
15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 23

DYNAMIC PROGRAMMING – II

SYNOPSIS

Top-down Dynamic Programming
Bottom-up Dynamic Programming
Optimal Binary Search Trees

DYNAMIC PROGRAMMING – II 2/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TOP-DOWN DP

Run the recursive code as is:
I Start with the root
I Work down to the leaves

Memoization: We need to avoid redundant
computation.

I If we encounter the same arguments, we just look up
the solution

I If not, we compute once and store in a memo table.
Checking for equal arguments could be costly.

I We use simple surrogates for actual arguments (e.g.,
integers)

DYNAMIC PROGRAMMING – II 3/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TOP-DOWN DP FOR MED

MED takes two sequences and on each recursive
call, uses suffixes of the original sequences.

I There is a one-to-one mapping from non-negative
integers to suffixes (rather to suffix lengths!)

I Could also use prefixes!
I This makes indexing a bit easier.

DYNAMIC PROGRAMMING – II 4/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ORIGINAL MED CODE

1 fun MED(S,T) =
2 case (showl(S),showl(T)) of
3 (,NIL)⇒ |S|
4 | (NIL,)⇒ |T |
5 | (CONS(s,S′),CONS(t ,T ′))⇒
6 if (s = t) then MED(S′,T ′)
7 else 1 + min(MED(S,T ′),MED(S′,T))

DYNAMIC PROGRAMMING – II 5/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MED WITH SURROGATES
1 fun MED(S,T) = let
2 fun MED′(i ,0) = i
3 | MED′(0, j) = j
4 | MED′(i , j) =case (Si = Tj) of
5 true⇒ MED′(i − 1, j − 1)
6 | false⇒ 1 + min(MED′(i , j − 1),
7 MED′(i − 1, j))
8 in
9 MED′(|S|, |T |)

10 end

MED’ has i and j , instead of S and T
I i represents S 〈0, . . . , i − 1 〉
I j represents T 〈0, . . . , j − 1 〉

No memo table yet!
DYNAMIC PROGRAMMING – II 6/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MEMO TABLE

We can now add a memo table, accessed with
(i , j)

I We can also use a two dimensional array!

1 fun memo f (M,a) =
2 case find(M,a) of
3 SOME(v)⇒ (M, v)
4 | NONE⇒ let
5 (M ′, v) = f (M,a)
6 in
7 (update(M ′,a, v), v)
8 end

DYNAMIC PROGRAMMING – II 7/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MEMOIZED MED

1 fun MED(S,T) = let
2 fun MED′(M, (i ,0)) = (M, i)
3 | MED′(M, (0, j)) = (M, j)
4 | MED′(M, (i , j)) =case (Si = Tj) of
5 true⇒ MED′′(M, (i − 1, j − 1))
6 | false⇒ let
7 (M ′, v1) = MED′′(M, (i , j − 1))
8 (M ′′, v2) = MED′′(M ′, (i − 1, j))
9 in (M ′′,1 + min(v1, v2)) end

10 and MED′′(M, (i , j)) = memo MED′ (M, (i , j))
11 in
12 MED′({} , (|S|, |T |))
13 end

Purely functional

but highly sequential
DYNAMIC PROGRAMMING – II 8/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP DP

Start with the leaves
Works through the subproblems consistent with
the DAG

I if (u, v) is a dependency edge in the DAG, compute u
before v , for all such u.

I All values will be available for v when they are
needed!

Uses a memo table.
Understanding the DAG structure is important

DYNAMIC PROGRAMMING – II 9/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP DP FOR MED

t
1

c
2

a
3

t
4

a 1

t 2

c 3

i

j

0
 0

Dag for MED(”tcat”, ”atc”)
DYNAMIC PROGRAMMING – II 10/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP DP FOR MED

3

2

1

0

t
1

c
2

a
3

t
4

a 1

t 2

c 3

4 5 6 7

0
 0

i

k

We can go by diagonals.
DYNAMIC PROGRAMMING – II 11/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP DP FOR MED

t

1

c

2

a

3

t

4

a 1

t 2

c 3

i

j

0

 0

We can go by rows.

DYNAMIC PROGRAMMING – II 12/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP DP FOR MED

t

1

c

2

a

3

t

4

a 1

t 2

c 3

i

j

0

 0

We can go by columns.

DYNAMIC PROGRAMMING – II 13/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP DP FOR MED
1 fun MED(S,T) = let
2 fun MED′(M, (i, 0)) = i
3 | MED′(M, (0, j)) = j
4 | MED′(M, (i, j)) =case (Si = Tj) of
5 true⇒ Mi−1,j−1

6 | false⇒ 1 + min(Mi,j−1,Mi−1,j)

7 fun diagonals(M, k) =
8 if (k > |S|+ |T |) then M
9 else let

10 s = max(0, k − |T |)
11 e = min(k , |S|)
12 M′ = M ∪ {(i, k − i) 7→ MED′(M, (i, k − i)) : i ∈ {s, . . . , e}}
13 in
14 diagonals(M′, k + 1)
15 end

16 in
17 diagonals({} , 0)
18 end

DYNAMIC PROGRAMMING – II 14/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP DP FOR MED

In Round 0, we compute M0,0

In Round 1, we compute M0,1 and M1,0

In Round 2, we compute M0,2, M1,1, M2,0

In Round 3, we compute M0,3, M1,2, M2,1, M3,0

. . .
How about parallelism?

DYNAMIC PROGRAMMING – II 15/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL BINARY SEARCH TREES

Let’s revisit BSTs
I The cost of finding a key is proportional to the depth

of the key in the tree.
I Fully balanced BST with n nodes⇒ average depth is

log n

Suppose you have a (fixed/static) dictionary and
you know the probability that a given key will be
accessed
What is the BST structure with the lowest overall
cost?

DYNAMIC PROGRAMMING – II 16/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL BINARY SEARCH TREES

OPTIMAL BST
The optimal binary search tree (OBST) problem is
given an ordered set of keys S and a probability
function p : S → [0 : 1], to find T̂

T̂ = arg minT∈Trees(S)

(∑
s∈S

d(s,T) · p(s)

)

where Trees(S) is the set of all BSTs on S, and
d(s,T) is the depth of the key s in the tree T
(Assume the root has depth 1).

DYNAMIC PROGRAMMING – II 17/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL BINARY SEARCH TREES

key k1 k2 k3 k4 k5 k6
p(key) 1/8 1/32 1/16 1/32 1/4 1/2

k5

k1 k6

k3

k2 k4

Cost =
1
8
×2+

1
32
×4+

1
16
×3+

1
32
×4+

1
4
×1+

1
2
×2 =

31
16

DYNAMIC PROGRAMMING – II 18/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL BINARY SEARCH TREES

How many binary search trees of n distinct keys
are there?

I Hint: Think of matrix chain multiplication!

in DP, an optimal solution should be based on
optimal subproblem solutions.
One of the keys (Sr) must be at the root of the
optimal tree.

I Both subtrees must be optimal.
How do we select Sr?

I Pick the key with highest probability and put it at the
root, and recurse?

I Does not really work!

DYNAMIC PROGRAMMING – II 19/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL BINARY SEARCH TREES

Try all elements as a potential root
For each, recursively find their optimal solutions
Pick the best among the |S| possibilities.
All elements under a root are contiguous in the
sorted sequence.

k5

k1 k6

k3

k2 k4

DYNAMIC PROGRAMMING – II 20/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL BINARY SEARCH TREES

Use (i , j) as a surrogate for the tree spanning
Si , . . . ,Sj .
Let T be the tree covering Si , . . . ,Sj with root
Sr , i ≤ r ≤ j , with TL TR as the subtrees.
Cost(T) =

∑
s∈T

d(s,T) · p(s)

= p(Sr) +
∑
s∈TL

(d(s,TL) + 1) · p(s) +
∑

s∈TR

(d(s,TR) + 1) · p(s)

=
∑
s∈T

p(s) +
∑
s∈TL

d(s,TL) · p(s) +
∑

s∈TR

d(s,TR) · p(s)

=
∑
s∈T

p(s) + Cost(TL) + Cost(TR)

Find the r , i ≤ r ≤ j that minimizes this cost.
DYNAMIC PROGRAMMING – II 21/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL BINARY SEARCH TREES

1 fun OBST(S) =
2 if |S| = 0 then 0
3 else

(∑
s∈S p(s)

)
+ mini∈〈1...|S| 〉(OBST(S1,i−1)+

4 OBST(Si+1,|S|))

How many possible subproblems are there?
I A subsequence can end at n different positions
I For the i th end position there are i possible start

positions.∑n
i=1 i = n(n + 1)/2 ∈ O(n2) possible subproblems.

Longest path of dependences in the DAG is O(n) since
recursion can go down for n levels (Why?)

DYNAMIC PROGRAMMING – II 22/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

WORK AND SPAN

Cost of each subproblem is not uniform! (Why?)
Each subproblem has O(n) work and O(log n)
span (Why?)
We get total O(n3) work and O(n log n) span.
(Why?)

DYNAMIC PROGRAMMING – II 23/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

CODE FOR OPTIMAL BST

1 fun OBST(S) = let
2 fun OBST’(i , l) =
3 if l = 0 then 0
4 else

∑l−1
k=0 p(Si+k) + minl−1

k=0(OBST’(i , k)+
5 OBST’(i + k + 1, l − k − 1))
6 in
7 OBST’(1, |S|)
8 end

DYNAMIC PROGRAMMING – II 24/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP OPTIMAL BST

For a bottom up version, a triangular table is
sufficient

C1

C2

C3

C4

C5

C12

C23

C34

C45

C13

C24

C35

C14

C25C15

cij = optimal cost of the tree covering Sij
DYNAMIC PROGRAMMING – II 25/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

