15-210
PARALLEL AND SEQUENTIAL
ALGORITHMS AND DATA
STRUCTURES

LECTURE 20

SEARCH TREES II: TREAPS

SYNOPSIS

e Overview of Binary Search Trees

@ Relationship between Quicksort and BSTs
e Treaps

e Expected Depth of a Treap

SEARCH TREES II: TREAPS 2/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BST OVERVIEW

e There are many options for keeping trees
balanced.

@ split and join are the main structural
operations to implement find, insert,
delete, union, etc.

@ Cost of split and join are logarithmic in the
size of the input and output trees.

e Union needs O(mlog(1 + %)) work (m < n).

SEARCH TREES II: TREAPS 3/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

QUICKSORT AND BSTSs

e Write out the recursion tree for quicksort.
» Assume distinct keys.

@ Annotate each node with the pivot picked at that
stage.
@ You get a BST.

[s]1]s]14[4]15]12 6211]10]7]9]

[6]1]s5]7]4]2] [12]15]11]10]14] 9]

[7] 10]0[11 115

SEARCH TREES II: TREAPS 4/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SEQUENCE TO BST

1 fun gs_tree(S) =

2 if |S|=0 then LEAF

3 else let

4 p = pick a pivot from S

5 Si=(seS|s<p)

6 Ss3=(seS|s>p)

7 (T, Tr) = (gs_tree(Sy) || gs_tree(Ss))
8 in

9 NODE(Ty, p, Tg)

0

1 end

e Unlike Quicksort, we do not know what elements
will be in the tree, when we start.
» We can not select a (n) (future?) element to be the
root.

SEARCH TREES II: TREAPS 5/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TREAPS

e Treap = TRee + hEAP

e Atreap is a randomized BST that maintains
balance in a probabilistic way.

e Each element/key gets a unique random priority
@ The nodes in the treap satisfy BST property.
» Keys are stored in-order in the tree.

@ The associated priorities satisfy the (max) heap
property.

SEARCH TREES II: TREAPS 6/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE MAX-HEAP PROPERTY

@ Priority at each node is greater than the priorities
of the children.

@ Suppose we have
S=(a3),(b,9),(c2),(e6),(f,5)

S

SEARCH TREES II: TREAPS 7/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

LET’S DO AN EXAMPLE

e Draw the treap for the following (key, priority)
sequence.

(G,50),(C,35),(E,33),(H,29),(1,25),(B,24),(A,21),(L,16),(J,13),
(K,9),(D,8)

SEARCH TREES II: TREAPS 8/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TREAPS

THEOREM

For any set S of unique key-priority pairs, there is
exactly one treap T containing the key-priority pairs in
S which satisfies the treap properties.

e Key k with highest priority must be at the root.
e All keys < k must be in the left subtree
e All keys > k must be in the right subtree

@ Subtrees of k are constructed inductively in the
same manner.

SEARCH TREES II: TREAPS 9/26

SPRING 2014

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

BASIC BST OPERATIONS - SEARCH

fun search T k=

let (_,v,_)=split(T, k)
in v

end

1
2
3
4

SEARCH TREES II: TREAPS 10/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BASIC BST OPERATIONS - INSERT

fun insert T (k,v)=

let (L,V,R)=5split(T, k)
in join(L, SoME(k, V), R)
end

1
2
3
4

SEARCH TREES II: TREAPS 11/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BAsSIC BST OPERATIONS - DELETE

fun delete T k=

let (L,_,R)=split(T, k)
in join(L, NONE, R)

end

B~ W N =

@ Soif split and join are implemented the
other more useful operations are covered.

SEARCH TREES II: TREAPS 12/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

JOIN AND SPLIT

@ split(T,K):BST X key —
BST x (data option) X BST

@ split divides T into two BSTs,

» one consisting of all the keys from T less than k
» the other all the keys greater than k

e If k appears in the tree with associated data d
then split returns soME(d)

@ Otherwise it returns NONE.

SEARCH TREES II: TREAPS 13/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

JOIN AND SPLIT

@ join(L,m,R):BST x (key x data) option X
BST — BST

o Takes a left subtree (L) an optional key-data pair
m and a right subtree (R)

» Assumes all keys in L are less than all keys in R.
» If present, the optional key is also larger than all keys
in L and smaller than all keys in R.

@ Creates a new BST that is the union of Land R
and m.

SEARCH TREES II: TREAPS 14/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SPLIT ON TREAPS

e Split code does not have to change.
e Priority orders do not change.

@ Split does not put a larger priority below a
smaller priority.

SEARCH TREES II: TREAPS 15/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SPLIT ON TREAPS

datatype BST = Leaf |
Node of (BST * BST * key x data)

fun spl1it(T, k)=
case T of
Leaf = (Leaf, NONE,Leaf)
| Node(L,R.K',v)=
case compare(k,k’) of
LESS =
let (L',r,R')=split(L,k)
in (L', r,Node(R',R,k’,v)) end
EQUAL = (L, SoME(V), R)
10 GREATER =>
11 let (L',r,R)=split(R,k)
12 in (Node(L,L’, k', v),r,R") end

OO UTITH=WN -

SEARCH TREES II: TREAPS 16/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

JOIN ON TREAPS

@ Join needs to change!
» The priorities of the roots of two trees need to be
compared.
» The root with the larger priority becomes the new
root.

e Basic join took the root of the first tree of the new
node as the root.

1 fun join(Ty,m, Tp) =

2 case m of

3 SOME(k, V) = Node(Ty, Tz, k, V)

4 | NONE =

5 case 7; of

6 Leaf =T

7 | Node(L, R,Kk,v) = Node(L, join(R, NONE, T2),K,V)

SEARCH TREES II: TREAPS 17/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

JOIN ON TREAPS

1 fun join(Ty,m, Tp) =

2 let

3 fun singleton(k,Vv) = Node(Leaf, Leaf,k,V)
4 fun join’('ﬂ, Tg) =
5 case (T, Ty) of
6 (Leaf, _)=T
7 | (_,Leaf)= Ty
8 | (Node(L1,R1,k17 V1),Node(L2,F1’2,k2, Vz)) =
9 if (priority(ky) > priority(ks)) then

10 Node(L1, join/(Fﬁ, Tg),k1, V1)

11 else

12 Node(join'(ﬂ,Lg),Rg,kg, V2)

13 in

14 case m of

15 NONE = join'(Ty, T2))

16 | somE(k,v) = join'(Ty, join'(singleton(k, V), T2))
17 end

SEARCH TREES II: TREAPS 18/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED DEPTH OF A KEY

e Cost of split and join depend on the expected
depth of a key.
e Given a set of keys K and priorities p : key — int

» Priorities are unique!
e Consider the elements of the tree laid out in
order
» key; < key; = --- ,key;,--- ,key,- -
» key; < key; = --- ,key;,--- ,key,- -
e A is an indicator variable:
» A= 1if key; is an ancestor of key; in the treap.
» A = 0 otherwise.

SEARCH TREES II: TREAPS 19/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED DEPTH OF A KEY
7keyi7... 7keyj7...

key; < keyj
pi= max(p;, ----, pj) P= Max(p;, .- pj) P= max(p;, ..., pj)
i<k<j
1) '} 1) ’
’
\‘ " \‘ 0
Al=0 A-j=0 AIJ=1

SEARCH TREES II: TREAPS 20/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED DEPTH OF A KEY
7keyj7... 7keyi7...

key; > keyj
pi= max(pj, e PY) P= max(pj, e) P= max(pj, e)
i<k<j
[]) .
)
Al=0 Al=0 Al=1

SEARCH TREES II: TREAPS 21/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED DEPTH OF A KEY

E [depth of / in T]E{En: A{I] = i E |4

j=1i#i =1

E [Aﬂ - ﬁ (Why?)

SEARCH TREES II: TREAPS

22/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED DEPTH OF A KEY

E [depth of i in T]

(Split| | =)

(Change variables =)

(In n<Hp<In n+1 :>) <

>
gl
i—1 n
1 1

Z. : + Z —
= I—j+1 /_:i+1j—/+1
i n—i+1

1 1

R
k=2 k=2

Hi -1+ Hn—i-H -1
Ini+In(n—i+1)
O(log n)

@ Relative (sorted) position of a key determines expected

depth in treap.

SEARCH TREES II: TREAPS

23/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SPRING 2014

COST OF SPLIT AND JOIN

THEOREM
For treaps
@ join(Ty,m, To) returning T
@ split(T,(k,v))
have O(log | T|) expected work and span.

@ See notes for short proofs.

SEARCH TREES II: TREAPS 24/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED MAX DEPTH OF A TREAP

e Expected depth of treap node is O(log n)
» Find takes on the average O(log n) work and span.
e What is the expected maximum depth of a treap?

» Why is this important?
» Expected worst-case cost!

e ButE [max,-{A,-}] 7§ max,-{E [A,]}'
@ It turns out this is almost the same problem as
the expected span of the quicksort.

SEARCH TREES II: TREAPS 25/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED MAX DEPTH OF A TREAP

O, 1

@ Y, is the size of the larger partition.
@ D(n) = D(Y,)+ 1= D(n) € O(log n)

SEARCH TREES II: TREAPS 26/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

