT WITH AUGMENTED TREES

1 fun select(T , i) =
2 case expose(T) of
3 NONE⇒ raise Range
4 | SOME(L,R, k)⇒
5 case compare(i , |L|) of
6 LESS⇒ select(L, i)
7 | EQUAL⇒ k
8 | GREATER⇒ select(R, i − |L| − 1)

MORE WITH TREES 13/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

RANK AND SPLITIDX

rank is easy: just split and return the size of the
left tree!
splitIdx is just like split (or you navigate using
sizes (as opposed to key values))

MORE WITH TREES 14/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ORDERED TABLES WITH REDUCED
VALUES

Maintain at each node a “sum” based on an
associative operator f .

I Updated during insert/delete, merge, extract, etc.
Given f : v × v → v , and If

I All operations on ordered tables are supported, and
I

reduceVal(A) : T→ v = reduce f If A

I We want to be able to do reduceVal in O(1) work
(assuming f needs O(1) work).

I f is known beforehand!

MORE WITH TREES 15/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ORDERED TABLES WITH REDUCED
VALUES

(e,2,13)

(c, 1, 6)

(a, 3, 3) (d, 2, 2)

(g,5,5)

f is +

(e,2,5)

(c, 1, 3)

(a, 3, 3) (d, 2, 2)

(g,5,5)

f is max

MORE WITH TREES 16/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTATION

1 datatype Treap = Leaf | Node of (Treap× Treap
2 ×key× data× data)

3 fun reduceVal(T) =
4 case T of
5 Leaf⇒ Reduce.I
6 | Node(, , , , r)⇒ r

7 fun makeNode(L,R, k , v) =
8 Node(L,R, k , v ,Reduce.f (reduceVal(L),
9 Reduce.f (v ,reduceVal(R))))

MORE WITH TREES 17/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTATION

1 fun join(T1,T2) =
2 case (T1,T2) of
3 (Leaf,)⇒ T2
4 | (,Leaf)⇒ T1
5 | (Node(L1,R1, k1, v1, s1),Node(L2,R2, k2, v2, s2))⇒
6 if (priority(k1) > priority(k2)) then
7 makeNode(L1,join(R1,T2), k1, v1)
8 else
9 makeNode(join(T1,L2),R2, k2, v2)

MORE WITH TREES 18/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXAMPLE APPLICATION - SALES
DATA

Sales information are kept by the time stamp in
an ordered table.

I (2/3/2013− 12 : 30, $120)

Find the total sales between t1 and t2
f is +

reduceVal(getRange(T , t1, t2)) takes O(logn)
work

MORE WITH TREES 19/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXAMPLE APPLICATION - STOCK
DATA

Stock prices information are kept by the time
stamp in an ordered table.

I (2/3/2013− 12 : 30, $120/share)

Find the maximum price between t1 and t2
f is max
reduceVal(getRange(T , t1, t2)) takes O(logn)
work

MORE WITH TREES 20/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXAMPLE APPLICATION- INTERVAL
TREES

An interval is a region on the real number line
starting at xl and ending at xr

an interval table supports the following
operations on intervals:

insert(A, I) : T× (real× real)→ T insert interval I into table A
delete(A, I) : T× (real× real)→ T delete interval I from table A
count(A, x) : T× real→ int return the number of

intervals crossing x in A

MORE WITH TREES 21/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

INTERVAL TREES

Organize intervals as a BST based on
lower-boundary as key
Use the max upper boundary in the subtree as
additional information.

[16,21]
30

[8,9]
23

[25,30]
30

[5,8]
10

[0,3]
3

[6,10]
10

[15,23]
23

[17,19]
20

[19,20]
20

[26,26]
26

MORE WITH TREES 22/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COUNTING INTERVALS

1 datatype intTree = Leaf | Node of (intTree× intTree
2 ×real× real× real)

3 fun overlap(x , low ,high) =
4 if (x ≥ low & x ≤ high) then 1 else 0

5 fun countInt(T , x) =
6 case T of
7 Leaf⇒ 0
8 | Node(L,R, low ,high,max)⇒
9 if (x > max) then 0

10 else countInt(L, x)+
11 overlap(x , low ,high)+
12 if (x > low) then countInt(R, x) else 0

MORE WITH TREES 23/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

