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SYNOPSIS

The collect operation
The map-collect-reduce paradigm
Sets
Tables
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THE COLLECT OPERATION

Group items that share a common key.

Data = 〈(“jack sprat”, “15-210”),
(“jack sprat”, “15-213”),
(“mary contrary”, “15-210”),
(“mary contrary”, “15-251”),
(“mary contrary”, “15-213”),
(“peter piper”, “15-150”),
(“peter piper”, “15-251”),
. . .〉

↓

rosters = 〈(“15-150”, 〈 “peter piper”, . . . 〉)
(“15-210”, 〈 “jack sprat”, “mary contrary”, . . . 〉)
(“15-213”, 〈 “jack sprat”, . . . 〉)
(“15-251”, 〈 “mary contrary”, “peter piper” 〉)
. . .〉
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THE COLLECT OPERATION

Very common operation in Relational Databases
Usually called the Group by operation.

rosters = 〈(“15-150”, 〈 “peter piper”, . . . 〉)
(“15-210”, 〈 “jack sprat”, “mary contrary”, . . . 〉)
(“15-213”, 〈 “jack sprat”, . . . 〉)
(“15-251”, 〈 “mary contrary”, “peter piper” 〉)
. . .〉

Students are grouped by Course Numbers.
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THE COLLECT OPERATION

collect : (α× α→ order)→ (α× β) seq

→ (α× β seq) seq

1 α× α→ order is a function for comparing keys
of type α

2 (α× β) seq is a sequence of key-value pairs
3 (α× β seq) seq is the resulting sequence:

I each unique α value is paired with a sequence of all
β values it appears with
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THE COLLECT OPERATION

collectStrings = collect String.compare

rosters = collectStrings(〈 (n, c) : (c,n) ∈ Data 〉)

rosters = 〈(“15-150”, 〈 “peter piper”, . . . 〉)
(“15-210”, 〈 “jack sprat”, “mary contrary”, . . . 〉)
(“15-213”, 〈 “jack sprat”, . . . 〉)
(“15-251”, 〈 “mary contrary”, “peter piper” 〉)
. . .〉

〈 (n, c) : (c,n) ∈ Data 〉 arranges the data
appropriately.
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THE COLLECT OPERATION

How would you implement collect?
I Sort the items on their keys
I Partition the resulting sequence
I Pull out pairs between each key change
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THE COLLECT OPERATION

The dominant cost of collect is in sorting.
Work is O(Wcn log n), Span is O(Sc log2 n)

I Wc work bound for the comparison function
I Sc span bound for the comparison function

A O(n) work can be implemented with hashing.
I Need a separate hash function
I Output not in sorted order
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USING COLLECT IN MAP-REDUCE

The map-reduce paradigm is used to process
very large collection of documents.

I A document is a collection of words/strings.

I Not the mapReduce of 15-150!

map-reduce paradigm ≡ map-collect-reduce(s).
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USING COLLECT IN MAP-REDUCE

fm maps each document to a sequence of
key-value pairs.

I fm : (document → (key × α) seq)

All key-value pairs in a document are collected.

fr is applied to the keys to get a single value for
a key.

I fr : key × α seq → β
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AN EXAMPLE

docs = 〈“this is a document”,
“this is is another document”,
“a last document”〉

↓
〈(“this”,1), (“is”,1), (“a”,1), (“document”,1),
(“this”,1), (“is”,1), (“is”,1), (“another”,1),
(“document”,1), (“a”,1), (“last”,1), (“document”,1)〉

↓
〈(“a”,2), (“another”,1), (“document”,3), (“is”,3), (“last”,1),
(“this”,2)〉
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MAPREDUCE IN SML
1 fun mapCollectReduce fm fr docs =
2 let
3 pairs = flatten 〈 fm(s) : s ∈ docs 〉
4 groups = collect String.compare pairs
5 in
6 〈 fr(g) : g ∈ groups 〉
7 end

flatten 〈 〈a,b, c 〉 , 〈d ,e 〉 〉 ⇒ 〈 a,b, c,d ,e 〉
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MAPREDUCE IN SML
1 fun mapCollectReduce fm fr docs =
2 let
3 pairs = flatten 〈 fm(s) : s ∈ docs 〉
4 groups = collect String.compare pairs
5 in
6 〈 fr(g) : g ∈ groups 〉
7 end

fun fm(doc) = 〈 (w ,1) : tokens doc 〉
fun fr(w , s) = (w ,reduce + 0 s)

COLLECT, SETS AND TABLES 13/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



MAPREDUCE EXAMPLE IN SML

fun fm(doc) = 〈 (w ,1) : tokens doc 〉
fun fr(w , s) = (w ,reduce + 0 s)

countWords = mapCollectReduce fm fr

countWords 〈“this is a document”,
“this is is another document”,
“a last document”〉

⇒ 〈(“a”, 2), (“another”, 1), (“document”, 3), (“is”, 3),
(“last”, 1), (“this”, 2)〉
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SETS

Sets play a very important role in math.
Often needed in many algorithms.
Many languages either support sets directly or
have libraries for sets.
In 15-210 we use a purely functional definition
for sets:

I When updates are done, a new set is returned.
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SETS AS AN ADT

U is a universe of elements.
The SET ADT is a type S that represents the
power set of U.

empty : S = ∅
size(S) : S→ Z≥0 = |S|
singleton(e) : U→ S = {e}
filter(f ,S) : ((U→ {T,F}) = {s ∈ S | f (s)}

×S)→ S
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SETS AS AN ADT

find(S,e) : S× U = |{s ∈ S | s = e}| = 1
→ {T,F}

insert(S,e) : S× U→ S = S ∪ {e}
delete(S,e) : S× U→ S = S \ {e}

intersection(S1,S2) : S× S→ S = S1 ∩ S2
union(S1,S2) : S× S→ S = S1 ∪ S2
difference(S1,S2) : S× S→ S = S1 \ S2

What is the relationship between these two
groups?
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SETS AS AN ADT

We do not really need find, insert, delete!

find(S,e) = size(intersection(S,singleton(e))) = 1
insert(S,e) = union(S,singleton(e))
delete(S,e) = difference(S,singleton(e))

intersection, union, and difference
I can operate on multiple elements, and
I are suitable for parallelism
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COST MODEL FOR SETS

Underlying data structure can be
I hash-tables
I balanced trees

We will assume a balanced-tree implementation.
We will assume comparison of two set elements
take

I Wc work and Sc span.
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COST MODEL FOR SETS

Work Span

size(S) O(1) O(1)
singleton(e)

filter(f ,S) O

(∑
e∈S

W (f (e))

)
O
(

log |S|+ max
e∈S

S(f (e))
)

find(S,e)
O(Wc · log |S|) O(Sc · log |S|)insert(S,e)

delete(S,e)
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COST MODELS FOR SETS

intersection(S1,S2) Work = O
(
Wc ·m · log(1 + n

m)
)

union(S1,S2) ⇒
difference(S1,S2) Span = O (Sc · log(n + m))

n = max(|S1|, |S2|) m = min(|S1|, |S2|)

Sets are equal size (n = m)

I Work = O(Wc ·m · log(1 + 1)) = O(Wc · n)
I Span = O(Sc · log n)

One of the sets is a singleton (m = 1)
I Work = O(Wc · log(1 + n)) = O(Wc · log n)
I Span = O(Sc · log(n + 1)) = O(Sc · log n)
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TABLES

Table is an ADT for sets of key-value pairs.

{(k1 7→ v1), (k2 7→ v2), . . . , (kn 7→ vn)}
{(k1, v1), (k2, v2), . . . , (kn, vn)}

Each key appears only once
Many languages provide either built-in support
or libraries.
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TABLES

K is the universe of keys.
V is the universe of values.
T is a type that represents the power set of
K× V

I restricted so that each key appears at most once.
I S is the power set of K.
I Z≥0 denotes the positive integers.
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TABLE FUNCTIONS

empty : T = ∅
size(T ) : T→ Z≥0 = |T |
singleton(k , v) : K× V→ T = {(k , v)}
filter(f ,T ) : ((V→ {T,F})× T)

→ T = {(k , v) ∈ T | f (v)}
map(f ,T ) : ((K× V→ V)× T)

→ T = {(k , f (k , v)) | ((k , v) ∈ T )}
insert(f ,T , (k , v)) : (V× V→ V)× T

×(K× V)→ T =

(T \ {(k , v)})∪
{(k , f (v , v ′))}
if (k , v ′) ∈ T

T ∪ {(k , v)}
otherwise

delete(T , k)) : T×K→ T = {(k ′, v) ∈ T |k 6= k ′}
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TABLE FUNCTIONS

find(T , k) : T×K→ (V ∪ ⊥) =

{
v (k , v) ∈ T
⊥ otherwise

merge(f ,T1,T2) : (V× V→ V)× T× T→ T =⋃
k∈K

 {(k , f (v1, v2))} (k , v1) ∈ T1 ∧ (k , v2) ∈ T2
{(k , v1)} (k , v1) ∈ T1 ∧ (k , v2) /∈ T2
{(k , v2)} (k , v2) ∈ T2 ∧ (k , v1) /∈ T1

extract(T ,S) : T× S→ T = {(k , v) ∈ T |k ∈ S}
erase(T ,S) : T× S→ T = {(k , v) ∈ T |k /∈ S}
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TABLE EXAMPLES

Suppose we have the two tables:
I Summer= {tree 7→ green, sky 7→ blue, cmuq 7→

tan}
I Fall = {grass 7→ gray , tree 7→ brown}

merge (fn (a,b)⇒ b) Summer Fall
I {grass 7→ gray , tree 7→ brown, sky 7→

blue, cmuq 7→ tan}
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TABLE EXAMPLES

Suppose we have the two tables:
I Summer= {tree 7→ green, sky 7→ blue, cmuq 7→

tan}
I Fall = {grass 7→ gray , tree 7→ brown}

extract(Summer , {sky , grass})
I {sky 7→ blue}
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TABLE EXAMPLES

Suppose we have the two tables:
I Summer= {tree 7→ green, sky 7→ blue, cmuq 7→

tan}
I Fall = {grass 7→ gray , tree 7→ brown}

erase(Summer , {sky , grass})
I {tree 7→ green, cmuq 7→ tan}
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TABLE EXAMPLES

Other useful functions from the library

collect:(key × α) seq → (α seq) table

fromSeq: (key × α) seq → α table
I fromSeq(A) = {k 7→ s0 : (k 7→ S) ∈ collect(A)}

COLLECT, SETS AND TABLES 29/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



TABLE FUNCTIONS

Major differences from sets:
I find returns the value if key is in the table else

returns ⊥ (NONE).
I insert/merge need a function to combine if the

key is already in the/both table(s).
Just as with sets, there is symmetry between

I extract and find
I merge and insert
I erase and delete
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COST MODELS FOR TABLES

Work Span
size(T ) O(1) O(1)
singleton(k , v)

filter(f ,T ) O

 ∑
(k,v)∈T

W (f (v))

 O
(

log |T |+ max
(k,v)∈T

S(f (v))
)

map(f ,T ) O

 ∑
(k,v)∈T

W (f (k , v))

 O
(

max
(k,v)∈T

S(f (k , v))
)
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COST MODELS FOR TABLES

Work Span
find(S, k)

O(Wc log |T |) O(Sc log |T |)insert(T , (k , v))
delete(T , k)

extract(T1,T2)
O
(
Wcm log(1 + n

m )
)

O (Sc log(n + m))merge(T1,T2)
erase(T1,T2)

n = max(|T1|, |T2|) m = min(|T1|, |T2|)
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SUMMARY

Collect
Map-Collect-Reduce
Sets
Tables
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