15-210
PARALLEL AND SEQUENTIAL
ALGORITHMS AND DATA
STRUCTURES

LECTURE 23

MORE WITH TREES

SYNOPSIS

@ Ordered Sets and Tables

e Bingle Revisited

@ Augmenting Balanced Trees

e Ordered Tables with Reduced Values
e Application Examples

MORE WITH TREES 2/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ORDERED SETS AND TABLES

e So far, we did not worry about the ordering of the
values/keys in sets and tables.

» Find, union, intersect, merge, etc.
e For many applications, exploiting any order is
very important!

» Find all elements between 3 and 17.

» Find all customers who bought more that 5 of one
item.

» Find all emails in the week of March 31st.

@ Ordered sets and tables.

MORE WITH TREES 3/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ORDERED SET ADT

@ We have a totally ordered universe U, and S
represents the set of all subsets of U.

e With the following operations

all operations supported by the Set ADT, and

last(S) : S=>TU = max S

first(S) : S=U = min S

split(S,K) . SxU—S — (K eS|K <k} keS,
x bool x S {k' € S| k' > k})

join(S1, S) : SxS—=S = 81U S, assuming

max Sy < min S,
getRange(S ki, ko) : SxUxU—=S = {keS|k <k<k}

MORE WITH TREES 4/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ORDERED SET ADT

e Underlying implementation uses trees.

@ first and last are easy
» first traverses down the left spine to the minimum

value.
» last traverses down the right spine to the maximum

value.
@ getRange involves two splits.

5/2%

MORE WITH TREES
15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPROVISING BINGLE

signature INDEX = sig
type word = string
type docId = string
type 'a seq
type index
type docList

val makeIndex : (docId *» string) seqg —-> index
val find : index -> word —-> docList

val And : docList % docList —-> docList

val AndNot : docList % docList —-> docList

val Or : docList * docList -> docList

val size : docList -> int
val toSeq : doclList —-> docId seqg
end

@ docList is a set.
@ index is atable.

MORE WITH TREES 6/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPROVISING BINGLE

e We want to limit the search to certain domains
(e.g., cmu.edu)
» or docs with a certain name.
e We want to add
val inDomain : domain *= docList -> doclist
e For example

inDomain ("cs.cmu.edu",
and (find idx "cool", find idx "TAs"))

MORE WITH TREES 7/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPROVISING BINGLE

@ Assume doc ids are URLs.

@ Assume they are “reverse” lexicographically
ordered.

» The last character is the most important!

1 fun inDomain(domain,L)=
2 getRange(L, domain, string.prepend(domain, "$"))

e % is a character that is greater than any character.

MORE WITH TREES 8/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AUGMENTING BALANCED TREES

@ Sets (and underlying trees) hold the key and any
associated values.

e We can add other additional values to help with
other search operations.

» Track key positions and certain subset sizes.

@ rank (S, k):How many elementsin S are less
than k?

@ select (S, 1i):Whichelementin S hasrank j?

@ splitIdx (S, i): Split Sinto two sets: first
keys and the remaining n — i keys.

MORE WITH TREES 9/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AUGMENTING BALANCED TREES

rank(S, k) . SxU—int = |[{k'e S|k <k}

select(S,i) : Sxint—-U = ksuchthat|{k'e S|k <k}|=i

splitIdx(S,i) : Sxint— = ({ke S|k <select(S,i)},
SxS {ke S| k> select(S,i)})

e Without additional information stored with the
keys, these operations would take 6(|S|) work.

MORE WITH TREES 10/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AUGMENTING BALANCED TREES

o Let S=1{1,2,3,4,56}

@ rank (S, 4) =1{1,2,3}|/=3

@ select (S, 3) =4since rank (S, 4) =3
@ splitIdx (s, 3) =({1,2,3},{4,5,6})

MORE WITH TREES 11/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AUGMENTING BALANCED TREES

@ At each node keep the size of the subtree.

e This allows size and the three other operations
in O(d) work with d as the depth of the tree.

@ Size can be computed on the fly by adding 1 to
the sum of the subtree sizes!

MORE WITH TREES 12/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SELECT WITH AUGMENTED TREES

fun select(T,i)=
case expose(T) of
NONE = raise Range
| soME(L, R, k) =
case compare(i,|L|) of
LESS = select(L,I)
| EQUAL = K
| GREATER = select(R,i—|L|—1)

O NI O UGl = W IN -

MORE WITH TREES 13/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

RANK AND SPLITIDX

@ rank is easy: just split and return the size of the
left tree!

@ splitIdx is just like split (or you navigate using
sizes (as opposed to key values))

MORE WITH TREES 14/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SPRING 2014

ORDERED TABLES WITH REDUCED
VALUES

e Maintain at each node a “sum” based on an
associative operator f.

» Updated during insert/delete, merge, extract, etc.
e Givenf:vxv—v,and I;
» All operations on ordered tables are supported, and

>

reduceVal(A): T — v =reducefl A

» We want to be able to do reduceval in O(1) work
(assuming f needs O(1) work).
» fis known beforehand!

MORE WITH TREES 15/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ORDERED TABLES WITH REDUCED
VALUES

fis + f is max

IMPLEMENTATION

fun makeNode(L, R, k,Vv) =
Node(L, R, k, v, Reduce.f(reduceVal(L),
Reduce.f(v, reduceval(R))))

1 datatype Treap = Leaf | Node of (Treap x Treap
2 xkey X data x data)

3 fun reduceval(T) =

4 case T of

5 Leaf = Reduce.l

6 | Node(_, _, _,_,r)=r

7

8

9

MORE WITH TREES 17/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTATION

fun join(T1, T2) =
case (T4, T,) of
(Leaf, _)=T,
| (_,Leaf) = T;
’ (NOde(L‘I) R1) k17 Vi, S4)7 NOde(L27 R27 k27 Vo, 32)) =
if (priority(ki) > priority(kz)) then
makeNode(Lq, join(Ry, T2), ki, 1)
else
makeNode(join(T1, Lz), RQ, kg, V2)

OO NANUI = WDN -

MORE WITH TREES 18/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXAMPLE APPLICATION - SALES
DATA

e Sales information are kept by the time stamp in
an ordered table.

> (2/3/2013 — 12 : 30,$120)
e Find the total sales between t; and t
e fis +

e reduceVal(getRange(T,t,)) takes O(logn)
work

MORE WITH TREES 19/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXAMPLE APPLICATION - STOCK
DATA

e Stock prices information are kept by the time
stamp in an ordered table.

> (2/3/2013 — 12 : 30,$120/share)
e Find the maximum price between t; and
e fis max

@ reduceVal(getRange(T,t,)) takes O(logn)
work

MORE WITH TREES 20/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXAMPLE APPLICATION- INTERVAL
TREES

e An interval is a region on the real number line
starting at x; and ending at x,

@ an interval table supports the following
operations on intervals:

insert(A,l) : T x(real x real)—T insert interval | into table A
delete(Al) : Tx(realx real)—T delete interval | from table A
count(A,x) : Tx real — int return the number of

intervals crossing X in A

MORE WITH TREES 21/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

INTERVAL TREES

@ Organize intervals as a BST based on
lower-boundary as key

e Use the max upper boundary in the subtree as
additional information.

[16,21]

MORE WITH TREES 22/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COUNTING INTERVALS

1 datatype intTree = Leaf | Node of (intTree x intTree
2 Xreal X real x real)
3 fun overlap(x,low, high) =

4 if (x>low & x < high) then 1 else 0

5 fun countInt(T,x)=

6 case T of

7 Leaf =0

8 | Node(L, R, low, high, max) =

9 if (x> max) then 0

10 else countInt(L, x)+

11 overlap(x, low, high)+

12 if (x> low) then countInt(R,x) else 0

MORE WITH TREES 23/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

