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PROBABILITY AND RANDOMIZED ALGORITHMS




SYNOPSIS

@ Overview of Discrete Probability
e Finding the two largest elements
e Find the k" smallest element.
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RANDOMIZED ALGORITHMS

e Exploit randomness during computation
» Pivot selection in Quicksort
» Average case analysis
» Primality testing
e Question: How many comparisons are needed to
find the second largest number on a sequence of
n numbers?
» Naive algorithm: 2n — 3 comparisons
» Divide and Conquer algorithm: 3n/2 comparisons
» Simple randomized algorithm: n— 1 + 2log n
comparisons on the average.
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OVERVIEW OF DISCRETE
PROBABILITY

e Probabilistic Experiment: outcome is
probabilistic.
e Sample Space (Q2): arbitrary and possibly
countably infinite set of possible outcomes.
» Tossing a coin
» Throwing a die/pair of dice.
e Primitive Event: Any one of the elements of (2.
e Event: Any subset of Q
» Firstdieisab
» Dice sumto 7
» Any die is even.

PROBABILITY AND RANDOMIZED ALGORITHMS 4/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



PROBABILITY FUNCTION

e Probability Function: Q — [0, 1]
> Prle] =1
ecQ

e Probability of an event A:

> Pr(e]

ecA

» Probability of “first die is 477
» Probability of “dice sum to to 4”?
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RANDOM VARIABLES

@ Random Variable: X : Q — R
» X is the sum of the two die rolls
@ Indicator Random Variable: Y : Q — {0,1}

» Yis 1 if the dice are the same, 0 otherwise
» Yis 1if the total is larger than 7, 0 otherwise

e For ac R, the event “X = &’ is the set

{we Q| X(w) = a}
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EXPECTATION

e The expectation of a random variable

E [X]=) X(e) Prle].

Q,Pr|] o

@ The expectation of an indicator random variable:

E[Y]= >  Prle]=) Pri{fecQ|p(e)}].

ecQ,p(e)=true ecQ

» p:Q — bool
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INDEPENDENCE

e Events A and B are independent if the occurence
of one does not affect the probability of the other

Pr[AN B] = Pr[A] - Pr[B]

d1,d2) Y] | d1 = 1}and
di, db) € Q| do = 1} are independent.

= {(d; , dz) e Q ‘ ady +db = 4} is NOT independent
of A (Why?)

O™
cm R
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INDEPENDENCE

e Events Ay, ..., A are mutually independent if
and only if for any non-empty subset
IC{1,... k},

Pr[| A] = | [ PriAl
iel iel

e Random variable X and Y are independent if
fixing one does NOT affect the probability
distribution of the other.

» X = “value of the first die” is independent of Y =
“value of the second die”.
» X is NOT independent of Z = “sum of the dice”
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LINEARITY OF EXPECTATIONS

e Important Theorem: given two random variables
Xand Y

E[X]+E[Y]=E[X+ Y]

e Easy to show!

> Prie]X(e)+ ) Prie]Y(e) =) Pr[e](X Y(e))

ecN ecN ecQ

e Expected sum of two dice
» Consider 36 outcomes and take average
» Sum expectations for each dice (3.5+ 3.5 =7)
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LINEARITY OF EXPECTATIONS

e In general, for a binary function f the equality

f(E[X],E[Y]) = E[f(X,Y)]

is not true in general.
» max(E[X],E[Y]) # E [max(X, Y)]
» What is E [max(X, Y)]?

o E[X] xE[Y]=E[X x Y]istrueif X and Y are
independent.
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EXAMPLES

@ Toss n coins with probability of heads, p. What is
the expected value of X, the number of heads?

E[X] :ik-Pr[X:k]

k=0
- En: k-pf(1—p)"* (Z) (Why?)
k=1
N kZ:k' :(Z_ 1>p"(1 —p)" K [because <Z> = :(:_ 1) ]

PROBABILITY AND RANDOMIZED ALGORITHMS

12/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



EXAMPLES

@ Toss n coins with probability of heads, p. What is
the expected value of X, the number of heads?

E[X] = Zn:k.Pr[xz K]
k=0

n—1
nZ(nJ )p’*‘( p)"~U+Y)  [because k =j+1]
=0
n-1
- “ N i1 — py-1-D
pY ("7 )Pl -p)
/=0
=n-p-(p+(1-p)! [ Binomial Theorem ]
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EXAMPLES

e Toss n coins with probability of heads, p. What is
the expected value of X, the number of heads?
@ Using linearity of expectations.

» X; = I{i-th coin turns up heads}
- X=X

E[X] =E [ZX,-] =Y E[X]=> p=n-p
i=1 i—1 i—1

» because E [X]] = p.
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EXAMPLES

@ A coin has a probability p of coming up heads.
What is the expected value of Y representing the
number of flips until we see a head?

e Write a recurrence!

» With probability p, we’ll get a head and we are done,
» With probability 1 — p, we’ll get a tail and we’ll go
back to square one

E[Y]=p-1+(1 —p)(1+E[Y])
=1+(1-p)E[Y] = E[Y]=1/p.
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FINDING THE TOP TWO ELEMENTS

1 fun max2(S) = let

2 fun replace((my,mo),v) =

3 if v < mo then (m1,m2)

4 else if v<m; then (m,v)

5 else (v,m)

6 start =if S > S, then (81,82) else (82,81)
7 in iter replace start S(3,...,n)

8 end

@ We will do exact analysis.

® 1+2(n—2)=2n— 3 comparisons in the worst case.
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WORST CASE ANALYSIS

1 fun max2(S) = let

2 fun replace((my,mo),v) =

3 if v<m, then (my,m)

4 else if v<m; then (m,v)
5 else (v,my)

6

start =if S > S, then (81,82) else (82,81)

7 in iter replace start S(3,...,n)
8 end

e An already sorted sequence (e.g., (1,2,3,...,n))
will need exactly 2n — 3 comparisons.
e But this happens with 1/n! chance!
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A RANDOMIZED ALGORITHM

@ The worst-case analysis is overly pessimistic.

e Consider the following variant:
e On input of a sequence S of n elements:

@ Let T = permute(S, 7), where 7 is a random
permutation (i.e., we choose one of the n!
permutations).

© Run the naive algorithm on T.

@ No need to really generate the permutation!
» Just pick an unprocessed element randomly until all
elements are processed.
» It is convenient to model this by one initial
permutation!
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ANALYSIS

1 fun max2(S) = let

2 fun replace((my,mo),v) =

3 if v<m, then (my, my)

4 else if v<my then (my,v)
5
6

else (v,my)
start =if S§; > S, then (Sy,S;) else (Sz,S)

7 in iter replace start S(3,...,n)
8 end

e X;=1if T;is compared in Line 4, 0 otherwise.
@ Y is the number of comparisons

n
Y=Ad_+n-2 +> X;
Line 6 Line 3 i=3

Line 4
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ANALYSIS

@ This expression in true regardless of the random
choice we’re making.

e We're interested in computing the expected value
of Y.

e By linearity of expectation,

1+(n—2)+zn:X,-]

i=3

E[Y] = E

— 1+(n—2)+zn:E[X,-].
i=3
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ANALYSIS

e Problem boils down to computing E [X]], for
i=3,...,n

e What is the probability that 7; > m,?

» T; > my holds when T; is either the largest or the
second largestin {Ty,..., T;}

@ So, what is the probability that T; is one of the
two largest elements in a randomly permuted
sequence of length i?

» 1 + 1=

I I

o E[X]=1-2=2/i

1

IND ~.Io
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ANALYSIS

EIY]=1+(n-2)+3 E[X]

i=3

"2
=1+ (n-2)+) =

i*SI
_ 1 1 1
_1+(nf2)+2<§+1+...5>

:n—4+2(1+%+%+%+...
=n—4+2H,

)

S|=

@ H, is the n" Harmonic number
@ Hy<1+log,n
e E[Y]<n—-2+2log,n
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FINDING THE k" SMALLEST
ELEMENT

e Input: a sequence of n numbers (not necessarily
sorted)

e Output: the k™ smallest value in S (i.e., (nth
(sort S) k)).

e Requirement: O(n) expected work and O(log? n)

span.
@ Kk is 0-based. (For the third smallest element we
set k = 2).

e We can't really sort the sequence!
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FINDING THE k" SMALLEST
ELEMENT

1 fun kthSmallest(k,S) = let

2 p = a value from S picked uniformly at random
3 L=(xeS|x<p)

4 R=(xeS|x>p)

5 in if (k<|L|) then kthSmallest(k,L)

6 else if (k <|S|—|R|) then p

7 else kxthsmallest(k —(|S|—|R|).R)

e Let X, = max{|L|,|R|}
W(n) = W(X,) + O(n)
S(n) = S(X,) + O(log n)
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FINDING THE K" SMALLEST
ELEMENT

e We want to find E [X,]?

max(L, R)
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FINDING THE k" SMALLEST
ELEMENT

o E[X,] < 3 = geometrically decreasing sum
= O(n) work.
o What is Pr[X, < 2n]?
e Since |R| < n— |L],
Xn < gn@ n/4 < |L| <3n/4
and the probability is

3n/4—n/4 n/2 1

n n 2
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FINDING THE K" SMALLEST
ELEMENT

= PrX,=i]-W(i)+c-n

Using stepwise approximation
< Pr[X, < 2"W(3n/4) + Pr[X, > 3]W(n) +c-n
=1W@Bn/4)+1W(n)+c-n
— (1-)W(n)=1WBn/4)+c-n
— W(n) < W(3n/4)+2c-n

e Root Dominated hence solves to O(n).
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FINDING THE K" SMALLEST
ELEMENT

S(n) = S(X,) + O(log n)

<ZPr[X il- S(i) + clogn

< Pr[X < 31M5(3n/4) + Pr[X, > 2"S(n) + ¢ - logn
< 15(8n/4) +1S(n )+c-|ogn

= (1-3)S(n) < 15(3n/4) + clogn
— S(n) < S(3 n/4)+2c|ogn

@ This solves to O(log® n).

PROBABILITY AND RANDOMIZED ALGORITHMS

28/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



