15-210
PARALLEL AND SEQUENTIAL
ALGORITHMS AND DATA
STRUCTURES

LECTURE 6

SEQUENCES - I1I

SYNOPSIS

@ The reduce operation

e Implementing divide and conquer with reduce
» Implementing MCSS with reduce

e Analyzing cost of higher order functions
» Cost analysis for reduce

SEQUENCES - II 2/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE REDUCE OPERATION

reduceflS : (axa—a)—=a
— a seq — «

e When f is associative, reduce returns sum with
respect to f.
@ Sameresultas iterfl S
» iter is sequential and allows more general f (e.g.,
bxa—pf
e If fis not associative, reduce and iter results
may differ.

SEQUENCES - II 3/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE REDUCE OPERATION

e Specific combination based on a perfect binary
tree.

4k = combine ® = "dummy" elements

SEQUENCES - II 4/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DIVIDE AND CONQUER WITH
REDUCE

e Many divide and conquer have the following
structure

fun myDandc(S) =
case showt(S) of

Ty
| ELT(v) = [base|(v)
| NODE (L, R) = let
(', R") = (mypandc(L) || mybDandc(R))
in

‘ someMessyCombine ‘(L’7 R
end

@ This corresponds to a binary tree combination
scheme.

OO NAOUIH WN -

SEQUENCES - II 5/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DIVIDE AND CONQUER WITH
REDUCE

someMessyComblne

/\

someMessyComblne CsomeMessyComblne

SEQUENCES - II 6/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DIVIDE AND CONQUER WITH
REDUCE

fun myDandc(S) =
case showt(S) of
Ty
| ELT(v) = [base](v)
| NODE (L, R) = let
(', R") = (mypandc(L) || mybDandc(R))
in
‘ someMessyCombine ‘(L’7 R
end

O OOk WNE-

reduce ‘someMessyCombine‘ ‘empty\/al‘ (map S)

SEQUENCES - II 7/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MCSS USING REDUCE

J

mcss(s) = max E Sk
1<i<j<n .
=

Left Subproblem Right Subproblem

Total

R T e
o . v M

SPRING 2014

MCSS USING REDUCE

j
mcss(s) = 1213)2”{’(2 sk}
=i

fun combine((ML, PL, SL, TL), (MR, PR, SR, TR)) =
(maX(SL + PH, ML, MH), maX(PL, TL + P/:g),
max(S,:,, S+ T,q), T+ T,qv)

fun base(v) = (v,v,v,v)

emptyVal = (—o00, —00, —00, 0)

fun mcss(S) =
reduce combine emptyVal (map base S)

SEQUENCES - IT 9/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SOME OBSERVATIONS

@ Which code to use is a matter of taste

» reduce version is shorter
» Divide and Conquer version exposes the inductive
structure.

e reduce version not applicable when split is
complicated

» €.9., in Quicksort

SEQUENCES - II 10/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SCAN VIA REDUCE

e How do we implement the divide and conquer
scan with this template?
» scanfl S =
reduce combine emptyVal (map base S)

@ emptyVal="? ({),/)
e fun base(v) =7 ((I),f(l,v))
e fun combine =7

fun combine((S1, Th),(S2, T2)) =
append(Sy,(map (fn x = f(x,T7)) S2), f(Ty, T2))

» Is this right?

fun combine((Si, Th),(Sz, T2))
(append(Sy, (map (fn x = f(T1,x)) Sp), f(Tq, T2)

SEQUENCES - II 11/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST OF HIGHER ORDER
FUNCTIONS

@ We assume that f runs in O(1) work and span.
» = reduce has O(n) work and O(log n) span

e Easy for map and tabulate

Wmap fS) = 1+ W(f(s))
seS

S(map fS) = 1+ maxS(f(s))

seS

@ How about reduce?

SEQUENCES - II 12/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MERGESORT VIA REDUCE

e Remember the reduce template for divide and
conquer?

reduce |combine| |emptyVal| (map S)

combine = merge_

base = singleton
emptyVal = empty()

fun reducesSort(S) =
reduce combine emptyVal (map base S)

SEQUENCES - II 13/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST OF REDUCESORT

@ merge_ is an associative function with costs:

W(merge (51, S2)) = O(m + n2)
S(merge_(S1,S2)) = O(log(ny + ny))

e f has no longer O(1) work and span.
@ What is the cost of reduceSort.

SEQUENCES - II 14/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST OF REDUCESORT

e For costs, reduction sequence matters!
e Sequential order
@ Oninput x = (xo, X1,...,Xn_1), We get

merge_(... merge_(merge_(merge_(l,{Xo)),(X1)),(X2)),...)

e Left arg. has length 0 through n — 1

e Right arg. always has length 1.
e Work:

—_

W(reducesort S) < c-(1+1i) € O(n*) Why?

i

Il
o

SEQUENCES - II 15/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MERGESORT WITH REDUCE

e Equivalent to iter version

fun reducesort’(S) =
iter merge. (emptyVal (map base S)

e Works really as an Insertion Sort.
» Inserts each element into a sorted prefix!
@ No parallelism except in merge

n—1
S(reducesort §) < Y c-log(1+1i) € O(nlogn)
i=0

SEQUENCES - II 16/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MERGESORT WITH REDUCE

e The reduction tree is very unbalanced!
e Suppose n = 2K and merge tree is as follows

SEQUENCES - IT

17/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MERGESORT WITH REDUCE

XO X 1 X2 X3 X, 4 X5 X6 X7

& =merge

@ nnodes at constant cost at each leaf (i = log, n)

@ n/2 nodes one level up, each costing ¢(1 + 1)
(i = log, §) (Why?) |

@ In general, for level /i, we have 2' nodes merging
two sequences each length 5+

SEQUENCES - II 18/21
15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MERGESORT WITH REDUCE

Xo xq Xp X3 Xq4 X5 X5 X7

& = merge

e For level i, we have 2/ nodes merging two
sequences each length 7+
logn n n
W(reducesSort x) < ZZ’ - C (2’ﬁ + W)
logn

= ;2’ c(zn,> e O(nlog n)

SEQUENCES - IT

19/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MERGESORT WITH REDUCE

@ W(reducesortS) € O(nlogn) =
mergeSort.
@ mergeSort and insertionSort are special

cases of reducesort using different reduction
orders.

SEQUENCES - II 20/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

REDUCE ORDER

@ Result of reduce depends on the order when f
is not associative

@ When f is associative, different orders result in
different costs.

SEQUENCES - II 21/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

