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Lecture 15 — Probability and Randomized Algorithms
Parallel and Sequential Data Structures and Algorithms, 15-210 (Qatar-Spring 2014)

Lectured by Kemal Oflazer — 16 March 2014

What was covered in this lecture:
- Introduction to randomized algorithms
- Probability theory review
- A randomized algorithm for finding the two largest values

1 Randomized Algorithms Introduction

The main theme of this lecture is randomized algorithms. These are algorithms that make use of
randomness in their computation. We will begin this lecture with a simple question:

Question: How many comparisons do we need to find the second largest number in a
sequence of n distinct numbers?

Without the help of randomization, there is a naive algorithm that requires about 2n — 3 comparisons
and there is a divide-and-conquer solution that needs about 3n/2 comparisons. With the aid of
randomization, there is a simple randomized algorithm that uses only n —1 + 21nn comparisons on
average, under some notion of averaging. In probability speak, this is n—1 + 2Inn comparisons in
expectation. We’'ll develop the machinery needed to design and analyze this algorithm.

Next lecture, you will be well-equipped to analyze the a randomized algorithm for finding the
median value in a sequence of numbers, or in fact more generally the k" smallest value for any k.
This can be done expected O(n) work and O(log2 n) span.

2 Discrete Probability: Let’s Toss Some Dice

Hopefully you have all seen some probability before. Here we will review some basic definitions
of discrete probability before proceeding into randomized algorithms. We begin with an example.
Suppose we have two fair dice, meaning that each is equally likely to land on any of its six sides. If
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we toss the dice, what is the chance that their numbers sum to 4? You can probably figure out that

the answer is
# of outcomes that sumto 4 3 1

# of total possible outcomes 36 12

since there are three ways the dice could sum to 4 (1 and 3, 2 and 2, and 3 and 1), out of the
6 x 6 = 36 total possibilities. Such throwing of dice is called a probabilistic experiment since it is an
“experiment” (we can repeat it many time) and the outcome is probabilistic (each experiment might
lead to a different outcome).

It is often useful to calculate various properties of a probabilistic experiments, such as averages of
outcomes or how often some property is true. For this we use probability theory, which we loosely
formalize here.

Sample space. A sample space 2 is an arbitrary and possibly infinite (but countable) set of possible
outcomes of a probabilistic experiment. In our coin tossing example the 2 is the set of 36 possible
outcomes of tossing the two coins: {(1,1),(1,2),...,(2,1),...,(6,6)}.

Events and Primitive Events. A primitive event (or sample point) of a sample space (2 is any one
of its elements, i.e. any one of the outcomes of the random experiment. For example it could be
the coin toss (1,4). An event is any subset of Q and typically represents some property common to
multiple primitive events. For example an event could be “the first die is 3” which would correspond
to the set {(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)}, or it could be “the dice sum to 4”, which would
correspond to the set {(1,3),(2,2),(3,1)}.

Probability Function. A probability function Pr : 2 — [0, 1] is associated with the sample space with
the condition that Y| ccqPrle] =1 (i.e. the probabilities of the outcomes of a probabilistic experiment
sum to 1, as we would expect). The probability of an event A is simply the sum of the probabilities
of its primitive events: Pr[A] =Y, ., Pr[e]. For example in tossing two dice, the probability of the
event “the first die is 3” is % = %, and the probability of the event “the dice sum to 4” is 3;3—6 = % (as
above). With fair dice all probabilities are equal so all we have to do is figure out the size of each set
and divide it by |2|. In general this might not be the case. We will use (€2, Pr) to indicate the sample

space along with its probability function.

Random variables and Indicator Random Variables. A random variable X on a sample space 2
is a real-valued function on (, thus having type: X : Q — R. For a sample space there can be many
random variables each keeping track of some quantity of a probabilistic experiment. For example
for the two dice example, we could have a random variable X representing the sum of the two rolls
(fun X(d;,d,) = d; +d,) or a random variable Y that is 1 if the values on the dice are the same and
0 otherwise (fun Y(d;,d,) = if (d; = d,) then 1 else 0).

This second random variable Y is called an indicator random variable since it takes on the value 1
when some condition is true and O otherwise. In particular, for a predicate p : 2 — bool a random
indicator variable is defined as fun Y (e) = if p(e) then 1 else O.
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For a random variable X and a number a € R, the event “X = a” is the set {w € Q | X(w) = a}.
We typically denote random variables by capital letters from the end of the alphabet, e.g. X, Y Z.

Expectation. The expectation of a random variable X given a sample space (£2, Pr) is the sum of the
random variable over the primitive events weighted by their probability, specifically:

E [x] =ZX(e)~Pr[e] .

ec)

One way to think of expectation is as a higher order function that takes in the random variable
function as an argument:

fun E (Q,Pr) X =reduce + 0 (map (fne = X(e) x Pr[e]) Q)

We note that it is often not practical to compute expectations directly since the sample space can be
exponential in the size of the input, or even countably infinite. We therefore resort to more clever
tricks. In the notes we will most often drop the (€2, Pr) subscript on E since it is clear from the context.

The expectation of an indicator random variable Y is the probability that the associated predicate
p is true. This is because

E[Y]= Z(ifp(e) then 1 else 0) - Pr[e] = Z Pr(e]=Pr[{ecQ|p(e)}].

e€eN e€Q,p(e)=true

Independence. Two events A and B are independent if the occurrence of one does not affect the
probability of the other. This is true if and only if Pr[AN B] = Pr[A] - Pr [B]. For our dice throwing
example, the events A= {(d;,d;) € Q| d; = 1} (the first die is 1) and B = {(d;,dy) € Q| dy = 1} (the
second die is 1) are independent since Pr[A] =Pr[B] = % and Pr[ANB] = %.

However the event C = {(d,d,) € Q| d; + dy =4} (the dice add to 4) is not independent of A
since Pr[C] = % and Pr[ANC] =Pr[{(1,3)}] = % #Pr[A]-Pr[C] = % . % = %2 They are not
independent since the fact that the first die is 1 increases the probability they sum to 4 (from % to
%), or the other way around, the fact that they sum to 4 increases the probability the first die is 1
(from % to %).

When we have multiple events, we say that A,,...,A; are mutually independent if and only if for
any non-empty subset I C {1,...,k},

Pr[ﬂAi] =[ [prial.

i€l i€l

Two random variables X and Y are independent if fixing the value of one does not affect the
probability distribution of the other. This is true if and only if for every a and b the events {X < a}
and {Y < b} are independent. In our two dice example, a random variable X representing the value
of the first die and a random variable Y representing the value of the second die are independent.
However X is not independent of a random variable Z representing the sum of the values of the two
dice.
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2.1 Linearity of Expectations

One of the most important theorem in probability is linearity of expectations. It says that given two
random variables X and Y, E[X]+E[Y]=E[X + Y ]. If we write this out based on the definition of
expectations we get:

ZPr[e]X(e) +ZPr[e] Y(e) = ZPr[e] (X(e) +Y(e))
eeN) eeN eeqN

The algebra to show this is true is straightforward. The linearity of expectations is very powerful
often greatly simplifying analysis.

To continue our running example, let’s consider analyzing the expected sum of values when
throwing two dice. One way to calculate this is to consider all 36 possibilities and take their average.
What is this average? A much simpler way is to sum the expectation for each of the two dice. The
expectation for either die is the average of just the six possible values 1,2,3,4,5,6, which is 3.5.
Therefore the sum of the expectations is 7.

Note that for a binary function f the equality f (E[X],E[Y]) =E[f(X,Y)] is not true in general.
For example max(E [X],E[Y]) # E [max(X,Y)]. If it the equality held, the expected maximum value
of two rolled dice would be 3.5.

Exercise 1. What is the expected maximum value of throwing two dice?

We note that E[X] x E[Y] =E[X x Y] is true if X and Y are independent. The expected value of
the product of the values on two dice is therefore 3.5 x 3.5 = 12.25.

2.2 More Examples

Example 2.1. Suppose we toss n coins, where each coin has a probability p of coming up heads. What
is the expected value of the random variable X denoting the total number of heads?

Solution I: We'll apply the definition of expectation directly. This will rely on some messy
algebra and useful equalities you might or might not know, but don’t fret since this not
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the way we suggest you do it.

E[X]=)k-Pr[X=Kk]

k=0
_Zk_pk(l_p)n—k(k)
k=1
n
nfn—1 n nfn—1
Seilie ()50
£ k(k—l)p( p) tbecause \ k) = k\k— 1)
=nzn:(n_1)pk(1—p)” ¢
k—1
k=1
n—1 n—1 . .
=n ( ' )p”l(l—p)”_(lﬂ) [because k =j +1]
=~ J
n—1 n—1 ) .
:an( _ )pl(l_p)(n—l)—l)
=0~ J
=np(p+(1—p))" [ Binomial Theorem ]
=np

That was pretty tedious :(

Solution II: We'll use linearity of expectations. Let X; = I{i-th coin turns up heads}. That
is, it is 1 if the i-th coin turns up heads and O otherwise. Clearly, X = Z?:l X;. So then,
by linearity of expectations,

E[X]= E[anxi] =Zn:E[Xl~].
i=1 i=1

What is the probability that the i-th coin comes up heads? This is exactly p, so E[X] =
0-(1—p)+1-p=p, which means

E[X]=)E[X;]=> p=np.
i=1 i=1

Example 2.2. A coin has a probability p of coming up heads. What is the expected value of Y representing
the number of flips until we see a head? (The flip that comes up heads counts too.)

Solution I: We'll directly apply the definition of expectation:

E[Y]=>k(1-p)*Tp

k>1

=p ) (k+1)(1-p)
k=0

1
=p- ? [ by Wolfram Alpha, though you should be able to do it.]

=1/p
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Solution II: Alternatively, we'll write a recurrence for it. As it turns out, we know that
with probability p, we’ll get a head and we’ll be done—and with probability 1 —p, we’ll
get a tail and we’ll go back to square one:

E[Y]=p-1+(1—p)(1+E[Y])=1+(1—-p)E[Y] = E[Y]=1/p.

by solving for E[Y ] in the above equation.

3 Finding The Two Largest

The max-two problem is to find the two largest elements from a sequence of n (unique) numbers. For
inspiration, we’ll go back and look at the naive algorithm for the problem:

1 fun max2(S) =let

2 fun replace((m;,my),v) =

3 if v<m, then (m;,m,)

4 else if v <m; then (my,v)
5 else (v,m;)

6 start =if S; =S, then (S;,S,) else (S,,S;)
7 in iter replace start S(3,...,n)
8 end

We assume S is indexed from 1 to n. In the following analysis, we will be meticulous about
constants. The naive algorithm requires up to 1 + 2(n —2) = 2n — 3 comparisons since there is one
comparison to compute start each of the n —2 replaces requires up to two comparisons. On the
surface, this may seem like the best one can do. Surprisingly, there is a divide-and-conquer algorithm
that uses only about 3n/2 comparisons (exercise to the reader). More surprisingly still is the fact that
it can be done in n + O(logn) comparisons. But how?

Puzzle: How would you solve this problem using only n + O(logn) comparisons?

A closer look at the analysis above reveals that we were pessimistic about the number of compar-
isons; not all elements will get past the “if” statement in Line 3; therefore, only some of the elements
will need the comparison in Line 4. But we didn’t know how many of them, so we analyzed it in the
worst possible scenario.

Let’s try to understand what’s happening better by looking at the worst-case input. Can you come
up with an instance that yields the worst-case behavior? It is not difficult to convince yourself that
there is a sequence of length n that causes this algorithm to make 2n —3 comparisons. In fact, the
instance is simple: an increasing sequence of length n, e.g., (1,2,3,...,n). As we go from left to right,
we find a new maximum every time we counter a new element—this new element gets compared in
both Lines 3 and 4.

But perhaps it’s unlikely to get such a nice—but undesirable—structure if we consider the elements
in random order. With only 1 in n! chance, this sequence will be fully sorted. You can work out
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the probability that the random order will result in a sequence that looks “approximately” sorted,
and it would not be too high. Our hopes are high that we can save a lot of comparisons in Line 4 by
considering elements in random order.

The algorithm we’ll analyze is the following. On input a sequence S of n elements:

1. Let T = permute(S, ), where 7 is a random permutation (i.e., we choose one of the n!
permutations).

2. Run the naive algorithm on T.

Remarks: We don’t need to explicitly construct T. We’ll simply pick a random element which hasn’t
been considered and consider that element next until we are done looking at the whole sequence.
For the analysis, it is convenient to describe the process in terms of T.

In reality, the performance difference between the 2n—3 algorithm and the n—1+42logn algorithm
is unlikely to be significant—unless the comparison function is super expensive. For most cases, the
2n — 3 algorithm might in fact be faster to due better cache locality.

The point of this example is to demonstrate the power of randomness in achieving something that
otherwise seems impossible—more importantly, the analysis hints at why on a typical “real-world”
instance, the 2n — 3 algorithm does much better than what we analyzed in the worst case (real-world
instances are usually not adversarial).

3.1 Analysis

Let X; be an indicator variable denoting whether Line 4 gets executed for this particular value of i
(i.e., Did T; get compared in Line 4?) That is, X; = 1 if T; is compared in Line 4 and O otherwise.
Therefore, the total number of comparisons is

n
Y=_1_+n-2 + > X;
~— ~—— :
Line 6 Line 3 =3
Line 4

This expression in true regardless of the random choice we’re making. We're interested in computing
the expected value of Y where the random choice is made when we choose a permutation. By linearity
of expectation, we have

E[Y]

E|:1+(n—2)+ZXi]

i=3

= 1+(n—2)+ > E[X].

i=3

Our tasks therefore boils down to computing E [X;] for i = 3,...,n. To compute this expectation,
we ask ourselves: What is the probability that T; > m,? A moment’s thought shows that the condition
T; > m, holds exactly when T; is either the largest element or the second largest elementin {T;, ..., T;}.
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So ultimately we're asking: what is the probability that T; is the largest or the second largest element
in randomly-permuted sequence of length i?

To compute this probability, we note that each element in the sequence is equally likely to be
anywhere in the permuted sequence (we chose a random permutation. In particular, if we look at
the k-th largest element, it has 1/i chance of being at T;. (You should also try to work it out using a
counting argument.) Therefore, the probability that T; is the largest or the second largest element in
{T1,...,T;} is %+%= %, o)

E[X;]=1-2=2/i.

Plugging this into the expression for E[Y ], we get

E[Y]=1+(n—2)+ Y E[X,]

i=3
2
(=242 7
i=3
=1+(n—2)+2(%+%+...%)
=n—4+2(1+%+%+%+...%)
=n—4+2H,,

where H,, is the n-th Harmonic number. But we know that H,, < 1 +log,n, so we get E[Y] <
n—2+ 2log, n. We could also use the following sledgehammer:

As an aside, the Harmonic sum has the following nice property:
1 1
Hn=1+£+--~+—=lnn+y+en,
n

where y is the Euler-Mascheroni constant, which is approximately 0.57721---, and ¢, ~ %,

which tends to 0 as n approaches co. This shows that the summation and integral of 1/i are
almost identical (up to a small adative constant and a low-order vanishing term).

4 Finding The k‘* Smallest Element

Consider the following problem:

Input: S — a sequence of n numbers (not necessarily sorted)
Output: the k" smallest value in S (i.e. (nth (sort S) k)).

Requirement: O(n) expected work and O(log® n) span.

Note that the linear-work requirement rules out the possibility of sorting the sequence. Here’s where
the power of randomization gives a simple algorithm.

8 Version Q-S14: Based on Q-F13 and P-F13



Parallel and Sequential Data Structures and Algorithms — Lecture 15 15-210 (CMUQ-S2014)

1 fun kthSmallest(k,S)=let

2 p = a value from S picked uniformly at random
3 L=(xeS|x<p)

4 R=(xeS|x>p)

5 in if (k <|L|) then kthSmallest(k,L)

6 else if (k <|S|—|R|) then p

7 else kthSmallest(k—(|S|—|R|),R)

We'll try to analyze the work and span of this algorithm. Let X,, = max{|L|, |R|}, which is the size of
the larger side. Notice that X, is an upper bound on the size of the side the algorithm actually recurses
into. Now since Step 3 and 4 are simply two filter calls, we have the following recurrences:
wh) = WX, + 0
S(n) = SX,) + O(logn)

Let’s first look at the work recurrence. Specifically, we are interested in E[W(n)]. First, let’s try
to get a sense of what happens in expectation.

How big is E[X,,]? To understand this, let’s take a look at a pictorial representation:

max(L, R)

The probability that we land on a point on the curve is 1/n, so

n—1 n—12 3n
E[X,]= max{i,n—i} % < —j<—
[X,] ; {i,n—i}-1 jzzn/:sz 2

(Recall that le.’:a i=1(a+b)(b—a+1))

This computation tells us that in expectation, X,, is a constant fraction smaller than n, so we
should have a nice geometrically decreasing sum, which works out to O(n). Let’s make this idea
concrete: Suppose we want each recursive call to work with a constant fraction fewer elements than
before, say at most %n.

What’s the probability that X,, < %n? Since [R|=n—|L|, X,, < %n if and only if n/4 < |L| < 3n/4.
There are 3n/4 —n/4 values of p that satisfy this condition. As we pick p uniformly at random, this
probability is

3n/4—n/4 n/2 1

n n 2"

Notice that given an input sequence of size n, how the algorithm performs in the future is
irrespective of what it did in the past. Its cost from that point on only depends on the random choice
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it makes after that. So, we'll let W(n) = E[W(n)] denote the expected work performed on input of
size n.

Now by the definition of expectation, we have

w(n) < ZPr 1-W({)+c-n

< Pr[Xn < ZIW(3n/4) +Pr[X, > 2 |W(n)+c-n

= 3W(Bn/4)+3W(n)+c-n

= (1- %)W(n) = %W(Sn/4) +c: [ collecting similar terms ]
= W(n) <W(3n/4)+2c-n. [ multiply by 2]

In this derivation, we made use of the fact that with probability 1/2, the instance size shrinks to at
most 3n/4—and with probability 1/2, the instance size is still larger than 3n/4, so we pessimistically
upper bound it with n. Note that the real size might be smaller, but we err on the safe side since we
don’t have a handle on that.

Finally, the recurrence W(n) < W(3n/4) + 2cn is root dominated and therefore solves to O(n).

4.1 Alternative Analysis of Work

This section contains an altenative analysis of the work of the kthSmallest () function. I've added
this because it is more closely aligned with what I said during my lecture.

Note that the work of kthSmallest(k,S) depends on the value of k, and the set S. Let’s define
the work done by a call to this function as W(k,S). Up to big-oh, here’s a definition of W (k, S):

By inspecting the code we can write

4.2 Span

Let’s now turn to the span analysis. We’ll apply the same strategy as what we did for the work
recurrence. We have already established the span recurrence:

S(n) =S(X,) + O(logn)

where X, is the size of the larger side, which is an upper bound on the size of the side the algorithm
actually recurses into. Let S(n) denote E[S(n)]. As we observed before, how the algorithm performs
in the future is irrespective of what it did in the past. Its cost from that point on only depends on the
random choice it makes after that. So then, by the definition of expectation, we have

S(n) <ZPr 1-W(i)+clogn
<Pr[X < 315(3n/4) +Pr[X, > 2]S(n)+c-logn
< 55(3n/4)+ —S(n)+c-1ogn

= (1——)S(n)§ §(3n/4)+clogn
— S(n) < S(3n/4)+2clogn,
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which we know is balanced and solves to O(log® n).
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