
15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 16

GRAPH CONTRACTION



SYNOPSIS

Graph Contraction
Finding Connected Components
Edge Contraction
Star Contraction
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MOTIVATION

Most graph search algorithms were either
I sequential, or
I had span dependent on the diameter.

Can we make these algorithms more parallel?
I Polylogarithmic span: span is bounded by a

polynomial in log n
We will look at contraction as a way to build
parallel algorithms for some graph problems:

I Graph Connectivity
I Spanning Trees
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GRAPH CONNECTIVITY

Two vertices in an undirected graph are
connected if there is a path between them.
A graph is connected if all pairs of vertices are
connected.
The graph connectivity problems partitions a
graph into its maximal connected subgraphs.
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d
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f

has two connected subgraphs:{a,b, c,d} and {e, f}
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GRAPH CONNECTIVITY

BFS or DFS
I Identify vertices of a connected component
I Identify all connected components!

BFS could be parallel but has span ∝ diameter d
Each connected component needs to be done
sequentially!
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GRAPH CONTRACTION

Problem→ Smaller Problem
Shrink the size of the graph and solve the
connectivity problem on the small graph.

I Different components can be handled in parallel!
Applicable to other problems

I Spanning Trees
I Minimum Spanning Trees
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GRAPH CONTRACTION

contract : graph→ partition

Takes a graph G(V ,E) and returns a partitioning
of V into connected subgraphs.

I Not necessarily maximally connected subgraphs (yet)
I But vertices in a partition are connected.
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{{a,b, c} , {d} , {e, f}}
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GRAPH CONTRACTION

a

b

c

d

e

f a,b,c d e,fa,b,c d e,f

components 
identified

contracted parallel edges 
removed

If the graph contracts on each round, eventually
each maximal connected component will shrink
down to a single vertex!

a,b,c,d e,fa,b,c d e,f a,b,c,d,e,f
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REPRESENTING PARTITIONS

a

b

c
d

e

f

abc
ef

d

↓

{{a,b, c} , {d} , {e, f}}
↓

({a,d ,e} , {a 7→ a,b 7→ a, c 7→ a,d 7→ d ,e 7→ e, f 7→ e}).
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CONTRACTING GRAPHS

1 fun contractGraph((V ,E), i) =
2 if |E | = 0 then (V ,E)
3 else let
4 (V ′,P) = partitionGraph((V ,E), i)
5 E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 in
7 contractGraph((V ′,E ′), i + 1)
8 end

Ignore i for the time being!
V ′ is the set of representative vertices
P maps every v ∈ V to a v ′ ∈ V ′.
E ′ is the set of edges in the contracted graph.

I Self-loops are removed!
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COUNTING COMPONENTS

1 fun numComponents((V ,E), i) =
2 if |E | = 0 then |V |
3 else let
4 (V ′,P) = partitionGraph((V ,E), i)
5 E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 in
7 numComponents((V ′,E ′), i + 1)
8 end
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COMPUTING COMPONENTS

1 fun components((V ,E), i) =
2 if |E | = 0 then {v 7→ v : v ∈ V}
3 else let
4 (V ′,P) = partitionGraph((V ,E), i)
5 E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 P ′ = components((V ′,E ′), i + 1)
7 in
8 {v 7→ P ′[P[v ]] : v ∈ V}
9 end
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COMPUTING COMPONENTS

1 fun components((V ,E), i) =
2 if |E | = 0 then {v 7→ v : v ∈ V}
3 else let
4 (V ′,P) = partitionGraph((V ,E), i)
5 E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 P ′ = components((V ′,E ′), i + 1)
7 in
8 {v 7→ P ′[P[v ]] : v ∈ V}
9 end

Base case: Every vertex maps to itself!

GRAPH CONTRACTION 13/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



COMPUTING COMPONENTS

1 fun components((V ,E), i) =
2 if |E | = 0 then {v 7→ v : v ∈ V}
3 else let
4 (V ′,P) = partitionGraph((V ,E), i)
5 E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 P ′ = components((V ′,E ′), i + 1)
7 in
8 {v 7→ P ′[P[v ]] : v ∈ V}
9 end

(Recursively) find components of the contracted
graph
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COMPUTING COMPONENTS

1 fun components((V ,E), i) =
2 if |E | = 0 then {v 7→ v : v ∈ V}
3 else let
4 (V ′,P) = partitionGraph((V ,E), i)
5 E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 P ′ = components((V ′,E ′), i + 1)
7 in
8 {v 7→ P ′[P[v ]] : v ∈ V}
9 end

Map each vertex to the representative vertex of
its partition!
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COMPUTING COMPONENTS

1 fun components((V ,E), i) =
2 if |E | = 0 then {v 7→ v : v ∈ V}
3 else let
4 (V ′,P) = partitionGraph((V ,E), i)
5 E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 P ′ = components((V ′,E ′), i + 1)
7 in
8 {v 7→ P ′[P[v ]] : v ∈ V}
9 end

a

b

c
d

e

f

abc
ef

d

After 4: V ′ = {a,d ,e}
P = {a 7→ a,b 7→ a, c 7→ a,d 7→ d , e 7→ e, f 7→ e}

After 6: P ′ = {a 7→ a,d 7→ a,e 7→ a}

8 returns: {a 7→ a,b 7→ a, c 7→ a,d 7→ a,e 7→ a, f 7→ a}
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IMPLEMENTING CONTRACT

Edge Contraction:Only pairs of vertices
connected by an edge are contracted.
Star Contraction: Vertices around a “center star”
collapse to the “star”
Tree Contraction: disjoint trees within the graph
are identified and vertices in a tree are collapsed
to the root.
Parallel
Reduce graph size (vertices/edges?) by a
constant factor every round.

I Will lead to O(log n) rounds!.
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EDGE CONTRACTION

Find disjoint edges – edges can not share
vertices.

a

b

c

d

e

f

Vertex matching problem
Can be done in parallel

I Each edge picks a random priority in [0,1]
I Any edge which has highest priority for both vertices

gets selected.
It turns out this has some problems!
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EDGE CONTRACTION

Consider a graph like

v

How many edges can be contracted each round?
How many rounds are needed to contract to 1
node?
Not very parallel!
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EDGE CONTRACTION FOR CYCLE
GRAPHS

a

b

c d

e

fa e

c

a e

c

Round 1

Edges flip a coin
Edges get a random number
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STAR GRAPHS

A star (sub)graph G = (V ,E) is an undirected
graph with a center vertex v ∈ V , and a set of
edges E = {{v ,u} : u ∈ V \ {v}}.

v
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STAR CONTRACTION

Star subgraphs can be contracted in parallel!

How do we find disjoint stars?
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FINDING DISJOINT STARS

Each vertex throws a coin
I Heads→ vertex is a star-center
I Tails→ vertex is a potential satellite (Why potential?)

Each satellite then selects a center.
What is the probability that a vertex with degree
d is removed?
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RANDOM COIN TOSSES

Pretend each vertex has a potentially infinite
sequence of random coin flips
heads(v , i) : vertex× int→ bool provides
access to these coin tosses.
This can be implemented with a pseudorandom
number generator.
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STAR CONTRACTION

1 fun starPartition(G = (V ,E), i) =
2 let
3 % select edges that go from a tail to a head
4 TH = {(u, v) ∈ E | ¬heads(u, i) ∧ heads(v , i)}
5 % make mapping from tails to heads, removing duplicates
6 P = ∪(u,v)∈TH {u 7→ v}
7 % remove vertices that have been remapped
8 V ′ = V \ domain(P)
9 % Map remaining vertices to themselves

10 P ′ = {u 7→ u : u ∈ V ′} ∪ P
11 in (V ′,P ′) end

a

b

c d

e
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a

b

c d

e

H
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a

b

c d

e

H

H T

TT

coin flips (heads(v,i)) find potential centers (TH) compute "hook" edges (P)
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STAR CONTRACTION

a

b

c d

e
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a

b

c d

e

H
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a

b

c d

e

H

H T

TT

coin flips (heads(v,i)) find potential centers (TH) compute "hook" edges (P)

TH = {(u, v) ∈ E | ¬heads(u, i) ∧ heads(v , i)}

TH = {(c,a), (c,b), (e,b)}.
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STAR CONTRACTION

a

b

c d

e

H
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TT

a

b

c d

e

H
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a

b

c d

e

H

H T

TT

coin flips (heads(v,i)) find potential centers (TH) compute "hook" edges (P)

P = ∪(u,v)∈TH {u 7→ v}

TH = {(c,a), (c,b), (e,b)}
P = {c 7→ b,e 7→ b}
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STAR CONTRACTION

a

b

c d

e
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b

c d

e

H

H T
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a

b

c d

e

H

H T

TT

coin flips (heads(v,i)) find potential centers (TH) compute "hook" edges (P)

V ′ = V \ domain(P)

P = {c 7→ b,e 7→ b}
domain(P) = {c,e}
V ′ = {a,b,d}
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STAR CONTRACTION

a

b

c d

e
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a

b

c d

e

H

H T

TT

coin flips (heads(v,i)) find potential centers (TH) compute "hook" edges (P)

P ′ = {u 7→ u : u ∈ V ′} ∪ P

P = {c 7→ b,e 7→ b}, V ′ = {a,b,d}
P ′ = {a 7→ a,b 7→ b, c 7→ b,d 7→ d ,e 7→ b}
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ANALYSIS OF STAR CONTRACTION

LEMMA
For a graph G with n non-isolated vertices, let Xn be the random
variable indicating the number of vertices removed by
starPartition(G, ). Then, E [Xn] ≥ n/4.

Hv : vertex v comes up heads, Tv : vertex v comes up tails

Rv : vertex v is removed in contraction

v has at least one neighbor u.

Tv ∧ Hu implies Rv

I If v is a tail, join u′s star or some other star.
Pr[Rv ] ≥ Pr[Tv ]Pr[Hu] = 1/4

Expected total ≥ n/4

GRAPH CONTRACTION 30/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



ANALYSIS OF STAR CONTRACTION

1 fun starPartition(G = (V ,E), i) =
2 let
3 % select edges that go from a tail to a head – O(m) work, O(1) span
4 TH = {(u, v) ∈ E | ¬heads(u, i) ∧ heads(v , i)}
5 % make mapping from tails to heads, removing duplicates
6 % O(n) work, O(log n) span
7 P = ∪(u,v)∈TH {u 7→ v}
8 % remove vertices that have been remapped
9 % O(n) work, O(log n) span

10 V ′ = V \ domain(P)
11 % Map remaining vertices to themselves -O(n) work, O(log n span
12 P ′ = {u 7→ u : u ∈ V ′} ∪ P
13 in (V ′,P ′) end

n nodes, m edges
O(n + m) work, O(log n) span.
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ANALYSIS OF CONNECTIVITY

1 fun numComponents((V ,E), i) =
2 if |E | = 0 then |V |
3 else let
4 (V ′,P) = starPartition((V ,E), i)
5 E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 in
7 numComponents((V ′,E ′), i + 1)
8 end

S(n) = S(n′) + O(log n)
n′ = n − Xn and E [Xn] = n/4, so E [n′] = 3n/4
S(n) ∈ O(log2 n)
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ANALYSIS OF CONNECTIVITY

We can remove a constant fraction of vertices
every round.
For each vertex removed, we remove at least
one edge.
Consider a hypothetical contraction

round vertices edges

1 n m
2 n/2 m − n/2
3 n/4 m − 3n/4
4 n/8 m − 7n/8

Number of edges does not go below m − n.
GRAPH CONTRACTION 33/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



ANALYSIS OF CONNECTIVITY

W (n,m) ≤W (n′,m) + O(n + m),

As before, E [n′] = 3n/4, so
E [W (n,m)] ∈ O(n + m log n)
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TREE CONTRACTION

Identify disjoint trees and contract them.
For every tree of t vertices contracted, t − 1
edges are removed.
Number of edges also go down geometrically at
every round.
Leads to O(m) work and O(log2 n) span.
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