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GRAPHS

Most versatile ADT in the study of algorithms
Captures relationships between pairs of items
A graph consists of

I a set of V vertices/nodes
I a set edges E ⊆ V × V

Edges represent relationships between nodes.
I directed edges (asymmetric relationships)
I undirected edges (symmetric relationships)

Nodes or edges can have additional weights or
values associated.
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SOCIAL NETWORKS
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SOCIAL NETWORKS - QUESTIONS

Who is popular?
What is the largest “clique”?
Do I know somebody who knows X?
What is the “diameter”?
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TRANSPORTATION NETWORKS
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TRANSPORTATION NETWORKS -
QUESTIONS

What is the shortest route from NYC to Los
Angeles?

I without Toll Roads?
I without any state roads?

What is the expected driving time from Boston
to Atlanta?

I considering traffic congestion?
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FLOW NETWORKS
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FLOW NETWORKS - QUESTIONS

Is it possible to send 1M cubic meters of gas to
Paris daily?
What is the maximum gas that can be pumped
from Azerbaijan to Italy?
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OTHER EXAMPLES OF GRAPHS

Course prerequisite relation graphs
(directed-acyclic)
Web-page linkage graph
Protein-protein interaction graph
Neural networks
Semantic networks
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DIRECTED GRAPHS

A directed graph (digraph) is G = (V ,E)
I V is a set of vertices (or nodes), and
I E ⊆ V × V is a set of directed edges (or arcs).

Each arc is an ordered pair e = (u, v)
I Arcs represent asymmetric relationships
I A graph can have self loops (u,u)
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UNDIRECTED GRAPHS

An undirected graph is G = (V ,E)
I V is a set of vertices (or nodes), and
I E ⊆ V × V is a set of edges

Each edge is an unordered pair e = {u, v}
I Edges represent symmetric relationships
I Undirected graphs do not have self-loops.
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NEIGHBORS

In an undirected graph, G = (V ,E), a vertex u is
a neighbor of v if {u, v} ∈ E .
In an undirected graph,
NG(v) = {u | {u, v} ∈ E} is the neighborhood of
v
If U is a set of nodes,

I NG(U) = ∪v∈UNG(v) is the neighborhood of U
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NEIGHBORS

In a directed graph, G = (V ,E),
I u is an in-neighbor of v if (u, v) ∈ E
I u is an out-neighbor of v if (v ,u) ∈ E

In a directed graph
I N−G (u) is the set of in-neighbors of u.
I N+

G (u) is the set of out-neighbors of u.
I When we use NG(v), we mean out-neighbors.

If U is a set of nodes,
I N+

G (U) = ∪u∈UN+
G (u) is the out-neighborhood of U.
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NODE DEGREES

Undirected graphs: degree dG(v) of a vertex v
is |NG(v)|
Directed graphs:

I in-degree of a vertex v is d−G (v) = |N−G (v)|
I out-degree of a vertex v is d+

G (v) = |N+
G (v)|

We will remove subscript G if it is clear from
context.
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PATHS

A path is a sequence of adjacent vertices.
For a graph G = (V ,E)

Paths(G) =
{

P ∈ V+ | 1 ≤ i < |P|, (Pi ,Pi+1) ∈ E
}

I V+ is denotes of sequence of length 1 or more.
I Repeats are allowed.

The length of a path is the number of edges.
A path may have an infinite length.
A simple path has no repeated vertices.

I Often “simple” will be dropped.
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REACHABILITY

A vertex v is reachable from a vertex u in G if
there is a path starting at u and ending at v in G.
RG(u) is the set of vertices reachable from u.
An undirected graph is connected if all vertices
are reachable from all other vertices.
A directed graph is strongly connected if all
vertices are reachable from all other vertices.
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CYCLES

A cycle is a path that starts and ends at the
same vertex.
In a directed graph a cycle can have length 1
(i.e. a self loop).
In an undirected graph we require that a cycle
must have length at least three.

I Going from u to v and back to u does not count.

A simple cycle is a cycle that has no repeated
vertices other than the start vertex being the
same as the end.

GRAPHS 18/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



TREES, FORESTS AND DAGS

An undirected graph with no cycles is a forest.
If it is connected then it is a tree.
A directed graph is a forest or tree, if it becomes
a forest or tree, when all arcs are made
undirected.
In a rooted tree one node is the root.
For a directed graph, all edges are either
towards the root or away from the root.
A directed graph with no cycles is a directed
acyclic graph (DAG)
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DISTANCE AND DIAMETER

The distance δG(u, v) from a vertex u to a vertex
v in a graph G is the shortest path (minimum
number of edges) from u to v .
The diameter of a graph is the maximum
shortest path length over all pairs of vertices:
diam(G) = max {δG(u, v) : u, v ∈ V}.
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MULTI-GRAPHS

Multi-graphs allow multiple edges between
same pair of vertices.
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SPARSE AND DENSE GRAPHS

Let n = |V | and m = |E |.
A directed graph can have at most n2 edges.

An undirected graph can have at most
n(n − 1)

2
edges.
A graph is sparse if m� n2. Otherwise it is
called dense.
In most applications, the graphs are sparse.

I Nobody on Twitter has 109 followers
I Though some have very large number– but still small

when compared to n.
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OPERATIONS ON GRAPHS

1 Map over the vertices v ∈ V .

2 Map over the edges (u, v) ∈ E .

3 Map over the neighbors of a vertex v ∈ V , or in a directed
graph over the in-neighbors or out-neighbors.

4 Return the degree of a vertex v ∈ V .

5 Determine if an edge (u, v) is in E .

6 Insert or delete vertices.

7 Insert or delete edges.
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ADJACENCY MATRIX
REPRESENTATION

Assume vertices are numbered 1,2, . . . ,n (or
0,1, . . . ,n − 1).
Graph is represented by an n × n matrix of
binary values in which location (i , j) is 1 if
(i , j) ∈ E and 0 otherwise.

I For undirected graphs, matrix is symmetric and has
0’s along the diagonal.

1

2

3

4


0 0 1 1
0 0 0 1
1 0 0 1
1 1 1 0


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ADJACENCY LIST REPRESENTATION

Graph is represented by an array A of length n
where each entry A[i ] contains a pointer to a
linked list of all the out-neighbors of vertex i .

I In an undirected graph edge {u, v} will appear in the
adjacency list for both u and v (not always
necessary!)
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OTHER REPRESENTATIONS

Adjacency Array

1

2

3

4

3 4 4 1 4 1 2 3

0 2 3 5

Edge List

((1,3), (1,4), (2,4), (3,1), (3,4), (4,1), (4,2), (4,3))
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MORE ABSTRACT REPRESENTATIONS

Edge Sets
I Directed graphs: Set items are pairs (u, v)

representing arcs.
I Undirected graphs: Set items are sets {u, v}

representing edges.

Edge Tables
I Directed graphs: Table items are pairs

((u, v) 7→ wu,v) representing arcs and associated
values.

I Undirected graphs: Set items are pairs
({u, v} 7→ wu,v) representing edges and associated
values.
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EDGE SETS AND TABLES

Similar to edge lists but abstracts from
underlying representation.
Search for an edge needs O(log m) work.
Searching for neighbors is not efficient: O(m)
work but O(log m) span. (Why?)
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ADJACENCY TABLES

Table items are (key , value) pairs.
Keys are vertex/node labels.
Values are either sets or tables

I Sets: All neighbors node labels or out-neighbor node
labels.

I Tables: All pairs of neighbors node labels and
associated edge values.

Accessing neighbors needs O(log n) work and
span.
(Constant work) Map over neighbors needs
O(dG(u)) work and O(log dG(u)) span.
Looking up an edge needs O(log n) work and
span.
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COST SUMMARY

edge set adj table
work span work span

isEdge(G, (u, v)) O(log m) O(log m) O(log n) O(log n)

map over O(m) O(log m) O(m) O(log n)
all edges

map over O(m) O(log m) O(log n O(log n)
neighbors of v +dG(v))

dG(v) O(m) O(log m) O(log n) O(log n)
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GRAPH SEARCH

Fundamental operation of graphs
I Start at some (set of) node(s)
I Systematically visit all reachable nodes (only once)

Used for determining properties of
graphs/nodes

I Connected?
I Bipartite?
I Node v reachable from node u?
I Shortest path from u to v?
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GRAPH SEARCH

For all graph search methods vertices can be
partitioned into three sets at any time during the
search:

1 vertices already visited (X ),
2 the unvisited neighbors of the visited vertices,

called the frontier (F ),
3 and the rest.
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GRAPH SEARCH METHODS

Breadth-first Search (BFS)
I Parallelizable but for shallow graphs!

Depth-first Search (DFS)
I Inherently sequential!

Priority-first Search (PFS)
All reachable nodes from a source are visited,
but in different orders.
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GRAPH SEARCH TREES

Each search starting from a source node
creates a search tree.
We refer to the source node as the root.
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Which search schemes do these correspond to?
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SUMMARY

Graphs
Graph terminology/definitions
Graph representations/costs.
Graph search
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