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SYNOPSIS

Algorithmic Techniques
Divide-and-Conquer

I Analysis of Costs

The Maximum Contiguous Subsequence Sum
Problem
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ALGORITHMIC TECHNIQUES

Brute Force
I Try all possibilities
I Almost always intractable
I Useful for testing small cases
I Code usually easy to write

Reducing one problem to another
I Transform the structure or the instance of a problem.
I Shortest Superstring→ Traveling Salesperson

Problem
I Apply algorithms for the new problem
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INDUCTIVE TECHNIQUES

Solve one or more smaller problems to solve the
large problem.
Techniques differ on

I The number of subproblems
I How subproblem solutions are used

Divide-and-Conquer
Greedy
Contraction
Dynamic Programming
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DIVIDE-AND-CONQUER

Divide a problem of size n into k > 1 problems
I Sizes n1,n2, . . . ,nk

Solve each problem recursively.

Combine the subproblem solutions.
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GREEDY

Given a problem of size n

Remove one (or more) elements using a greedy
approach

I Smallest, two smallest, nearest, lowest, etc.

Solve the remaining smaller problem
I Usually smaller by 1 or 2 items.
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CONTRACTION

Given a problem of size n

Generate a significantly smaller (contracted)
instance

I e.g., of size n/2

Solve the smaller instance

Use the result to solve the original problem.

One recursive call instead of multiple!
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DYNAMIC PROGRAMMING

Like Divide-and-Conquer

Solutions to subproblems used multiple times!

Compute once and store, and then reuse.
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ADTS AND DATA STRUCTURES

Techniques rely on Abstract Data Types (for
functionality)

I and on data structures that implement them (for
costs)

Sequences, Sets, Tables, Priority Queues,
Graphs, Trees, . . .
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RANDOMIZATION

Introduce randomness at a choice point
I Quicksort: choose a pivot randomly

Testing for primality
I Miller-Rabin primality test
I 3/4 of numbers < n are “witnesses” to n’s

compositeness.
I Randomly choose 100 numbers < n
I P(Failing to find a witness) = 1− (1

4)
100

I P(n is prime) = 1− (1
4)

100 = 0.9999 . . . 9327 . . .
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Algorithmic Techniques
Divide-and-Conquer

I Analysis of Costs

The Maximum Contiguous Subsequence Sum
Problem
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DIVIDE-AND-CONQUER

Very versatile.

Easy to implement.

Parallelizable

Code follows the structure of a proof.

Cost reasoning follows code structure.
I Recurrences
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STRENGTENING THE PROBLEM

Compute more than “superficially” needed.

No increase to work or span.

More efficient combine step.

At the end, this extra information can be
discarded.
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GENERAL STRUCTURE

Base case(s)
I When problem small enough, use a different

technique.
I For example, in quicksort, switch to insertion sort to

sort < 30 elements.
Inductive Step

I Divide into parts
F Sometimes quite simple: e.g., mergesort
F Sometimes a bit tricky: e.g., quicksort

I Solve subproblems (in parallel)
I Combine results

F Sometimes quite simple: e.g., quicksort
F Sometimes a bit tricky: e.g., mergesort

Costs can be in the divide or combine steps or
in both.
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GENERAL STRUCTURE

foo(n1)

foo(n2)

foo(nk)

DIVIDE COMBINE

foo(n)

W (n) = Wdivide(n) +
k∑

i=1

W (ni) + Wcombine(n)

S(n) = Sdivide(n) +
k

max
i=1

S(ni) + Scombine(n)
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SOLVING RECURRENCES

Tree method (Brick method)

Substitution method
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THE TREE METHOD

Expand recurrence into a tree structure.

Cost of level 0

Cost of level 1

Cost of level 2

Add/Max costs at levels.
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THE TREE METHOD

Solve W (n) = 2W (n/2) + O(n)

In general, solve

W (n) = 2W (n/2) + g(n)

where g(n) ∈ O(f (n))
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THE TREE METHOD

g(n) ∈ O(f (n))⇒ g(n) ≤ c · f (n)
I For some c > 0,N0 > 0 and n ≥ N0

g(n) ≤ k1 · f (n) + k2 for some k1, k2 and n ≥ 1
I e.g., k1 = c and k2 =

∑N0
i=1 |g(i)| (Why?)

Solve W (n) ≤ 2W (n/2) + k1 · n + k2
I f (n) = n in our case.
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THE TREE METHOD

Solving W (n) ≤ 2W (n/2) + k1 · n + k2

k1 n + k2

k1 (n/2) + k2 k1 (n/2) + k2

k1 (n/4) + k2 k1 (n/4) + k2 k1 (n/4) + k2 k1 (n/4) + k2

k1 n + k2

k1 n + 2 k2

k1 n + 4 k2

Questions:
I Number of levels in the tree?
I Problem size at level i?
I Cost for each node at level i?
I Number of nodes at level i?
I Total cost at level i?
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THE TREE METHOD

Total cost at level i is at most

2i ·
(

k1
n
2i + k2

)
= k1 · n + 2i · k2

Total cost over all levels is

W (n) ≤
log2 n∑
i=0

(
k1 · n + 2i · k2

)
= k1n(1 + log2 n) + k2(20 + 21 + · · ·+ 2log2n)

≤ k1n(1 + log2 n) + 2k2n (Why?)
∈ O(n log n)
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THE BRICK METHOD

Look at the cost structure at the levels of the
cost tree

I Leaves dominated

I Balanced

I Root dominated
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LEAVES-DOMINATED COST TREES

For some ρ > 1, for all levels i

costi+1 ≥ ρ · costi

++
++++
++++++

++++++++

Overall cost is O(costd) where d is the depth.
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BALANCED COST TREES

All levels have about the same cost

++++++++
++++++++
++++++++
++++++++

Overall cost is O(d ·maxi costi) where d is the
depth.
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ROOT-DOMINATED COST TREES

For some ρ < 1, for all levels i

costi+1 ≤ ρ · costi

++++++++
++++++
++++
++

Overall cost is O(cost0) where d is the depth.
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THE BRICK METHOD

What type of a cost tree is this?

k1 n + k2

k1 (n/2) + k2 k1 (n/2) + k2

k1 (n/4) + k2 k1 (n/4) + k2 k1 (n/4) + k2 k1 (n/4) + k2

k1 n + k2

k1 n + 2 k2

k1 n + 4 k2
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The Maximum Contiguous Subsequence Sum
Problem
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THE MCSS PROBLEM

THE MAXIMUM CONTIGUOUS SUBSEQUENCE SUM PROBLEM

Given a sequence of numbers S = 〈s1, . . . , sn〉,
Find

mcss(S) = max
1≤i≤j≤n

{ j∑
k=i

sk

}

S = 〈0,−1,2,−1,4,−1,0〉, mcss(S) = 5
How many possible subsequences are there?
All positive numbers?
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BRUTE FORCE ALGORITHM

Compute the sum of all O(n2) possible
subsequences (in parallel)

I Use plus reduce
Subsequence (i , j) needs

I O(j − i) work (Why?)
I O(log(j − i)) span (Why?)

W (n) = 1 +
∑

1≤i≤j≤n

Wreduce(j − i) ≤ 1 + n2 ·Wreduce(n)

= 1 + n2 ·O(n) ∈ O(n3)

S(n) = 1 + max
1≤i≤j≤n

Sreduce(j − i) ≤ 1 + Sreduce(n) ∈ O(log n)
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BRUTE FORCE ALGORITHM

Compute maximum over all O(n2) sums
I Use max reduce
I Needs O(n2) work and O(log n) span
I Can be ignored (Why?)

Total costs for brute force are:
I O(n3) work
I O(log n) span
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DIVIDE-AND-CONQUER – I

〈—— L —— ‖ —— R —— 〉
⇓

L = 〈 · · · 〉︸ ︷︷ ︸
mcss=56

R = 〈 . . . 〉︸ ︷︷ ︸
mcss=17

Let’s solve S = 〈−2,−1,2,3,2,−2〉
Is this right?
How do we combine subproblem results?
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DIVIDE-AND-CONQUER – I

Recursion handles
I When mcss(S) subsequence is in the left.
I When mcss(S) subsequence is in the right.

What happens when mcss(S) spans across the
divide point?

L R

Largest Sum Suffix Largest Sum Prefix

Maximum sum across the divide
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DIVIDE-AND-CONQUER – I

1 fun mcss(s) =
2 case (showt s)
3 of EMPTY = −∞
4 | ELT(x) = x
5 | NODE(L,R) =
6 let (mL,mR) = (mcss(L) ‖ mcss(R) )
7 mA = bestAcross(L,R)
8 in max{mL,mR,mA}
9 end

W (n) = 2W (n/2) + O(n) (Why?) →W (n) ∈ O(n log n)

S(n) = S(n/2) + O(log n) (Why?) → S(n) ∈ O(log2 n)

ALGORITHMIC TECHNIQUES AND DIVIDE-AND-CONQUER 33/45

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



DIVIDE-AND-CONQUER – II
IMPORTANT QUESTIONS

Can we do better than O(n log n) work?

What part of the divide-and-conquer is the
bottleneck?

I Combine takes linear work? (Why?)

How can we improve?
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DIVIDE-AND-CONQUER – II

The answers lie here

L R

Largest Sum Suffix Largest Sum Prefix

Maximum sum across the divide

Strengthen the subproblems
I Compute additional information
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DIVIDE-AND-CONQUER – II

TotalL
mpsL mssL

mcssL

Left Subproblem

mps = maximum prefix sum mss = maximum suffix sum
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DIVIDE-AND-CONQUER – II

TotalL
mpsL mssL

mcssL

Left Subproblem

TotalR
mpsR mssR

mcssR

Right Subproblem
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DIVIDE-AND-CONQUER – II

TotalL
mpsL mssL

mcssL

Left Subproblem

TotalR
mpsR mssR

mcssR

Right Subproblem

Total
mcss

mps mss
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DIVIDE-AND-CONQUER – II

TotalL
mpsL mssL

mcssL

Left Subproblem

TotalR
mpsR mssR

mcssR

Right Subproblem

Total
mcss

mps mss

Total TotalL TotalR= + 

mcss = max ( mcssL mcssR, , mssL mpsR+ ) 

mps = max ( mpsL , TotalL + mpsR ) 

mss = max ( mssL + TotalR , mssR ) 
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DIVIDE-AND-CONQUER – II

1 fun mcss(a) =
2 let
3 fun mcss’(a)
4 case (showt a)
5 of EMPTY = (−∞,−∞,−∞,0)
6 | ELT(x) = (x , x , x , x)
7 | NODE(L,R) =
8 let
9 ((m1,p1, s1, t1), (m2,p2, s2, t2)) = (mcss’(L) ‖ mcss’(R) )

10 in
11 (max(s1 + p2,m1,m2), max(p1, t1 + p2), max(s1 + t2, s2), t1 + t2)
12 end
13 (m,p, s, t) = mcss′(a)
14 in m end
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COST ANALYSIS
1 fun mcss(a) =
2 let
3 fun mcss’(a)
4 case (showt a)
5 of EMPTY = (−∞,−∞,−∞,0)
6 | ELT(x) = (x , x , x , x)
7 | NODE(L,R) =
8 let
9 ((m1,p1, s1, t1), (m2,p2, s2, t2)) = (mcss’(L) ‖ mcss’(R) )

10 in
11 (max(s1 + p2,m1,m2), max(p1, t1 + p2), max(s1 + t2, s2), t1 + t2)
12 end
13 (m,p, s, t) = mcss′(a)
14 in m end

Assuming showt has O(log n) work and span.
I W (n) = 2W (n/2) + O(log n)
I S(n) = S(n/2) + O(log n)
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COST ANALYSIS

W (n) = 2W (n/2) + O(log n)

k1 log n

k1 log (n/2) k1 log (n/2)

k1 log (n/4) k1 log (n/4) k1 log (n/4) k1 log (n/4)

k1 log n

k1 2 log (n/2)

k1 4 log (n/4)

W (n) ≤
∑log n

i=0 k12i log(n/2i)
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SUBSTITUTION METHOD

Solve W (n) ≤ 2W (n/2) + k · log n
I k > 0

I W (n) ≤ k for n ≤ 1

Guess W (n) ≤ κ1n − κ2 log n − κ3

I Need to find κ1, κ2, and κ3.

Base case: W (1) ≤ k ⇒ κ1 − κ3 ≤ k
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SUBSTITUTION METHOD

Inductive Step

W (n) ≤ 2W (
n
2
) + k · log n

≤ 2(κ1
n
2
− κ2 log(

n
2
)− κ3) + k · log n

= κ1n − 2κ2(log n − 1)− 2κ3 + k · log n
= (κ1n − κ2 log n − κ3) + (k log n − κ2 log n + 2κ2 − κ3)

≤ κ1n − κ2 log n − κ3

Choose κ2 = k and 2κ2 − κ3 ≤ 0 (Why?)

For example, κ2 = k , κ1 = 3k , κ3 = 2k satisfies the
constraints.
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SUMMARY

Algorithmic Paradigms
Divide-and-Conquer

I General Form
I Cost Analysis
I Tree and Brick Methods
I Substitution Method

Maximum Contiguous Subsequence Problem
I Brute Force
I Divide-and-Conquer
I Divide-and-Conquer with Subproblem Strengthening
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