Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

Lecture 4 — Divide and Conquer Continued
Parallel and Sequential Data Structures and Algorithms, 15-210 (Qatar-Spring 2014)

Lectured by Kemal Oflazer — 21 January 2014

Material in this lecture:
- Maximum Contiguous Subsequence Sum (MCSS) problem with two different divide-and-
conquer solutions.
- Solving recurrences using substitution
- Euclidean Traveling Salesperson Problem using divide and conquer.

1 Example I: The Maximum Contiguous Subsequence Sum Problem

For a sequence s of n elements, let’s write s;, 0 < i < n, to denote the i’th element of that sequence
and use the “angle bracket” notation for writing the sequence, i.e., s = (Sg,...,Sp_1)-

We say that a sequence s’ is a contiguous subsequence of s if s’ =s;,;,1,...,5;,x for some k.

Example 1.1. For s = (1,—5,2,—1, 3), here are some contiguous subsequences:
. (1)
e (2,—1,3), and
e (—5,2).
The sequence (1,2, 3) is not a contiguous subsequence, even though it is a sequence.
As the name suggests, the maximum-contiguous-subsequence problem requires finding the sub-

sequence of a sequence of integers with maximum total sum. We can make this problem precise as
follows.

Definition 1.2 (The Maximum Contiguous Subsequence Sum (MCSS) Problem). Given a sequence
of numbers, the maximum contiguous subsequence sum problem is to find

J
mcss(s)zmax{Zsk : OSiSn—l,OSan—l}.
k=i

(i.e., the sum of the contiguous subsequence of s that has the largest value).

For an empty sequence, the maximum contiguous subsequence sum is —0Q.

fLecture notes by Umut Acar, Guy E Blelloch, Margaret Reid-Miller, and Kanat Tangwongsan, with additional edits by
Kemal Oflazer

1 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

Example 1.3. For s = (1,—5,2,—1,3), the maximum contiguous subsequence is, (2,—1, 3).
Thus mcss(s) = 4.

1.1 Algorithm 1: Using Brute Force

Let’s start by using the brute force algorithm to solve this problem.
Question 1.4. To apply brute force, where do we start?

We first start by identifying the structure of the output. In this case, this is just a number. So shall
we enumerate all numbers (sums) and check that there is a subsequence that matches than number
and we continue until we can no longer find a larger sum?

That is indeed what a literal interpretation of the brute-force technique would suggest.
Question 1.5. Would such an algorithm terminate?

No, because we may never know when to stop unless we know the result a priori, which we don’t.
Question 1.6. Can we bound the result to guarantee non-termination?

We can by adding up all positive numbers in the sequence and using that bound but this can still
be a very large bound. Furthermore our cost bounds would depend on the elements of the sequence
rather than its length.

We thus have already encountered our first challenge. We can tackle this challeng by changing
the result type.

Question 1.7. How can we change the result type to something that we can enumerate in
finite time?

One natural choice would be to consider the contiguous subsequences directly. Indeed, we can
change the result type by reducing this problem to another closely related problem: maximum
contiguous subsequence. This problem requires not finding the sum but the sequence itself.

Question 1.8. Can you see how we can solve this problem reducing it to the maximum-
contiguous-subsequence problem?

Reducing the problem requires no work because both operate on the same input, a sequence of
the same type. If we have a solution to the maximum-contiguous-subsequence problem, then we can
solve the maximum-contiguous-subsequence-sum problem, by simply computing the sum.

2 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

Question 1.9. What is the work and span of the reduction?

All we have to do is compute the sum, which we know by using reduce requires O(n) work and
O(logn) span.

We can now apply the brute-force-technique to the problem. Again, we have to enumerate all
possible results.

Question 1.10. What are all possible results for the maximum-contiguous-subsequence prob-
lem? How do we pick the best?

They are all contiguous subsequences, which can be represented by a pair of integers (i, j),
0 <i < j < n. To pick the best, we simply compute their sum and pick the one with the largest. That
is our algorithm for solving the maximum-contiguous-subsequence problem. Since we know how to
solve the maximum-contiguous-subsequence-sum problem from this problem, we are done.

Question 1.11. There is something strange about this algorithm. Do you see what?

Our algorithm for solving the maximum-contiguous-subsequence problem, already computes the
result for the maximum-contiguous-subsequence-sum problem. So the reduction does redundant
work.

Question 1.12. Can you see how we may eliminate this redundancy? (Perhaps by using
another technique that we briefly talked about.)

We can strengthen the problem by requiring it to return the subsequence in addition to the sum.
This makes it possible to apply the brute-force technique directly to the problem, without having to
go through the reduction.

Specifying the algorithm and analyzing its cost. The pseudocode for this algorithm using our
notation exactly matches the definition of the problem.

Question 1.14. What is the work and span of the algorithm?

For each subsequence i..j, we can compute its sum by applying a plus reduce. This does O(j —1)
work and has O(log(j —i)) span. Furthermore, all the subsequences can be examined independently

3 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

in parallel (using, e.g., tabulate). This leads to the following bounds:

W(Tl) = 1+ Z Wreduce(j - i) <1+ le ' Wreduce(n) =1+ n2 : O(n) = O(ns)
1<i<j<n
S(n) = 1+ max Sreduce(j - i) <1+ Sreduce(n) = O(log Tl)
1<i<j<n

These are cost bounds for enumerating over all possible subsequences and computing their sums.
The final step of the brute-force solution is to find the max over these O(n?) combinations. Since
max reduce for this step has O(n?) work and O(logn) span', the cost of the final step is subsumed by
other costs analyzed above. Overall, we have an O(n®)-work O(log n)-span algorithm.

As you might notice already, this algorithm is clearly inefficient. We'll apply divide and conquer
to come up with a more efficient solution.

1.2 Algorithm 2: Refining Brute Force with a Reduction

The brute-force algorithm does a lot of redundant work.
Question 1.15. Can you see where the redundancy is?

The algorithm repeats the same work many times. To see this let’s consider the subsequences that
start at some location, for example in the middle. For each position the algorithm considers many
ending positions that differ by one, i.e., the sequences are all contained in each other and thus can
potentially be computed much more efficiently, avoiding the redundancy.

Question 1.16. Can you think of an algorithm for computing the maximum contiguous
subsequence that starts at some particular position, say, i.

Simply scan to the right as we compute the sum (point A). Continue as long as the sum increases.
When it starts decreasing remember the sum, and continue, until another increase (in the sum) takes
place. If it does update your sum and repeat (from point A).

Question 1.17. What is the work and span of your algorithm?
The algorithm requires linear work and span.

Question 1.18. Can you now see a way to improve the brute-force algorithm by reducing our
original problem to the problem of finding the problem “maximum contiguous subsequence
with a given start”?

INote that it takes the maximum over () < n? values, but since logn® = alogn, this is simply O(logn)

4 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

Yes, we can reduce the original problem to the “with-start” problem by considering all possible
start positions and picking the best. The algorithm results in a linear reduction in work.

Question 1.19. Can this algorithm be optimal?

No, because we have only eliminated the aforementioned redundancy in one dimension, when
solving the problem that starts at a particular position. There is still redundancy when solving for, for
example, neighboring positions.

1.3 Algorithm 3: Divide And Conquer

To apply the divide-and-conquer technique, we first need to figure out how to divide up the input.
Question 1.20. Can you think of ways of dividing the input?

There are many possibilities. But dividing in the middle often yields the best bounds because it
reduces the problem instance of all subproblems.

Question 1.21. Why should we care about reducing the size of all subproblems?

Reducing the problem size for all subproblems is important because the work and span is defined
in terms of the sum and the maximum of all subproblems.

So let us divide the sequence in half and recursively solve the problem on both halves, as illustrated
by the picture below.

(S ” Sy)
U

s;={ -) s;={ ...)

S~ S~

mcss(s;) mcss(s;)

Example 1.22. Let s = (—2,2,—2,—2,3,2). By using the approach, we divide the sequence
into
s =(=2,2,-2)

and
s, =(—2,3,2).

We can now solve each half to obtain 2 and 5 as the two solutions.

5 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

Now that we have the solutions from both halves, can we combine them to generate the solution
for the whole problem?

Question 1.23. Can you think of a way to solve the problem by using the solution for the two
halves?

As a starting point, wo can simply calculate the maximum of the two halves, e.g., max(mcss(s;), mcss(s,)).
This answer is incorrect, unfortunately. We need a better understanding of the problem to devise a
correct combine step.

Notice that the subsequence we’re looking for has one of the three forms:

1. the maximum sum lies completely in the left subproblem
2. the maximum sum lies completely in the right subproblem
3. the maximum sum spans across the divide point

The first two cases are easy and have already been taken care of by the recursive calls. The more

interesting case is when the largest sum goes between the two subproblems. How do we tackle this
case?

It is not hard to see that the maximum sum going across the divide is the sum of the largest sum
of a suffix on the left and the largest sum of a prefix on the right, as depicted below:

Largest Sum Suffix Largest Sum Prefix

L | R
X 5

Maximum sum across the divide

Question 1.24. Can you find an algorithm for finding the subsequence with the largest sum
that cuts across the divide? Hint: try the problem-reduction technique to reduce the problem
to another one that we know.

We can reduce this problem to the problem of “maximum contiguous sum with a start” by noticing
that the maximum sum going across the divide is the largest sum of a suffix on the left and the largest
sum of a prefix on the right.

Question 1.25. Can you specify the reduction?

The prefix of the right half is easy as it directly maps to the solution at position 0. For the left half,
we have to reverse the sequence and ask for the position 0.

6 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

Having figured out a way to solve the problem of finding the best contiguous subsequence that
cuts across the divide, we can write the pseudocode for our algorithm as follows.

fun mcss(s) =
case (showt s)
of EMPTY = —oco

| ELT(x)=x

| NODE(L,R) =
let (m;,mg)=(mcss(L) || mcss(R))

m, =bestAcross(L,R)

in max{m;, mg, mu}
end

O 00 O U1 A WN

Is this algorithm correct? Does it always find the maximum contiguous subsequence sum? Before
we show a proof of correctness, what do we consider a proof that an algorithm is correct.

Question 1.26. What technique can we use to show that the algorithm is correct?

As we briefly talked about in a previous class, we can use the technique of strong induction,
which enables us to assume that the theorem that we are trying to prove stands correct for all smaller
subproblems.

Proofs of correctness. As was the case in 15-150, you are familiar with writing detailed proofs
that reason about essentially every step down to the most elementary operations. You would prove
your ML code was correct line by line. Although proving you code is correct is still important, in this
class we will step up a level of abstraction and prove that the algorithms are correct. We still expect
your proof to be rigorous. But we are more interested in seeing the critical steps highlighted and the
standard or obvious steps summarized, with the idea being that if probed, you can easily provide
detail on demand. The idea is that we want to make key ideas in an algorithm stand out as much as
we can. It will be difficult for us to specify exactly how detailed we expect the proof to be, but you
will pick it up by example.

We’'ll now prove that the mcss algorithm above computes the maximum contiguous subsequence
sum. Specifically, we’re proving the following theorem:

Theorem 1.27. Let s be a sequence. The algorithm mcss(s) returns the maximum contiguous subsequence
sum in s—and returns —oQ if s is empty.

Proof. The proof will be by (strong) induction on length. We have two base cases: one when the
sequence is empty and one when it has one element. On the empty sequence, it returns —o0 as we
stated. On any singleton sequence (x), the MCSS is x, for which

J 0
max{Zsk : O$i<1,03j<1}2250230=x.

k=i k=0

7 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

For the inductive step, let s be a sequence of length n > 1, and assume inductively that for any
sequence s’ of length n’ < n, mess(s”) correctly computes the maximum contiguous subsequence
sum. Now consider the sequence s and let L and R denote the left and right subsequences resulted
from dividing s in half (i.e., NODE(L, R) = showt s). Furthermore, let Si.j be any contiguous
subsequence of s that has the largest sum, and this value is v. Note that the proof has to account for the
possibility that there may be many other subsequences with equal sum. Every contiguous subsequence
must start somewhere and end after it. We consider the following 3 possibilities corresponding to
how the sequence s; ; lies with respect to L and R:

e If the sequence s; ; starts in L and ends R. Then its sum equals its part in L (a suffix of L) and
its part in R (a prefix of R). If we take the maximum of all suffixes in R and prefixes in L and
add them this must equal the maximum of all contiguous sequences bridging the two since
max{a+b:a€A,beB}} =max{a € A} + max {b € B}. By assumption this equals the sum of
s;.j which is v. Furthermore by induction m; and my are sums of other subsequences so they
cannot be any larger than v and hence max{m;, mg, my} = v.

e Ifs; ; lies entirely in L, then it follows from our inductive hypothesis that m; = v. Furthermore
mp and my correspond to the maximum sum of other subsequences, which cannot be larger
than v. So again max{m;, mg, my} = v.

e Similarly, if 5; ; lies entirely in R, then it follows from our inductive hypothesis that mp =
max{m;, mg,my} =v.

We conclude that in all cases, we return max{m;, mg, my} = v, as claimed. O

Cost analysis. What is the work and span of this algorithm? Before we analyze the cost, let’s first
remark that it turns out that we can compute the max prefix and suffix sums in parallel by using a
primitive called scan. For now, we will take it for granted that they can be done in O(n) work and
O(logn) span. dividing takes O(logn) work and span. This yields the following recurrences:

wW(n) = 2W(n/2)+0(n)
S(n) = S(n/2)+0(logn)

Using the definition of big-O, we know that

W(n) < 2W(n/2)+k1 . n+k2,

where k; and k, are constants.

We have solved this recurrence using the recursion tree method. We can also arrive at the same
answer by mathematical induction. If you want to go via this route (and you don’t know the answer
a priori), youll need to guess the answer first and check it. This is often called the “substitution
method.” Since this technique relies on guessing an answer, you can sometimes fool yourself by giving
a false proof. The following are some tips:

1. Spell out the constants. Do not use big-O—we need to be precise about constants, so big-O
makes it super easy to fool ourselves.

8 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

2. Be careful that the inequalities always go in the right direction.
3. Add additional lower-order terms, if necessary, to make the induction go through.
Let’s now redo the recurrences above using this method. Specifically, we’ll prove the following
theorem using (strong) induction on n.

Theorem 1.28. Let a constant k > 0 be given. If W(n) < 2W(n/2)+k-n forn>1and W(1) < k for
n < 1, then we can find constants k, and K such that

W(n) < x;-nlogn+ k.

Proof. Let k; = 2k and k, = k. For the base case (n = 1), we check that W(1) = k < k5. For the
inductive step (n > 1), we assume that

W(n/2) < k- 5log(5) + Ko,

And we’ll show that W(n) < k; - nlogn + k5. To show this, we substitute an upper bound for W(n/2)
from our assumption into the recurrence, yielding

W(n) < 2W(n/2)+k-n
2(x1 - 5log(5) +K9)+k-n
= kyn(logn—1)+ 2k, +k-n

= kynlogn+xky+(k-n+xy,—xq-n)

<
<

< kynlogn+x,,

where the final step follows because k-n+x,—x;-n<0aslongasn> 1. O

Question 1.29. Using divide and conquer, we were able to reduce work to O(nlogn). Can
you see where the savings came from by comparing this algorithm to the refined brute-force
algorithm that we have considered?

1.4 Algorithm 3: Divide And Conquer — Version 2.0

We have progressively improved our algorithm from cubic to near linear work. Is it possible to do
better than O(nlogn) work using divide and conquer?

Question 1.30. In general, how do we know that we have a good algorithm?

We can determine whether we have made enough progress or not by comparing the cost of our
algorithm to a lower bound.

Question 1.31. What is a lower bound for this problem?

9 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

We cannot do less than linear work because we have to inspect each element of the sequence at
least once to determine whether it would contribute to the result or not.

Question 1.32. Can you see a way that we might be able to reduce the work further? Is there
some redundancy in our divide-and-conquer algorithm?

Our divide-and-conquer algorithm has another redundancy: the maximum prefix and maximum
suffix must have been computed recursively to solve the subproblems. Thus, we should be avoid
re-computing them.

Question 1.33. How can we avoid re-computing the maximum prefix and suffix?

Since these should be computed as part of solving the subproblems, we should be able to return
them from the recursive calls.

Question 1.34. Let’s take a step back and think about what we did. We now changed the
problem slightly so that we return more information. What is the name of this technique?

This is another application of the strengthening technique same. Now that we have figured out
how to strengthen the problem let’s go and solve it.

Question 1.35. Can you see how we can update our divide and conquer algorithm to return
also the maximum prefix and suffix in addition to maximum contiguous subsequence.

So, we need to return a total of three values: the max subsequence sum, the max prefix sum, and
the max suffix sum.

Having this information from the subproblems, we can now produce a similar answer tuple for all
levels up, in constant work and span per level. More specifically, we strengthen our problem to return
a 3-tuple (mcss, max-prefix, max-suffix), and if the recursive calls return (m;, p;,s;, t;) and
(my, py,$5), then we return

(max(s; + py, my, my), p1,52).
Let’s check that our answer makes sense:

Question 1.36. Don’t we have consider the case when s; or p, is the maximum?
No, because that case is included in m; and m,.

Question 1.37. Are our prefixes and suffixes correct? Can we not have a bigger prefix that
contains all of the first sequence?

10 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

Yes, we can. Indeed, we have a bug in our algorithm. We are not returning the prefix and the
suffix correctly.

Question 1.38. Can you think of a way to fix this problem?

We also need to return the total for each subsequence so that we can compute the maximum
prefix and suffix correctly. Thus, we need to return a total of four values: the max subsequence
sum, the max prefix sum, the max suffix sum, and the overall sum. Having this information from
the subproblems is enough to produce a similar answer tuple for all levels up, in constant work and
span per level. More precisely, we strengthen our problem to return a 4-tuple (mcss, max-prefix,
max-suffix, total), and if the recursive calls return (mq, p1,s;, t;) and (my, py, s, t5), then we
return

(max(sl +p25 my, m2)> max(plz tl +p2)> maX(sl + t2752)5 tl + tZ)
The following figures clarify these a bit more:

Left Subproblem

Totall_

mps|_ | mss|_

mps = maximum prefix sum mss = maximum suffix sum

Left Subproblem Right Subproblem

11 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

O 00NN O U1 W IN

Y
w N R O

14

Left Subproblem Right Subproblem

mss

R e Y

7 R v v Y
[] = moe (e - (R [

This gives the following pseudocode:
fun mcss(a) =

fun mcss’(a)
case (showt a)

of EMPTY = (—o0,—00,—00,0)
| ELT(x) = (x, x, x, x)

| NODE(L,R) =
let
((my,p1,81,t1), (Mg, pa,so,t5)) = (mcss’(L) || mecss’(R))
in
(max(s; + py, my, my), max(ps, t1 + py), max(s; +ty,s5), t + to)
end

(m,p,s,t) =mcss’(a)
in m end

You should verify the base cases are doing the right thing. The SML code for this algorithm is at

the end of these notes.

Cost Analysis. Assuming showt takes O(logn) work and span, we have the recurrences

wW(n) = 2W(n/2)+0(logn)
S(n) = S(n/2)+0(logn)

12 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

Note that the span is the same as before, so we’ll focus on analyzing the work. Using the tree method,
we have

ky log (n/2) ky log (n/2)

(kq log (n/d)) (kq log (n/d)) (kq log (n/d)) (k; log (ni4)) - - - - kq4log (n/4)
o o o

oo
oo
oo
[e)eXo)

Therefore, the total work is upper-bounded by

logn

W) < > k2ilog(n/2!)

i=0

It is not so obvious to what this sum evaluates. The substitution method seems to be more
convenient. We’ll make a guess that W(n) < x;n —kylogn — k;. More formally, we’ll prove the
following theorem:

Theorem 1.39. Let k > 0 be given. If W(n) < 2W(n/2)+k-lognforn>1and W(n) <k forn<1,
then we can find constants K, K5, and K5 such that

W(n) < k;-n—ky-logn—xs.

Proof. Let k; = 3k, k5 = k, k3 = 2k. We begin with the base case. Clearly, W(1) =k < x; — k3 =
3k — 2k = k. For the inductive step, we substitute the inductive hypothesis into the recurrence and
obtain

W) < 2W(n/2)+k-logn
< 2(xp5 —Kolog(n/2)—«3) +k-logn
= Kkn—2ky(logn—1)—2k3+k-logn
= (kin—kylogn—«3)+ (klogn—k,logn+ 2k, —K3)
< kn—kKylogn—ks,

where the final step uses the fact that (klog n—k, logn+2x,—k3) = (klogn—klogn+2k—2k) =0<0
by our choice of k’s. O

13 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

Finishing the tree method. It is possible to solve the recurrence directly by evaluating the sum
we established using the tree method. We didn’t cover this in lecture, but for the curious, here’s
how you can “tame” it.

logn

W(n) < > ki2'log(n/2!)
i=0
logn

= Z kq (2i logn—i- Zi)
i=0
logn logn
= K (ZZi)logn—kl >li-2l
i=0

i=0
logn

= ky(2n—1)logn—k; Zi~2i.
i=0

We're left with evaluating s = Zi‘foni - 2!, Observe that if we multiply s by 2, we have

logn 1+logn
25=Y i-2%= > (i-1)2],
i=0 i=1
so then
14+logn logn
s o= 2—s= » (i-1)20—-)>i-2
i=1 i=0
logn
= ((1+logn)—1)21*len "
i=1

= 2nlogn—(2n—2).

Substituting this back into the expression we derived earlier, we have W(n) < k;(2n—1)logn —
2k;(nlogn—n+ 1) € O(n) because the nlogn terms cancel.

14 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

2 Example II: The Euclidean Traveling Salesperson Problem

We’ll now turn to another example of divide and conquer. In this example, we will apply it to devise a
heuristic method for an NP-hard problem. The problem we are concerned with is a variant of the
traveling salesperson problem (TSP) from Lecture 1. This variant is known as the Euclidean traveling
salesperson (eTSP) problem because in this problem, the points (e.g.,cities, nodes, and vertices) lie
in a Euclidean space and the distance measure is the Euclidean measure. More specifically, we are
interested in the planar version of the eTSP problem, defined as follows:

Definition 2.1 (The Planar Euclidean Traveling Salesperson Problem). Given a set of points P in the
2-d plane, the planar Euclidean traveling salesperson (eTSP) problem is to find a tour of minimum
total distance that visits all points in P exactly once, where the distance between points (x;, y,) and
(x5, Y5) is the Euclidean (i.e. £,) distance (v/(x1 —Xx5)2 + (y1 — ¥2)2).

As with the TSB it is NP-hard, but this problem is easier to approximate.? Here is a heuristic
divide-and-conquer algorithms that does quite well in practice. In a few weeks, we will see another
algorithm based on Minimum Spanning Trees (MST) that gives a constant-approximation guarantee.
This divide-and-conquer is more interesting than the ones we have done so far because it does work
both before and after the recursive calls. Also, as we will see, the recurrence it generates is root
dominated.

The basic idea is to split the points by a cut in the plane, solve the TSP on the two halves, and
then somehow merge the solutions. For the cut, we can pick a cut that is orthogonal to the coordinate
lines. In particular, we can find in which of the two dimensions the points have a larger spread, and
then find the median point along that dimension. We'll split just below that point.

To merge the solutions we join the two cycles by making an edge swap

2Unlike the TSP problem, which only has constant approximations, it is known how to approximate this problem to
an arbitrary but fixed constant accuracy ¢ in polynomial time (the exponent of n has 1/¢ dependency). That is, such an
algorithm is capable of producing a solution that has length at most (1 + ¢) times the length of the best tour.

15 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

Consider the figure above: We can remove the edges e, = (uy, v,) and e, = (u,,v,) and either add
a new pair of edges (uy,u,) and (v,, v,) (upper right) or add a new pair of edges (u,,v,) and (v,ll,u,)
(lower right). In the first case, the increase in the tour cost would be

||uf _ur” + ||Vg _vr” - “U.g _vl” - ”ur _Vr”
and in the second case, the increase in the tour cost would be
||ng _VrH + HVE _ur“ - ”u€ —Vg” - ”ur _Vr”

where ||[u — v|| is the Euclidean distance between points u and v. Naturally we are interested in the
minimum increase so we only need to consider one or the other. So we define the swap cost as

SW&PCOSt((Uzj: VE), (ur: Vr)) = I'Ilil'l(“llg _ur||+||V€ - Vr” P “ul - Vr||+||vﬁ - ur”)_“uﬁ —Vy ”_”ur - Vr”

Here is the pseudocode for the algorithm

1 fun eTSP(P)=

2 case (|P|)

3 of 0,1 = raise TooSmall

4 | 2 = {(p[0],P[1]),(P[1],P[O])}

5 | n = let

6 (P;,P,) =splitLongestDim(P)
7 (L,R) = (eTSP(?) || eTSP(P,))
8 (c,(ep,e,)) =minval <y {(swapCost(es,e.), (es e,)) t e €L,e. €R}
9 in
10 swapEdges(append(L,R), ¢, e;.)
11 end

16 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

The function swapEdges(E, e/, e,.) finds the edges e, and e, in E and swaps the endpoints (as explained
above there are two ways to swap, so the minimum is picked.

Now let’s analyze the cost of this algorithm in terms of work and span. We have

Wn) = 2W(n/2)+0(n?)
S(n) = S(n/2)+0(logn)

We have already seen the recurrence S(n) = S(n/2) + O(log n), which solves to O(log? n). Here we’ll
focus on solving the work recurrence.

In anticipation of recurrences that you’ll encounter later in class, we’ll attempt to solve a more
general form of recurrences. Let € > 0 be a constant. We’ll solve the recurrence

W(n) = 2w(n/2)+k-n'*¢
by the substitution method.

Theorem 2.2. Let ¢ > 0. If W(n) < 2W(n/2) +k-n'*¢ for n> 1 and W(1) < k for n < 1, then for
some constant K,
W(n) < x-n'*e

Proof. Let K = 775 1 5= - k. The base case is easy: W(1) =k <k, as 1= 1/29
we substitute the mductlve hypothesis into the recurrence and obtain

> 1. For the inductive step,

W) < 2w(n/2)+k-n'*®

n 1+E
< 2K(—) +k-n'te

2

1+¢ n L+e 1+e 1+e
= k-n't+| 2k 3 +k-n"f —x-n
S K'Tl1+€,

where in the final step, we argued that

1+¢
n _
2K(E) +k~n1+€—1<~n1+5 = k-2 €~n1+€+k-n1+s—r<-n1+€

= Kx-27¢. n1+£ + (1 _2—£)K . n1+£ — K- n1+£

< 0.

17 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

Solving the recurrence directly. Alternatively, we could use the tree method and evaluate the
sum directly. As argued before, the recursion tree here has depth logn and at level i (again, the
root is at level 0), we have 2' nodes, each costing k - (n/2")!¢. Thus, the total cost is

logn

. 1+¢ .
>okea(5)" = ke
[2 i=0
(%)
k- n1+£ . Z 2—i~£'
i=0
[e%)

o /g —fm o 1
But the infinite sum), i—o2 "¢ is at most 1175~ Hence, we conclude W(n) € O(n

IA

1+£)‘

18 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 4 15-210 (Qatar-Spring 2014)

3 SML Code

Note that the following code for Algorithm 3 for the MCSS problem uses SML records to give names
to each of the four fields. When passing around multiple values, such records can make your code
more clear and less prone to errors than using unnamed tuples. It is easy to forget the order you
store things in tuples, and harder for people who are reading your code to know the order. Fields of a
record can be extracted using pattern matching. Unlike tuples, you can extract only the fields that
you need by including ellipse (...) at the end of the pattern. As with tuples you can accessed a single
field using #fieldname record, as can be seen at the end of the code.

functor mcssDivConq(Seq : SEQUENCE) =
struct
fun MCSS (A) =
let
fun MCSS’ A =
case Seq.showt A
of Seq.ELT(v) => {mcss = v, prefix = v, suffix = v, total = v}
| Seq.NODE(A1,A2) =>
let
val (B1l, B2) = Primitives.par(fn () => MCSS’(Al1),
fn () => MCSS’(A2))

val {mcss = M1, prefix = P1, suffix = S1, total = T1} = Bl

val {mcss = M2, prefix = P2, suffix = S2, total = T2} = B2
in

{mcss = Int.max(S1 + P2, Int.max(M1, M2)),

prefix = Int.max(P1, T1 + P2),

suffix = Int.max(S2, S1 + T2),

total = T1 + T2}
end

in
case Seq.showt A
of Seq.EMPTY => NONE
| => SOME (#mcss(MCSS’ A))
end
end

19 Version Q-S14: Based on Q-F13 and P-F13

	Example I: The Maximum Contiguous Subsequence Sum Problem
	Algorithm 1: Using Brute Force
	Algorithm 2: Refining Brute Force with a Reduction
	Algorithm 3: Divide And Conquer
	Algorithm 3: Divide And Conquer — Version 2.0

	Example II: The Euclidean Traveling Salesperson Problem
	SML Code

