
Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

Lecture 22-23 — Dynamic Programming

Parallel and Sequential Data Structures and Algorithms, 15-210 (Qatar-Spring 2014)

Lectured by Kemal Oflazer — 13 - 15 April 2013

1 Dynamic Programming

“An interesting question is, ’Where did the name, dynamic programming, come from?’
The 1950s were not good years for mathematical research. We had a very interesting
gentleman in Washington named Wilson. He was Secretary of Defense, and he actually
had a pathological fear and hatred of the word, research. I’m not using the term lightly;
I’m using it precisely. His face would suffuse, he would turn red, and he would get violent
if people used the term, research, in his presence. You can imagine how he felt, then,
about the term, mathematical. The RAND Corporation was employed by the Air Force,
and the Air Force had Wilson as its boss, essentially. Hence, I felt I had to do something
to shield Wilson and the Air Force from the fact that I was really doing mathematics
inside the RAND Corporation. What title, what name, could I choose? In the first place
I was interested in planning, in decision making, in thinking. But planning, is not a
good word for various reasons. I decided therefore to use the word, ‘programming.’
I wanted to get across the idea that this was dynamic, this was multistage, this was
time-varying—I thought, let’s kill two birds with one stone. Let’s take a word that has
an absolutely precise meaning, namely dynamic, in the classical physical sense. It also
has a very interesting property as an adjective, and that is it’s impossible to use the word,
dynamic, in a pejorative sense. Try thinking of some combination that will possibly give
it a pejorative meaning. It’s impossible. This, I thought dynamic programming was a
good name. It was something not even a Congressman could object to. So I used it as an
umbrella for my activities”.
Richard Bellman (“Eye of the Hurricane: An autobiography”, World Scientific, 1984)

The Bellman-Ford shortest path algorithm we have covered is named after Richard Bellman and
Lester Ford. In fact that algorithm can be viewed as a dynamic program. Although the quote is an
interesting bit of history it does not tell us much about dynamic programming. But perhaps the quote
will make you feel better about the fact that the term has little intuitive meaning.

In this course, as commonly used in computer science, we will use the term dynamic programming
to mean an algorithmic technique in which (1) one constructs the solution of a larger problem
instance by composing solutions to smaller instances, and (2) the solution to each smaller instance
can be used in multiple larger instances. For example, in the Bellman-Ford algorithm, to find the
shortest path length from the source to vertex v that uses at most i vertices, depends on finding the
shortest path lengths to the in-neighbors of v that use at most i − 1 vertices. As vertices may share

†Lecture notes by Umut Acar, Guy E Blelloch, Margaret Reid-Miller, and Kanat Tangwongsan, with additional edits by
Kemal Oflazer

1 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

in-neighbors, these smaller instances maybe used more then once. Dynamic programming is thus one
of the inductive algorithmic techniques we are covering in this course.

Recall from Lecture 1 that in all the inductive techniques an algorithm relies on putting together
smaller parts to create a larger solution. The correctness then follows by induction on problem size.
The beauty of such techniques is that the proof of correctness parallels the algorithmic structure.

So far the inductive approaches we have covered are divide-and-conquer, the greedy method,
and contraction. In the greedy method and contraction each instance makes use of only a single
smaller instance. In the case of greedy algorithms the single instance was one smaller—e.g. Dijkstra’s
algorithm that removes the vertex closest to the set of vertices with known shortest paths and adds it
to this set. In the case of contraction it is typically a constant fraction smaller—e.g. solving the scan
problem by solving an instance of half the size, or graph connectivity by contracting the graph by a
constant fraction.

In the case of divide-and-conquer, as with dynamic programming, we made use of multiple smaller
instances to solve a single larger instance. However in divide-and-conquer we have always assumed
the solutions are solved independently and hence we have simply added up the work of each of the
recursive calls to get the total work. But what if two instances of size k, for example, both need the
solution to the same instance of size j < k?

foo(A)

foo(C)

foo(B)

foo(D)

size k

size j < k

Although sharing the results in this simple example will only make at most a factor of two difference
in work, in general sharing the results of subproblems can make an exponential difference in the
work performed. The simplest, albeit not particularly useful, example is in calculating the Fibonacci
numbers. As you have likely seen, one can easily write the recursive algorithm for Fibonacci:

1 fun fib(n) =
2 if (n≤ 1) then 1
3 else fib(n− 1) + fib(n− 2)

But this recursive version will take exponential work in n. If the results from the instances are
somehow shared, however, then the algorithm only requires linear work, as illustrated in Figure 1. It
turns out there are many quite practical problems where sharing results of subinstances is useful and
can make a significant differences in the work used to solve a problem. We will go through several of
these examples.

With divide-and-conquer the composition of a problem instance in terms of smaller instances is
typically described as a tree, and in particular the so called recursion tree. With dynamic programming
the composition can instead be viewed as a Directed Acyclic Graph (DAG). Each vertex in the DAG
corresponds to a problem instance and each edge goes from an instance of size j to one of size
k > j—i.e. we direct the edges (arcs) from smaller instances to the larger ones that use them. We

2 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

fib(5)

fib(3)

fib(4)

fib(2)

fib(1)

fib(0)

Figure 1: The DAG for calculating the Fibonacci numbers.

direct them this way since the edges can be viewed as representing dependences between the source
and destination (i.e. the source has to be calculated before the destination can be). The leaves of
this DAG (i.e. vertices with no in-edges) are the base cases of our induction (instances that can be
solved directly), and the root of the DAG (the vertex with no out-edges) is the instance we are trying
to solve. More generally we might actually have multiple roots if we want to solve multiple instances.

Abstractly dynamic programming can therefore be best viewed as evaluating a DAG by propagating
values from the leaves to the root and performing some calculation at each vertex based on the
values of its in-neighbors. Based on this view calculating the work and span of a dynamic program
is relatively straightforward. We can associate with each vertex a work and span required for that
vertex. The overall work is then simply the sum of the work across the vertices. The overall span is
the longest path in the DAG where the path length is the sum of the spans of the vertices along that
path. For example consider the DAG shown in Figure 2. This DAG does 5+ 11+ 3+ 2+ 4+ 1= 26
units of work and has a span of 1+2+3+1 = 7. Many dynamic programs have significant parallelism
although some do not.

The challenging part of developing an algorithm for a problem based on dynamic programming is
figuring out what DAG to use. The best way to do this, of course, is to think inductively—how can I
solve an instance of a problem by composing the solutions to smaller instances? Once an inductive
solution is formulated you can think about whether the solutions can be shared and how much savings
can be achieved by sharing. As with all algorithmic techniques, being able to come up with solutions
takes practice.

It turns out that most problems that can be tackled with dynamic programming solutions are
optimization or decision problems. An optimization problem is one in which we are trying to find a
solution that optimizes some criteria (e.g. finding a shortest path, or finding the longest contiguous
subsequence sum). Sometimes we want to enumerate (list) all optimal solutions, or count the number
of such solutions. A decision problem is one in which we are trying to find if a solution to a problem
exists. Again we might want to count or enumerate the valid solutions. Therefore when you see
an optimization or enumeration problem you should think about possible dynamic programming

3 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

1, 1

3, 1

11, 3

5, 2

4, 1

2, 2

work, span

Figure 2: Work and span for a dynamic programming example. The work for each vertex is on the
left and the span on the right. The total work is 26 and the span is 7.

solutions.

Although dynamic programming can be viewed abstractly as a DAG, in practice we need to
implement (code) the dynamic program. There are two common ways to do this, which are referred
to as the top-down and bottom-up approaches. The top-down approach starts at the root and uses
recursion, as in divide-and-conquer, but remembers solutions to subproblems so that when the
algorithm needs to solve the same instance many times only the first call does the work and the
remaining calls just look up the solution. Storing solutions for reuse is called memoization. The
bottom-up approach starts at the leaves of the DAG and typically processes the DAG in some form of
level order traversal—for example, by processing all problems of size 1 and then 2 and then 3, and so
on. Each approach has its advantages and disadvantages. Using the top-down approach (recursion
with memoization) can be quite elegant and can be more efficient in certain situations by evaluating
only those instances actually needed. Using the bottom up approach (level order traversal of the
DAG) assumes it will need every instance whether or not is it use in the overall solution, but can be
easier to parallelize and can be more space efficient. It is important, however, to remember to first
formulate the problem abstractly in terms of the inductive structure, then think about it in terms of how
substructure is shared in a DAG, and only then worry about coding strategies.

2 Subset Sums

The first problem we will cover in this lecture is a decision problem, the subset sum problem:

Definition 2.1. The subset sum (SS) problem is, given a multiset1 of positive integers S and a positive
integer value k, determine if there is any X ⊆ S such that

∑

x∈X x = k.

For example, consider the multiset S = {1, 4, 2, 9}. There is no subset that sums to 8, where as if
the target sum is k = 7, the subset {1, 4,2} is a solution.

In the general case when k is unconstrained this problem is a classic NP-hard problem. However,
our goal here are more modest. We are going to consider the case where we include k in the work

1A multiset is like a set, but may include duplicate elements.

4 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

bounds. We show that as long as k is polynomial in |S| then the work is also polynomial in |S|.
Solutions of this form are often called pseudo-polynomial work (time) solutions.

This problem can be solved by brute force simply considering all possible subsets. This takes
exponential work since there are an exponential number of subsets. For a more efficient solution, one
should consider an inductive solution to the problem. As greedy algorithms tend to be efficient, you
should first consider some form of greedy method that greedily takes elements from S. Unfortunately
greedy does not work.

We therefore consider a divide-and-conquer solution. Naively, this will also lead to exponential
work, but by reusing subproblems we can show that it results in an algorithm that requires only
O(|S|k) work. The idea is to consider one element a out of S (any will do) and consider the two
possibilities: either a is included in X or not. For each of these two possibilities we make a recursive
call on the subset S \ {a}, and in one case we subtract a from k (a ∈ X) and in the other case we
leave k as is (a 6∈ X). Here is an algorithm based on this idea. It assumes the input is given as a list
(the order of the elements of S in the list does not matter):

1 fun SS(S, k) =
2 case (showl(S), k) of
3 (, 0)⇒ true
4 | (NIL,)⇒ false
5 | (CONS(a, R),)⇒
6 if (a > k) then SS(R, k)
7 else (SS(R, k− a) orelse SS(R, k))

Lines 3 and 4 are the base cases. In particular if k = 0 then the result is true since the empty set
adds to zero. If k 6= 0 and S is empty, then the result is false since there is no way to get k from an
empty set. If S is not empty but its first element a is greater than k, then we clearly can not add a
to X , and we need only make one recursive call. The last line is the main inductive case where we
either include a or not. In both cases we remove a from S in the recursive call R. In the left case we
are including a in the set so we have to subtract its value from k. In the right case we are not, so k
remains the same.

What is the work of this recursive algorithm? Well, it leads to a binary recursion tree that might
be n deep. This would imply something like 2n work. This is not good. The key observation, however,
is that there is a huge overlap in the subproblems. For example Figure 3(a) shows the recursion
tree for the problem instance SS({1,1, 1} , 3) As you should notice there are many common calls. In
the bottom row, for example there are three calls each to SS(;, 1) and SS(;, 2). If we coalesce the
common calls we get the following DAG where the leaves at the bottom are the base cases and the
root at the top is the instance we are solving.

The question is how do we calculate the number of distinct instances of SS, which is also the number
of vertices in the DAG?

For an initial instance SS(S, k) there are are only |S| distinct lists that are ever used (each suffix of
S). Furthermore, the value of second argument in the recursive calls only decreases and never goes

5 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

SS({1,1,1}, 3)

SS({1,1}, 2)

SS({1}, 1)

SS(ϕ, 0) SS(ϕ, 1) SS(ϕ, 1) SS(ϕ, 2) SS(ϕ, 1) SS(ϕ, 2) SS(ϕ, 2) SS(ϕ, 3)

SS({1}, 2)

SS({1,1}, 3)

SS({1}, 2) SS({1}, 3)

(a)
SS({1,1,1}, 3)

SS({1,1}, 2)

SS({1}, 1)

SS(ϕ, 1) SS(ϕ, 0) SS(ϕ, 2) SS(ϕ, 3)

SS({1,1}, 3)

SS({1}, 2) SS({1}, 3)

(b)

Figure 3: Recursion Tree/DAG for the Subset Sum Problem

6 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

below 0, so it can take on at most k+ 1 values. Therefore the total number of possible instances of
SS (vertices in the DAG) is |S|(k+ 1) = O(k|S|). Each instance only does constant work to compose
its recursive calls. Therefore the total work is O(k|S|). Furthermore it should be clear that the longest
path in the DAG is O(|S|) so the total span is O(|S|) and the algorithm has O(k) parallelism.

Why do we say the algorithm is pseudo-polynomial? The size of the subset sum problem is defined
to be the number of bits needed to represent the input. Therefore, the input size of k is log k. But the
work is O(2log k|S|), which is exponential in the input size. That is, the complexity of the algorithm is
measured with respect to the length of the input (in terms of bits) and not on the numeric value of
the input. If the value of k, however, is constrained to be a polynomial in |S| (i.e., k ≤ |S|c for some
constant c) then the work is O(k|S|) = O(|S|c+1) on input of size c log |S|+ |S|, and the algorithm is
polynomial in the length of the input.

At this point we have not fully specified the algorithm since we have not explained how to take
advantage of the sharing—certainly the recursive code we wrote would not. We will get back to this
after a couple more examples. Again we want to emphasize that the first two orders of business are
to figure out the inductive structure and figure out what instances can be shared.

3 Minimum Edit Distance

The second problem we consider is a optimization problem, the minimum edit distance problem.

Definition 3.1. The minimum edit distance (MED) problem is, given a character set Σ
and two sequences of characters S = Σ∗ and T = Σ∗, determine the minimum number of
insertions and deletions of single characters required to transform S to T .

Example 3.2. Consider the sequence

S = 〈A, B, C , A, D, A〉

we could convert it to
T = 〈A, B, A, D, C 〉

with 3 edits (delete the C, delete the last A, and insert a C). This is the best that can be done so
the fewest edits needed is 3.

Question 3.3. Can you think of applications of the MED problem?

The MED problem is an important problem that has many applications. For example in version
control systems such as git or svn when you update a file and commit it, the system does not
store the new version but instead only stores the “differences” from the previous version2. Storing
the differences can be quite space efficient since often the user is only making small changes and

2Alternatively it might store the new version, but use the differences to encode the old version.

7 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

it would be wasteful to store the whole file. Variants of the minimum edit distance problem are
use to find this difference. Edit distance can also be used to reduce communication costs by only
communicating the differences from a previous version. It turns out that edit-distance is also closely
related to approximate matching of genome sequences.

Remark 3.4. The algorithm used in the Unix “diff” utility was invented and implemented by
Eugene Myers, who also was one of the key people involved in the decoding of the human
genome at Celera,

Question 3.5. Do you see a relationship between MED(S,T) and MED(T,S).

The MED problem is a symmetric problem. If you have a solution for MED (S,T), you can solve
MED(T ,S) by reverting all the decisions, i.e., inserting instead of deleting and deleting instead of
inserting.

Example 3.6. Consider the sequence

S = 〈A, B, C , A, D, A〉

and
T = 〈A, B, A, D, C 〉 .

We can convert S to T with 3 edits (delete the C, delete the last A, and insert a C. We can
convert T to S with 3 edits, insert C, insert A, and delete C.

It is thus possible to think of MED as a sequence of characters to be inserted or deleted depending
on the direction. Let’s refer to this sequence as the edits.

A problem that is closely related to the MED problem is known as the longest-common subsequence,
or LCS problem. The LCS problem requires finding the longest common subsequence of two sequences.

Example 3.7. Consider the sequences

S = 〈A, B, C , A, D, A〉

and
T = 〈A, B, A, D, C 〉

, their LCS is 〈A, B, A, D 〉.

Question 3.8. Suppose that you are given the LCS of S and T, can you find their MED?

Given the LCS of two strings, we can compute their MED by performing the required insertions
greedily. Since we never have to perform deletion, a greedy algorithm works. We can thus reduce the
MED problem to the LCS problem.

8 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

Question 3.9. Can you think of a way of reducing the LCS problem to the MED problem?

Assuming that we are given the edits and not just the distances, we can solve the LCS problem by
using a solution to the MED problem. All we have to do is simply apply the deletions specified by the
edit. We can thus reduce the LCS problem to the MED problem, provided we know the edits.

Example 3.10. Consider the sequences

S = 〈A, B, C , A, D, A〉

and
T = 〈A, B, A, D, C 〉 .

Their MED is 3 as witnessed by the edit (from S to T) delete the C, delete the last A, and insert
a C. Their LCS is thus 〈A, B, A, D 〉.

Having established this correspondence between the two problems, from this point on, we will
think of them as essentially the same and focus only on the MED problem.

Question 3.11. Can you think of a way to solve the MED problem by using the Brute-Force
method. Hint: think of the LCS problem.

One way to solve the MED problem is to compute all subsequences of S and for any of them
that are a subsequences of T return the longest one. The problem is that there are too many such
subsequences to consider?

Question 3.12. How many subsequnces does S have?

Question 3.13. Can we use a greedy algorithm?

Another possibility would be to consider a greedy method that scans the sequences finding the
first difference, fixing it and then moving on. Unfortunately no simple greedy method is known to
work. The problem is that there can be multiple ways to fix the error—we can either delete the
offending character, or insert a new one. If we greedily pick the wrong edit, we might not end up
with an optimal solution. (Recall that in greedy algorithms, once you make a choice, you cannot go
back and try an alternative.)

9 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

Example 3.14. Consider the sequences

S = 〈A, B, C , A, D, A〉

and
T = 〈A, B, A, D, C 〉 .

We can match the first charactern but when we come to C, we have two choices, delete C or
insert A, we don’t know which would lead to an optimal solution because we don’t know the
rest of the sequences. In the example, if we insert an A, then a suboptimal number of edits will
be required because C will have to be deleted.

We shall now see dow dynamic programming can help us solve the MED problem. To apply
dynamic programming, we start by defining a recursive solution. We will then recognize sharing.

Question 3.15. Any ideas about how we might define a recursive algorithm for solving the
MED problem?

To find the MED(S, T) in terms of the smaller problems, consider greedy solution, which gives a
good hint how. Suppose S = s :: S′ and T = t :: T ′. If the first characters of S and T match, then no
insertion or deleted is needed, and the we only need to consider edits to the suffixes, S′ and T ′. If the
first two characters do not match, then we have exactly two choices to consider: 1) delete s form S
and 2) insert t into S. For each choice, the rest of the problem is a subproblem of the MED, which we
can solve recursively.

Example 3.16. Consider the sequences

S = 〈A, B, C , A, D, A〉

and
T = 〈A, B, A, D, C 〉 .

We can proceed to match the first two characters. When we see C, we have two choices, delete
C or insert A. We can thus consider both possibilities instead of committing to a decision like
the greedy algorithm does.

Pseudo Code 3.17 (Recursive solution to the MED problem).
1 fun MED(S, T) =
2 case (showl(S),showl(T)) of
3 (,NIL)⇒ |S|
4 | (NIL,)⇒ |T |
5 | (CONS(s, S′),CONS(t, T ′))⇒
6 if (s = t) then MED(S′, T ′)
7 else 1+min(MED(S, T ′),MED(S′, T))

10 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

In the first base case where T is empty we need to delete all of S to generate an empty string
requiring |S| insertions. In the second base case where S is empty we need to insert all of T , requiring
|T | insertions. If neither is empty we compare the first character. If they are equal we can just skip
them and make a recursive call on the rest of the sequences. If they are different then we need to
consider the two cases. The first case (MED(S, T ′)) corresponds to inserting the value t. We pay
one edit for the insertion and then need to match up S (which all remains) with the tail of T (we
have already matched up the head t with the character we inserted). The second case (MED(S′, T))
corresponds to deleting the value s. We pay one edit for the deletion and then need to match up the
tail of S (the head has been deleted) with all of T .

Question 3.18. What is the work of the recursive algorithm?

The recursive algorithm performs exponential work. In particular the recursion tree is full binary
tree (each internal node has two children) and has a depth that is linear in the size of S and T . But
there is substantial sharing going on.

Example 3.19. An example MED instance with sharing.
MED (ABC, DBC)

MED (BC, DBC) MED (ABC, BC)

MED (C, DBC) MED (BC, BC) MED (ABC, C)

MED (BC, C) MED (ABC,)

MED (C,C) MED (BC,)

MED (C, BC)

MED (, BC)

MED (, DBC)

Question 3.20. Can you see why there is plenty of sharing?

The reason for there is so much sharing is that the subproblems required to solve the larger
problem has substantial overlap, including many of the same subproblems. It is easier to see this
sharing with an abstract example.

11 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

Example 3.21. An example MED instance with sharing. Consider two strings S and T and
let Si (T i) denote the suffix of S (T) with i characters. We can draw the top portion of the
DAG for computing the MED of S and T as follows.

MED (S3, T3)MED (S3, T2)

MED (S2, T3)

MED (S3,T1)

MED (S2, T2)

MED (S1, T3)MED (S1, T2)

MED (S0, T3)

MED (S2, T1)

MED (S3, T0)

MED (S0, T0)

MED (S1, T0)

MED (S2, T0)

MED (S1, T1)

MED (S0, T1) MED (S0, T2)

More generally, we can visualize the DAG for an MED instance by considering suffixes of S and T ,
written S0 . . . Sn and T0 . . . Sm as vertices and drawing edges between vertices.

Question 3.22. Which vertices do the edges connect? Which subproblems depend on which
other subproblems?

Edges between vertices connect subproblems. We have edges between (Si , T j) to and (Si−1, T j),
(Si , T j−1), or between (Si , T j) and (Si−1, T j−1), depending on the case.

Question 3.23. Can you now bound the number of vertices and edges in the DAG?

We can now place an upper bound on the number of vertices in our DAG by bounding the number
of distinct arguments. There can be at most |S|+ 1 possible values of the first argument since in
recursive calls we only use suffixes of the original S and there are only |S|+1 such suffixes (including
the empty and complete suffixes). Similarly there can be at most |T |+1 possible values for the second
argument. Therefore the total number of possible distinct arguments to MED on original strings S and
T is (|T |+ 1)(|S|+ 1) = O(|S||T |). Furthermore the depth of the DAG (longest path) is O(|S|+ |T |)
since each recursive call either removes an element from S or T so after |S|+ |T | calls there cannot
be any element left. Finally we note that assuming we have constant work operations for removing
the head of a sequence (e.g. using a list) then each vertex of the DAG takes constant work and span.

All together this gives us
W (MED(S, T)) = O(|S||T |)

and
S(MED(S, T)) = O(|S|+ |T |).

12 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

4 Top-Down Dynamic Programming

So far we have assumed some sort of magic recognized shared subproblems in our recursive codes
and avoided recomputation. We are now ready to cover one of the techniques, the top-down approach
to implementing dynamic-programming algorithms.

The top-down approach is based on running the recursive code as is, generating implicitly the
recursion structure from the root of the DAG down to the leaves. Each time a solution to a smaller
instance is found for the first time it generates a mapping from the input argument to its solution.
This way when we come across the same argument a second time we can just look up the solution.
This process is called memoization, and the table used to map the arguments to solutions is called a
memo table.

The tricky part of memoization is checking for equality of arguments since the arguments might
not be simple values such as integers. Indeed in our examples so far the arguments have all involved
sequences. We could compare the whole sequence element by element, but that would be too
expensive.

Question 4.1. Can you think of a way to check for equality of sequences efficiently?

You might think that we can do it by comparing “pointers” to the values. But this does not work
since the sequences can be created separately, and even though the values are equal, there could be
two copies in different locations. Comparing pointers would say they are not equal and we would
fail to recognize that we have already solved this instance. There is actually a very elegant solution
that fixes this issue called hash consing. Hash consing guarantees that there is a unique copy of each
value by always hashing the contents when allocating a memory location and checking if such a value
already exists. This allows equality of values to be done in constant work. The approach only works
in purely functional languages and needs to be implemented as part of the language runtime system
(as part of memory allocation). Unfortunately no language does hash consing automatically, so we
are left to our own devices.

The most common way to quickly test for equality of arguments is to use a simple type, such as
an integer, as a surrogate to represent the input values. The property of these surrogates is that there
needs to be a 1-to-1 correspondence between the surrogates and the argument values—therefore
if the surrogates match, the arguments match. The user is responsible for guaranteeing this 1-to-1
correspondence.

Consider how we might use memoization in the dynamic program we described for minimum
edit distance (MED). You have probably covered memoization before, but you most likely did it with
side effects. Here we will do it in a purely functional way, which requires that we “thread” the table
that maps arguments to results through the computation. Although this threading requires a few
extra characters of code, it is safer for parallelism.

Recall that MED takes two sequences and on each recursive call, it uses suffixes of the two original
sequences. To create integer surrogates we can simply use the length of each suffix. There is clearly a
1-to-1 mapping from these integers to the suffixes. MED can work from either end of the string so
instead of working front to back and using suffix lengths, it can work back to front and use prefix
lengths—we make this switch since it simplifies the indexing. This leads to the following variant of

13 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

our MED code. In this code, we use prefixes instead of suffixes to simplify the indexing.

1 fun MED(S, T) = let
2 fun MED′(i, 0) = i
3 | MED′(0, j) = j
4 | MED′(i, j) =case (Si = T j) of
5 true⇒ MED′(i − 1, j − 1)
6 | false⇒ 1+min(MED′(i, j − 1),MED′(i − 1, j))
7 in
8 MED′(|S|, |T |)
9 end

You should compare this with the purely recursive code for MED. Apart from the use of prefixed to
simplify indexing, the only real difference is replacing S and T with i and j in the definition of MED′.
The i and j are therefore the surrogates for S and T respectively. They represent the sequences
S 〈0, . . . , i − 1 〉 and T 〈0, . . . , j − 1 〉 where S and T are the original input strings.

So far we have not added a memo table, but we can now efficiently store our solutions in a
memo table based on the pair of indices (i, j). Each pair represents a unique input. In fact since the
arguments range from 0 to the length of the sequence we can actually use a two dimensional array
(or array of arrays) to store the solutions.

To implement the memoization we define a memoization function:

1 fun memo f (M , a) =
2 case find(M , a) of
3 SOME(v)⇒ v
4 | NONE⇒ let
5 (M ′, v) = f (M , a)
6 in
7 (update(M ′, a, v), v)
8 end

In this function f is the function that is being memoized, M is the memo table, and a is the
argument to f . This function simply looks up the value a in the memo table. If it exists, then it
returns the corresponding result. Otherwise it evaluates the function on the argument, and as well as
returning the result it stores it in the memo. We can now write MED using memoization as shown in
Figure 4.

Note that the memo table M is threaded throughout the computation. In particular every call to
MED not only takes a memo table as an argument, it also returns a memo table as a result (possibly
updated). Because of this passing, the code is purely functional. The problem with the top-down
approach as described, however, is that it is inherently sequential. By threading the memo state we
force a total ordering on all calls to MED. It is easy to create a version that uses side effects, as you did
in 15-150 or as is typically done in imperative languages. In this case calls to MED can be made in
parallel. However, then one has to be very careful since there can be race conditions (concurrent
threads modifying the same cells). Furthermore if two concurrent threads make a call on MED with

14 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

1 fun MED(S, T) = let
2 fun MED′(M , (i, 0)) = (M , i)
3 | MED′(M , (0, j)) = (M , j)
4 | MED′(M , (i, j)) =case (Si = T j) of
5 true⇒ MED′′(M , (i − 1, j − 1))
6 | false⇒ let
7 (M ′, v1) = MED′′(M , (i, j − 1))
8 (M ′′, v2) = MED′′(M ′, (i − 1, j))
9 in (M ′′, 1+min(v1, v2)) end

10 and MED′′(M , (i, j)) = memo MED′ (M , (i, j))
11 in
12 MED′({} , (|S|, |T |))
13 end

Figure 4: The memoized version of Minimum Edit Distance (MED).

t
1

c
2

a
3

t
4

a 1

t 2

c 3

i

j

0
 0

(a)

3

2

1

0

t
1

c
2

a
3

t
4

a 1

t 2

c 3

4 5 6 7

0
 0

i

k

(b)

Figure 5: The DAG for MED on the strings “tcat” and “atc” (a) and processing it by diagonals (b).

the same arguments, they can and will often both end up doing the same work. There are ways
around this issue which are also fully safe—i.e., from the users point of view all calls look completely
functional—but they are beyond the scope of this course.

5 Bottom-Up Dynamic Programming

The other techique for implementing dynamic-programming algorithms is the bottom-up technique.
Instead of simulating the recursive structure, which starts at the root of the DAG, when using this
technique, we start at the leaves of the DAG and fills in the results in some order that is consistent
with the DAG–i.e. for all edges (u, v) it always calculates the value at a vertex u before working on v.
Because of this careful scheduling, all values will be already calculated when they are needed.

The simplest way to implement bottom-up dynamic programming is to do some form of systematic
traversal of a DAG. It is therefore useful to understand the structure of the DAG. For example, consider
the structure of the DAG for minimum edit distance. In particular let’s consider the two strings S =
tcat and T = atc. We can draw the DAG as follows where all the edges go down and to the right:

The numbers represent the i and the j for that position in the string. We draw the DAG with

15 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

1 fun MED(S, T) = let
2 fun MED′(M , (i, 0)) = i
3 | MED′(M , (0, j)) = j
4 | MED′(M , (i, j)) =case (Si = T j) of
5 true⇒ Mi−1, j−1
6 | false⇒ 1+min(Mi, j−1, Mi−1, j)

7 fun diagonals(M , k) =
8 if (k > |S|+ |T |) then M
9 else let

10 s =max(0, k− |T |)
11 e =min(k, |S|)
12 M ′ = M ∪ {(i, k− i) 7→ M ED(M , (i, k− i)) : i ∈ {s, . . . , e}}
13 in
14 diagonals(M ′, k+ 1)
15 end

16 in
17 diagonals({} , 0)
18 end

Figure 6: The dynamic program for MED based on the bottom-up approach using diagonals.

the root at the bottom right, so that the vertices are structured the same way we might fill an array
indexed by i and j. We Consider MED(4, 3). The characters S4 and T3 are not equal so the recursive
calls are to MED(3,3) and MED(4,2). This corresponds to the vertex to the left and the one above.
Now if we consider MED(4, 2) the characters S4 and T2 are equal so the recursive call is to MED(3, 1).
This corresponds to the vertex diagonally above and to the left. In fact whenever the characters Si
and T j are not equal we have edges from directly above and directly to the left, and whenever they
are equal we have an edge from the diagonal to the left and above. This tells us quite a bit about the
DAG. In particular it tells us that it is safe to process the vertices by first traversing the first row from
left to right, and then the second row, and so on. It is also safe to traverse the first column from top
to bottom and then the second column and so on. In fact it is safe to process the diagonals in the /
direction from top left moving to the bottom right. In this case each diagonal can be processed in
parallel.

In general when applying MED(S, T) we can use an |T | × |S| array to store all the partial results.
We can then fill the array either by row, column, or diagonal. Using diagonals can be coded as shown
in Figure 6.

The code uses a table M to store the array entries. In practice an array might do better. Each
round of diagonals processes one diagonal and updates the table M , starting at the leaves at top
left. The figure below shows these diagonals indexed by k on the left side and at the bottom. We
note that the index calculations are a bit tricky (hopefully we got them right). Notice that the size of
the diagonals grows and then shrinks.

16 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

6 Optimal Binary Search Trees

We have talked about using BSTs for storing an ordered set or table. The cost of finding an key
is proportional to the depth of the key in the tree. In a fully balanced BST of size n the average
depth of each key is about log n. Now suppose you have a dictionary where you know probability (or
frequency) that each key will be accessed—perhaps the word “of” is accessed much more often than
“epistemology”. The goal is find a static BST with the lowest overall access cost. That is, make a BST
so that the more likely keys are closer to the root and hence the average access cost is reduced. This
line of reasoning leads to the following problem:

Definition 6.1. The optimal binary search tree (OBST) problem is given an ordered set of keys S and
a probability function p : S→ [0 : 1]:

min
T∈Trees(S)

�

∑

s∈S

d(s, T) · p(s)

�

where Trees(S) is the set of all BSTs on S, and d(s, T) is the depth of the key s in the tree T (the
root has depth 1).

Example 6.2. For example we might have the following keys and associated probabilities

key k1 k2 k3 k4 k5 k6
p(key) 1/8 1/32 1/16 1/32 1/4 1/2

Then the tree below has cost 31/16, which is optimal. Creating a tree with these two solutions
as the left and right children of Si , respectively, leads to the optimal solution given Si as a root.

k5

k3

k4

k1

k2

k6

Exercise 1. Find another tree with equal cost.

The brute force solution would be to generate every possible binary search tree, compute their cost,
and pick the one with the lowest costs. But the number of such trees is O(4n) which is prohibitive.

Exercise 2. Write a recurrence for the total number of distinct binary search trees with n keys.

Since we are considering binary search trees, one of the keys must be the root of the optimal tree.
Suppose Sr is that root. An important observation is that both of its subtrees must be optimal, which

17 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

is a common property of optimization problems: The optimal solution to a problem contains optimal
solutions to subproblems. This optimal substructure property is often a clue that either a greedy or
dynamic programming algorithm might apply.

Which key should be the root of the optimal tree? A greedy approach might be to pick the key k
with highest probability and put it at the root and then recurse on the two sets less and greater than
k. You should convince yourself that this does not work. Since we cannot know in advance which key
should be the root, let’s try all of them, recursively finding their optimal subtrees, and then pick the
best of the |S| possibilities.

With this recursive approach, how should we define the subproblems? Let S be all the keys placed
in sorted order. Now any subtree of a BST on S must contain the keys of a contiguous subsequence of
S. We can therefore define subproblems in terms of a contiguous subsequence of S. We will use Si, j
to indicate the subsequence starting at i and going to j (inclusive of both). Not surprisingly we will
use the pair (i, j) to be the surrogate for Si, j .

Now Let’s consider how to calculate the cost give the solution to two subproblems. For subproblem
Si, j, assume we pick key Sr (i ≤ r ≤ j) as a the root. We can now solve the OSBT problem on the
prefix Si,r−1 and suffix Sr+1,i. We therefore might consider adding these two solutions and the cost
of the root (p(Sr)) to get the cost of this solution. This, however, is wrong. The problem is that by
placing the solutions to the prefix and suffix as children of Sr we have increased the depth of each of
their keys by 1. Let T be the tree on the keys Si, j with root Sr , and TL , TR be its left and right subtrees.
We therefore have:

Cost(T) =
∑

s∈T

d(s, T) · p(s)

= p(Sr) +
∑

s∈TL

(d(s, TL) + 1) · p(s) +
∑

s∈TR

(d(s, TR) + 1) · p(s)

=
∑

s∈T

p(s) +
∑

s∈TL

d(s, TL) · p(s) +
∑

s∈TR

d(s, TR) · p(s)

=
∑

s∈T

p(s) + Cost(TL) + Cost(TR)

That is, the cost of a subtree T the probability of accessing the root (i.e., the total probability of
accessing the keys in the subtree) plus the cost of searching its left subtree and the cost of searching
its right subtree. When we add the base case this leads to the following recursive definition:

1 fun OBST(S) =
2 if |S|= 0 then 0
3 else

∑

s∈S p(s) +mini∈〈1...|S| 〉
�

OBST(S1,i−1) + OBST(Si+1,|S|)
�

Exercise 3. How would you return the optimal tree in addition to the cost of the tree?

As in the examples of subset sum and minimum edit distance, if we execute the recursive program
directly OBST it will require exponential work. Again, however, we can take advantage of sharing
among the calls to OBST. To bound the number of vertices in the corresponding DAG we need to count
the number of possible arguments to OBST. Note that every argument is a contiguous subsequence

18 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

from the original sequence S. A sequence of length n has only n(n+ 1)/2 contiguous subsequences
since there are n possible ending positions and for the i th end position there are i possible starting
positions (

∑n
i=1 i = n(n + 1)/2). Therefore the number of possible arguments is at most O(n2).

Furthermore the longest path of vertices in the DAG is at most O(n) since recursion can at most go n
levels (each level removes at least one key).

Unlike our previous examples, however, the cost of each vertex in the DAG (each recursive in our
code not including the subcalls) is no longer constant. The subsequence computations Si, j can be
done in O(1) work each (think about how) but there are O(|S|) of them. Similarly the sum of the
p(s) will take O(|S|) work. To determine the span of a vertex we note that the min and sum can be
done with a reduce in O(log |S|) span. Therefore the work of a vertex is O(|S|) = O(n) and the span
is O(log n). Now we simply multiply the number of vertices by the work of each to get the total work,
and the longest path of vertices by the span of each vertex to get the span. This give O(n3) work and
O(n log n) span.

This example of the optimal BST is one of several applications of dynamic programming which
effectively based on trying all binary trees and determining an optimal tree given some cost criteria.
Another such problem is the matrix chain product problem. In this problem one is given a chain of
matrices to be multiplied (A1 × A2 × · · ·An) and wants to determine the cheapest order to execute
the multiplies. For example given the sequence of matrices A× B × C it can either be ordered as
(A× B)× C or as A× (B × C). If the matrices have sizes 2× 10, 10× 2, and 2× 10, respectively, it is
much cheaper to calculate (A× B)× C than a × (B × C). Since × is a binary operation any way to
evalue our product corresponds to a tree, and hence our goal is to pick the optimal tree. The matrix
chain product problem can threrefore be solved in a very similar structure as the OBST algorithm and
with the same cost bounds.

7 Coding optimal BST

As with the MED problem we first replace the sequences in the arguments with integers. In particular
we describe any subsequence of the original sorted sequence of keys S to be put in the BST by its
offset from the start (i, 1-based) and its length l. We then get the following recursive routine.

1 fun OBST(S) = let
2 fun OBST’(i, l) =
3 if l = 0 then 0
4 else

∑l−1
k=0 p(Si+k) +minl−1

k=0 (OBST’(i, k) + OBST’(i + k+ 1, l − k− 1))
5 in
6 OBST(1, |S|)
7 end

This modified version can now more easily be used for either the top-down solution using
memoization or the bottom-up solution. In the bottom-up solution we note that we can build a table
with the columns corresponding to the i and the rows corresponding to the l. Each of them range
from 1 to n (n= |S|). It would as follows:

1 2 ... n

19 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

1 /
2 /
. /
. /
n /

The table is triangular since as l increases the number of subsequences of that length decreases. This
table can be filled up row by row since every row only depends on elements in rows above it. Each
row can be done in parallel.

8 Problems with Efficient Dynamic Programming Solutions

There are many problems with efficient dynamic programming solutions. Here we list just some of
them to give a sense of what these problems are.

1. Fibonacci numbers

2. Using only addition compute (n choose k) in O(nk) work

3. Edit distance between two strings

4. Edit distance between multiple strings

5. Longest common subsequence

6. Maximum weight common subsequence

7. Can two strings S1 and S2 be interleaved into S3

8. Longest palindrome

9. longest increasing subsequence

10. Sequence alignment for genome or protein sequences

11. subset sum

12. knapsack problem (with and without repetitions)

13. weighted interval scheduling

14. line breaking in paragraphs

15. break text into words when all the spaces have been removed

16. chain matrix product

17. maximum value for parenthesizing x1/x2/x3.../xn for positive rational numbers

18. cutting a string at given locations to minimize cost (costs n to make cut)

20 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 22-23 15-210 (CMUQ-S2014)

19. all shortest paths

20. find maximum independent set in trees

21. smallest vertex cover on a tree

22. optimal BST

23. probability of generating exactly k heads with n biased coin tosses

24. triangulate a convex polygon while minimizing the length of the added edges

25. cutting squares of given sizes out of a grid

26. change making

27. box stacking

28. segmented least squares problem

29. counting boolean parenthesization – true, false, or, and, xor, count how many parenthesization
return true

30. balanced partition – given a set of integers up to k, determine most balanced two way partition

31. Largest common subtree

21 Version Q-S14: Based on Q-F13 and P-F13

	Dynamic Programming
	Subset Sums
	Minimum Edit Distance
	Top-Down Dynamic Programming
	Bottom-Up Dynamic Programming
	Optimal Binary Search Trees
	Coding optimal BST
	Problems with Efficient Dynamic Programming Solutions

