


MAJOR THEMES

@ Defining precise problem and data abstractions,

@ Designing and programming
» correct and efficient algorithms and data structures
» for given problems and data abstractions

Abstraction Implementation

Functions Problem Algorithm
Data Abstract Data Type Data Structure
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PROBLEM VS. ALGORITHM
@ Sorting, string matching, finding shortest paths
In graphs,. .., are problems
» Input: A sequence [a1, &, - , ay]

» Output: A permutation of the sequence
&, aj,, -+ ,a&,] suchthatVvj,1 <j<n a <a,

@ Quicksort, Mergesort, Insertion Sort, ..., are
algorithms for sorting.
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ABSTRACT DATA TYPES VS.
DATA STRUCTURES

@ A setis an abstract data type (ADT)

» Test membership, intersect, union, difference, ...

@ Sequences, trees, hash-tables are examples of
data structures.

e ADT’s determine functionality, data structures
determine costs.
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TECHNOLOGY — MOORE’S LAW
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PROCESSOR TECHNOLOGY
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MULTI-CORE CHIPS

| Ishared(3Cacheln 10
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MULTI-CORE CHIPS

Intel Core i7 Processor Series
Features & Specifications
Intel Core i7-965
Extreme Edition Intel Core i7-940 Intel Core i7-920
Clock Speed (GHz) 3.20 2.93 2.66
QPI Speed (GT/sec) 6.4 4.8 4.8
Socket 1366-pin LGA
Cache 8 Megabytes
Memory Speed Support DDR3-1066
TDP 130 Watts
Overspeed Protection
EEEITE Yes Mo Na
Processor Architecture Mew Intel Core micro architecture (Nehalem) 45nm
+ Intel Hyper-Threading Technology delivers 8-threaded performance on 4
cores
+ Intel Turbo Boost Technology
Key Platform Features + BM Intel Smart Cache
* Integrated Memory Controller with support for 3 channels of DDR3 1066
memory
» Intel QuickPath interconnect to Intel X58 Express Chipset
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PARALLEL ALGORITHMS

Serial Parallel
1-core 8-core 32h-core
Sorting 10M strings 2.90 2.90 0.40 .095 (30.5)
Remove dupl. 10M strings 0.66 1.00 0.14 .038 (17.4)
Min. span. tree 10M edges 1.60 2.50 0.42 .140(11.4)
BFS 10M edges 0.82 1.20 0.20 .046 (17.8)

Running times in seconds
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15-210 vs. A TRADITIONAL COURSE

e Emphasis on parallel thinking at a high level
» Parallel algorithms and parallel data structures

e Purely functional model of computation

» Safe for parallelism
» Higher level of abstraction

e ldeas still relevant for imperative computation
» Lot of overlap, but covered differently!
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SYNOPSIS

@ A real world problem: Gene sequencing.
@ The computational problem.
e Algorithms
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SEQUENCING THE GENOME

e The human DNA molecule encodes the
complete set of genetic information using 4
bases

» Adenine (A), Cytosine (C), Guanine (G) and
Thymine (T)

@ A sequence of about

» 3 billion base pairs
» arranged into 46 chromosomes

makes up the human genome.
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SEQUENCING THE GENOME

@ A chromosome is a sequence of genes

@ A gene is a sequence of the base pairs

» But there seem to be a lot of base-pairs with no
apparent functions.
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SEQUENCING THE GENOME

Source: Wikipedia
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SEQUENCING THE GENOME

Source: Wikipedia
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SEQUENCING THE GENOME
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SEQUENCING THE GENOME

@ Determining the complete DNA sequence is a
grand challenge.

@ Very hard to do in one go with wet lab
techniques.

@ The Shotgun Technique has been found work
quite well.
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SHOTGUN SEQUENCING

@ Break up multiple DNA strands into short
segments

» Chemistry!

@ Short segments are sequenced.
» Chemistry!

@ Stitch short sequences computationally.
» This is where CS comes in.
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SHOTGUN SEQUENCING

Strand Sequence
Original AGCATGCTGCAGTCATGCTTAGGCTA
) AGCATGCTGCAGTCATGCT -——=——~
First shotgun sequence
——————————————————— TAGGCTA
AGCATG-=—==—— e e
Second shotgun sequence
—————— CTGCAGTCATGCTTAGGCTA
Reconstruction AGCATGCTGCAGTCATGCTTAGGCTA

Source: Wikipedia
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SHOTGUN SEQUENCING

@ Suppose you have three strands sequenced

catt ag gagtat
cat tagg ag tat
ca tta gga gtat

e But they really come in a messy way, e.g.,

catt ag tta cat tagg ag gagtat
tat ca gga gtat

@ So how do we stitch them?

» Given a set of overlapping genome subsequences,
construct the “best” sequence that includes them all.
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SYNOPSIS

@ A real world problem: Gene sequencing.
e The computational problem.
e Algorithms
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THE ABSTRACT PROBLEM

THE SHORTEST SUPERSTRING PROBLEM
Given

@ an alphabet of symbols ¥, and
@ a set of finite strings S C ¥,
return

@ a shortest string r that contains every s € S as a
substring of r.

o

@Y Y™*
e X ={A,C.G T}
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SOME OBSERVATIONS

@ Ignore strings that are already in other strings.
Why?

{catt, ag, gagtat, cat, tagg, ag, tat, ca, tta, gga, gtat}

4
{catt, gagtat, tagg, tta, gga,}

@ Each string must start at a distinct position in
the result. Why?
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SYNOPSIS

@ A real world problem: Gene sequencing.

@ The computational problem.
e Algorithms:
» The Brute Force Algorithm
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THE BRUTE FORCE ALGORITHM

THE BRUTE FORCE TECHNIQUE

Enumerate all possible candidate solutions for a
problem

@ score each solution, and/or
@ check each satisfies the problem constraints
Return the best solution.

@ How does this apply to the SS Problem?
» (Generate permutations
» Remove overlaps
» Stitch strings
» Select the shortest resulting string
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THE BRUTE FORCE ALGORITHM

@ catt tta tagg gga gagtat
@ catt tta tagg gga gagtat

@ cattaggagtat

LEMMA

Given a finite set of strings S C ¥ T, the brute force
technique finds the shortest superstring.

@ See handout.

@ So what is the problem with this technique?
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THE BRUTE FORCE ALGORITHM

@ There are just too many permutations!
e So, n= 100 — 100! ~ 108 permutations.

e Testing at 10'° permutations/sec, you need

» ~ 108 seconds

» ~ 10" days (=~ 10° seconds/day)
» ~ 2.7 x 10'9 years

» ~ 2.7 x 10"38 centuries

@ Not bloody likely you will test each permutation
before hell freezes over!

» Even if every subatomic particle in the universe was
a processor
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PROSPECTS FOR A FASTER
ALGORITHM?

@ SS belongs to very important class of problems
called NP (for Nondeterministic Polynomial).

@ For such problems, no algorithm with polynomial
work is known.

e But solutions can be verified in polynomial work!

e Wait for 15-451 and 15-453 for the gory details!
e But usually there are approximation algorithms

» with bounds on the quality of results, and
» perform better in practice.
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SYNOPSIS

@ A real world problem: Gene sequencing.

@ The computational problem.
e Algorithms:

» The Brute Force Algorithm
» Reducing SS to TSP
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PROBLEM REDUCTION

@ A reduction is a mapping from one problem (A)
to another problem (B), so that the solution B
problem can be used to solve A.

» Solving a set of linear equations, reduces to
inverting a matrix.

e Map the instance of problem A to an instance of
B,

@ Solve using algorithms for B
e Map the resulting solution back.
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REDUCING SS TO TSP

THE (ASYMMETRIC) TRAVELING
SALESPERSON PROBLEM (TSP)
Given a weighted directed graph

e find the shortest path that starts at vertex s, and
@ Visits each vertex once, and
@ returns to s.

e = Hamiltonian path with the lowest total sum of
weights

@ So, how is this related to SS?
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REDUCING SS TO TSP

e If s;is followed by s; in how much will the SS
length increase?
» S; = tagg followed by s; = gga — tagga

@ General case?
> W, = |s;| — overlap(s;, s;)
» overlap("tagg","gga") =2
> |nggan| _2: 1
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REDUCING SS TO TSP

Build a graph D = (V, A)
@ One vertex for each s; and one for special “null”
node, A
e A directed edge from s; to s; has weight
w;; = |s;| — overlap(s;, s;)
@ w); = |S;| — no overlap, maximal increase
@ w;p =0 —, no overlap, no increase
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REDUCING SS TO TSP

@ S={catt, tta, acat}

4

0

OVERVIEW — THE GENOME SEQUENCING PROBLEM 34/43

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



REDUCING SS TO TSP

_ @ This tour = cattacat
@ Thistour = cattacatta

@ Length 8
@ Length 10
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REDUCING SS TO TSP

@ TSP considers all Hamiltonian paths (hence is
brute force)

@ TSP finds the minimum cost Hamiltonian path.
» Total cost is the length of the SS

@ TSP is also NP-hard.
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SYNOPSIS

@ A real world problem: Gene sequencing.

@ The computational problem.
e Algorithms:

» The Brute Force Algorithm
» Reducing SS to TSP
» The Greedy Algorithm
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THE GREEDY TECHNIQUE

THE GREEDY TECHNIQUE
Given a sequence of steps to be made, at each
decision point

@ make a locally optimal decision

o without ever backtracking on previous decisions. |

e Greedy is a quite general algorithmic paradigm.
e In general, it does not get the best solution.

» But it does work for some other problems (e.g.,
Huffman Encoding, MST)
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THE GREEDY APPROXIMATION TO SS

e Start with a pair of strings with maximal overlap
(Why?)
e Continue with strings that adds the least
extension every time.
» This is the locally optimal decision!

» We already defined overlap(s;, s;)
» join(s;, s;) = concatenate s; to s; and remove
overlap.

* join("tagg","gga") = "tagga”
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THE GREEDY APPROXIMATION TO SS

GREEDYAPPROXSS

fun greedyApproxss(S) =

if |[S|=1 then s,

else let
O = {(overlap(s;Ssj),S,Sj):Si € S,s € S,s; # S}
(0,8i,8)) =maxval <y O
Sk = join(Si, Sj)

- S =({stUS)\isi, s}

in

greedyApproxSS(S)
end

OO OO W -

—

@ s’ gets smaller by one string after each
recursion.
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THE GREEDY APPROXIMATION TO SS

@ GreedyApproxSS returns a string with length
within 3.5 times the shortest string.

e Conjectured to return within a factor of 2.

@ Does much better in practice.
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THE GREEDY APPROXIMATION TO SS

@ Let's do an example.
e S = {catt, gagtat, tagg, tta, gga, }
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SUMMARY

e Interfaces vs Implementations
» Precise interfaces are key.

e The Shortest Superstring Problem

» The brute-force approach
» Reduction to TSP
» Approximate solution using greedy paradigm
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SYNOPSIS

@ Cost Models
o Parallelism

@ Scheduling

@ Cost Analysis for the Shortest Super String
Problem

» The Brute Force Algorithm
» The Greedy Algorithm
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CosT MODELS

e Sequential: the Random Access Machine
(RAM) model

e Parallel: the Parallel RAM model

e Parallel: the 15-210 model

» Tied to high-level programming constructs —
operational semantics
» Think parallel!
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15-210 COST MODEL

e W/(e): Work needed to evaluate e
@ S(e): Span of the evaluation of e

e Parameterized with relevant problem size
measures.

e Asymptotic Models
» How do algorithms scale to large problems!
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PARAMETERIZATION

@ We measure the size of representation of the
iInput.

Sorting: Number of items to sort

Map, Reduce: Number of items in the sequence

Graph Problems: Number of Nodes, Edges

Searching: Number of items in the database

Matrix operations: Number of rows and columns

Prime number testing: Size — number of bits to represent
the number (not the value!)

Computing n Fibonacci number: Size — number of bits
to represent the number (not the value!)
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RULES OF COMPOSITION

@ (eq, ex): Sequential Composition
» Add work and span
@ eq||e-: Parallel Composition
» Add work but take the maximum span
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RULES OF COMPOSITION

e W(e) S(e)
c 1 1
op e 1 1
(&1, &) 1+ W(e)+ W(e) 1+ S(er)+ S(en)
(e1]|e2) 1+ W(er)+ W(ex) 14+ max(S(et), S(e2))
let val X = e 14+ W(er)+ 14 S(eq)+

in €& end W(eg[Eval(e1)/x]) S(eg[Eval(e1)/x])

{f(x) | x € A} 1T+ 04 W(f(X)) 1 4+ maxyea S(f(x))
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RULES OF COMPOSITION

@ {f(x)| xec Al =map A

n—1

oW(map f (Sp,...,Sn1)) =1+ Z W(f(s:))

eS(map f (Sp,...,Sn-1)) =1+ max S(f(s)))

ALGORITHMI Cc COoST MODELS
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UPPER AND LOWER BOUNDS

e Upper bound: The maximum asymptotic work
(and span) that a given algorithm needs for all
iInputs of size n.

@ Lower bound: The minimum asymptotic work
(and span) that any algorithm for a problem
needs for all inputs of size n.
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SYNOPSIS

@ Cost Models
o Parallelism

@ Scheduling

@ Cost Analysis for the Shortest Super String
Problem

» The Brute Force Algorithm
» The Greedy Algorithm
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PARALLELISM

e Foragiven W and S, what is the maximum
number of processors you can utilize?

° IP’:§

e Why?

o Mergesort has W = 6(nlog n) and S = 6(log® n)
o P=0(+2)

log n
» The larger the problem is, the higher the parallelism
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DESIGNING PARALLEL ALGORITHMS

@ Keep work as low as possible
» NoO unnecessary computation

@ Keep span as low as possible
» Hence get high-parallelism
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SYNOPSIS

@ Cost Models
o Parallelism

@ Scheduling

@ Cost Analysis for the Shortest Super String
Problem

» The Brute Force Algorithm
» The Greedy Algorithm
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UNDER THE HOOD:
TASK SCHEDULING

e Mapping from a computation graph to
processors

/ \ eve
./. I\..\ LLev:a: 2
A

Level 3

./

ALGORITHMI Cc COST MODELS
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GREEDY SCHEDULING

@ A greedy scheduler will schedule a ready task
on an available processor.

/I\

Level 2

Level 3
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A LOWER BOUND

o Let T, be the “time” needed when using p
processors,

max(%/, S)< T,

o Why?
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AN UPPER BOUND

e With p processors

Tp<ﬂ+8
p

e Why?
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TYING THINGS TOGETHER

e Speed-up is VT‘:
» Maximum possible speed-up is p.

I, < +

_|_

= 3(”%)

e P> p — near perfect parallelism

S
W
P

ST(ITI
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SYNOPSIS

@ Cost Models
o Parallelism

@ Scheduling

@ Cost Analysis for the Shortest Super String
Problem

» The Brute Force Algorithm
» The Greedy Algorithm
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COSTS FOR THE BRUTE FORCE SS
ALGORITHM

@ The brute-force algorithm
» For each permutation

* Remove overlaps
* Stitch strings

» Output (one of) the shortest string(s)

e overlap(s;, s;) will be needed many times.

» Preprocess S once and store overlaps as a table

*  What prefix to remove
* |ncrease in length

ALGORITHMIC COST MODELS PAVYACY
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PREPROCESSING — INPUTS
@ Aset Sis nstrings, s1,8»,--- , 8p
e Define i
m = Z ’S,“
i=1

and observe n < m.
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PREPROCESSING A PAIR

Max overlap identified

-

N N and-reduce /"\ and-reduce and-reduce
7 N over PN over A over

s N \comparison results / \ comparison results "\ comparison results

s |
P2 A L—— =\ L
T I ol T 1 L
(. Si (. S| . S|
—— +

LSy 1 1S S:

L L [ J J
Compare symbols Compare symbols Compare symbols

all in parallel all in parallel all in parallel

e Work and span for preprocessing one pair, S;
and Sj?
- W =0(s)| - |s]l) Why?
> S = O(log(|si| +[sj[)) Why?
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PREPROCESSING — WORK
W, < z”:z”: W(overlap(s;, sj))

i=1 j=1

= > > O(sills)

i=1 j=1

O (ki + kalsillsil)

i=1 j=1

= I3 kY (elsils)

IA

n n
= Ky n° + Ko Z |Sj|(z |S,'|) = Ky n° + k2m2 c O(m2)
j=1 i=1
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PREPROCESSING — SPAN

e All's;, s; pairs can be processed in parallel.

Soy < m%xmréXS(overlap(S,-,Sj)))
=1 j=

e O(logm)
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BRUTE FORCE SS ALGORITHM

e Work:
» O(n) lookups each with O(1) work. Why?
» n! permutations
» O(n-n)=0((n+1)
» W,, can be ignored!
e Span:
» All permutations can be done in parallel, but!
func permutations S =
if |S| = 1 then {S}
else

{append([s], p)
s in S, p in permutations (S\s)}

» This has span O(n). Why?
» Spy €an be ignored.
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SYNOPSIS

@ Cost Models
o Parallelism

@ Scheduling

@ Cost Analysis for the Shortest Super String
Problem

» The Brute Force Algorithm
» The Greedy Algorithm
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THE GREEDY SS ALGORITHM

1 fun greedyApproxSs(S) =

2 if |S]=1 then s

3 else let

4 O={(overlap(s,5).5:5): 8 €55 € 5,5 # 5}
5 (0,8,5)) =maxval <z O

6 Sk = join(s;, Sj)

7 S =({s}US)\{ss}

8 in

9 greedyApproxSS(S)
10 end
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THE GREEDY SS ALGORITHM

1 fun greedyApproxSs(S) =

2 if |S]=1 then s

3 else let

4 O = {(overlap(s;Ssj),S,Sj):Si €S, € S, # S}
5 (0,8,5)) =maxval <z O

6 Sk = join(s;, Sj)

7 S =(s}US\ss)

8 in

9 greedyApproxSS(S)
10 end

o W,, = O(m?), S,, = O(log m)
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THE GREEDY SS ALGORITHM

1 fun greedyApproxSs(S) =
2 if |S]=1 then s
3 else let
4 O = {(overlap(s;, sj),Si.S) :Si € S,51 € S, s # S}
5 (0,8i,8)) =maxval <z O
6 Sk = join(s;, Sj)
7 8 =({s}US)\{s s}
8 iIn
9 greedyApproxSS(S)
10 end

@ Wiava = O(mz), Smaxval = O(Iog m)
e Why?
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THE GREEDY SS ALGORITHM

1 fun greedyApproxSs(S) =
2 if |S]=1 then s
3 else let
4 O = {(overlap(s;s)),SiSj): Si € S,S, € S, 8 # S}
5 (0,8,5)) =maxval <z O
6 Sk = join(s;, §j)
% S' = ({skt US)\{si, s}
8 in
9 greedyApproxSS(S)
10 end

@ No more than W = O(m?), S = O(log m)
e Why?
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THE GREEDY 55 ALGORITHM

un greedyApproxSS(

2 if |S|=1 then s
3 else let
4 O = {(overlap(s;sj), S Sj):Si€ S,s €S, # sj}
5 (0,8i,5;) =maxval <z O
6 Sk = join(S,-, Sj)
7 S"= ({sk} US)\{si, 5
8 in
9 greedyApproxSS(S)
10 end

@ At most n (sequential) calls to greedyapproxss
» Each with W = O(m?), S = O(log m)

@ Wyreeqy = O(nn?) and Syreeqy = O(nlog m)

o Why?
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SUMMARY

@ Cost Models: Rules of Composition

e Parallelism and Scheduling
e Cost Analysis for the Shortest Super String
Problem

» Preprocessing for overlaps
» The Brute Force Algorithm
» The Greedy Algorithm
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SYNOPSIS

@ Algorithmic Techniques
e Divide-and-Conquer
» Analysis of Costs
@ The Maximum Contiguous Subsequence Sum
Problem
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ALGORITHMIC TECHNIQUES

e Brute Force
» Try all possibilities
» Almost always intractable
» Useful for testing small cases
» Code usually easy to write

@ Reducing one problem to another

» Transform the structure or the instance of a problem.
» Shortest Superstring — Traveling Salesperson
Problem

» Apply algorithms for the new problem

ALGORITHMIC TECHNIQUES AND DIVIDE-AND-CONQUER 3/45
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INDUCTIVE TECHNIQUES

@ Solve one or more smaller problems to solve the
large problem.
e Techniques differ on

» The number of subproblems
» How subproblem solutions are used

Divide-and-Conquer
Greedy

Contraction

Dynamic Programming
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DIVIDE-AND-CONQUER

e Divide a problem of size ninto k > 1 problems
» Sizes ny, no, ..., Nk

@ Solve each problem recursively.

@ Combine the subproblem solutions.
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GREEDY

e Given a problem of size n

@ Remove one (or more) elements using a greedy
approach

» Smallest, two smallest, nearest, lowest, etc.

@ Solve the remaining smaller problem
» Usually smaller by 1 or 2 items.
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CONTRACTION

@ Given a problem of size n

e Generate a significantly smaller (contracted)
iInstance

» e.g., of size n/2
@ Solve the smaller instance
e Use the result to solve the original problem.

@ One recursive call instead of multiple!
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DYNAMIC PROGRAMMING

e Like Divide-and-Conquer

@ Solutions to subproblems used multiple times!

e Compute once and store, and then reuse.
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ADTs AND DATA STRUCTURES

@ Techniques rely on Abstract Data Types (for
functionality)

» and on data structures that implement them (for
costs)

@ Sequences, Sets, Tables, Priority Queues,
Graphs, Trees, ...
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RANDOMIZATION

@ Introduce randomness at a choice point
» Quicksort: choose a pivot randomly

e Testing for primality
» Miller-Rabin primality test
» 3/4 of numbers < n are “witnesses” to n's
compositeness.
» Randomly choose 100 numbers < n
> P(Failing to find a witness) = 1 — (3)'%®

> P(nis prime) =1 —(3)'%° =0.9999...9327...
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SYNOPSIS

e Algorithmic Techniques
e Divide-and-Conquer
» Analysis of Costs
@ The Maximum Contiguous Subsequence Sum
Problem
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DIVIDE-AND-CONQUER

e \ery versatile.
e Easy to implement.
e Parallelizable

@ Code follows the structure of a proof.

@ Cost reasoning follows code structure.
» Recurrences
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STRENGTENING THE PROBLEM

e Compute more than “superficially” needed.

@ No increase to work or span.

@ More efficient combine step.

@ At the end, this extra information can be
discarded.
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GENERAL STRUCTURE

@ Base case(s)
» When problem small enough, use a different
technique.
» For example, in quicksort, switch to insertion sort to
sort < 30 elements.

@ Inductive Step

» Divide into parts
*  Sometimes quite simple: e.g., mergesort
*  Sometimes a bit tricky: e.g., quicksort

» Solve subproblems (in parallel)

» Combine results
*  Sometimes quite simple: e.g., quicksort
* Sometimes a bit tricky: e.g., mergesort

@ Costs can be in the divide or combine steps or
In both.
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GENERAL STRUCTURE

K
W(n) = Waiae(n) + Y W(N) + Weombine(n)
i—

k
S(n) — Sdivide(n) + m—%x S(ni) + Scombine(n)
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SOLVING RECURRENCES

e Tree method (Brick method)

@ Substitution method
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THE TREE M ETHOD

e Expand recurrence into a tree structure.

............... Cost of level 0
C ) ........ Cost of level 1

C )C ) C > C ) - - - - Costof level 2

e Add/Max costs at levels.
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THE TREE METHOD
e Solve W(n) =2W(n/2) + O(n)
@ In general, solve

W(n) =2W(n/2) + g(n)
where g(n) € O(f(n))
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THE TREE M ETHOD

° g(n) € O(f(n)) = g(n) < ¢ - f(n)

» Forsome c > 0,Ny; > 0and n> N

o g(n) < ky - f(n) + ko for some ki, ko and n > 1
> e.0., ki =cand kp = 37, |g(i)| (Why?)

@ Solve W(n) <2W(n/2) + ki - n+ ko

» f(n) = nin our case.
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THE TREE M ETHOD

e Solving W(n) <2W(n/2)+ ki - n+ ko

<k1 (n/4) + k2> <k1 (n/4) + k2> <k1 (n/4) + k2> <k1 (n/4) + k2> ceee kyn+dk
(©) (©) o (©)

@ Questions:

Number of levels in the tree?
Problem size at level i?

Cost for each node at level i?
Number of nodes at level j?
Total cost at level ?

vV v v Vv

v
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THE TREE M ETHOD

o Jotal cost at level / Is at most

. n .
2' - (k1§—|—k2) = K -n+2’-k2
@ Jotal cost over all levels is

log, n

> (ki-n+ 2k

i=0

kin(1 4 log, n) + ko(2° + 2" + ... 4 202
kin(1 + log, n) + 2k,n (Why?)

O(nlog n)

W(n)

IA

<
€
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THE BRICK METHOD

@ Look at the cost structure at the levels of the
cost tree

» Leaves dominated
» Balanced

» Root dominated
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LEAVES-DOMINATED COST TREES

@ Forsome p > 1, for all levels i
costi, 1 > p- cost;
++
+4+++

++++++
++++++++

e Overall cost is O(costy) where d is the depth.
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BALANCED COST TREES

@ All levels have about the same cost

+H++++++
++++++++
++++++++
++++++++

@ Overall cost is O(d - max; cost;) where d is the
depth.
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ROOT-DOMINATED COST TREES

@ Forsome p < 1, for all levels i
costi, 1 < p- cost;
+4+++++++
+4+++++

+4+++
++

e Overall cost is O(costy) where d is the depth.
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THE BRICK METHOD

e What type of a cost tree is this?
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SYNOPSIS

@ Algorithmic Techniques
e Divide-and-Conquer
» Analysis of Costs
@ The Maximum Contiguous Subsequence Sum
Problem
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THE MCSS PROBLEM

THE MAXIMUM CONTIGUOUS SUBSEQUENCE SUM PROBLEM
e Given a sequence of numbers S = (sq, ..., Sp),
e Find

1<i<j<n

J
mcss(S) = max ¢ » sk
k=i

e S=(0,-1,2,—-1,4,—1,0), mcss(S) =5
@ How many possible subsequences are there?
@ All positive numbers?
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BRUTE FORCE ALGORITHM

e Compute the sum of all O(n?) possible
subsequences (in parallel)
» Use plus reduce
@ Subsequence (/,f) needs
» O(j — i) work (Why?)
» O(log(j — 1)) span (Why?)

W(n) = 1 + Z VVreduce(j_ I) S 1 + n2 ) VVreduce(n)

1<i<j<n
= 1+n*-0(n) c O(n°)
S(n) = 14+ max Sedquee(f — 1) <1+ Siedquce(n) € O(log n)

1<i<j<n
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BRUTE FORCE ALGORITHM

e Compute maximum over all O(n?) sums

» Use max reduce
» Needs O(n?) work and O(log n) span
» Can be ignored (Why?)

@ Total costs for brute force are:
> O(n®) work
» O(log n) span
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DIVIDE-AND-CONQUER -1

(— L —— R —)
|
L=( - ) R={( ... )

~" ~"

mcss=56 mcss=17

@ Letssolve S=(-2,-1,2 3,2, -2)
@ Is this right?
e How do we combine subproblem results?
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DIVIDE-AND-CONQUER -1

@ Recursion handles
» When mcss(S) subsequence is in the left.
» When mcss(S) subsequence is in the right.

e What happens when mcss(S) spans across the
divide point?

Largest Sum Suffix Largest Sum Prefix

v " v

L R

! 3

Maximum sum across the divide
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DIVIDE-AND-CONQUER -1

fun mcss(s) =
case (showt S)
of EMPTY = —o0
| ELT(X) = X
| NODE(L, R) =
let (M., mg)=(mcss(L) || mcss(R))
my = bestAcross(L, R)
in max{mL, mg, mA}
end

O O NIV WDN -

@ W(n)=2W(n/2)+ O(n) (Why?) — W(n) € O(nlogn)
@ S(n) = S(n/2) + O(log n) (Why?) — S(n) € O(log® n)
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DIVIDE-AND-CONQUER — II

IMPORTANT QUESTIONS

e Can we do better than O(nlog n) work?

e What part of the divide-and-conquer is the
bottleneck?

» Combine takes linear work? (Why?)

e How can we improve?
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DIVIDE-AND-CONQUER — II

@ Ihe answers lie here

Largest Sum Suffix Largest Sum Prefix

v " v

L R

) 3

Maximum sum across the divide

@ Strengthen the subproblems
» Compute additional information
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DIVIDE-AND-CONQUER — II

Left Subproblem

TotalL
mpSL mSSL

mps = maximum prefix sum mss = maximum suffix sum
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DIVIDE-AND-CONQUER — II

Left Subproblem Right Subproblem
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DIVIDE-AND-CONQUER — II

Left Subproblem Right Subproblem

msSS
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DIVIDE-AND-CONQUER — II

Left Subproblem Right Subproblem

TotaIL
mss
| L

mss

5 I Y i

[EmpST] = mav ([ENMPSETT] . [ MOl ][ mPsp )
[[mss | =max([_mss | [ORIRNY [T MsSRT)
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DIVIDE-AND-CONQUER — II

1 fun mcss(a) =

2 let

3 fun mcss’(a)

4 case (showt a)

5 of EMPTY = (—o00, —00, —00,0)

6 | ELT(X) = (X, X, X, X)

7 | NODE(L, R) =

8 let

18 ((m1, p1, 81, 1), (M2, P2, S2, 1)) = (mess’(L) || mcss’(R))
in

11 (max(sy + pz, My, ma2), max(ps, ti + p2), max(sy + t, s2), t + &)

12 end

13 (m,p,s,t) = mcss'(a)
14 in m end
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COST ANALYSIS

1 fun mcss(a) =

2 let

3 fun mcss’(a)

4 case (showt a)

5 of EMPTY = (—o0, —00, —00, 0)

6 | ELT(X) = (x, X, X, X)

7 | NODE(L, R) =

8 let

18 ((m1,p1, 81, 1), (M2, P2, S2, 2)) = (mcss’(L) || mcss’(R))
in

11 (max(sy + p2, My, ma2), max(ps, ty + p2), max(sy + t, s2), t + o)

12 end

13 (m,p,s,t) = mcss'(a)
14 in m end

@ Assuming showt has O(log n) work and span.
» W(n)=2W(n/2) + O(log n)
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COST ANALYSIS

e W(n)=2W(n/2)+ O(log n)

=
o
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x
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=
o
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N ]
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0 ]
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0 ]
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o
« Q@
§ S

C kq log (n{) C:I‘Iog (n/4) > C kq log (n/4) ) C kq log (n/4) ) - - - - kq4log (n/4)

o W(n) < >S9 k12'log(n/2')
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SUBSTITUTION METHOD
e Solve W(n) <2W(n/2)+ k -logn
» k>0

» W(n) < kforn<H1
@ Guess W(n) < kyn—kplogn — k3
» Need to find 1, K2, and xs.

@ Basecase: W(1) < k= k1 — k3 <K
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SUBSTITUTION METHOD

@ Inductive Step

W(n) < 2W(g)+k-logn
< 2(/{1%7 — Ko Iog(g) — Kk3)+ k-logn

k1N — 2ko(logn—1) —2k3 + k - logn
(k1N — kologn — k3) + (klogn — ka2 log N+ 2k, — K3)
k1N — Ko log N — kg

IA

@ Choose ko = k and 2k, — k3 < 0 (Why?)

@ For example, ko = k, k1 = 3Kk, k3 = 2k satisfies the
constraints.
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SUMMARY

e Algorithmic Paradigms
e Divide-and-Conquer
General Form
Cost Analysis
Tree and Brick Methods
Substitution Method
e Maximum Contiguous Subsequence Problem
» Brute Force
» Divide-and-Conquer
» Divide-and-Conquer with Subproblem Strengthening

vV v v VY
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SYNOPSIS

e The Euclidian Travelling Salesperson Problem
e Divide-and-Conquer Heuristic Algorithm
e Analysis of Costs
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THE EUCLIDIAN TSP

e Given a set of points in a n-dimensional
Euclidian space.

» What is a Euclidian space?

e Find the shortest Hamiltonian cycle.
» What is a Hamiltonian cycle?

e We get a planar Euclidian Traveling Salesperson
Problem when the points are in 2-dimensional
space.
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THE PLANAR TSP
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SYNOPSIS

e The Euclidian Travelling Salesperson Problem
e Divide-and-Conquer Heuristic Algorithm
e Analysis of Costs
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A DIVIDE-anpD-CONQUER HEURISTIC

@ What is a heuristic?

@ Approximation algorithm

» Resulting tour length is guaranteed to be close to the
actual minimum tour length
» If you spend enough work (but polynomial).

e The Divide-and-Conquer does work both before
and after the recursive calls.
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A DIVIDE-anpD-CONQUER HEURISTIC

P, P

+ —> ?

e Assume P, and P, have tour lengths T, and T,.
e Tour length for the combination?
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A DIVIDE-anpD-CONQUER HEURISTIC

T+ Tetlue — || + |Ive = vl = [Jlue — vl — [Jur — v/]|
Add\?hese Subtra\c? these
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A DIVIDE-anD-CONQUER HEURISTIC

To+Tr+lue — Vel + [[ve — ur|| = [Jue — vl = l[ur — v ||
Ad(;trhese Subtra?c? these
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A DIVIDE-anpD-CONQUER HEURISTIC

e Try all pairs of edges ¢, from P, and e, from P,
» How many pairs are there?

@ For each pair of edges, find the smallest
Increase.

@ Then combine the small tours into a large tour.
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A DIVIDE-anpD-CONQUER HEURISTIC

1 fun eTsp(P) =

2 case (|P|)

3 of 0,1 = raise TooSmall

4 | 2 = {(P[0], P[1]), (P[1]. P[O])}

5 | n = let

6 (Py,Pr) = splitLongestDim(P)

7 (L,R) = (eTsP(P,) || eTsp(Py))

8 (c, (&), er)) =

9 minval <z {(swapCost(ey, &), (e er)) :
10 e cl e R}
11 in
12 swapEdges(append(L, R), e, €))
13 end
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A DIVIDE-anpD-CONQUER HEURISTIC

1 fun eTsp(P) =

2 case (|P|)

3 of 0,1 = raise TooSmall

4 |2 = {(P[0], P[1]), (P[1], P[O])}

5 | n = let

6 (P, Pr) = splitLongestDim(P)
7 (L,R) = (eTsP(P,) || eTsp(Py))
8 (c,(e, &) =

9 minval <uy {(swapCost(ey, e;), (&, €r)) :
10 e cl e R}
11 in

12 swapEdges(append(L, R), e, €))
13 end
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SPLITTING THE POINTS
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e Split at the median along the longer spread
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SWAP COST
o Giveneg, = (uy,vy) e Land e, = (ur,v,) € R
swapCost((us, V¢), (Ur, vr)) = Cost Added — Cost Removed

Cost Added = min(||u; — u,|| + [|[ve — v/ ]|,
[up = Vel + [Ive = ur|))

Cost Removed = ||u, — v|| + |[ur — V¢||
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SWAPPING EDGES

@ swapEdges (append(L,R),e’y, e’ /)
@ Appends the Tour edge lists from subproblems
@ Then removes and adds appropriate edges.
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SYNOPSIS

e The Euclidian Travelling Salesperson Problem
e Divide-and-Conquer Heuristic Algorithm
@ Analysis of Costs
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COST ANALYSIS

1 fun ersp(P) =

2 case (|P|)

3 of 0,1 = raise TooSmall

4 | 2 = {(P[0], P[1]), (P[1], PIO])}

5 | n = let

6 (Py,Pr) = splitLongestDim(P) O(n) work O(logn) span (Why?)
7 (L,R) = (eTSP(P;) || eTsp(Pr)) 2W(n/2) work S(n/2) span

8 (c. (e}, €})) =

9 minval <x1 {(swapCost(eg,er), (e, er)) :
10 e, €L,er € R} O(n?) work O(logn) span (Why?)
11 in
12 swapEdges(append(L, R), €},€e;) O(logn) span (Why?)
13 end
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COST ANALYSIS

W(n) = 2W(n/2) + O(n?)

S(n) = S(n/2)+ O(log n)

S(n) € O(log® n)
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COST ANALYSIS

@ Solve (directly)
W(n)=2W(n/2) + k- n'"

for constant ¢ > 0.
> Depth is log, n (Is this technically right?) |
> At level i, we have 2' nodes each costing k - (n/2')1+¢

log n
Wiy = S k-2 (%)”“‘
i=0

log n

— k- n1+€ . Z 2—/-6
i=0
o

< k_n1~|—6 .Zz—i-s
i=0

W(n) € O(n'"<)( Why?)
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SUMMARY

e Euclidian Traveling Salesperson Problem

» Divide-and-Conquer Heuristic
» Processing before and after the subproblem
solutions.

@ Cost Analysis
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SYNOPSIS

@ Abstractions and Implementations
» Meldable Priority Queues

e The Sequence ADT
@ The scan operation
@ Introduction to contraction
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ABSTRACTIONS AND

IMPLEMENTATIONS
Abstraction Implementation
Functions Problem Algorithm

Data Abstract Data Type Data Structure
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MELDABLE PRIORITY QUEUES

@ Priority Queues
» Insert anitem — insert
» Return and delete the item with the minimum priority
—deleteMin
e Meldable Priority Queue
» Join two priority queues into one —meld
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MELDABLE PRIORITY QUEUES

@ S is a totally ordered set (integers, strings, reals,
).

e T is a type representing subsets of S.

empty : T — {}
insert(S,e) : TxS—T = Su{e}

| TS Tx [ (S1) S={}
deleteMin(3) Su{ly) = { (S\ {minS}.minS) otherwise
meld(S1,Sg) r TxT—T = S US
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MPQ DEFINITION IN SML

signature MPQ

sig
struct S : ORD
type €
val empty : t
val insert : t +« S.t —> t

val deleteMin : t —> t % S.t option
val meld : ©t » t —> t
end

@ No semantics, only the types.
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MPQ: COST SPECIFICATIONS

e Implementation 1:

Operation Work
insert(S, e) O(|S])
deleteMin(S) O(1)

meld(Sy, S2)  O(|Si] + [S2)

e What is the underlying data structure? Sorted
Array

@ meld is actually an array merge.
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MPQ: COST SPECIFICATIONS

e Implementation 2:

Operation Work
insert(S,e) O(log |S|)

deleteMin(S)  O(log|S|)

meld(Si,S2)  O(|Si] +[Sz)
e What is the underlying data structure? Heaps
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MPQ: COST SPECIFICATIONS

e Implementation 3:

Operation Work
insert(S,e) O(log |S|)
deleteMin(S) O(log |S|)

meld(S:,S2)  O(log(|Si] + 1S2]))

o Later!
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ABSTRACTIONS AND
IMPLEMENTATIONS

@ The Abstract Data Type

» Functionality
» Correctness

e The Cost Specification

» Multiple Cost Specifications
» We only need these to do cost analysis.

e Underlying Data Structure
» Multiple Data Structures
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THE SEQUENCE ADT - SOME BASICS

@ A relation is a set of ordered pairs.
» First from set A, second from set B

@ Arelation p C A x B.

@ A functionis a relation p, where for every a€ A
there is only one b such that (a, b) € p.

@ A sequence is a function where
A=1{0,...,n—1} for some n € N.
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THE SEQUENCE ADT —
FUNCTIONALITY

@ A sequence is a type S, representing functions
from {0,...,n— 1} to «.

empty . Sa = {}

length(A) . Sq¢ & N = |A

singleton(Vv) : a—S, = {(0,v)}

nth(A,/) : Sa — = A(V)

map(f, A) . (= B)xSa —Sg = {(i,f(v)):(i,v) € A}
tabulate(f,n) : (N—a)xN—=S, = {(i,f(i):ie{0,...,n—1}}
take(A, n) . Sa x N—=S, = {(i,bv)eAli<n}

drop(A, n) . Sa xN =S, = {(i—nv):(i,v)eA|i>n}
append(A,B) : Su XS, — S, = AU{(i+]A|,v):(i,v) e B}
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THE SEQUENCE ADT — COST SPECS

ArraySequence
Work Span
length(T) O(1) O(1)
nth(T) O(1) O(1)

append(Sy, S2)  O(|Si]+[Sz2]) O(1)
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THE SEQUENCE ADT — COST SPECS

ArraySequence
Work Span

tabulate fn O( ” W(f(i))) O (mréx S(f(i)))

=

o

map [ S O(

Sc
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THE SEQUENCE ADT — COST

SPECIFICATIONS
TreeSequence
Work Span
length(T) o(1) o(1)
nth(T) O (log n) O (log n)

append(Si,Sz)  Of(log(|Si| +[S2]))  O(log(|S1] + [S2]))

DATA ABSTRACTION AND SEQUENCES

15/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



THE SEQUENCE ADT — COST
SPECIFICATIONS

TreeSequence
Work Span

tabulate f n o( n W(f(i))) O(Iogn+mré><3(f(i)))

, =0
i=0

map f S O ( W(f(s))) O (Iog |S| + max S(f(s)))
S

seS
s€
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SOME NOTATIONAL CONVENTIONS

S The /" element of sequence S

|S The length of sequence S

() The empty sequence

(V) A sequence with a single element v
(i, f) A sequence of integers starting at / and

ending at j > I.
(e:peS) Map the expression e to each element p of
sequence S.
The same as “map (fn p = e) S” in ML.
(pe S|e) Filter out the elements p in S that satisfy the
predicate e.
The same as “filter (fn p=¢e) S”in ML.

e More examples are given in the “Syntax and
Costs” document.
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THE SCAN OPERATION

e Related to reduce.
scanflS:(axa—a)— a— aseq

— (a seg x «)

| is the identity value
f is an (associative) function

S is a sequence
Produces (I, (I, Sy), f(f(l, Sp), S1),...) and
reduce fl S

» scan+0(2,1,4,6)

((0,2,3,7),13)

DATA ABSTRACTION AND SEQUENCES 18/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



THE SCAN OPERATION

@ scan computes prefix sums.

1 fun scan f | §=
2 (( reduce f I (take(S,0):i€(0,...n—1)),
3 reduce f | S)

e S has nelements

@ Apply reduce to each prefix of S of i elements,
0<i<n-1
» Gives you the a seqg part
@ Apply reduceto S

» Gives you the « part
@ So you get (a seg — «)
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THE SCAN OPERATION

scan + 0 (2,1,3) = ({ reduce + 0 (),
reduce + 0 (2),
reduce + 0 (2,1))
reduce + 0 (2,1,3))
= ((0,2,3),6)

e This is obviously not efficient!
e We will see how to do this with

W(scanflS) = O(|S|)
S(scanflS) = O(log|S|)
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THE INCLUSIVE SCAN OPERATION

@ reduce all prefixes ending at position /,
0<i<n-1

scanI + 0 (2,1,3) = (2,3,6)
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USING SCAN IN THE MCSS PROB.

THE MAXIMUM CONTIGUOUS SUBSEQUENCE SUM PROBLEM
e Given a sequence of numbers S = (sq, ..., Sp),
e Find

1<i<j<n

J
mcss(S) = max ¢ » sk
k=i

e S=(0,-1,2,—-1,4,—1,0), mcss(S) =5
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USING SCAN IN THE MCSS PROB.

e Consider S=(1,-2,3,—-1,2,-3)
@ Let X =scant + 05=(1,-1,2,1,3,0)
e Whatis X; — X for j > i7?

’Zjl;:imsk
> X4—X0:3—1=2
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USING SCAN IN THE MCSS PROB.

e Define R; as the maximum sum that starts at
some /and ends atj > |.

Rj - mjaXZ Sk
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USING SCAN IN THE MCSS PROB.

j—1
R = X; — mig1X,-

=

@ You need X; and the minimum previous X;, i < |
» can be done by a minimum scan

(M,)) = scan min 0 X =((0,0,—1,—-1,—1,—-1),—1)

R=(X—M:0<j<|S)=(1,-1,3,2,4,1)
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LET’S RECAP

e Given S=(1,-2,3,-1,2,-3)
@ We computed X with a + scanI.
» X=1(1,-1,2,1,3,0)
e We computed M with amin scan
» M=(0,0,—1,-1,—-1,—-1)
e Wecomputed R=(X;—M;:0<j<|S5])
» R=1(1,-1,3,2,4,1)
@ A final max reduce on R gives us the MCSS, 4.
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USING SCAN IN THE MCSS PROB.

1 fun MCsSsS(S) =

2 let

3 X =scanI + 0 S

4 (M,.) = scan min 0 X
5 1in

6 max (X;i— M;: 0 <j < |S])
7 end

e Work? O(n)
e Span? O(log n)
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COPY SCAN

@ Scan can also be used to pass information
along a sequence.

( NONE, SOME(7), NONE, NONE, SOME(3), NONE )

!

( NONE, NONE, SOME(7), SOME(7), SOME(7), SOME(3))

@ Each element receives the nearest previous
SOME () value.
e Easy to do sequentially with iter.
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COPY SCAN

e Can we do this with scan?
e f: «a option x o option — o option

1 fun copy(a,b) =
2 case b of

3 SOME(_)=b
4 | NONE = a

e Passes its right argument if it is SOME, else
passes its left argument.

e How do you show copy Is associative.
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IMPLEMENTING SCAN —
CONTRACTION

@ scan looks inherently sequential.
» Naive implementation needs O(n?) work.
» Slightly clever sequential implementation needs
O(n) work.
» Divide an Conquer approaches do not break the
sequentiality. (Why?)
e Contraction

@ Construct a much smaller instance of the problem
© Solve the smaller instance recursively
@ Construct solution to the original instance.
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IMPLEMENTING REDUCE WITH
CONTRACTION

e Given (2,1,3,2,2,5,4,1)

@ Apply + pairwise and (in parallel) to get
(3,5,7,5)

» This is the contracted instance!
e Apply + pairwise to get (8,12)
e Finally apply + pairwise to get (20)
e The 3 step of the contraction does nothing in
this case.
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IMPLEMENTING SCAN WITH
CONTRACTION

o Given S=(2,1,3,2,2,5,4,1)
+ scan + 0S=((0,2,3,6,8,10,15,19),20)

e First do pairwise +on Stoget(3,5,7,5)

@ Now (recursively) do scan on this to get
((0,3,8,15),20)

» What is the relation to the final scan?
@ We have every other element of the final scan!
e How do we fill in the rest?
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IMPLEMENTING SCAN WITH
CONTRACTION

Input= (2,1,3,2,2,5,4,1)

Partial Output = ({0, ab
Desired Output = ((0, 2, 3,6, 8, 10, 15 19

+
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IMPLEMENTING SCAN WITH
CONTRACTION

1 % implements: the Scan problem on sequences that have a power of 2 length

2 fun scanPow2 f i s=

3 case |s| of

4 0= ({),1)

5 | 1= ({i), s[0])

6 | n=

7 let

8 s’ = (f(s[2i],s[2i +1]) : 0 < i < n/2)

9 (r,t) = scanpow2 f i &
10 in

| _ /2] if even()

11 ((pi: 0 <i<n),t), where p; = {f(r[//z], s[i—1]) otherwise.
12 end

@ General case is in the course notes.
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SUMMARY

@ Abstractions and Implementations
» Meldable Priority Queues

e The Sequence ADT

@ The scan operation

@ Introduction to contraction

e Implementing scan with contraction.
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SYNOPSIS

@ The reduce operation

e Implementing divide and conquer with reduce
» Implementing MCSS with reduce

@ Analyzing cost of higher order functions
» Cost analysis for reduce
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THE REDUCE OPERATION

reduceflS : (axa— a)— «
— o seq — a

@ When f is associative, reduce returns sum with

respect to f.
@ Sameresultas iterfl S
» iter is sequential and allows more general f (e.g.,

OXa—p
e If fis not associative, reduce and iter results
may differ.
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THE REDUCE OPERATION

@ Specific combination based on a perfect binary
tree.

& = combine = "dummy" elements
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DIVIDE AND CONQUER WITH
REDUCE

e Many divide and conguer have the following

structure
1 fun mybpandc(S) =

2 case showt(S) of
3 EMPTY = | emptyVal
4 | ELT(V) = |base |(V)
5 | NODE (L, R) = let
6 (L', R") = (myDandC(L) || myDandcC(R))
7 in
8 someMessyCombine (L', R')
9 end
@ This corresponds to a binary tree combination
scheme.
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DIVIDE AND CONQUER WITH
REDUCE

someMessyComblne

/ S

someMessyComblne (someMessyComblne

base base base
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DIVIDE AND CONQUER WITH
REDUCE

fun myDandc(S) =
case showt(S) of
EMPTY = |emptyVal
| ELT(V) = |base |(V)
| NODE (L, R) = let
(L', R") = (myDandcC(L) || myDandcC(R))

in

someMessyCombine |(L', R')
end

O 0O NNV W I

reduce | someMessyCombine | |emptyVal| (map |base| S)
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MCSS USING REDUCE

J

mcss(s) = max E Sk
1<i<j<n .
=l

Left Subproblem Right Subproblem

0 R == T LW
[EEmBSTT] = e ([ERSEN  [TOWIL T+ mesR )
[mss_] = max (s, + [N [NSSRIT)
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MCSS USING REDUCE

J
m —  max
css(s) max_ {; sk}

fun combine((ML, PL, SL, TL), (MR, P/:,), SR, TR)) —
(max(SL -+ PR, ML, MR), max(PL, TL —+ P,q),
max(Sg, S+ Tr), T.+ Tg)

fun base(v) = (v,v,v,v)

emptyVal = (—oo, —00, —00, 0)

fun mcss(S) =
reduce combine emptyVal (map base S)
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SOME OBSERVATIONS

@ Which code to use is a matter of taste

» reduce version is shorter
» Divide and Conquer version exposes the inductive
structure.

@ reduce version not applicable when split is
complicated

» e.g., in Quicksort
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SCAN VIA REDUCE

e How do we implement the divide and conquer
scan with this template?
» scanfl S =
reduce combine emptyVal (map base S)

@ emptyVal="? ({),/)
e fun base(v) =? ({(I),f(l,v))
@ fun combine =7

fun combine((&, T1), (82, Tg)) —
append(Sy, (map (fn x = f(x,T1)) S2), (T, T2))

> |s this right?

fun combine((&, T1), (82, Tg)) —=
(append(Sy, (map (fn x = f(T1,x)) S2), (T, T2)
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COST OF HIGHER ORDER
FUNCTIONS

e We assume that f runs in O(1) work and span.
» = reduce has O(n) work and O(log n) span

@ Easy formap and tabulate
Wmap fS) = 14+ W(f(s))
S(map fS) = 1+ maxS(f(s))
e How about reduce?

SEQUENCES - I1
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MERGESORT VIA REDUCE

e Remember the reduce template for divide and
conquer?

reduce |combine| |emptyVal| (map |base| S)

combine — merge_
base = singleton
emptyVal = empty()

fun reduceSort(S) =
reduce combine emptyVal (map base S)
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COST OF REDUCESORT

@ merge_ IS an associative function with costs:

W(merge<(81, 82)) = O(n1 + I‘Ig)
S(merge_(S1,S2)) = O(log(n + n2))

e f has no longer O(1) work and span.
@ What is the cost of reduceSort.
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COST OF REDUCESORT

e For costs, reduction sequence matters!
@ Sequential order
@ Oninput x = ( Xo, Xy,...,Xnp_1 ), We get

merge_(... merge_(merge_(merge_(I,(Xo)),{X1)),(X2)),...)

e Left arg. has length O through n — 1

e Right arg. always has length 1.
e Work:

n—1
W(reduceSort S) < ZC (1 +1i) € O(n?) Why?
iI=0

SEQUENCES - II 15/21
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MERGESORT WITH REDUCE

e Equivalentto iter version

fun reducesSort’(S) =
iter merge. (emptyVal (map base S)

@ Works really as an Insertion Sort.
» Inserts each element into a sorted prefix!

@ No parallelism except in merge

n—1
S(reducesort 8) < » c-log(1+1i) € O(nlogn)

i=0
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MERGESORT WITH REDUCE

@ The reduction tree is very unbalanced!
e Suppose n = 2X and merge tree is as follows
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MERGESORT WITH REDUCE

g = merge

@ nnodes at constant cost at each leaf (/ = log, n)
@ n/2 nodes one level up, each costing c(1 + 1)
(i =log, 5) (Why?) |
@ In general, for level /i, we have 2' nodes merging
two sequences each length 2
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MERGESORT WITH REDUCE

XO X1 X2 X3 X4 X5 X6 X7

£ =merge

e For level i, we have 2’ nodes merging two
sequences each length 57+

log n ,' n n
W(reduceSort x) < ;2 °C<2i+1 + 2i+1)
log n n
= 22"-0(5) € O(nlog n)
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MERGESORT WITH REDUCE

XO X1 X2 X3 X4 X5 X6 X7

4 = merge

@ W(reducesortS) € O(nlogn) =
mergesSort.

@ mergeSort and insertionSort are special
cases of reduceSort using different reduction
orders.
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REDUCE ORDER

@ Result of reduce depends on the order when f
IS not associative

@ When f is associative, different orders result in
different costs.
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SYNOPSIS

@ The collect operation

@ The map-collect-reduce paradigm
@ Sets

e Tables

COLLECT, SETS AND TABLES 2/33
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THE COLLECT OPERATION

e Group items that share a common key.

Data = ((“jack sprat”, “15-210"),
(“jack sprat”, “15-213"),
(“mary contrary”, “15-210"),
(“mary contrary”, “15-251"),
(“mary contrary”, “15-213"),
(“peter piper”, “15-1507),
(“peter piper”, “15-2517),

1
rosters = ((“15-150", ( “peter piper”,...))
(“15-210", ( “jack sprat”, “mary contrary”,...))
(“15-213", ( “jack sprat”,...))
("15-2517, (“mary contrary”, “peter piper” ))

)
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THE COLLECT OPERATION

@ Very common operation in Relational Databases

e Usually called the Group by operation.

rosters = ((“15-150”, ( “peter piper”,...))
(“15-210", ( “jack sprat”, “mary contrary”,...))
(“15-213", ( “jack sprat”,...))
(“15-251", ( “mary contrary”, “peter piper”))
.

e Students are grouped by Course Numbers.
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THE COLLECT OPERATION

collect:(a x a— order) — (a x ) seq
— (a x B seq) seq

Q@ o x a — order is a function for comparing keys
of type «
@ (a x ) seq is a sequence of key-value pairs

@ (a x 8 seq) seq is the resulting sequence:

» each unique « value is paired with a sequence of all
g values it appears with

COLLECT, SETS AND TABLES 5/33
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THE COLLECT OPERATION

collectStrings = collect String.compare

rosters = collectStrings({(n,c):(c,n) € Data))

1/

rosters = ((“15-150", ( “peter piper”,...))

(“15-210", ( “jack spmt” “mary contrary”,...))
( A

( A

“15-213", “jack sprat”,...))
“15-251",

)

mary contmry”, “peter piper”))

@ ((n,c):(c,n) € bata) arranges the data
appropriately.
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THE COLLECT OPERATION

e How would you implement collect?
» Sort the items on their keys
» Partition the resulting sequence
» Pull out pairs between each key change

COLLECT, SETS AND TABLES 7/33
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THE COLLECT OPERATION

@ The dominant cost of collect is in sorting.
e Work is O(W;nlog n), Span is O(S;log® n)

» W, work bound for the comparison function
» S. span bound for the comparison function
@ A O(n) work can be implemented with hashing.

» Need a separate hash function
» Output not in sorted order
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USING COLLECT IN MAP-REDUCE

@ The map-reduce paradigm is used to process
very large collection of documents.

» A document is a collection of words/strings.

» Not the mapReduce of 15-150!
e map-reduce paradigm = map-collect-reduce(s).
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USING COLLECT IN MAP-REDUCE

@ fn, maps each document to a sequence of
key-value pairs.

» fp: (document — (key x «) seq)

e All key-value pairs in a document are collected.

e f, is applied to the keys to get a single value for
a key.
» . key x a seq — 3
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AN EXAMPLE

docs = (“this is a document”,
“this is is another document”,
“a last document”)

!

(“this”, 1), (“is”,1),(“a”, 1), (“document” 1),
(“this”, 1), (“is”,1),(“is”, 1), (“another” 1),
(“document” 1), (“a”,1), (“last”, 1), (“"document” 1))

!

(“a”,2), (“another”, 1), (“document”, 3), (“is”, 3), (“last”, 1),
(“this”, 2))
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MAPREDUCE IN SML

1 fun mapCollectReduce f, f, docs =

2 let

3 pairs= flatten(f,(S): s € docs)

4 groups = collect String.compare pairs
5 in

6 (f(9) : g € groups)

7 end

e rlatten((a/b,c),(d,e))=(ab,c,d,e)
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MAPREDUCE IN SML

1 fun mapCollectReduce f, f, docs =

2 let

3 pairs= flatten(f,(S): s € docs)

4 groups = collect String.compare pairs
5 in

6 (f(9) : g € groups)

7 end

fun f,(doc) = ((w,1): tokens doc)
fun f.(w,s) = (w, reduce + 0 9)

COLLECT, SETS AND TABLES 13/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



MAPREDUCE EXAMPLE IN SML

fun f,(doc)=((w,1): tokens doc)
fun f.(w,s) =(w, reduce + 0 9)

countWords = mapCollectReduce f, f.

countWords (“this is a document”,
“this is is another document”,
“a last document”)

= ((“a” 2) (“another”, 1), (“document”, 3),(“is”, 3),
(“last”, 1), (“this”, 2))

COLLECT, SETS AND TABLES
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SETS

@ Sets play a very important role in math.
e Often needed in many algorithms.

e Many languages either support sets directly or
have libraries for sets.

e In 15-210 we use a purely functional definition
for sets:

» When updates are done, a new set is returned.
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SETS AS AN ADT

@ U is a universe of elements.

e The SET ADT is a type S that represents the
power set of U.

empty N = 0

size(S) . S = Z>o = |5

singleton(e) : U—S = {e}

filter(f,S) : (U—{T,F}) = {se S|f(s)}
xS) =S
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SETS AS AN ADT

f£ind(S, e) . SxU = [{se S|s=¢e}| =1
— {T,F}

insert(S,e) . SxU—-S = Su{e}

delete(S,e) . SxU—=S = S\{e}

intersection(S5,S) : SxS—=S = $§NS

union(81, 82) . SxS—=S = SUS

difference(Sy, Sy) . SxS—=S = §\S

e What is the relationship between these two
groups?
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SETS AS AN ADT

@ We do not really need find, insert, delete!

find(S,e) = size(intersection(S,singleton(e))) =1
insert(S,e) = wunion(S,singleton(e))
delete(S,e) = difference(S,singleton(e))

@ intersection, union, and difference

» can operate on multiple elements, and
» are suitable for parallelism
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COST MODEL FOR SETS

e Underlying data structure can be
» hash-tables

» balanced trees
e We will assume a balanced-tree implementation.

e We will assume comparison of two set elements
take

» W, work and S, span.
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COST MODEL FOR SETS

size(S)
singleton(e)

ecS

filter(f,S) O <Z W(f(e))) O (Iog |S| + max S(f(e)))

find(S, e)
insert(S,e) O(W, -log |S]) O(S; - log |S])
delete(S,e)
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COST MODELS FOR SETS

intersection(Sy, Sy) Work = O (W, - m-log(1 + 2))

union(Sy, Sz) =
difference(Sy, Sy) Span = O (S; - log(n+ m))
n=max(|Si/,|Szl) m = min(|S], |Sz])

@ Sets are equal size (n = m)

» Work = O(W, - m-log(1+1)) = O(W, - n)
» Span = O(S; - log n)

@ One of the sets is a singleton (m = 1)

» Work = O(W; -log(1 +n)) =0
» Span = O(S.-log(n+1))=0
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TABLES

e Table is an ADT for sets of key-value pairs.

[~ {(k1 — V1), (kg —> Vg), Cey (kn —> Vn)}
() {(k1, V1), (kg, Vg), Cee (kn, Vn)}

e Each key appears only once

e Many languages provide either built-in support
or libraries.
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TABLES

e K is the universe of keys.

@ V is the universe of values.

e T is a type that represents the power set of
KxV

» restricted so that each key appears at most once.
» S is the power set of K.
» Z>o denotes the positive integers.
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TABLE FUNCTIONS

empty . T = 0
size(T) . T — Z>o = |T|
singleton(k, V)  KxV =T = {(k,v)}
filter(f, T) (V= A{T,F}) xT)
— T = {(k,v) e T|f(v)}
map(f, T)  (KxV—=V)xT)
- T = {(kf(k,v))[((k,v) e T)}
insert(f, T,(k,v)) : (VxV—=V)xT
X(KxV)—-T =

(T {(k, )L
{(k, f(v,v))}
it (k,v')e T
TU{(k,v)}
otherwise
delete(T,Kk)) : TxK—>T = {(K',v)e T|lk#K'}
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TABLE FUNCTIONS

£ind(T, k) . TxK— (VUL) - { i gﬁégisz
merge(f, T1,T2) : (VXV V) xTxT->T =
{(k,f(vi,w))} (k,v1) € Ty A(k,vo) € T
{ {(k, V1)} (k, V1) c Ty A (k, Vg) §é IE
keK {(k, Vg)} (k, V2) e Tr A (k, V1) ¢ T
extract(T,S) : TxS—T = {(k,v) e Tlk e S}
erase(T,S) . TxS—T = {(k,v)eTlk ¢ S}
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TABLE EXAMPLES

@ Suppose we have the two tables:

» Summer= {tree — green, sky — blue, cmuq —
tan}
» Fall = {grass — gray, tree — brown}

e merge (fn(a,b) = b) Summer Fall

» {grass — gray, tree — brown, sky —
blue, cmuq — tan}
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TABLE EXAMPLES

@ Suppose we have the two tables:

» Summer= {tree — green, sky — blue, cmuq —
tan}
» Fall = {grass — gray, tree — brown}

@ extract(Summer,{sky, grass})
» {Sky — blue}
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TABLE EXAMPLES

@ Suppose we have the two tables:

» Summer= {tree — green, sky — blue, cmuq —
tan}
» Fall = {grass — gray, tree — brown}

@ erase(Summer,{sky, grass})
» {tree — green, cmuq — tan}
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TABLE EXAMPLES

@ Other useful functions from the library

@ collect:(key x a) seq — («a seq) table

@ fromSeq: (key x a) seq — « table
» fromSeq(A) ={k— Sy :(k— S) € collect(A)}
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TABLE FUNCTIONS

e Major differences from sets:
» find returns the value if key is in the table else
returns L (NONE).
» insert/merge need a function to combine if the
key is already in the/both table(s).

@ Just as with sets, there is symmetry between

» extract and £find
» merge and insert
» erase and delete
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COST MODELS FOR TABLES

Work Span

size(T) o(1) o(1)

singleton(k, V)

filter(f, T) o( 3 W(f(v))) O(Iog|T|+(l[naxTS(f(v)))

(k)eT V)€
map(f, T) o( > W(f(k, v))) o, (( max_ S(f(k, v)))
(k,v)ET ’
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COST MODELS FOR TABLES

Work Span
f£ind(S, k)
insert(T,(k,V)) O(W;log |T)|) O(Sclog|T))
delete(T, k)

extract(Ty, T?)
merge(Ty, To) O (Wemlog(1+ Z2)) O(Sclog(n+ m))
erase(Ty, Tp)

n=max(|T1|,|T2]) m=min(|Ty|,|T2|)
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SUMMARY

e Collect

e Map-Collect-Reduce
@ Sets

e Tables
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SYNOPSIS

@ How search engines work
e Single-threaded sequences
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BUILDING A SEARCH ENGINE

How do search engines work?

e What are the inputs?
» (Billions and billions of) documents consisting of
“words”.
e How do we interact with the search engine

» (Boolean) Keyword queries
» List of matching documents (URLS)
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HOW DOES THE SEARCH REALLY
WORK?

e User inputs a query (say a couple of words)

@ SE starts searching for the words in each
document one-by-one

@ Returns documents when they match.

e Not really!
» Not scalable (even for one user)

@ Preprocessing

SETS AND TABLES-II 4/28
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PREPROCESSING

Crawlers

[ ¢ >
Preprocessing

Index

l

Query
Query ———>< Processing >———> Result
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PLAN

e What kinds of queries we want to have.
@ What is the interface we want to have.

e How do we implement all these
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QUERIES

@ Bingle (:-) supports logical queries on words
iInvolving
» And: “15210” And “course” And “slides”
» Or: “15210” or “15150”

» AndNot: “15210” AndNot “Pittsburgh”

@ “CMU” And “fun” And (“courses Or “clubs”)

@ Result would be a list of webpages/documents
that match.
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THE INTERFACE

signature INDEX = sig
type word = string
type docId = string
type "a seq
type 1index
type doclist

val makeIndex : (docId x string)

val find : index —-> word —-> doclList
val And : docList * docList
val AndNot : docList x docList

val Or : docList * doclList
val size : doclList —> int

val toSeqg : docList —> doclId seq

SETS AND TABLES-II
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DOCUMENTS

@ Indexing a tweet database.

“lack”, “chess club was fun”),

“mary”, “| had a fun time in 210 class today”),

“nick”, “food at the cafeteria sucks”),

“sue”, “In 217 class today | had fun reading my email”),
“peter”, “I had fun at nick’s party”),

“john”, “tiddlywinks club was no fun, but more fun than 218"

)

T={

N e e e e U e e

@ “jack” is a document id
@ “chess club was fun” is a document
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USING THE INTERFACE

T = ( (jack”, “chess club was fun”),

(
(“mary”, “l had a fun time in 210 class today”),

(“nick”, “food at the cafeteria sucks”),

(“sue”, “In 217 class today | had fun reading my email”),
(

(

)

13

“peter”, “I had fun at nick’s party”),
“lohn”, “tiddlywinks club was no fun, but more fun than 218”),

f=(find (makeIndex(T))): word — doclist

toSeqg(And(f "fun", or(f "class", f "club")))
= <"jack", "maryn’ "Sue", "john">
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USING THE INTERFACE

T = ( (jack”, “chess club was fun”),
(“mary”, “l had a fun time in 210 class today”),
(“nick”, “food at the cafeteria sucks”),
(“sue”, “In 217 class today | had fun reading my email”),
(“peter”, “ had fun at nick’s party”),
(
)

“lohn”, “tiddlywinks club was no fun, but more fun than 218”),

size(AndNot(f "fun", f "tiddlywinks"))
= 4
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THE MAKEINDEX FUNCTION

1 fun makeIndex(docs) =

2 let

3 fun tagWords(id,str)=((w,id): W € tokens(str))
4 Pairs = flatten(tagWords(d):d € docs)

5 Words = Table.collect (Pairs)

6 In

7 {ww— Set.fromSeqg(d): (W w— d) € Words}

8 end

@ What does tagWords do?

tagwords(“jack”, “chess club was fun”)
i <(l/CheSS//,//]‘ack//),(llclub//, //]'ack//), (l/waS//’ //]‘ack//), (Ifun’,, I/]'ack//)>
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THE PAIRS FUNCTION

1 fun makeIndex(docs) =

2 let

3 fun tagWords(id,str)= ((w,id): W € tokens(str))
4 Pairs = flatten{tagWords(d):d € docs)

5 Words = Table.collect (Pairs)

6 in

7 {ww— Set.fromSeq(d): (w+— d) € Words}

8 end

@ What does Pairs do?

Pairs = ((“chess”,“jack”),(“club”, “jack”), (“was”, “jack”) ,
(/ifun,,, /I]’ackll), (III/// Ilmaryll)’ (/lhadlll Ilmaryll)’
(Iifunlll //maryll), . .>
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THE COLLECT FUNCTION

1 fun makeIndex(docs) =

2 let

3 fun tagWords(id,str)=((w,id): W € tokens(str))
4 Pairs = flatten{tagwWords(d):d € docs)

5 Words = Table.collect (Pairs)

6 1in

7 {ww— Set.fromSeqg(d): (W — d) € Words}

8 end

@ What does collect do?

words = {(“a” — (“mary”)),
(//atll H < //mary,” ”peter V44 >)7

(Ifun 144 H < II]'aCk/I, /Imary//, Ilsue//, ”peter //, /I]'Ohn// >),
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FINAL TOUCHES

fun makeIndex(docs) =
let
fun tagmWords(id, str)= ((w, id): w € tokens(str))
Pairs = flatten{tagWords(d):d € docs)
Words = Table.collect (Pairs)
N
{w— Set.fromSeq(d): (w+— d) € Words}
end

OINNCT s WDN -

e What is happening here?
@ Sequences are converted to tables.
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MAKEINDEX COSTS

fun makeIndex(docs) =
let
fun tagmWords(id, str)= ((w, id): w € tokens(str))
Pairs = flatten{tagWords(d):d € docs)
Words = Table.collect (Pairs)
In
{w— Set.fromSeq(d) : (w+— d) € Words}
end

IO CT - WDN -

@ Assuming tokens have a upper bound on length

> makelndex(n) S O(n|09 n)! Smakelndex € O(|Og2 n)
» What does n represent?

SETS AND TABLES-II 16/28
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REST OF THE INTERFACE

fun find T v=Table.find T v
fun And(s(,s2) =51 NS

fun or(sy,8)=5USs>

fun AndNot(si,82) =81\ S

fun size(s)=|s]

fun toSeqg(s) = Set.toSeq(s)

SETS AND TABLES-II 17/28
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SINGLE-THREADED ARRAY
SEQUENCES

e Updating an array sequence in an imperative
language takes O(1) work.

e In a functional setting, everything is persistent.
@ An update to a sequence of n elements needs
» O(n) work for arraySequence implementation to
copy and update.
» O(log n) work for t reeSequence implementation
(because of substructure sharing)
e Interfaces do not provide functions for updating
a single position.
» to discourage sequential (and expensive)
computation.
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SINGLE-THREADED ARRAY
SEQUENCES

@ A map can be implemented as follows

fun map f S=
iter (fn((i,S'),v)= (i+1,update (i,f(v)) S'))
(0,5)
S

o lterates ntimes (i =0,...n—1)

e and updates the value S; with f(S;).

@ arraySequence: Each update will do O(n)
work for a total O(n?) work

@ treeSequence: Each update will do O(log n)
work for a total O(nlog n) work.

19/28
SPRING 2014
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SINGLE-THREADED SEQUENCES

@ A new ADT: Single Threaded Sequence: stseq

e Useful when a bunch of items need to be
updated.

e Straigthforward interface

@ Cost specification imply non-functional stuff
under the hood!

SETS AND TABLES-II 20/28
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STSEQ INTERFACE AND COSTS

Work  Span
fromSeg(S) : a seqg — « stseq o(S)) 0O(1)
Converts from a regular sequence to a stseq.
toSeqg(ST) : a stseqg — a seq o(S)) 0O@)
Converts from a stseq to a regular sequence.
nth ST 1 : « stseq — 1nt — a 01) 0(@1)
Returns the /" element of ST. Same as for seq.
update (i,v) S : (int X «a) — o(1) 0(1)
a stseq — « stseq
Replaces the i element of S with v.
inject I S: (int X «) seq o(1) 0o®1)

— « stseq — « stseq
For each (i, v) € I replaces the i element of S with v.

@ Cost bounds for nth and update only valid for
the “current” version of the sequence.

SETS AND TABLES-II 21/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



MAP WITH STSEQ

1 fun map f S =let

2 S’ = StSeq. fromSeq(S)

3 R=iter

4 (fn ((i,S"),v) = (i+1, StSeqg.update (i,f(v)) S"))
5 (0,5

6 S’

7 in

8 StSeq.toSeq(R)

9 end

e Overall work and span is O(n) (Why?)
e Multiple updates can be done in O(n) time.
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IMPLEMENTING STSEQ

e Keep two full copies of the sequence
» Original and Current
» We keep a change log: updates to the original to get
Current.
@ When Current is updated
» We create a “new” Current with the update, and
update change log.
» Mark the previous version as old, remove its Current
and but keep the old change log.

@ Any item from the current version is accessible
In constant work.

@ Any item from the any previous version is
accessible but needs more work.
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IMPLEMENTING STSEQ

Change Log

Original ( ) Current
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IMPLEMENTING STSEQ

Change Log

Original ( ) Current

update(3, 5)

Original ( ) Old Version1

Original ((3;5) ) 5 [ Current

e There really is only one copy of the Original.
e All point to that copy.

SETS AND TABLES-II 25/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



IMPLEMENTING STSEQ

Original ( ) Old Version1

Original ((315) ) 5 [ Current

update(6, 7)

Original ( ) Old Version1

Original ((3,5) ) Old Version2

Original ((6, 7)(3,5)) 5 |[Current | 7
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IMPLEMENTING STSEQ

Original ( ) Old Version1
Original ((3;5) ) Old Version2
Original ((67 7)(3’5) ) 5 | Current| 7

updateOIdversion2(4’ 5)

Original () Old Version
Original ((3,5)) Old Version2
Original ((4, 5)(3,5) ) o versions
Original ((6, 7)(3,5) ) 5 | Current | 7
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SUMMARY

@ How search engines work
e Single-threaded sequences
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SYNOPSIS

e Graphs

e Graph terminology/definitions
e Graph representations/costs.
e Graph search
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GRAPHS

e Most versatile ADT in the study of algorithms

e Captures relationships between pairs of items

@ A graph consists of

» a set of V vertices/nodes
» asetedgesEC Vx V

e Edges represent relationships between nodes.

» directed edges (asymmetric relationships)
» undirected edges (symmetric relationships)

e Nodes or edges can have additional weights or
values associated.

GRAPHS 3/35
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SOCIAL NETWORKS
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SOCIAL NETWORKS - QUESTIONS

e Who is popular?

e What is the largest “clique”?

@ Do | know somebody who knows X?
e What is the “diameter”?

GRAPHS 5/35
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TRANSPORTATION NETWORKS
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TRANSPORTATION NETWORKS -
QUESTIONS

@ What is the shortest route from NYC to Los
Angeles?
» without Toll Roads?
» without any state roads?

e What is the expected driving time from Boston
to Atlanta?

» considering traffic congestion?
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FLOW NETWORKS
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FLOW NETWORKS - QUESTIONS

@ Is it possible to send 1M cubic meters of gas to
Paris daily?

e What is the maximum gas that can be pumped
from Azerbaijan to Italy?
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OTHER EXAMPLES OF GRAPHS

e Course prerequisite relation graphs
(directed-acyclic)

e Web-page linkage graph

e Protein-protein interaction graph

@ Neural networks

@ Semantic networks

GRAPHS 10/35
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DIRECTED GRAPHS

e A directed graph (digraph)is G=(V, E)

» V is a set of vertices (or nodes), and

» E C V x Vis a set of directed edges (or arcs).
e Each arc is an ordered pair e = (u, v)

» Arcs represent asymmetric relationships

» A graph can have self loops (u, u)

GRAPHS 11/35
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UNDIRECTED GRAPHS

e An undirected graphis G = (V, E)
» V is a set of vertices (or nodes), and
» EC V x Visasetof edges
e Each edge is an unordered pair e = {u, v}

» Edges represent symmetric relationships
» Undirected graphs do not have self-loops.

GRAPHS 12/35
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NEIGHBORS

e In an undirected graph, G= (V, E), a vertex u is
a neighbor of v if {u, v} € E.

e In an undirected graph,
Ng(v) ={u | {u,v} € E} is the neighborhood of
v

e If Uis a set of nodes,
» Ng(U) = UycuNg(Vv) is the neighborhood of U

GRAPHS 13/35
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NEIGHBORS

e In a directed graph, G = (V, E),
> uis anin-neighbor of vif (u,v) € E
» U is an out-neighbor of v if (v,u) € E
e In a directed graph
» Nz (u) is the set of in-neighbors of wu.
» NZ(u) is the set of out-neighbors of u.
» When we use Ng(v), we mean out-neighbors.
e If U is a set of nodes,
> NZ(U) = UyeuyNZ (u) is the out-neighborhood of U.

GRAPHS 14 /35
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NODE DEGREES

e Undirected graphs: degree dg(v) of a vertex v
is |[Ng(v)
e Directed graphs:
> in-degree of a vertex vis d;(v) = [Ng (V)|
» out-degree of a vertex vis di(v) = [NS(V)|
e We will remove subscript G if it is clear from
context.

GRAPHS 15/35
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PATHS

@ A pathis a sequence of adjacent vertices.
e Foragraph G=(V, E)

Paths(G) = {P € V* |1 <i<|P|,(P;, Pi+1) € E}

» V7 is denotes of sequence of length 1 or more.
» Repeats are allowed.

e The length of a path is the number of edges.

e A path may have an infinite length.
e A simple path has no repeated vertices.
» Often “simple” will be dropped.

GRAPHS 16/35
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REACHABILITY

@ A vertex v is reachable from a vertex u in G if
there is a path starting at u and ending at v in G.

e Rg(u) is the set of vertices reachable from wu.

@ An undirected graph is connected if all vertices
are reachable from all other vertices.

e A directed graph is strongly connected if all
vertices are reachable from all other vertices.

GRAPHS 17/35
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CYCLES

@ A cycle is a path that starts and ends at the
same vertex.

e In a directed graph a cycle can have length 1
(I.e. a self loop).

@ In an undirected graph we require that a cycle
must have length at least three.

» Going from u to v and back to u does not count.
@ A simple cycle is a cycle that has no repeated

vertices other than the start vertex being the
same as the end.
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TREES, FORESTS AND DAGS

@ An undirected graph with no cycles is a forest.
e If it is connected then it is a tree.

@ A directed graph is a forest or tree, if it becomes
a forest or tree, when all arcs are made
undirected.

@ In a rooted tree one node is the root.

e For a directed graph, all edges are either
towards the root or away from the root.

e A directed graph with no cycles is a directed
acyclic graph (DAG)
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DISTANCE AND DIAMETER

e The distance dg(u, v) from a vertex u to a vertex
v in a graph G is the shortest path (minimum
number of edges) from u to v.

@ The diameter of a graph is the maximum
shortest path length over all pairs of vertices:
diam(G) = max {dg(u,v) : u,v € V}.
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MULTI-GRAPHS

e Multi-graphs allow multiple edges between
same pair of vertices.
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SPARSE AND DENSE GRAPHS

o Letn=|V|and m= |E|.

e A directed graph can have at most n® edges.

n(n—1)
2

@ An undirected graph can have at most

edges.

e A graph is sparse if m < n?. Otherwise it is
called dense.

e In most applications, the graphs are sparse.

> Nobody on Twitter has 10° followers
» Though some have very large number— but still small
when compared to n.
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OPERATIONS ON GRAPHS
(1)
Q
Q
o
Q
%
Q

GRAPHS 23/35

Map over the vertices v € V.
Map over the edges (u, v) € E.

Map over the neighbors of a vertex v € V, or in a directed
graph over the in-neighbors or out-neighbors.

Return the degree of a vertex v € V.
Determine if an edge (u, v) isin E.
Insert or delete vertices.

Insert or delete edges.
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ADJACENCY MATRIX
REPRESENTATION

@ Assume vertices are numbered 1,2,...,n (or
0,1,....n—1).
e Graph is represented by an n x n matrix of
binary values in which location (/,j) is 1 if
(/,j) € E and 0 otherwise.
» For undirected graphs, matrix is symmetric and has
O’s along the diagonal.

0‘9

- O O O

.
1
’
0

—_ OO0 =

GRAPHS 24/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



ADJACENCY LIST REPRESENTATION

e Graph is represented by an array A of length n
where each entry A[/] contains a pointer to a
linked list of all the out-neighbors of vertex i.

» In an undirected graph edge {u, v} will appear in the

adjacency list for both u and v (not always
necessary!)

1__—>3I—>4I

°‘° 1
3 —» 1|—> 4

|
(O—& e e ]
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OTHER REPRESENTATIONS

e Adjacency Array

e Edge List
((1,3),(1,4),(2,4),(3,1),(3,4),(4,1),(4,2),(4,3))

GRAPHS
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MORE ABSTRACT REPRESENTATIONS

e Edge Sets
» Directed graphs: Set items are pairs (u, v)
representing arcs.
» Undirected graphs: Set items are sets {u, v}

representing edges.

e Edge Tables

» Directed graphs: Table items are pairs
((u,v) — w,,) representing arcs and associated

values.
» Undirected graphs: Set items are pairs
({u, v} — wy,) representing edges and associated

values.

27/35
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EDGE SETS AND TABLES

@ Similar to edge lists but abstracts from
underlying representation.

@ Search for an edge needs O(log m) work.

e Searching for neighbors is not efficient: O(m)
work but O(log m) span. (Why?)

(€3:9:N3:
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ADJACENCY TABLES

e Table items are (key, value) pairs.

@ Keys are vertex/node labels.
@ Values are either sets or tables
» Sets: All neighbors node labels or out-neighbor node
labels.
» Tables: All pairs of neighbors node labels and
associated edge values.

e Accessing neighbors needs O(log n) work and
span.

e (Constant work) Map over neighbors needs
O(dg(u)) work and O(log dg(u)) span.

e Looking up an edge needs O(log n) work and
span.
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COST SUMMARY

edge set adj table
work span work span
isEdge(G, (u,v)) O(logm) O(logm) O(logn) O(logn)
map over O(m)  O(log m) O(m) O(log n)
all edges
map over O(m) O(logm) O(logn O(logn)
neighbors of v +dg(v))
dg(Vv) O(m) O(logm) O(logn) O(logn)

GRAPHS
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GRAPH SEARCH

e Fundamental operation of graphs

» Start at some (set of) node(s)

» Systematically visit all reachable nodes (only once)
e Used for determining properties of

graphs/nodes

» Connected?

» Bipartite?

» Node v reachable from node u?

» Shortest path from v to v?
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GRAPH SEARCH

For all graph search methods vertices can be
partitioned into three sets at any time during the
search:

@ vertices already visited (X),

@ the unvisited neighbors of the visited vertices,
called the frontier (F),

© and the rest.

GRAPHS 32/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



GRAPH SEARCH METHODS

e Breadth-first Search (BFS)
» Parallelizable but for shallow graphs!
@ Depth-first Search (DFS)

» Inherently sequential!

@ Priority-first Search (PFS)

@ All reachable nodes from a source are visited,
but in different orders.
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GRAPH SEARCH TREES

@ Each search starting from a source node
creates a search tree.

@ We refer to the source node as the root.

A

@ Which search schemes do these correspond to?
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SUMMARY

e Graphs

e Graph terminology/definitions
e Graph representations/costs.
e Graph search
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SYNOPSIS

@ Breadth-first search
@ BFS Extensions
@ BFS Costs

e BFS with Single-threaded Sequences

BREADTH-FIRST SEARCH 2/34
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GRAPH SEARCH

e Fundamental operation of graphs

» Start at some (set of) vertex(s)
» Systematically visit all reachable vertices (only once)

e Used for determining properties of
graphs/vertices

Connected?

Bipartite?

Vertex v reachable from vertex u?
Shortest path from u to v?

>
>
>
>
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GRAPH SEARCH METHODS

e Breadth-first Search (BFS)
» Parallelizable but for shallow graphs!
@ Depth-first Search (DFS)

» Inherently sequential!

@ Priority-first Search (PFS)

@ All reachable vertices from a source are visited,
but in different orders.

BREADTH-FIRST SEARCH 4/34
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BREADTH-FIRST SEARCH

@ Applicable to a variety of problems
» Connectedness

Reachability

Shortest path

Diameter

Bipartiteness

e Applicable to both directed and undirected
graphs

» For digraphs, we only consider outgoing arcs.

v

vV v VY
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GRAPH SEARCH

e For all graph search methods vertices can be
partitioned into three sets at any time during the
search:

@ vertices already visited (X C V),

© the unvisited neighbors of the visited vertices, called
the frontier (F),

© the rest; unseen vertices.

@ The search essential goes as follows:

while vertices remain
—vlislt some unvisited neighbors
of the visited set

@ Web navigation analogy.

BREADTH-FIRST SEARCH 6/34
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BREADTH-FIRST SEARCH

e Starting from a source vertex s

» Visit all vertices that are (out-)neighbors of s (at
distance 1)

» Visit all vertices at distance 2 from s

» Visit all vertices at distance 3 from s, etc.

@ A vertex at distance / + 1 must have a
(in-)neighbor at distance /.

BREADTH-FIRST SEARCH 7/34
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BREADTH-FIRST SEARCH

@ BFS needs to keep track of vertices already
visited
@ X;: all vertices visited at start of level |
» Vertices in X; have distance less than /.
e F;: all unvisited neighbors of vertices in X;
» Vertices in F; have distance exactly /.

e “Visit” = Do something with the vertices (e.g.,
print it)

@ Xiy1 =X UF,

® Fiv1 = Ng(Fi) \ Xiv1 (Ne(Fi) = Uycg N(v))

BREADTH-FIRST SEARCH 8/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



BREADTH-FIRST SEARCH

1 fun Brs(G=(V,E), s)=
2 let
3 fun BFS'(X, F, i) =
4 if |F|=0 then (X,/)
5 else let
6 X =XUF % Visit the Frontier
7 N = Ng(F) % Determine the neighbors
8 % of the frontier
9 F'=N\X % Remove vertices that have
10 % been visited
11 in BES' (X', F', i+ 1)% Next level
12 end
13 in BFS'({}, {s}, 0)
14 end
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SOME DETAILS

@ Adjacency table representation
» Entries of the sort (Vertex, { Neighbors}).

e Remember Ng(F) = U, N(v)

fun Ng(F) = Table.reduce Set.Union {}
Table.extract(G, F)
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PROVING BFS CORRECT

e State and prove an invariant.
e All reachable vertices are returned.
e Algorithm terminates.

BREADTH-FIRST SEARCH 11/34
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PROVING BFS CORRECT

LEMMA

In algorithm BFS when calling BFS'( X, F, i), we have
o X={veVs|dg(s,v)<i}, and
o F={veVg|dag(s Vv)=i}

@ By induction on levels i

@ Forbasecase (i =0) Xo =1}, Fo = {s}
» Only s has distance 0 from s
» No vertex has distance < 0 from s.

@ So base case is true!

BREADTH-FIRST SEARCH 12/34
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PROVING BFS CORRECT

@ Assume claims are true for /, show for j + 1.
@ X1 Is the union of

» X;: all vertices at distance < i
» F;: all vertices at distance = i/

e Hence X, 1 must have all vertices at distance
< I+ 1
@ Fiiq = Ng(Fi)\ Xiy1
» Vertices in F; have distance exactly i
» Vertices in Ng(F;) have distance no more than / + 1
» Vertices in Ng(F;) are reachable from a vertex at
distance i

» When we remove Xj, 1 from Ng(F;) only unvisited
vertices at distance exactly / + 1 remain.
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ADDITIONAL OBSERVATIONS

@ If vis reachable from s and has distance d,
there must be a vertex u at distance d — 1.

» BSF will not terminate without finding v.
e For any vertex é(s, v) < | V|, so algorithm will
terminate in at most | V| rounds/levels.
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EXTENSIONS TO BFS

e Finding shortest distances
e What do we need to keep?

1 fun BFS(G,s) = let

2 fun BFS(X, F, i)=

3 if |[F|=0 then X

4 else let

5 X =XU{v—i:veF}
6 F' = Ng(F) \ domain(X’)
7 in BFS'(X’, F', i+1) end
8§ in BFS'({}, {s}, 0) end
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EXTENSIONS TO BFS

e Finding BFS trees.

S\/\/ 5\11/%3% s\l/%j

@ There could be multiple BFS trees.
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FINDING BFS TREES

e What do we need to keep for each vertex?

e Record a parent
» |f visin a frontier, then there should be one or more
visited vertices u such that (u, v) € E.
» Any of those could be the parent of v.

S\/\/ 5\11/%3% s\l/%j
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IDENTIFYING PARENTS

e Post-process the BFS distance table

e Identify one (in-)neighbor vertex in N=(v) whose
distance is one less.

@ Another way is to keep a table of vertices
mapping to parents.

» Foreach v € F, generate atable {u— v:ue N(v)}
» Maps each neighbor of v back to v.

@ Merge these tables to X
» Choose one if you have multiple parents.
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COST ANALYSIS FOR BFS

e Most graph algorithms do NOT use divide and
conquer.

» S0 no natural way to develop recurrences and solve
them.

e Instead, we just count steps
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COST ANALYSIS FOR BFS

e BFS works in a sequence rounds (one per level)

e We can add up work and span in each round.

» But work at a level depends on number of outgoing
edges from the frontier!

e Take a more global view
» Each vertex appears exactly once in some frontier.
» All their (out-)edges are processed once.

@ Wges(n,m)= W,n+ Wem
» n=|V|and m = |E]
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COSTS ANALYSIS FOR BEFS

@ Span is a bit more tricky!

@ Sgrs(n, m,d) = S;d where d is the maximum
distance (d = max,cy (S, v))

@ Assuming W, = O(log n) and W, = O(log n)
and span/level S; = O(log® n)

Wges(n,m) = O(nlogn+ mlog n)
= O(mlogn) (Why?)

Sers(n,m,d) = O(dlog® n)

BREADTH-FIR ST SEARCH
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COSTS PER VERTEX AND EDGE

e Nontrivial operations are

Q X'=XUF
Q@ N =Ng(F)
@ F'=N\X.

@ These all depend on size of F and number of
outgoing edges from F.

o Let [|F[| = > ycr(1+dg(v))

» Vertices and outgoing edges in f.
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COSTS PER VERTEX AND EDGE

Work Span
XUF | O(|F|logn)| O(log n)

N\ X' | O(|F|logn) | O(logn)

@ These come from set cost specs.

Work — O(W, - |F|log(1 + ‘—,'_Z’)) _ O(|F|log n)

Span = O(S; - log(n+ |F|)) = O(log n)

BREADTH-FIRST SEARCH
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COSTS PER VERTEX AND EDGE

Work | Span
NG(F) | O(||F||log n) | O(log® n)

e Graph is represented as a table mapping
vertices to a set of their outneigbors.

fun Ng(F) = Table.reduce Set.Union {}
(Table.extract(G,F))

e Extract vertices from table: Work is O(|F|log n)
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DIGRESSION — BACK TO REDUCE!

fun Ng(F) = Table.reduce Set.Union {}
(Table.extract(G,F))

R(reduce fI1S) = {all function applications f(a, b) in the reduction tree}.

W(reduce f1S) = O (n + Z W(f(a, b)))

f(a,b)eR(f1 S)

S(reduce fI1S) = O (Iog nf(a,b)ng%)((fﬂ s) S(f(a, b)))
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DIGRESSION — BACK TO REDUCE!

LEMMA
For any combine function f: a x @ — « and a
monotone size measure s: a — R, if for any x, y,
Q@ s(f(x,y)) < s(x)+ s(y) and
Q@ W(f(x,y)) < cr(s(x)+ s(y)) for some universal
constant ¢; depending on the function f,

then

W(reduce f1S)=0 <|09 S| 2(1 + S(X))>

xeS

BREADTH-FIRST SEARCH
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BACK TO COSTS

@ In our case « is the set type, fis Set .union, S
the size of a set.
@ Size of the union < sum of the sizes.
© Work of a union < is at most proportional to size of
the sets!

@ SO0 Set .union satisfies the conditions of the

lemma.
@ Fpgn = Table.extract(G,F)
» Fngn is a set of neighbor sets.

W(reduce union {} Fpgn) = O [ log|Fognl Y (14 |nghl)

= O(log n- |
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BACK TO COSTS

S(reduce union {} Fugn) = O(log® n)

e Each union has span O(log n)

@ The reduction tree is bounded by log n depth.

e So atlevel i, W = O(]|Fj|| - log n) and each edge
IS processed once, =
» work per edge is O(log n).
@ Span depends on d
(Ssrs(n, m, d) = O(dlog® n))

» In worst case, d € O(n) = BFS is sequential.
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BFS WITH ST SEQUENCES

@ BFS Costs revisited

Wars(n,m) = O(mlogn)
SBFS(”? m7 d) — O(d |092 n)

@ Using single-threaded sequences reduces costs
to

Wees(n,m) = O(m)
SBFs(n, m, d) — O(d Iog n)

BREADTH-FIR ST SEARCH
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BFS WITH ST SEQUENCES

e \ertices are labeled with integers:
- V:{O,1,...,n—1}
» Integer labeled (IL) graphs.
e We use (array) sequences to represent graphs.
» Constant work access to vertices.
» Neighbors also stored as integer indices
e |IL graphs are implemented with type
(1nt seq) seq
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BFS WITH ST SEQUENCES

e BFS returns a mapping from each vertex to its
parent in the BFS tree.

@ Visited vertices are maintained as
(1Lnt option) stseq
» NONE: Vertex has not been visited.
» SOME (v) : Vertex visited from parent v.
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BFS WITH ST SEQUENCES

1 fun BFS(G: (int seq) seq, S:int)=
2 let
3  fun BFS'(XF: int option stseqg, F:int seq)=
4 if |F|=0 then stSeqg.toSeq XF
5 else let
6 % compute neighbors of the frontier
7 N = fiatten (((u, SOME(V)) : u € G[V]&XF[u] = NONE) : v € F)
8 % add new parents
9 XF' = stSeq.inject(N, XF)
10 % remove duplicates
11 F'=(u:(uv)eN|xru=v)
12 in BFS'(xF', F') end
13 Xy = stseq.tosTseq({NONE: v € (0,...,|G|—1)))
14 in
15 BFS'(stSeq.update(s, SOME(S), Xy), (S))
16 end
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COSTS

XEF: stseq
line work span
flatten | O(||Fi|)| O(logn)

inject | O(||Fi])| O(1)

remove dup. | O(||Fi||) | O(logn)

total across
all d rounds O(m) | O(dlogn)
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SUMMARY

@ Breadth-first search
@ BFS Extensions
@ BFS Costs

e BFS with Single-threaded Sequences
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SYNOPSIS

e Graphs with negative edge weights.
e Bellman Ford Algorithm
@ Cost Analysis
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GRAPHS WITH NEGATIVE WEIGHTS

@ What is a problem with this graph?

SHORTEST WEIGHTED PATHS-I1 3/27
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GRAPHS WITH NEGATIVE WEIGHTS

@ Dijkstra fails! (Why?)

SHORTEST WEIGHTED PATHS-I1
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GRAPHS WITH NEGATIVE WEIGHTS

-10

@ What is a problem with this graph?
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GRAPHS WITH NEGATIVE WEIGHTS

-10
4
¢ V5
2
6

@ Negative cost cycle!
@ There is no shortest path from v5 to v
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GRAPHS WITH NEGATIVE WEIGHTS

e Currency Exchange Arbitrage

QAR

3.65

1.3 @

e 100 USD — 365 QAR — 177.5 TL — 80.68 EUR
— 104.9 USD

» You just made 5 USD out of thin air!
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GRAPHS WITH NEGATIVE WEIGHTS

e | have USDs but | want to buy BPs.

» | can buy directly, or
» | can buy through some intermediate currencies!

@*@R

e Which way will get me more BPs?
@ | need to do this fast!

usD
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SHORTEST PATHS

@ How does this problem relate to the shortest
problem?

» Where are the negative weights?

-1.29

-0.26

@ Weights are — log of the exchange rates!
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SHORTEST PATHS WITH NEGATIVE
WEIGHTS

o Define d(s, t) the shortest weighted path from s

to t using at most / edges.
» S0 the unweighted path length is /!
e Base cases:

> 0a(5,8)=0
» 0a(s,v) =occforallv#s.
@ Induction
K 1(v) = min(6%(v), min (6%(x) + w(x, v))) .

xeN—(v)

e Minimum of 6%(x) + w(x, v) over the
in-neighbors.
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THE BELLMAN FORD ALGORITHM

1 fun BellmanFord(G=(V,E),s)=

2 et

3 fun BF(D, k) =

4 let

5 D' = {v+— min(D,, minueNa(V)(Du +w(u,v))):veV}
6 in

7 if (k=1|V|) then L

8 else if (all{D,=D,:v e V}) then D

9 else BF(D', k+1)

10 end

11 D={v—if v=s then 0 else ©:ve V}

12 in BF(D,0) end
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HoOw BELLMAN FORD ALGORITHM
WORKS

path lengths =0
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HoOw BELLMAN FORD ALGORITHM
WORKS

path lengths < 1
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HoOw BELLMAN FORD ALGORITHM
WORKS

path lengths < 2
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HoOw BELLMAN FORD ALGORITHM
WORKS

path lengths < 3
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HoOw BELLMAN FORD ALGORITHM
WORKS

path lengths < 4
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BELLMAN FORD CORRECTNESS

THEOREM
e Given a directed weighted graph G = (V, E, w),
w : E — R, and a source s, the BellmanFord
algorithm returns the shortest path length from s
to every vertex or indicates that there is a
negative weight cycle in G reachable from s.
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BELLMAN FORD CORRECTNESS

e Use induction on the number of edges k in the
path.

@ Base case is correct, D; = 0.

@ On each step, for all v € V' \ {s}, a shortest path
with at most k + 1 edges
» must consist of a path of at most k edges for vertex u

» followed by a single edge (u, v).
e Taking the minimum combination, gives us the
shortest path with at most kK + 1 edges.
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NEGATIVE COST CYCLES

e This can go at most for n = |V| — 1 rounds

e If we reach round n, there must be reachable
negative cost cycle.

@ Otherwise, Bellman Ford will stop earlier with all
simple shortest paths.
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COST ANALYSIS

e Graph represented as a table.

» (RvtxTable) vtxTable, where first vtxTable
maps vertices to their in-neighbors

G={0—{1—-07,2—~15},1—{2— -2.0}, 2~ {}} .

e Graph represented as a sequence of sequences.

» ((int x eval) seq) seq
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BELLMAN - FORD ALGORITHM

(AGAIN)

1 fun BellmanFord(G= (V,E),s)=

2 let

3  fun BF(D,k) =

4 let

5 D" = {v — min(Dy, min,n-,)(Du + w(u, v))) : v € V}

6 in

7 if (k=|V|) then L

8 else if (all{D, =D, :ve V}) then D

9 else BF(D', k+1)

10 end

11 D={v—if v=s then 0 else cc:veV}

12 in BF(D,0) end

@ Line 5 is tabulate over the vertices

@ Line 8 is tabulate with a reduction over the vertices

SHORTEST WEIGHTED PATHS-I1 21/27

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



COST ANALYSIS

val D' = {v — min(Dy, min,cp,y(Du + w(u, v))) :
veV}

@ Sum work and max span over vertices.
e n=|V|and m= |E|
e For each vertex we have the following costs:

» Find the neighbors find G v: O(log n) work and
span.

» Map over neighbors — find distance D, and add:
O(log n) work and span for each u in the
In-neigborhood.

» Min reduce: O(1 + |Ng(v)|) work and O(log [Ng(v)|)
span.
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WORK PER STAGE-1

val D' = {v — min(Dy, min,cp-(,y(Du + w(u, v))) :

veV}

Operation Over one vertex v Over graph G
Find O(log n) O(nlog n)
Map O(1 +|Ng(v)|logn) O(n+ mlogn)
Min Reduce O(1 +|Nz(v))) O(n+ m)

e Total work is O((n+ m)log n) and assuming
m > n, O(mlog n)
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SPAN PER STAGE-1

val D' = {v — min(Dy, min,cp,y(Du + w(u, v))) :

veV}

Operation Over one vertex v Over graph G
Find O(log n) O(log n)
Map O(1 + log n) O(1 + log n)
Min Reduce  O(log |N;(Vv)|) O(log n)

e Total span is O(log n)
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WORK / SPAN PER STAGE - 2 —
TOTAL COST

elseif (all {D, =D, :v e V}) thenD
e This involves a tabulate and an and-reduction.
e Work = O(nlog n), Span = O(log n)

@ n sequential calls to BF, so total costs are:

W(n,m) = O(n-mlogn)
S(n,m) = O(nlogn)
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COSTS WITH ST SEQUENCES

@ We use IL (integer labeled) graphs.
@ find — nth: O(1) work.

e Similar improvements for looking up neighbors
and distance table.
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SUMMARY

e Graphs with negative edge weights.
e Bellman Ford Algorithm
@ Analysis
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SYNOPSIS

@ Overview of Discrete Probability
e Finding the two largest elements
e Find the k" smallest element.

PROBABILITY AND RANDOMIZED ALGORITHMS 2/28
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RANDOMIZED ALGORITHMS

e Exploit randomness during computation
» Pivot selection in Quicksort
» Average case analysis
» Primality testing
@ Question: How many comparisons are needed to
find the second largest number on a sequence of
n numbers?
» Naive algorithm: 2n — 3 comparisons
» Divide and Conquer algorithm: 3n/2 comparisons
» Simple randomized algorithm: n—1 +2logn
comparisons on the average.

3/28
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OVERVIEW OF DISCRETE
PROBABILITY

e Probabilistic Experiment: outcome is
probabilistic.
e Sample Space (€2): arbitrary and possibly
countably infinite set of possible outcomes.
» Tossing a coin
» Throwing a die/pair of dice.
e Primitive Event: Any one of the elements of Q.
e Event: Any subset of Q2

» Firstdieisab
» Dice sumto 7
» Any die is even.
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PROBABILITY FUNCTION

e Probability Function: Q — [0, 1]
> Prie] =1
ec

e Probability of an event A:

> Prie]

ecA

» Probability of “first die is 4”7
» Probability of “dice sum to to 4”?
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RANDOM VARIABLES

@ Random Variable: X : Q2 — R
» X is the sum of the two die rolls
e Indicator Random Variable: Y : Q — {0,1}

» Y is 1if the dice are the same, 0 otherwise
» Y is 1if the total is larger than 7, 0 otherwise

@ For ac R, the event “X = a” is the set

{we Q| X(w)=a}
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EXPECTATION

@ The expectation of a random variable

Q’Er[] [X] =) X(e)-Prle] .

ec)

@ The expectation of an indicator random variable:

E[Y]= )  Prlel=) Pri{ecQ|p(e)}].

ecQ),p(e)=true ec

» p:{Q) — bool
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INDEPENDENCE

@ Events A and B are independent if the occurence
of one does not affect the probability of the other

Pr[AN B] = Pr[A] - Pr[B]

d1,d2) c Q) | dy = 1} and
di,db) € Q| d» =1} are independent.

= {(d, , dg) e ‘ dy +adb = 4} is NOT independent
of A (Why?)

O™
gy

PROBABILITY AND RANDOMIZED ALGORITHMS
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INDEPENDENCE

e Events A4, ..., Ac are mutually independent if
and only if for any non-empty subset
IC{1,... k},

Pri( Al = | [ Pr[A].
iel icl

e Random variable X and Y are independent if
fixing one does NOT affect the probability
distribution of the other.

» X = “value of the first die” is independent of Y =
“value of the second die”.
» X is NOT independent of Z = “sum of the dice”
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LINEARITY OF EXPECTATIONS

e Important Theorem: given two random variables
Xand Y

E[X] +E[Y]=E[X + Y]

e Easy to show!

> Prle]X(e) + ) Prle]Y(e) = > Prle](X(e) + Y(e))

ec2 ec? ec2

e Expected sum of two dice

» Consider 36 outcomes and take average
» Sum expectations for each dice (3.5 + 3.5 =7)
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LINEARITY OF EXPECTATIONS

@ In general, for a binary function f the equality

F(E[X],E[Y]) = E[f(X, Y)]

IS hot true in general.
» max(E [X],E[Y]) # E [max(X, Y)]
» What is E [max(X, Y)]?

o E[X]XE[Y]=E[X x Y]istrueif Xand Y are
iIndependent.
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EXAMPLES

e Toss n coins with probability of heads, p. What is
the expected value of X, the number of heads?

n

E[X] =) k-PriX =k

k=0
=Sk g1 = p () Wy
k=1
_;k'g(ZDPKUP)nk [because (Z)-g(;D]
=n (ZDPKU p)" "
pa
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SPRING 2014

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS



EXAMPLES

e Toss n coins with probability of heads, p. What is
the expected value of X, the number of heads?

E [X] :zn:k-Pr[X:k]

= nz (nj 1)p/'+1(1 —p)" Ut [because k =+ 1]

_ n.pi (”j 1)p/(1 _ p)=-)

=n-p-(p+(1—p))" [ Binomial Theorem ]
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EXAMPLES

@ Toss n coins with probability of heads, p. What is
the expected value of X, the number of heads?
e Using linearity of expectations.

» X; = I{i-th coin turns up heads}
> X = 27:1 Xi

ZX} =) _EX]=) p=n-p

E[X] =E

» because E [Xj] = p.
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EXAMPLES

@ A coin has a probability p of coming up heads.
What is the expected value of Y representing the

number of flips until we see a head?
@ Write a recurrence!

» With probability p, we'll get a head and we are done,
» With probability 1 — p, we’ll get a tail and we’ll go
back to square one

E[Y] =p-1+(1 —p)(1 +E[Y])
=1+(1-p)E[Y] = E[Y]=1/p.
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FINDING THE TOP TWO ELEMENTS

1 fun max2(S) = let

2 fun replace((my,my),v) =

3 if v<m, then (my, my)

4 else if v <m; then (my,v)

5 else (v, my)

6 start =if S4 > S, then (81,82) else (82,81)
7 in iter replace start S(3,....n)

8

end

@ We will do exact analysis.

® 1+2(n—2)=2n— 3 comparisons in the worst case.
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WORST CASE ANALYSIS

1 fun max2(S) = let

2 fun replace((my,my),v) =

3 if v<m, then (my, my)

4 else if v <m; then (my,v)

5 else (v, my)

6 start =if S4 > S, then (81,82) else (82,81)
7 in iter replace start S(3,...,n)

8

end

e An already sorted sequence (e.g., (1,2,3,...,n))
will need exactly 2n — 3 comparisons.

e But this happens with 1/n! chance!
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A RANDOMIZED ALGORITHM

@ The worst-case analysis is overly pessimistic.

@ Consider the following variant:

e On input of a sequence S of n elements:

Q Let T = permute(S, ), where 7 is a random
permutation (i.e., we choose one of the n!
permutations).

© Run the naive algorithmon T.

@ No need to really generate the permutation!

» Just pick an unprocessed element randomly until all
elements are processed.

» It is convenient to model this by one initial
permutation!
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ANALYSIS

1 fun max2(S) = let

2 fun replace((my,mo),v) =

3 if v<my then (my,my)

4 else if v<my then (my,v)

5 else (v, my)

6 start =if S > S, then (S, S) else (S,, Sy)
7 in iter replace start S(3,..., n)

8 end

@ X;=11if T;is compared in Line 4, 0 otherwise.
@ Y is the number of comparisons

n
Y=1_+n-2 + X

Line 6 Line 3 =3
Line 4
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ANALYSIS

@ This expression in true regardless of the random
choice we're making.

@ We’'re interested in computing the expected value
of Y.

e By linearity of expectation,

1+(n2)+i)(,}

=3

E[Y] = E

= 1+(n—2)+iE[Xi]-
=3
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ANALYSIS

e Problem boils down to computing E [X]], for
i=3,....n
e What is the probability that T; > m»?
» T; > m, holds when T; is either the largest or the
second largestin {T,..., T;}

@ So, what is the probability that T; is one of the
two largest elements in a randomly permuted
sequence of length j?

Llp1_2

o E[X]=1-2=2/i

/

N ~

PROBABILITY AND RANDOMIZED ALGORITHMS

21/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



ANALYSIS

E[Y]:1+(n—2)+§n:E[X,-]

=3

e H, is the n Harmonic number
@ H, <1+ log,n
e E[Y]<n—-2+2log,n
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FINDING THE k" SMALLEST
ELEMENT

e Input: a sequence of n numbers (not necessarily
sorted)

e Output: the k" smallest value in S (i.e., (nth
(sort S) k)).

o Requirement: O(n) expected work and O(log® n)

span.
@ kis 0-based. (For the third smallest element we
set k = 2).

e We can't really sort the sequence!
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FINDING THE k" SMALLEST
ELEMENT

fun kthSmallest(k,S) = let
p = a value from S picked uniformly at random
L=(xeS|x<p)
R=(xeS|x>p)
in if (k< |L|) then kthSmallest(k,L)
else if (k <|S|—|R|) then p
else kthSmallest(k —(|S|—|R|), R)

o Let X, = max{|L|,|R|}

W(n) = W(X,) + O(n)
S(n) = S(Xn) + O(log n)

N OO Ok WwWPN -
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FINDING THE k" SMALLEST
ELEMENT

e We want to find E [X]?

max(L, R)
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FINDING THE k" SMALLEST
ELEMENT

o E[X,] <2 = geometrically decreasing sum
= O(n) work.
o What is Pr[X, < 2n]?
e Since |R| < n— |L|,
Xn < 2” & n/4 < |L] <3n/4
and the probability is

3n/4 — n/4 _ n/2 1

n n 2
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FINDING THE k" SMALLEST
ELEMENT

W(n) = Zpr[x,, =i]-W(@i)+c-n

Using stepwise approximation
< Pr[X, < 2]W(3n/4) + Pr[X, > 2]W(n) +c - n
= sW(3n/4)+ IW(n)+c-n

e _

YW(n) =zW(3n/4)+c-n
— W(n) < W(3n/4) +2¢c-n

e Root Dominated hence solves to O(n).
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FINDING THE k" SMALLEST
ELEMENT

S(n) = S(X,) + O(log n)

S(n)=<> Pr(X,=1i]-S(i)+ clogn

S(n) < S(3n/4)+ 2clogn

@ This solves to O(log® n).
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SYNOPSIS

e Graph Contraction

e Finding Connected Components
e Edge Contraction

e Star Contraction

GRAPH CONTRACTION 2/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



MOTIVATION

@ Most graph search algorithms were either
» sequential, or
» had span dependent on the diameter.

e Can we make these algorithms more parallel?
» Polylogarithmic span: span is bounded by a

polynomial in log n
e We will look at contraction as a way to build
parallel algorithms for some graph problems:

» Graph Connectivity
» Spanning Trees
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GRAPH CONNECTIVITY

@ Two vertices in an undirected graph are
connected if there is a path between them.

@ A graph is connected if all pairs of vertices are
connected.

@ The graph connectivity problems partitions a
graph into its maximal connected subgraphs.

has two connected subgraphs:{a, b, c,d} and {e, f}

GRAPH CONTRACTION
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GRAPH CONNECTIVITY

@ BFS or DFS

» |dentify vertices of a connected component
» ldentify all connected components!

@ BFS could be parallel but has span « diameter d

@ Each connected component needs to be done
sequentially!
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GRAPH CONTRACTION

@ Problem — Smaller Problem

e Shrink the size of the graph and solve the
connectivity problem on the small graph.
» Different components can be handled in parallel!
e Applicable to other problems

» Spanning Trees
» Minimum Spanning Trees
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GRAPH CONTRACTION

contract : graph — partition

e Takes a graph G(V, E) and returns a partitioning
of V into connected subgraphs.
» Not necessarily maximally connected subgraphs (yet)
» But vertices in a partition are connected.

b e abc

ef

d

1a,b,cj,1dy, e 1f}}
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GRAPH CONTRACTION

b e
- él. > e
2 d f a,b,c d e,f a,b,c d e.f
c

components contracted parallel edges
identified removed

e If the graph contracts on each round, eventually
each maximal connected component will shrink
down to a single vertex!

0/////’:§\\\\\0 = o—o = ©

a,b,c d e,f a,b,c,d e,f a,b,c,d,e,f
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REPRESENTING PARTITIONS

abc

ef

d

!

{{a,b,c}t,{d}.{e f}}
!

({a,d,e} ., {a—ab—ac—ad—de—ef— e}

GRAPH CONTRACTION
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CONTRACTING GRAPHS

1 fun contractGraph((V,E), I)=

2 if |[E|=0 then (V. E)

3 else let

4 (V/,P) = partitionGraph((V,E), i)

z - E'=A{(Plu], Plv]) : (u,v) € E | Plu] # P[v];
N

7 contractGraph((V',E'), i+ 1)

8 end

e Ignore / for the time being!
e V' is the set of representative vertices

@ Pmapseveryve VioaVv e V.
@ E’is the set of edges in the contracted graph.
» Self-loops are removed!
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COUNTING COMPONENTS

1 fun numComponents((V,E), I)=

2 if |E| =0 then |V]|

3 else let

4 (V/,P) = partitionGraph((V, E), i)

5  E'={(Plu],P[V]): (u,v) € E| Plu] # P[v]}
6 IN

7 numComponents((V',E"), i+ 1)

8§ end

GRAPH CONTRACTION
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COMPUTING COMPONENTS

fun components((V,E), i) =

if [E[|=0 then {v—v:veV}

else let
(V/',P) = partitionGraph((V, E), i)
' {(P[u], PIV]) : (u,v) € E | P[] # P[V]}
P' = components((V',E’), i+ 1)

in

{ve— P[P[v]]: v e V}
end

NO O JIONO1T = LN -
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COMPUTING COMPONENTS

fun components((V,E), i) =

if |[E|=0 then {v—v:veV}

else let
(V/',P) = partitionGraph((V, E), i)
' {(P[u], PIV]) : (u,v) € E | P[] # P[V]}
P' = components((V',E’), i+ 1)

in

{ve— P[P[v]]: v e V}
end

NO O JIONO1T = LN -

e Base case: Every vertex maps to itself!
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COMPUTING COMPONENTS

fun components((V,E), i) =

if [E[|=0 then {v—v:veV}

else let
(V/',P) = partitionGraph((V, E), i)
' {(P[u], PIV]) : (u,v) € E | P[] # P[V]}
P' = components((V',E’), i+ 1)

in

{v— P[P[v]]:veV}
end

NO O JIONO1T = LN -

@ (Recursively) find components of the contracted
graph
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COMPUTING COMPONENTS

fun components((V,E), i) =

if [E[|=0 then {v—v:veV}

else let
(V/',P) = partitionGraph((V, E), i)
' {(P[u], PIV]) : (u,v) € E | P[] # P[V]}
P' = components((V',E’), i+ 1)

in

{ve— P[P[v]]: v e V}
end

NO O JIONO1T = LN -

e Map each vertex to the representative vertex of
its partition!
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COMPUTING COMPONENTS

1 fun components((V,E), i)=
2 if |[E|=0 then {vv:veV}
3 else let
4 (V',P) = partitionGraph((V, E), i)
5 E' = {(P[u], P[v]) : (u,v) € E | Plu] # P[v]}
6 P' = components((V',E’"), i+ 1)
7 in
8 {vi— P[P[V]]: v eV}
9 end
.V = {ad, e}
® After 4. p = {a—ab—ac—ad—d e—ef—e}
@ After6: PP = {a—ad—ae— a}

@ 8returns: {a—ab—ac—ad—ae—af— a}
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IMPLEMENTING CONTRACT

e Edge Contraction:Only pairs of vertices
connected by an edge are contracted.

@ Star Contraction: Vertices around a “center star”
collapse to the “star”

e [ree Contraction: disjoint trees within the graph
are identified and vertices in a tree are collapsed
to the root.

e Parallel

@ Reduce graph size (vertices/edges?) by a
constant factor every round.

» Will lead to O(log n) rounds!.
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EDGE CONTRACTION

e Find disjoint edges — edges can not share
vertices.

e \ertex matching problem
@ Can be done in parallel
» Each edge picks a random priority in [0, 1]
» Any edge which has highest priority for both vertices
gets selected.
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EDGE CONTRACTION

@ Consider a graph like

N
N

e How many edges can be contracted each round?

e How many rounds are needed to contract to 1
node?

e Not very parallel!
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EDGE CONTRACTION FOR CYCLE
GRAPHS

a: ;e
c
v

4
« Round 1
S
S
S
a@ |
c

e Edges flip a coin

e Edges get a random number
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STAR GRAPHS

@ A star (sub)graph G = (V, E) is an undirected
graph with a center vertex v € V, and a set of
edges E ={{v,u} :ue V\{v}}.

N
SN
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STAR CONTRACTION

e Star subgraphs can be contracted in parallel!

e How do we find disjoint stars?
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FINDING DISJOINT STARS

@ Each vertex throws a coin

» Heads — vertex is a star-center
» Tails — vertex is a potential satellite (Why potential?)

@ Each satellite then selects a center.

e What is the probability that a vertex with degree
d is removed?
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RANDOM COIN TOSSES

@ Pretend each vertex has a potentially infinite
sequence of random coin flips

@ heads(V,I): vertex X int — bool provides
access to these coin tosses.

@ This can be implemented with a pseudorandom
number generator.
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STAR CONTRACTION

1 fun starpartition(G=(V,E),i)=
2 let
3 % select edges that go from a tail to a head
4 TH = {(u,v) € E | -heads(u,i) N\ heads(v,i)}
5 % make mapping from tails to heads, removing duplicates
6 P = Uu,v)eTH {U — V}
7 % remove vertices that have been remapped
8 V' =V \ domain(P)
9 $ Map remaining vertices to themselves
10 P={u—~u:ucV3}uP
11 in (V',P’) end
c d c d
H TT H T T
H T H T
b e b e
coin flips (heads(v,)) find potential centers (TH) ~ compute "hook" edges (P)
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STAR CONTRACTION

\7 \7

coin flips (heads(v,i find potentlal centers (TH) compute "hook" edges

TH = {(u,Vv) € E | mheads(u,i) A heads(v,i)}

e TH={(c,a),(c,b),(e,b)}.
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STAR CONTRACTION

\7 \7

coin flips (heads(v,i find potentlal centers (TH) compute "hook" edges

P = U(U,V)ETH {U —> V}

e TH={(c,a),(c,b),(e,b)}
o P={c+— b,e— b}
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STAR CONTRACTION

c d c d
T T T T
H H
o e
a a
H T H T
b e b e
coin flips (heads(v,i)) find potential centers (TH) compute "hook" edges (P)

V' =V \ domain(P)

e P={c+— b,e— b}
@ domain(P) ={c, e}
o V' ={ab,d}

GRAPH CONTRACTION 28/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



STAR CONTRACTION

\T \7

coin flips (heads(v,i find potentlal centers (TH) compute "hook" edges

P={u—u:ueV3}UP

e P={c— b,e— b}, V ={ab,d}
o P={a—ab—bc— bd— d e— b}
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ANALYSIS OF STAR CONTRACTION

LEMMA

For a graph G with n non-isolated vertices, let X, be the random
variable indicating the number of vertices removed by
starPartition(G,_). Then, E[X] > n/4.

H,: vertex v comes up heads, T,: vertex v comes up tails
R, : vertex v is removed in contraction
v has at least one neighbor u.

T, N H, implies R,

» If v is atalil, join u's star or some other star.
Pr[R,] > Pr[T,|Pr[H,] =1/4
Expected total > n/4
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ANALYSIS OF STAR CONTRACTION

fun starpPartition(G=(V,E),i)=
let
% select edges that go from a tail to a head — O(m) work, O(1) span
TH = {(u,v) € E | -heads(u,i) N\ heads(v,i)}
% make mapping from tails to heads, removing duplicates
% O(n) work, O(log n) span
P = Uu,v)eTH {U —> V}
% remove vertices that have been remapped
% O(n) work, O(log n) span
V' =V \ domain(P)
% Map remaining vertices to themselves -O(n) work, O(log n span
P={u—u:ueV}UP
13 in (V/,P’) end

p—
SOOI WN -

—
N =

@ nnodes, medges
e O(n+ m) work, O(log n) span.
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ANALYSIS OF CONNECTIVITY

fun numComponents((V,E), i) =
if |[E|=0 then |V]
else let
(V/',P) = starpartition((V, E), i)

- E'={(Plu], P[V]) : (u,v) € E | P[u] # P[]}
INn

numComponents((V',E"), i+ 1)
end

O~ WIDN -

e S(n)=S(n')+ O(log n)
en”"=n—X,and E[X,;| =n/4,s0 E[n] =3n/4
e S(n) € O(log® n)
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ANALYSIS OF CONNECTIVITY

@ We can remove a constant fraction of vertices
every round.
@ For each vertex removed, we remove at least

one edge.
e Consider a hypothetical contraction

round vertices edges

1 n m

2 n/2 m-—n/2
3 n/4 m—3n/4
4 n/8 m-—7n/8

e Number of edges does not go below m — n.
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ANALYSIS OF CONNECTIVITY

W(n,m) < W(n',m)+ O(n+ m),

@ As before, E [n'] =3n/4, so
E[W(n, m)] € O(n+ mlogn)

GRAPH CONTRACTION

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS



TREE CONTRACTION

e ldentify disjoint trees and contract them.

e For every tree of t vertices contracted, t — 1
edges are removed.

e Number of edges also go down geometrically at
every round.

e Leads to O(m) work and O(log® n) span.
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SYNOPSIS

e Minimum Spanning Trees
e Kruskal’'s and Prim’s Algorithms
e Using Star Contraction for MST
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MINIMUM SPANNING TREES
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MINIMUM SPANNING TREES
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MINIMUM SPANNING TREES

e Given a connected undirected graph G = (V, E)
» Each edge ehas w, > 0

e Find a spanning tree, T that minimizes

- Y -

ecE(T)

e Sequential algorithms:

» Kruskal’s Algorithm
» Prim’s Algorithm
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MINIMUM SPANNING TREES

MINIMUM SPANNING TREES 6/22

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



LIGHT EDGE RULE

e Given G=(V,E), U C V partitions the graph
into two parts with vertices U and V' \ U.

@ The edges between U and V '\ U are called the
cut edges E(U, U).

MINIMUM SPANNING TREES
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LIGHT EDGE RULE

THEOREM

Let G = (V, E, w) be a connected undirected weighted graph
with distinct edge weights.

@ For any nonempty U C V

@ the minimum weight edge e between U and V' \ U is in the
minimum spanning tree MST(G) of G.

v
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LIGHT EDGE RULE

@ Assume e = (u, V) is the minimum edge in the cut but not
in the MST.

@ MST should have at least another edge in the cut.
@ Adding e to the path between u and v creates a cycle.

@ Removing the max edge from path (blue line) and adding e
should give a ST with less weight.

@ Original (claimed) MST (through blue line) can not be a
MST!
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KRUSKAL’S ALGORITHM

o Greedy
e Each vertex is a subtree by itself initially

@ Combine the two sub-trees on both sides of the
next smallest edge (if they are different)

@ Uses the union-find data structure.
e O(mlog n) work and span!
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KRUSKAL’S ALGORITHM
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PRIM’S ALGORITHM

o Greedy

e Based on Priority-based Search — Variant of
Dijsktra’s Algorithm

@ Maintain visited X and frontier F vertices.
@ Visit the nearest unvisited vertex in the frontier.
e O(mlog n) work and span!
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’
PRIM’S ALGORITHM
1 fun prim(G) =
2 let
3 fun enqueue v (Q,(u,w))=PQ.insert (w,(v,u)) Q
4 fun prim’ (X, Q, T)=
5 case PQ.deleteMin(Q) of
6 (NONE, _) =T
7 | (somE(d, (u,V)), Q) =
8 if (ve’X) then prim’ (X, @, T)
9
10

else let
X' =Xu{v}

11 T'=TU{(u,v)}
12 Q" = iter (enqueue v) @ Ng(v)
13 in prim”(X’, Q", T') end
14 s = an arbitrary vertex from G
15 Q = iter (enqueue S) {} Ng(s)
16 in
17 prim ({s}, Q {})
18 end
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PRIM’S ALGORITHM
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PARALLEL MST ALGORITHMS

OBSERVATION

e The minimum weight edge out of every vertex of
a weighted graph G belongs to its MST.

e Why should this be the case?

e MST can contain other edges!
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PARALLEL MST - IDEA #1

@ Throw all minimum weight edges into MST
@ Iree contract the vertices for all these edges
@ Repeat until no edges remain!

@ Each rounds removes at least 1/2 of the vertices
(Why?)
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PARALLEL MST - IDEA #2

@ Let minE be the set of minimum weight edges.

@ Let H=(V,minE) be a subgraph of G

e We apply (modified) star contraction to H
» The tails hook up through the minimum weight edge!

1 fun minStarcontract(G=(V,E),i) =

2 let

3 minE = minEdges(Q)

4 P={uw~ (v,w) € minE | —~heads(u,i) N heads (v, i)}
5 V' = V' \ domain(P)

6 in (V,P) end
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PARALLEL MST - IDEA #2

e Even though we are working with a subgraph, the
star contract lemma still applies.

LEMMA

For a graph G with n non-isolated vertices, let X, be
the random variable indicating the number of vertices
removed by minStarContract(G,r). Then,

E(X,) > n/4.

e MST will take expected O(log n) rounds.
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BOOKKEEPING

@ As the graph contracts, the end point of each
edge changes!

e At the end, the edges may not have the original
end points.
@ Associate a unique label to each edge initially:

» (vertex X vertex X weight x label)
» The end points change but the label does not!
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MODIFIED STAR CONTRACT

fun minStarContract(G=(V,E),i) =

let
minE = minEdges(Q)
P={(u~ (v,w,0)) € minE | —heads(u,i) N heads(v,i)}
V' =V \ domain(P)

in (V',P) end

N UGl WIN =

e Line 3: Finds min edge for each vertex.
» All these belong to the MST

@ Line 4: Picks tails and heads, and the creates
mapping from tails to heads.

@ Line 5: Removes all tail vertices from the vertex
set.
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THE MST ALGORITHM

1 fun MsT((V,E), T, i)=

2 if |[E|=0 then T

3 else let

4 (V/,PT) =minStarContract((V, E), i)

5 P={u—v:u—(v,w,0)e PTfUu{v—v:veV}
6 I'={l:u—(v,w,0) e PT}

7 E' = {(Plu], P[v],w,]) : (u,v,w,I) € E| P[u] # P|v]|}
8 1In

9 Mst((V',E"), TUT' i+1)

10 end

e Invoked by MST(G,{},1).
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IMPLEMENTING MINEDGES (G)

fun joinEdges((V1, W1,/1), (Vg, Wo, /2)) =
if (W1 < W2) then (V1,W1,I1) else (VQ,WQ,IQ)

fun minEdges(E) =
let
ET ={u— (v,w,l):(u,v,w,l) € E}
in
(merge joinEdges) A{} ET
end
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SYNOPSIS

@ Quicksort

e Work and Span Analysis of Randomized
Quicksort

e Lower Bound for Comparison-based Sorting
e Lower Bound for Merging
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QUICKSORT

e Originally invented and analyzed by Hoare in
1960's.

e | strongly urge to watch Jon Bentley on “Three
beautiful Quicksorts” at

» www.youtube.com/watch?v=QvgYAQzglz8.
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SEQUENTIAL QUICKSORT

int i, 7J;
for( i = low, jJ = high - 1; ; )
{
while( a[ ++1 ] < pivot );
while ( pivot < al[ —-—-3 1 );
(1 o>= 7 )
break;
swap( a, i, 7 );
}
// Restore pivot
swap( a, 1, high - 1 );
quicksort( a, low, 1 - 1 ); // Sort small elements
quicksort( a, 1 + 1, high ); // Sort large elements
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QUICKSORT

fun quicksort(S) =
if |S|=0 then S
else let
p = pick a pivot from S
Si=(seS|s<p)
So=(seS|s=p)
S3=(seS|s>p)
(Ry, Rs) = (gquicksort(Sy) || quicksort(S;))
N
append(Ry, append(S;, R3))
end

R OO OISO WDN -

1
1
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QUICKSORT

1 fun gquicksort(S) =
2 if |S|=0 then S
3 else let
4 p = pick a pivot from S
5 C=(se S| (s,compare(p,s))
6 Si=(s|(s,LESS) € C)
7 So=(s|(s,EQUAL) € C)
8 S; = (s | (s, GREATER) € C)
9 (Ry, Rs) = (gquicksort(Sy) || quicksort(S;))
10 in
11 append(Ry, append(Ss, R3))
12 end
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QUICKSORT

@ Each call to Quicksort either makes

» No recursive calls (base case), or
» Two recursive calls

e Call tree is a binary

@ Depth the call tree determines the span of the
algorithm.
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PICKING THE PIVOT

e Always pick the first element

» Worst case O(n?) work.

» In practice, almost sorted inputs are not uncommon.
e Pick the median of 3 elements (e.qg., first, middle

and last elements)

» could possible divide evenly

» worst case is still bad
@ Pick an element at random

» we hope this divides evenly in expectation
» leading to expected O(nlog n) work and O(log® n)
span.
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PICKING THE PIVOT

@ Pick first element

» Worst case O(n?) work.
» Expected O(nlog n) work
* Averaged over all possible orderings.
» Works well on the average
» Slow on some, possibly common, cases.
@ Pick a random element
» Expected worst-case O(nlog n) work.
» For input in any order, the expected work is O(nlog n)
> No input has expected O(n?) work.
» With a small probability, we could be unlucky and
have O(n?) work.
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RANDOMIZED QUICKSORT

@ Assign a uniformly random priority to each
number in [0, 1].

fun gquicksort(S) =
if |S|=0 then S
else let
p = pick as pivot the highest priority element from S
Si=(seS|s<p)
Sp=(scS|s=p)
S3=(se€S|s>p)
(R1,R3) = (quicksort(Sy) || quicksort(S3))
in
append(Ry, append(Sz, R3))
end

R OOVONONOIH=WN -

—_ =

@ Once the priorities are assigned, the algorithm is
deterministic.
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RANDOMIZED QUICKSORT

@ Count comparisons made!
» Almost all the work is comparisons.

X, = + of comparisons quicksort
makes on input of size n

e Find E [X;] for any input sequence S

e Notation:
» Let T = sort(S)
» T;and T, refer to elements in the final sorted order
andi<jand T; < T,.
» p; refers to priority chosen for T;.
» A;j;=11if Tjand T; were ever compared during the
sort.
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ANALYZING QUICKSORT

e Crucial point is how to model A; .

@ In any one call to quicksort, there are three
cases:

» Pivot piseither T;or T, = A;; = 1
> T,-<p< Tj:> T,‘ES1,Tj€S3,A,',j:O
» Eitherp< Tiorp>T;= T;,,T,€ S;or T;, T; € S
e If two elements are compared in a quicksort
call, they will never be compared again in any
other call!
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ANALYZING QUICKSORT

n—1 n
Xo < D0 A

i=1 j=i+1

@ The non-optimized code compares each element

to pivot 3 times, the optimized version compares

once.
1

2 C—(seS|(s,compare(p,s))
3

e By linearity of expectation

n—1

n—1 n n
E[X <) Y EA]=) ) PriA;=1]

=1 j=i+1 i=1 j=i+1
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ANALYZING QUICKSORT

e Consider first when the pivot is one of
7-i) 7-i—|—17 cey 7-1

e [;and T; are compared < p; or p; is the highest
priority among {p;, Pi+1, - - -, Pj}-
» Assume Ty, i < k < j has higher priority.
» For any subdivision --- | T, -+ Ty, -+, T;, T will
become a pivot and separate T; and T;
> T;and T; will never be compared!
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ANALYZING QUICKSORT

E [A4)] = Pr{A; = 1
= Pr|p; or p; is the maximum in {p;, ..., p;}]

2
— ?
o Why )

e /— i+ 1 elements between p; and p; and each is
equally likely to be the maximum.

o We want either p; or p;, hence j_,?+1

@ [;is compared to T, 1 with probability 1.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 15/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



ANALYZING QUICKSORT

E[X)] <) ) E[A)

=1 j—i+1

/1//+1
n1n/+1

== S‘ (change variables)
=1 k=2
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ANALYZING QUICKSORT

e Indirectly, average work for basic deterministic
quicksort is O(nlog n).
» Just shuffle data randomly and apply the basic
algorithm
» = to picking random priorities
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AILTERNATIVE ANALYSIS

@ Write a recurrence for the number of
comparisons:

X(n)=X(Y)+X(n—Y,—1)+n—1
e Random variable Y, is the size of S;.
E[X(n)] = E[X(Y)+X(n—-Y,—1)+n—-1]
— E[X(Y)] +E[X(n—Y,—1)]+n—1
S EXG] +EX(— - D))+ 1

i=0
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AILTERNATIVE ANALYSIS

E[X(n)] = %Z(E[X(i)] +E[X(n—7—=1)])+n—1

i=0

= ii;E[X(i)]+n1

e With telescoping, this also solves as O(nlog n)
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EXPECTED SPAN

e Sis splitinto L(ess), E(qual) and (g)R(eater).
e Let X, = max{|L|,|R|},
@ We use filter to partition.

S(n) = S(X;,) + O(log n)
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EXPECTED SPAN

e Let S(n) denote E [S(n)]
e We bound S(n) by considering Pr[X, < 3n/4]
and Pr[X, > 3n/4].
e Pr[X, <3n/4]=1/2
» As with SmallestK, 1/2 of the randomly chosen

pivots results in larger partition of at most size 3n/4
elements.
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EXPECTED SPAN

S(n)=> Pr[X,=1i]-S(i)+ clogn
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LOWER BOUND FOR SORTING

e What is asymptotically the minimum number
comparisons any sorting algorithm has to make?

e Lower-bounds apply to problems not to
algorithms.

» Algorithms provide upper bounds!
e We say sorting is Q2(nlog n)
@ No (comparison-based) sorting algorithm has
work asymptotically lower than nlog n.
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DECISION TREES

Does it live in the
water'?

N
( Does it have flns’? More than 4 Iegs’)

/
- - ( canitty? ) C Canitfly? )

& o @ods

e If there are N outcomes, the number of questions
s at least log, N.
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SORTING AS A DECISION PROBLEM

a<b<c

a<c<b

b<a<c

b<c<a

c<a<b

c<b<a

a<b b<a

a<b<c bh<a<c
a<c<b b<c<a
c<a<b c<b<a

a{i/;f///f/ c<a b{i///////“\x\\\E:?

a<b<c b<a<c c<b<a I

a<c<b b<c<a

b<c c<b a<c c<a

lasb<c | [accsh |

@ For nitems, how many possible outcomes can there be?
» n! = we need at least log,(n!) “questions”.
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SORTING AS A DECISION PROBLEM

log(n') =logn+log(n—1)+---+log(n/2) +---+log 1
>logn-+log(n—1)+---+log(n/2)
> 3 -log(n/2) € Q(nlog n)
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LOWER BOUND FOR MERGING

e We have sorted sequences A, |A| = nand
B,|B| = mand m < n.
» Assume all elements are unique.

e All interleavings are possible

@ We need to choose m positions out of n+ mto
place the elements of B amongst elements of A.

e Finding the right sequence of m positions can be

done with at least log, ("™) comparisons.
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LOWER BOUND FOR MERGING

o ()= (2)
> Se

ee Lemma in the notes.

n-+m n+m., n
|092< m )Zbgz( m ) :m|092(1+5)
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SYNOPSIS

Binary Search Trees

Basic Structural Operations on BSTs
Basic Operations on BSTs

Concrete Implementations

Cost Analysis
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BINARY TREES

@ Irees where each node has at most 2 children
each of which is a binary tree.
» Left child / Left subtree
» Right child / Right subtree
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BINARY SEARCH TREES

e Binary trees with the “search” property
@ For each node v with key k

» The key of the left child k;, < k

» The key of the right child kg > k
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THINGS CAN GET PRETTY BAD




BALANCED TREES

@ We try to keep binary search trees balanced.

» Both children are about the same height
» Both subtrees are about the same size

@ AVL Trees
» Left and right subtree heights differ by at most 1.
» O(log n) root height maintained after each insertion
and deletion.

@ Splay Trees
» Balanced in the amortized sense
» A sequence of n find, insert, Or delete
operations take O(nlog n) work.
» So average is O(log n) work.
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BASIC BST OPERATIONS

e Data type is defined by structural induction
» Leaf
» Node with a left child, a right child, a key, optional
additional data.

datatype BST = Leaf |
Node of (BST % BST *x key x data)
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BASIC BST OPERATIONS

@ split(T,k): BST X key —
BST X (data option) X BST

@ split divides T into two BSTs,

» one consisting of all the keys from T less than k
» the other all the keys greater than k

e If k appears in the tree with associated data d
then spl1it returns SOME(d)

@ Otherwise it returns NONE.
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BASIC BST OPERATIONS

@ join(L,m,R):BST x (key X data) option X
BST — BST

o Takes a left subtree (L) an optional key-data pair
m and a right subtree (R)
» Assumes all keys in L are less than all keys in R.
» If present, the optional key is also larger than all keys
in L and smaller than all keys in R.

@ Creates a new BST that is the union of L and R
and m.

@ We also assume both split and join maintain
balance.
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BASIC BST OPERATIONS

@ expose(T):BST —
(BST X BST X key X data) option

@ Returns the components if BST T is not empty.
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BASIC BST OPERATIONS - SEARCH

fun search T k=

let (_,v,_ )=split(T, k)
in v

end

= WO N =
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BASIC BST OPERATIONS - INSERT

fun insert T (k,v)=

let (L,V,R)=split(T,k)
in join(L, SOME(k, V), R)
end

1
2
3
4
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BASIC BST OPERATIONS - DELETE

fun delete T k=

let (L, _,R)=split(T,k)
in join(L, NONE, R)

end

1
2
3
4
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CONCRETE IMPLEMENTATIONS:
SPLIT

datatype BST = Leaf |
Node of (BST x BST * key x data)

fun spl1it(T,k) =
case T of
Leaf = (Leaf,NONE,Leaf)
| Node(L, R,K',v) =
case compare(k, k') of
LESS =
let (L',r,R')=split(L,k)
in (L',r,Node(R',R,k’,v)) end
EQUAL = (L, soME(Vv), R)
10 GREATER =
11 let (L',r,R')=split(R, k)
12 in (Node(L,L',k’,v),r,R") end

NOCCONNANNUTH=WN -
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CONCRETE IMPLEMENTATIONS: JOIN

fun join(T1,m, Tg) —
case m of
SOME(k, V) = Node( Ty, To, K, V)
| NONE =
case [, of
Leaf = 1o
| Node(L, R, k,Vv) = Node(L, join(R, NONE, Tz2), K, v))

NSO O ks WP -
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CONCRETE IMPLEMENTATIONS:
UNION

union(L,,L,) union(R;,R,)

@ For T, with key ky and children L; and R, at the root, use
kq to split T, into L, and R..

@ Recursively find L, = union(L4, Ly) and
R, = union(Ry, Ry).

@ Now join(Ly, ki, R,).
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CONCRETE IMPLEMENTATIONS:
UNION

fun union(Tq, To) =

case expose(Ty) of
NONE = T

| SOME(L1, R1,k1, V1) =
let (Lg, Vo, Rg) = Split(Tz, k1)

(L,R) = union(Ly,Ly) || union(Ry, Ry)

in join(L, SOME(k1, V~|), R)
end

OO UT = WIDN -

@ Returns the value from T if a key appears in
both trees.
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ANALYSIS OF UNION

fun union(Tq, To) =

case expose(Ty) of
NONE = T

| SOME(L1, R1,k‘|, V1) =
let (LQ, Vo, Rg) = Split(Tg, k1)

(L,R) = union(Ly,Ly) || union(Ry, Ry)

in join(L, SOME(/ﬂ, V1)7 R)
end

OINNUT - WDN -

@ split costs O(log|T5|).
@ [wo recursive calls to union
@ join costs O(log(|T1| + | T2|)
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ANALYSIS OF UNION -
ASSUMPTIONS

e T is perfectly balanced.

» expose return subtrees of size |T4|/2
» Each a key from T, splits 75, it splits exactly in half.
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ANALYSIS OF UNION

W(ITil,|T2]) = 2W(1T1 \/2 \T2|/2) ('09(|T1’ + \T2|))

recurswe union calls split and join

and
W(1,[Tz2]) = O(log(1 + | T2])).

@ When |T{| =1, expose give us two empty
subtrees L1 and R;

@ union(Ly,Ly) returns Ly, union(Ry, R2) returns
R> immediately!

@ Joining these costs at most
O(log(| 71| + [ T2[)) = O(log(1 + | T2)
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ANALYSIS OF UNION

@ letm=|Ti|landn=|Ts|and N=n+m

kq log (N/2)

g (N/4) > -« - - ky 4log (NI4)

C k; log (N{) C\k:og (NI4) > C ky log (N/4) > C ky lo
(o]

Bottom level: each costs log (1+ (n/m))

e Leaf dominated (Why?)

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION
SPRING 2014
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ANALYSIS OF UNION

e How many leaves are there in this recursion
tree?

» T has no impact.
» We get m = |T;| leaves.
e How deep is the tree?
» 1+log, m
@ What is the size of T, at the leaves?

> n/2|ogzm — %

o Total cost at the leaves = O(mlog(1 + £2))
@ Union cost = O(mlog(1 + 2))
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SYNOPSIS

@ Overview of Binary Search Trees

e Relationship between Quicksort and BSTs
e Treaps

e Expected Depth of a Treap

SEARCH TREES II: TREAPS 2/26
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BST OVERVIEW

@ There are many options for keeping trees
balanced.

@ split and join are the main structural
operations to implement find, insert,
delete, union, etc.

@ Costof split and join are logarithmic in the
size of the input and output trees.

e Union needs O(mlog(1+ £)) work (m < n).
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QUICKSORT AND BSTSs

e Write out the recursion tree for quicksort.
» Assume distinct keys.

@ Annotate each node with the pivot picked at that
stage.
@ You get a BST.

[s]1]s]uafaf1s[12]6]2]11]10]7]0]

[6|1]5]7]4]2] [12]15]11]10]14] 0]
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SEQUENCE TO BST

fun gs_tree(S) =
if |S|=0 then LEAF
else let
p = pick a pivot from S
Si=(seS|s<p)
S3=(seS|s>p)
_ (T, Tr) = (gs_tree(Sy) || gs_tree(Ss))
In
NODE( Ty, p, Tr)
end

O OO OT = WD -

p—

e Unlike Quicksort, we do not know what elements
will be in the tree, when we start.
» We can not select a (n) (future?) element to be the
root.
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TREAPS

e Treap = TRee + hEAP

e Atreap is a randomized BST that maintains
balance in a probabilistic way.
e Each element/key gets a unique random priority
@ The nodes in the treap satisfy BST property.
» Keys are stored in-order in the tree.
@ The associated priorities satisfy the (max) heap

property.
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THE MAX-HEAP PROPERTY

e Priority at each node is greater than the priorities
of the children.

@ Suppose we have
S=(a,3),(b,9),(c,2),(e 6),(f,5)
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LET’'S DO AN EXAMPLE

e Draw the treap for the following (key, priority)
sequence.

(G,50),(C,35),(E,33),(H,29),(1,25),(B,24),(A,21),(L,16),(J,13),
(K,9),(D,8)
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TREAPS

THEOREM

For any set S of unique key-priority pairs, there is
exactly one treap T containing the key-priority pairs in
S which satisfies the treap properties.

@ Key k with highest priority must be at the root.
o All keys < k must be in the left subtree
o All keys > k must be in the right subtree

@ Subtrees of k are constructed inductively in the
same manner.

SEARCH TREES II: TREAPS 9/26
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BASIC BST OPERATIONS - SEARCH

fun search T k=

let (_,v,_ )=split(T, k)
in v

end

1
2
3
4
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BASIC BST OPERATIONS - INSERT

fun insert T (k,v)=

let (L,V,R)=split(T,k)
in join(L, SOME(k, V), R)
end

= WO N =

SEARCH TREES II: TREAPS 11/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



BASIC BST OPERATIONS - DELETE

fun delete T k =

let (L, _,R)=split(T, k)
in join(L, NONE, R)

end

= WO N =

@ Soif split and join are implemented the
other more useful operations are covered.
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JOIN AND SPLIT

@ split(T,k): BST X key —
BST X (data option) X BST

@ split divides T into two BSTs,

» one consisting of all the keys from T less than k
» the other all the keys greater than k

e If k appears in the tree with associated data d
then spl1it returns SOME(d)

@ Otherwise it returns NONE.
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JOIN AND SPLIT

@ join(L,m R):BST x (key X data) option X
BST — BST

o Takes a left subtree (L) an optional key-data pair
m and a right subtree (R)

» Assumes all keys in L are less than all keys in R.
» |f present, the optional key is also larger than all keys
in L and smaller than all keys in R.
@ Creates a new BST that is the union of L and R
and m.
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SPLIT ON TREAPS

@ Split code does not have to change.
e Priority orders do not change.

e Split does not put a larger priority below a
smaller priority.
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SPLIT ON TREAPS

datatype BST = Leaf |
Node of (BST x BST * key % data)

fun split(T,k) =
case T of
Leaf = (Leaf, NONE, Leaf)
| Node(L, R, k', v) =
case compare(k,k’) of
LESS =
let (L',r,R) = split(L,K)
in (L',r,Node(R',R,k’,v)) end
EQUAL = (L, soME(v), R)
10 GREATER =
11 let (L',r,R) = split(R,K)
12 in (Node(L,L',k’,v),r,R") end

OOV WN -
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JOIN ON TREAPS

@ Join needs to change!
» The priorities of the roots of two trees need to be
compared.
» The root with the larger priority becomes the new
root.

@ Basic join took the root of the first tree of the new
node as the root.

fun jOiI’l(T1,m, T2) =
case m of
SOME(k, V) = Node(Ty, T2, K, V)
| NONE =
case T; of
Leaf = 1o
| Node(L, R,k,Vv) = Node(L, join(R, NONE, T),K, V)

1
2
3
4
5
6
7
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JOIN ON TREAPS

1 fun join(Ty,m, Tp) =
2 let

3 fun singleton(k,v) = Node(Leaf, Leaf,Kk,V)

4 fun joil’l/(T1, To) =

5 case (Ty,Tp) of

6 (Leaf, _ )= T>

7 | (_, Leaf) = Ty

8 | (Node(L1, Ri, k1, v4 ), Node(Lg, R, ko, Vg)) =

9 if (priority(ki) > priority(kp)) then
10 Node(L1, join’(Fh, Tg), K1, V1)

11 else

12 Node(join'(Ty, L2), Ro, ko, V2)

13 in

14 case m of

15 NONE = join'(Ty, T2))

16 | SoME(k, V) = join'(Ty, join'(singleton(k, V), T2))
17 end

SEARCH TREES II: TREAPS 18/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



EXPECTED DEPTH OF A KEY

@ Cost of split and join depend on the expected
depth of a key.
@ Given a set of keys K and priorities p : key — int

» Priorities are unique!

@ Consider the elements of the tree laid out in
order

> key; < key; = --- ,key;,--- ,key;, - -
> key; < key; = --- ,key;,--- ,key;, - -
e A is an indicator variable:

» Al =1if key; is an ancestor of key; in the treap.
» A, = 0 otherwise.
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EXPECTED DEPTH OF A KEY
’keyi,... 7keyjj...

key; < keyj
pj= max(p;, ..., pj) P= max(p;, --.-, pj) P= max(p;, -, pj)
i<k<]
. ¢
. ,' “ '0
A =0 Aj -0 AIJ =1

SEARCH TREES II: TREAPS
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EXPECTED DEPTH OF A KEY
’keyj,... 7keyi)...

key; > keyj
pP= max(pj, ..... P;) Py= max(pj, ..... P;) P= max(pj, ..... P;)
i<k<j
I \ .
c’ ,' ‘\ .
9 ONO
Al =0 A-j=0 AIJ=1

SEARCH TREES II: TREAPS
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EXPECTED DEPTH OF A KEY

i n i n
Efdepthof iin T]=E | Y~ A| = > E|A].
j=ti | =t

E {Aﬂ T /1'\ — Why?)
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EXPECTED DEPTH OF A KEY

E [depth of /in T]

(Split| | =)

(Change variables =)

(In n<Hp<In n4-1 :>)

Z 1
eyl
i—1 n
1 1
Yot ) -
e I—J+1 j:i+1j—l—|—1
i 1 n—i—|—1.I
kT2 k
k=2

Ini+In(n—i+1)
O(log n)

@ Relative (sorted) position of a key determines expected

depth in treap.

SEARCH TREES II: TREAPS
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COST OF SPLIT AND JOIN

THEOREM
For treaps

@ join(Ty,m, Tp) returning T
@ split(T,(k,V))
have O(log |T|) expected work and span.

@ See notes for short proofs.
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EXPECTED MAX DEPTH OF A TREAP

e Expected depth of treap node is O(log n)
» Find takes on the average O(log n) work and span.
e What is the expected maximum depth of a treap?

» Why is this important?
» Expected worst-case cost!

e ButE [max,-{A,-}] 7é max,-{E [A,]}'
@ It turns out this is almost the same problem as
the expected span of the quicksort.
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EXPECTED MAX DEPTH OF A TREAP

@ Y, is the size of the larger partition.
@ D(n)=D(Y,)+ 1= D(n) e O(log n)
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SYNOPSIS

@ Ordered Sets and Tables

e Bingle Revisited

@ Augmenting Balanced Trees

e Ordered Tables with Reduced Values
e Application Examples

MORE WITH TREES 2/23

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



ORDERED SETS AND TABLES

e So far, we did not worry about the ordering of the
values/keys in sets and tables.

» Find, union, intersect, merge, etc.
e For many applications, exploiting any order is
very important!

» Find all elements between 3 and 17.

» Find all customers who bought more that 5 of one
item.

» Find all emails in the week of March 31st.

@ Ordered sets and tables.

MORE WITH TREES 3/23
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ORDERED SET ADT

@ We have a totally ordered universe U, and S
represents the set of all subsets of U.

e With the following operations

all operations supported by the Set ADT, and

last(S) . S—>U = max S

first(S) : S—>U = min S

split(S, k) . SxU=S — (K eS|K <k} kes,
xbool x S {k € S| K > k})

join(S1 , Sz) . SXS—=S = S5y U S, assuming

max S; < min S,
getRange(S, ki, k2) @ SxUxU—=S = {keS|k <k<k}

MORE WITH TREES 4/23
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ORDERED SET ADT

e Underlying implementation uses trees.

@ first and last are easy
» first traverses down the left spine to the minimum

value.
» last traverses down the right spine to the maximum

value.
@ getRange Involves two splits.

5/23
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IMPROVISING BINGLE

signature INDEX = sig
type word = string
type docId = string
type 'a seq
type index
type docList

val makeIndex : (docId % string)

val find : index -> word —-> docList

val And : docList * docList —-> docList
val AndNot : docList * doclList -> docList
val Or : doclist * docList —> docList

val size : doclList —-> int
val toSeq : docList —-> doclId seq
end

@ doclList IS a set.
@ index is a table.

MORE WITH TREES

—> jindex
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IMPROVISING BINGLE

@ We want to limit the search to certain domains
(e.g., cmu.edu)
» or docs with a certain name.
e We want to add
val inDomain : domain * doclList —-> doclist

e For example

inDomain("cs.cmu.edu",
and(find idx "cool", find idx "TAs"))

MORE WITH TREES 7/23
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IMPROVISING BINGLE

@ Assume doc ids are URLs.

@ Assume they are “reverse” lexicographically
ordered.

» The last character is the most important!

1 fun inDomain(domain,L) =
2 getRange(L, domain, string.prepend(domain, "S"))

@ $is a character that is greater than any character.

MORE WITH TREES 8/23
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AUGMENTING BALANCED TREES

@ Sets (and underlying trees) hold the key and any
associated values.

@ We can add other additional values to help with
other search operations.

» Track key positions and certain subset sizes.

@ rank (S, k):How many elementsin S are less
than k?

@ select (S, 1i):Which elementin S has rank i?

@ splitIdx (S, 1i): Split Sinto two sets: first i
keys and the remaining n — i/ keys.

MORE WITH TREES 9/23
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AUGMENTING BALANCED TREES

rank(S, k) : SxU—int = |{k'e S|k <Kk}|

select(S,I) . Sxint—U = ksuchthat|{k'e S|k <k}|=i

splitIdx(S,i) : Sxint— = ({ke S|k<select(S,i)},
SxS {k€ S|k >select(S,i)})

e Without additional information stored with the
keys, these operations would take 6(|S|) work.

MORE WITH TREES 10/23
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AUGMENTING BALANCED TREES

o Let S={1,2,3,4,56}

@ rank (s, 4) =|{1,2,3}| =3

@ select (S, 3) =4since rank (S, 4) =3
@ splitIdx (s, 3) =({1,2,3},{4,5,6})

MORE WITH TREES 11/23
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AUGMENTING BALANCED TREES

@ At each node keep the size of the subtree.

@ This allows size and the three other operations
in O(d) work with d as the depth of the tree.

@ Size can be computed on the fly by adding 1 to
the sum of the subtree sizes!

MORE WITH TREES 12/23
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SELECT WITH AUGMENTED TREES

fun select(T,i) =
case expose(T) of
NONE => raise Range
| soME(L, R, k) =
case compare(i,|L]) of
LESS = select(L,i)
| EQUAL = K
| GREATER = select(R,i—|L|—1)

0 3 O U1 = WO N -

MORE WITH TREES 13/23
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RANK AND SPLITIDX

@ rank is easy: just split and return the size of the
left tree!

@ splitIdx is just like split (or you navigate using
sizes (as opposed to key values))

14/23
SPRING 2014
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ORDERED TABLES WITH REDUCED
VALUES

e Maintain at each node a “sum” based on an
associative operator f.

» Updated during insert/delete, merge, extract, etc.
@ Givenf:vxv—v,and [
» All operations on ordered tables are supported, and

>

reduceVal(A): T — v =reducefly A

» We want to be able to do reduceval in O(1) work
(assuming f needs O(1) work).
» fis known beforehand!

MORE WITH TREES 15/23
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ORDERED TABLES WITH REDUCED
VALUES

(o219 Cle29)
an, (o1:9)
(w22 (w22
fis + f iIs max

MORE WITH TREES
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IMPLEMENTATION

1 datatype Treap = Leaf | Node of (Treap x Treap
2 Xkey X data x data)

3 fun reduceval(T) =

4 case | of

5 Leaf = Reduce.l

6 | Node(_, _,_,_,r)=r

7 fun makenNode(L, R, k,v) =

8 Node(L, R, k, v, Reduce.f(reduceVal(L),

9 Reduce.f(v, reduceVal(R))))

MORE WITH TREES 17/23
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IMPLEMENTATION

fun jOil’l(T1, Tg) =
case (7q,7T,) of
(Leaf, )= T,
| (_,Leaf)= Ty
‘ (Node(L1, Ri. kq, vy, S84 ), Node(Lg, Ro. ko, Vo, 32)) =
if (priority(ki) > priority(kz)) then
makeNode(L1, jOiH(R~|, Tg), k1, V1)
else
makeNode(join(T1, Lg), R, Ko, Vg)

NO O JONOUT =W IN -
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EXAMPLE APPLICATION - SALES
DATA

e Sales information are kept by the time stamp in
an ordered table.

» (2/3/2013 — 12 : 30,$120)
@ Find the total sales between t; and &
@ fiIs +

@ reduceVal(getRange(T,t, b)) takes O(logn)
work

MORE WITH TREES 19/23
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EXAMPLE APPLICATION - STOCK
DATA

@ Stock prices information are kept by the time
stamp in an ordered table.

» (2/3/2013 — 12 : 30,$120/share)
e Find the maximum price between t; and
@ fis max

@ reduceVal(getRange(T,t, b)) takes O(logn)
work

MORE WITH TREES 20/23
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EXAMPLE APPLICATION- INTERVAL
TREES

@ Aninterval is a region on the real number line
starting at x; and ending at x;

@ an interval table supports the following
operations on intervals:

insert(A,l) : T x(real X real)—T insert interval | into table A
delete(A, ) : T x(real X real)— T delete interval | from table A
count(A,x) : T X real — int return the number of

intervals crossing X in A

MORE WITH TREES 21/23
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INTERVAL TREES

@ Organize intervals as a BST based on
lower-boundary as key

@ Use the max upper boundary in the subtree as
additional information.

[16,21]

MORE WITH TREES 22/23
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COUNTING INTERVALS

1 datatype intTree = Leaf | Node of (intTree x intTree
2 Xreal X real X real)
3 fun overlap(x,low, high) =

4 if (x> low & x < high) then 1 else 0

5 fun countInt(T,x)=

6 case T of

7 Leaf =0

8 | Node(L, R, low, high, max) =

9 if (x> max) then 0

10 else countInt(L,x)+

11 overlap(x, low, high)+

12 if (x> low) then countInt(R,x) else 0

MORE WITH TREES 23/23
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SYNOPSIS

@ Dynamic Programming

@ Subset Sum Problem

e Minimum Edit Distance Problem
e Additional example applications

DYNAMIC PROGRAMMING 2/29
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ALGORITHMIC PARADIGMS

CONTRASTED
@ Inductive paradigms combine solutions to smaller
subproblem(s).
Paradigm Subproblems Reuse of
Solutions
Divide and Conquer > 1 NO
Contraction =1 NO
Greedy = 1 NO
Dynamic Programming > 1 YES
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REUSING SOLUTIONS

(FoolA)g size k
@ @) sizej<k

@ You can save some work if you remember the
solutions to the smaller subproblems.
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REUSING SOLUTIONS

@ How much work does this code need?

1 fun fib(n)=
2 if (n<1) then 1
3 else fib(n—1)+ fib(n—2)

e It turns out Wsp(n) = O(c™) (Why?)
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REUSING SOLUTIONS

e It also turns out that £ib(n) can be computed
with O(n) work.
» Note that nis not the right measure for modeling work
here (Why? ) but it is convenient!
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SOLUTION COMPOSITION GRAPH

o DAG

@ Each node is a subproblem
Instance

e Edges model dependences

e Edges go from smaller to larger
subproblems

e \ertices with no in-edges are
base cases

e \ertices with no out edges are
the instance we are trying to
solve.

DYNAMIC PROGRAMMING 7/29
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DYNAMIC PROGRAMMING

e Dynamic programming can be seen as evaluating
a DAG by navigating from the leaves to the root.

» Computing the subsolutions at each node as needed
and when possible.

e Work and span fall out of the DAG structure!

» Work: sum over nodes
» Span: Find the longest path!

e Many DP solutions have significant parallelism,
but some do not.
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DYNAMIC PROGRAMMING

e The challenge is to find the appropriate DAG
structure for a given problem.
@ DP is most suitable for optimization problems.

» Solution optimizes (minimizes/maximizes) some
criteria.

@ DP is also suitable for decision problems.
» Is there a solution to this instance?

DYNAMIC PROGRAMMING 9/29
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DYNAMIC PROGRAMMING

e Top-down approach
» Starts at the root
» Uses recursion to solve the subproblems
» But remembers the solutions — memoization.
» Usually elegant and evaluates only the needed
subproblems.
e Bottom-up approach
» Starts at the leaves
» Traverses the DAG in some fashion.
» All subproblems may need to be computed.
» More parallelizable.
e Coming up with the abstract inductive structure is
important.
» Sharing and coding comes later.
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THE SUBSET SUM PROBLEM

THE SUBSET SUM (SS) PROBLEM

Given a multiset of positive integers S and a positive
integer value k, determine if there is any X C S such

e Given S={1,4,2,9,9}
» No solution for k = 8
» For k=7 {1,4,2} is a solution.

e NP—hard if k is unconstrained.

@ We will include k in the work bounds.

@ k is polynomial in |S|, work is polynomial in |S|.
@ Pseudo-polynomial work solution.

v
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THE SUBSET SUM PROBLEM

@ Brute force: Consider all 2" subset for a total
work of O(n2").

@ Divide and Conquer: also ends up being
exponential work without any sharing!

@ Sharing solutions however works.
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THE SUBSET SUM PROBLEM

@ To solve SS(S, k), pick some elementae S
@ Solve (recursively) SS(S\ {a}, k — a)

» |f there is a solution, we are done.

e If not, solve SS(S \ {a}, k).

1 fun s55(S,k) =

2 case (showl(S), k) of

3 (_,0)= true

4 | (NIL, _)= false

5 | (cons(a,R), ) =

6 if (a> k) then s35(R, k)

7 else (ss(R,k —a) orelse SsS(R, k))
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THE SUBSET SUM PROBLEM DAG

SS({1,1,1}, 3)

SS({1,1}, 2) SS({1,1}, 3)

PN PN

SS({1}, 1) SS({1}, 2) SS({1}, 2) SS({1}, 3)

N N SN N

SS(¢,0) SS(@, 1) SS(@, 1) SS(¢,2) SS(¢,1) SS(d,2) SS(¢,2) SS(¢h,3)
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THE SUBSET SUM PROBLEM DAG

SS({1,1,1}, 3)

N

SS({1,1}, 2) SS({1,1}, 3)
SS({1}, 1) SS({1}, 2) SS({1}, 3)
SS(¢, 0) SS(¢, 1) SS(¢, 2) SS(¢, 3)

e How many distinct subproblems do we need to
solve?

DYNAMIC PROGRAMMING
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THE SUBSET SUM PROBLEM

e For SS(S, k), there are only |S| + 1 distinct lists
ever used.

@ The second argument decreases down to 0, so
has at most k + 1 values.

@ So we have at most |S|(k + 1) = O(k|S|)
iInstances.

e Each instance has constant work = total O(k|S]|)
work.

e Longest path in DAG is |S| = spanis O(|S|)

» O(k) parallelism.
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THE SUBSET SUM PROBLEM

e Why pseudo-polynomial?
e For k, the input size is log k, but the work is
O(2°9%|S])
» Exponential in input size!
o If kK < |S|¢ for some constant ¢, then work is
O(k|S|) = O(|S|°*1) on input of size
clog|S| + |S]
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MINIMUM EDIT DISTANCE

MINIMUM EDIT DISTANCE (MED)

Given a character set ¥ and two sequences of
characters S = ¥* and T = ¥L*, determine the
minimum number of insertions and deletions of single
characters required to transform Sto T.

e Startwith S= (A ,B,C,A,D,A)
» Delete C
» Delete last A
» Inserta C

@ Youget T=(A B,A D, C)
@ So MED(S, T) =3

DYNAMIC PROGRAMMING 18/29

o

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



APPLICATIONS OF MED

@ Spelling correction
» What is an English word close to Ynglisd?

e Storing multiple versions of files efficiently.
@ Approximate matching of genome sequences
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MINIMUM EDIT DISTANCE

@ GvenS=s:Sand T =t:T
o If s=t, MED(S, T)is determined by §"and T’

@ Otherwise we have two subproblems:

» Find MED(S, T') — consider a deletion from T to get
T/
» Find MED(S', T) — consider a deletion to S to get S’

@ Find the minimum and add 1.
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MINIMUM EDIT DISTANCE

fun MED(S, T) =
case (showl(S),showl(T)) of
(_,NIL) = |S]
| (vIL, )= |T|
| (cons(s, S'),cons(t, T')) =
if (s=1t) then MED(S', T')
else 1+ min(MED(S, T'), MED(S', T))

N O O = WO N -

e If run recursively, this would take exponential
work.

» Binary tree with linear depth!
e But there is significant sharing!
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SUBPROBLEM SHARING IN MED

—_—

MED (ABC, DBC) }

S

\

[ MED (BC, DBC) } { MED (ABC, BC)
[ MED (C, DBC) ] MED (BC, BC) ] MED (ABC, C)
‘ MED (C, BC) ‘ MED (BC, C) MED (ABC, )
MED (, DBC) 1
/ \ " / \
{ MED (, BC) } MED (C,C) 1 [ MED (BC, ) }
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BOTTOM-UP DEPENDENCY GRAPH

MED (S0, T0)
A

MED (S1, T0)
A

MED (S0, T1)

A

MED (S2, T0)
A

A

A

MED (S1, T1)

MED (S0, T2)

A

MED (S3, T0)

A

MED (S2, T1)

MED (S1, T2)

MED (S0, T3)

DYNAMIC PROGRAMMING

MED (S3,T1)

A

MED (S2, T2)

MED (S3, T2)

MED (S2, T3)

A

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

<«

MED (S3, T3)

23/29
SPRING 2014




MINIMUM EDIT DISTANCE

e There are at most |S| + 1 possible values for the
first argument.
@ There are at most | T| 4 1 possible values for the
second argument.
e Sowe have (|S|+1) x (|T|+1) = O(|S||T|)
possible subproblems, each of constant work.
» Total work is O(|S||T|).

e Total spanis O(|S|+ |T|) (Why?)
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THE LONGEST COMMON
SUBSEQUENCE (LENGTH)

@ A longest common subsequence of strings S;
and S» is a longest subsequence shared by both.

o LCS(ABCDEF, EBCEG) = BCE
e May be empty or not necessarily unique.
o LLCS(S4, S2) computes the length of the LCS.

@ Subproblem structure is very similar to MED.
(Work it out!)

DYNAMIC PROGRAMMIN (¢]
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OPTIMAL CHANGE

@ For a currency with coins Cq, Co, ... Cp =
(cents), what is the minimum number of coins
needed to make K cents of change.

e US Currency has 25, 10, 5, 1 cent coins.
e To give back 63 cents, you need to give
25+25+10+1+1+1, a total of 6 coins.
» Greedy works in this case, but not always
» |f you had a 21 cent coin (for some strange reason),
greedy would not work.

@ DP solutions solves two subproblems K; = i/ and
Ko=K—iforalli=1,...|K/2]

@ Then chooses / that minimizes the sum of the
solutions
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0-1 KNAPSACK

e ltems with “benefit” p; and cost w;
» X; = 1 or 0 — take item 7 or not.

o Maximize }°"  p; - X;
o Subjectto " w;j-x; < ¢

e Optimal Exam Strategy Problem (:-)

» Questions 1 through n, worth p, ... p, points.

» Time estimate for solving question j is w;

» You have T units of time.

» Which questions do you solve to maximize your
grade?

» Subproblem structure is resembles the thinking for
subset sum problem
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OPTIMAL MATRIX MULTIPLICATION

@ We need to multiply n matrices Ay x A x ---Ap
» A; has sizes p;_1 x p; and A1 has sizes p; X pj,1
» Multiplying A; and A, needs O(p;_1 - pi - pir1) WOrk
e What is the best way to “parenthesize” the
sequence to minimize the number of scalar
mutiplications?
e mji,j] is the minimum number of scalar
multiplications for multiplying A; x --- x A;
» A subproblem

DYNAMIC PROGRAMMING 28/29
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OPTIMAL MATRIX MULTIPLICATION

miij] = 4 2 . =]
’ MiN;<k< {M[i, K] + Mk +1,j] + pi—1 - px - P} 1<}

e Find that k that minimizes the cost of multiplying
A,' X X Aj

e We need to compute m[1, n] and how we got that
(the choice of k’'s when we are minimizing
subproblems)
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SYNOPSIS

@ Top-down Dynamic Programming
e Bottom-up Dynamic Programming
e Optimal Binary Search Trees
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Tor-DOWN DP

@ Run the recursive code as is:
» Start with the root
» Work down to the leaves
e Memoization: We need to avoid redundant
computation.

» |f we encounter the same arguments, we just look up
the solution
» |f not, we compute once and store in a memo table.

@ Checking for equal arguments could be costly.

» We use simple surrogates for actual arguments (e.g.,
integers)
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TorP-DOWN DP FOR MED

e MED takes two sequences and on each recursive
call, uses suffixes of the original sequences.

» There is a one-to-one mapping from non-negative
integers to suffixes (rather to suffix lengths!)

» Could also use prefixes!

» This makes indexing a bit easier.

DYNAMIC PROGRAMMING - II 4/25
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ORIGINAL MED CODE

fun MED(S, T) =
case (showl(S),showl(T)) of
(_,NIL) = |S]
| (NIL,_) = |T|
| (cons(s,S'),cons(t, T')) =
if (s=1t) then MED(S', T')
else 1+ min(MED(S, T'), MED(S', T))

NN O O = WO N =
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MED WITH SURROGATES

1 fun MED(S, T) = let

2 fun MED'(i,0) =i

3 | MED(0,)) = j

4 | MED'(/,j) =case (S;=T;) of

5 true= MED'(i—1,j—1)
6 | false=-1+min(MED'(i,j — 1),
7 MED' (i — 1,)))
8 1In

9  MED(|S],|T])

0

1 end

@ MED’ has /and/j, instead of Sand T
» irepresents S(0,...,i—1)
» jrepresents T(0,...,j—1)

@ No memo table yet!
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MEMO TABLE

° ENe_)can now add a memo table, accessed with
]

» We can also use a two dimensional array!

fun memo f (M,;a) =

case rind(M,a) of
SOME(V) = (M, v)

| NONE = let

(M',v)=f(M,a)
in
(update(M'; a,v),v)

end

1
2
3
4
5
6
7
8
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MEMOIZED MED

1 fun MED(S,T) = let
2 fun MED' (M, (i,0)) = (M, )
3 | MED'(M,(0,))) = (M, )
4 | MED'(M,(i,j)) =case (S;=T;) of
5 true = MED'(M, (i —1,j — 1))
6 | false = let
7 (M';vy) = MED" (M, (i,j — 1))
8 (M" vo) = MED"(M', (i — 1,]))
9 in (M”,1+min(vs, 2)) end

10 and MED' (M, (i,})) = memo MED' (M, (i,})))

11 in

12 mED'({},(IS]|T))

13 end

@ Purely functional

@ but highly sequential
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BOTTOM-UP DP

e Start with the leaves

@ Works through the subproblems consistent with
the DAG
» if (u, v) is a dependency edge in the DAG, compute u
before v, for all such u.
» All values will be available for v when they are
needed!

e Uses a memo table.
e Understanding the DAG structure is important
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BOTTOM-UP DP FOR MED

t c a t
0 1 2 3 i
00 O

Dag for MED(" tcat” ," atc” )
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BOTTOM-UP DP FOR MED

We can go by diagonals.
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BOTTOM-UP DP FOR MED

We can go by rows.
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BOTTOM-UP DP FOR MED

We can go by columns.
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BOTTOM-UP DP FOR MED

1 fun MED(S, T) = let

2 fun MED'(M,(i,0)) =i
3 | MED'(M,(0,))) =
4 | MED'(M, (i,j)) =case (S;=T,) of
5 true = M,'_1,j_1
6 | false = 1 —|—min(M,-,j_1,M,-_1’j)
7 fun diagonals(M,k) =
8 if (k> |S|+|T|) then M
9 else let
10 s =max(0,k — |T|)
11 e = min(k, |S|)
12 M =MuU{(i,k — i) = MED'(M, (i,k — i)) : i € {s,...,e}}
13 in
14 diagonals(M' k + 1)
15 end
16 in
17 diagonals({},0)
18 end
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BOTTOM-UP DP FOR MED

In Round 0, we compute My o

In Round 1, we compute Mp 41 and M

In Round 2, we compute My 2, My 1, Mz

In Round 3, we compute My 3, My 2, Mo 1, Ms

DYNAMIC PROGRAMMING - II 15/25
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OPTIMAL BINARY SEARCH TREES

@ Let’s revisit BSTs

» The cost of finding a key is proportional to the depth
of the key in the tree.
» Fully balanced BST with n nodes =- average depth is
log n
@ Suppose you have a (fixed/static) dictionary and
you know the probability that a given key will be
accessed

@ What is the BST structure with the lowest overall
cost?
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OPTIMAL BINARY SEARCH TREES

OPTIMAL BST

The optimal binary search tree (OBST) problem is
given an ordered set of keys S and a probability
function p: S — [0 : 1], to find T

7\- = arg minTETrees(S) (Z d(37 T) ) p(S))

scS

where Trees(S) is the set of all BSTs on S, and
d(s, T) is the depth of the key s in the tree T
(Assume the root has depth 1).
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OPTIMAL BINARY SEARCH TREES

key ki ke k3 Ki Kk ke
p(key) 1/8 1/32 1/16 1/32 1/4 1/2

0

1 1 1 1 1 1 31
Cost = §X2+§X4+EX3+3_2X4+ZX1+§X2 =18
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OPTIMAL BINARY SEARCH TREES

e How many binary search trees of n distinct keys
are there?
» Hint: Think of matrix chain multiplication!

e in DP, an optimal solution should be based on
optimal subproblem solutions.
@ One of the keys (S;) must be at the root of the
optimal tree.
» Both subtrees must be optimal.
e How do we select S,?
» Pick the key with highest probability and put it at the

root, and recurse?
» Does not really work!
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OPTIMAL BINARY SEARCH TREES

e Try all elements as a potential root

@ For each, recursively find their optimal solutions

e Pick the best among the |S| possibilities.

e All elements under a root are contiguous in the
sorted sequence.

o e
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OPTIMAL BINARY SEARCH TREES

e Use (/,j) as a surrogate for the tree spanning
S,' Ce e Sj.

e Let T be the tree covering S;, . . ., S; with root
Sr,i <r<j,with T, Tg as the subtrees.

cost(T) = Y d(s,T)-p(s)

seT

= P(S)+ D (d(s. T+ 1) p(s) + 3 (d(s, Ta) +1) - p(s)

seT;, seTgr

= > p(s)+ > _d(s,T)-p(s)+ > d(s, Tr) p(s)
seT seT; s€TR

= > p(s)+ Cost(T.) + cost(TR)
seT

@ Findthe r,i < r <jthat minimizes this cost.
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OPTIMAL BINARY SEARCH TREES

fun 0BsST(S) =
if |S|=0 then O

else (3" sp(S)) + minic(1.sy(0BST(S1,i—1)+
OBST(Sit1,s/))

= W N =

@ How many possible subproblems are there?

» A subsequence can end at n different positions
» For the i end position there are i possible start
positions.

@ Y. i=n(n+1)/2 € O(n?) possible subproblems.

@ Longest path of dependences in the DAG is O(n) since
recursion can go down for n levels (Why?)
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WORK AND SPAN

@ Cost of each subproblem is not uniform! (Why?)

e Each subproblem has O(n) work and O(log n)
span (Why?)

e We get total O(n®) work and O(nlog n) span.
(Why?)
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CODE FOR OPTIMAL BST

fun 0OBsST(S) = let
fun oBsST/(i,]) =
if /=0 then O
else >, 'y P(Siik) + min,_y(0BST (i, k)+
OBST’(i+k+1,I—k—1))
in
OBST’(1,|S])
end

0 J O O = W N -
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BOTTOM-UP OPTIMAL BST

e For a bottom up version, a triangular table is

sufficient
C15 C35 C45 C5
C24 C34 C4
C13 C23 C3
C12 C2
C1

cij = optimal cost of the tree covering Sij
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SYNOPSIS

e Hashing and Hash Tables

e Handling Collisions

» Linear Probing
» Quadratic Probing

HASH TABLES 2/55
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HASH TABLES — BASIC IDEAS

e Data structure that allows you to quickly insert,
delete, and retrieve items with expected O(1)
work.

@ Relies on

» a fixed size array data structure (of some size m), and
» a hash function that can map from a potentially
infinite space of keys to integer indexes [0, ..., m — 1]
e Disadvantages
» Collisions
» Increased memory use to avoid collisions

» Not work efficient for findmin, findmax, or extracting
keys in sorted order

HASH TABLES 3/55
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HASH TABLE - BASIC IDEAS

Space of possible values Space of possible values
of the data elements of the indices
(possibly infinitel) (0 to m-1)
0
Mapping

hash: X = {0,... m-1}| m-1

HASH TABLES 4/55
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HASH FUNCTIONS

@ There is a deep theory behind hash functions.

e We will be interested in some simple functions.
e We will assume hash functions have the
idealized property of simple uniform hashing:
» The hash function uniformly distributes keys in range
0,....m-—1
2 I[—Iash value fc])r one key is independent of the hash
value for another key.

HASH TABLES 5/55
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HASH FUNCTIONS

e For integers key we can use a linear congruential
hash function

h(x) = (ax + b) mod m

whereac[1,... m—1],be|0,...,m— 1], and
m IS prime.

HASH TABLES 6/55
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HASH FUNCTIONS

e For strings, we can use a polynomial like

S|
h(S)= | > sia | mod m
—

HASH TABLES 7/55
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HASH TABLES

@ Support insert, find and delete.

e Can implement abstract data types set and
Table.

@ Do not require total ordering on the universe of
keys.

@ Collision is the main issue

» Two keys hash to the same location.
» Impossible to avoid if we do not know the keys in
advance
* Size of key universe >> size of table.

8/55
SPRING 2014
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COLLISIONS

e For atable size of 365, one needs 23 keys for a
50% chance of collision and 66 for a 99% chance
of collision (Why?)

» Birthday paradox

HASH TABLES 9/55
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HANDLING COLLISIONS

e Separate chaining
» Store elements not in a table, but in linked lists
(containers,bins) hanging off the table.
e Open addressing:
» Put everything into the table, but not necessarily into
cell h(k).
e The perfect hash:
» When you know the keys in advance, construct hash
functions that avoids collisions entirely.
e Multiple-choice hashing/Cuckoo hashing:
» Consider exactly two locations hy(k) and h(k) only.

HASH TABLES 10/55
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HANDLING COLLISIONS

@ We will only consider the first two.

e We will assume we have a set nkeys K and a
hash function h: key — [0,..., m — 1] for some
m.

HASH TABLES 11/55
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SEPARATE CHAINING

e Maintain an array of linked lists (buckets).

@ Keys that hash to the same value live in the
same list at location h(k)

e Insertion: Insert at the beginning

» Multiple inserts for the same key = traverse the list
» May as well insert at the end.

e Find: hash to h(k) and search in the list.
e Delete: remove from the list.

HASH TABLES 12/55
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SEPARATE CHAINING

e Costs depend on the load factor A = n/m which
Is also the average length of a list.

HASH TABLES 13/55
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SEPARATE CHAINING

@ Assume h(k) takes O(1) work and we have
simple uniform hashing
e Unsuccessful search takes expected ©(1 + \)
work.
» O(1) for h(k) and X for traversing the list.

HASH TABLES 14 /55
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SEPARATE CHAINING

@ Successful search takes expected ©(1 + \) work.

@ Cost of Successful search = Cost of unsuccessful
search at the time of insertion (Why?)

e With / keys, the unsuccesssful search would take
(1 + i/m) work.

@ Averaging over | we get

22(1+i/m) =1+(n—1)/2m=1+X/2—-)/2m = ©(1+4))

e Considering constant factors, successful search
looks at 1/2 the list on the average.

HASH TABLES 15/55
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OPEN ADDRESSING

@ No lists — everything is stored in the array directly

e The arrays is some constant factor larger than
the maximum number of keys we want to store.

HASH TABLES 16/55
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AN EXAMPLE

0 Initially the hash table is empty

HASH TABLES 17/55
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AN EXAMPLE

0 100 Insert 100

HASH TABLES 18/55
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AN EXAMPLE

0 100 Insert 121

1 121

HASH TABLES 19/55
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AN EXAMPLE

0 100 Insert 144

1 121

4 144

HASH TABLES 20/55
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AN EXAMPLE

0 100 Insert 169

1 121

4 144

9 169

HASH TABLES 21/55
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AN EXAMPLE

0 100 Insert 196
1 121

2

3

4 144

5

6 196

7

8

9 169

HASH TABLES 22/55
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AN EXAMPLE

0 100 Insert 225
1 121

2

3

4 144

5 225

6 196

7

8

9 169

HASH TABLES 23/55
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AN EXAMPLE

0 100 Insert 256 COLLISION because location
1 121 6 is full. Try location 6+1=7

2

3

4 144

5 225

6 196

7 256

8

9 169

HASH TABLES 24/55
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AN EXAMPLE

0 100 Insert 289 COLLISION because location
1 121 9 is full. Try location (9+1)mod 10=0

2

3

4 144

5 225

6 196

7 256

8

9 169

HASH TABLES 25/55
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AN EXAMPLE

0 100 Insert 289 COLLISION because location
1 121 9 is full.

2 Try location (9+1)mod 10= 0 FULL

3

4 144

5 225

6 196

7 256

8

9 169

HASH TABLES 26/55
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AN EXAMPLE

0 100
1 121
2

3

4 144
5 225
6 196
7 256
8

9 169

HASH TABLES

Insert 289 COLLISION because location

9 is full.

Try location (9+1)mod 10= 0 FULL

Try location (9+2)mod 10= 1 FULL

27/55
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AN EXAMPLE

0 100 Insert 289 COLLISION because location
1 121 9 is full.

2 289 Try location (9+1)mod 10= 0 FULL

3

4 144 Try location (9+2)mod 10= 1 FULL

5 225

6 196 Try location (9+3)mod 10= 2

v 256 AVAILABLE

8

9 169

HASH TABLES 28/55
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AN EXAMPLE

0 100 Insert 324 COLLISION because location
1 121 4 is full.

? 289 Try location (4+1)mod 10=5 FULL

3

4 144

5 225

6 196

7 256

8

9 169

HASH TABLES 29/55
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AN EXAMPLE

0 100
1 121
2 289
3

4 144
5 225
6 196
7 256
8

9 169

HASH TABLES

Insert 324 COLLISION because location

4 is full.

Try location (4+1)mod 10=5 FULL

Try location (4+2)mod 10=6 FULL

30/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014




AN EXAMPLE

0 100 Insert 324 COLLISION because location
1 121 4 is full.

? 28° Try location (4+1)mod 10=5 FULL

3

4 144 Try location (4+2)mod 10= 6 FULL

5 225

6 196 Try location (4+3)mod 10= 7 FULL

7 256

8

9 169

HASH TABLES 31/55
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AN EXAMPLE

0 100 Insert 324 COLLISION because location
1 121 4 is full.
? 2 Try location (4+1)mod 10= 5 FULL
3
4 144 Try location (4+2)mod 10= 6 FULL
5 225
6 196 Try location (4+3)mod 10= 7 FULL
7 256 _

Try location (4+4)mod 10= 8
8 324 AVAILABLE
9 169

HASH TABLES 32 /55
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AN EXAMPLE

0 100 Insert 361 COLLISION because location
1 121 1 is full.

? 289 Try location (1+1)mod 10= 2 FULL

3

4 144

5 225

6 196

7 256

8 324

9 169

HASH TABLES 33/55
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AN EXAMPLE

0 100
1 121
2 289
3 361
4 144
5 225
6 196
7 256
8 324
9 169

HASH TABLES

Insert 361 COLLISION because location

1 is full.

Try location (1+1)mod 10= 2 FULL

Try location (1+2)mod 10= 3
AVAILABLE

34/55
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OPEN ADDRESSING

@ Open addressing uses an ordered sequence of
locations.

e h(k,i) gives us the i location for key k.
e (h(k,0),h(k,1),h(k,2),...) is the probe
sequence.

@ Try these locations in order until an empty cell is
found and insert there.

HASH TABLES 35/55
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OPEN ADDRESSING - INSERT

1 fun insert(T,k)=

2 et

3 fun insert/(T,k,i) =

4 case nth T h(k,i) of

5 NONE = update(h(k,i),k) T
6 | _ = insert!(T,k,i+1)

7 in

8 insert'(T, k,1)

9 end

@ T must be an ST array - otherwise work and
span are not constant.

@ Need to check if table is full and the key is
already in the table or not.

HASH TABLES 36/55
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OPEN ADDRESSING-SEARCH

1 fun £ind(T,k)=

2 et

3 fun rind(T,k,i)=

4 case nth T h(k,i) of

5 NONE = false

6 | SoME(K') = if (eqg(k,k’)) then true
7 else rind(T,k,i+1)

8 iIn

9 find(T,k,1)

10 end

HASH TABLES 37/55
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OPEN ADDRESSING-DELETE

@ We can not just delete an items and set its cell to
NONE! (Why ?)
e rind will stop searching if it encounters an

empty cell.
o Use lazy delete
» Instead of deleting, use a special value HOLD.

1 datatype o entry= EMPTY | HOLD | FULL of «

e Find and Insert will need to be changed
accordingly.

e Lazy delete effectively increases load factor.

@ Rehashing to the rescue!

HASH TABLES 38/55
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OPEN ADDRESSING

e Linear Probing
@ Quadratic Probing
@ Double Hashing

HASH TABLES 39/55
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LINEAR PROBING

e We check cell at h(k, i) = (h(k) +1i) mod min
i probe.

@ m possible probe sequences.

@ Keys tend to cluster — primary clustering.

» Inserts add to a cluster
» Probe sequences get longer and longer

HASH TABLES 40/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014




IMPACT OF CLUSTERING

e Assume table is half full (A = 1/2)

e Minimum clustering when every other cell is
empty!
@ Average probes for insert is 3/2

» One probe to check cell h(k)
» + with 1/2 chance try the next cell (which by design
should be empty)

HASH TABLES 41/55
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IMPACT OF CLUSTERING

@ Worst case: all keys are clustered to the second

half of the array. (Remember A\ =1/2 = m = 2n)
@ How many probes for positions 0 through n — 17?
@ How many probes when initial hash is to cell n?
> n (Why?)
e How many probes when initial hash is to cell
n+17
» n—1 (Why?)
@ Average is

(n+[n+(n—1)+(n—-2)+....4+1])/m = n/m+n(n+1)/2m ~ n/4

e Even though though the average cluster length is
2, the cost is about n/4 probes.

HASH TABLES 42 /55
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COSTS FOR LINEAR PROBING

@ Given a hash table of size m and with n = \m
keys.

@ The cost of an unsuccessful search/insert is

Iy fpa—
2 1— )2

@ The cost of an successful search is

1 1_|_L
2 1—-)\/

HASsH TABLES
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COSTS FOR LINEAR PROBING

Expected Probes for Insertion and
Unsuccessful Search
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COSTS FOR LINEAR PROBING

Expected Probes for Insertion and
Unsuccessful Search

§ 4.00
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COSTS FOR LINEAR PROBING

Expected Probes for Successful
Searches
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COSTS FOR LINEAR PROBING

Expected Probes for Successful

Searches
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>
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QUADRATIC PROBING

e We check cell at h(k, i) = (h(k) + i?) mod min
i probe.

e Makes longer jumps

@ Avoids primary clustering

e But has secondary clustering.

@ Since there are m possible positions there are m
probe sequences.

e Not all available cells get probed (Why?)

HASH TABLES 48/55
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QUADRATIC PROBING

e If mis prime and the table is at least half empty,
then quadratic probing will always find an empty
location.

e Furthermore, no locations are checked twice.

HASH TABLES 49/55
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QUADRATIC PROBING

e Consider two probe locations h(k) + i¢ and
h(k) + /4,0 <i,j<[m/2].
@ Suppose the locations are the same but / # J.
h(k) + i? = (h(k) + j2) mod m
i =j% mod m
“—j2=0 mod m
(i—)(i+j)=0 mod m
e Therefore, either i — j or i + j are divisible by m.
e But since both i — j and / + j are less than m and

m is prime, they cannot be divisible by m.
@ Thus the first [m/2] probes are distinct and

HASsH TABLES
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QUADRATIC PROBING

e Computing the next hash value is only slightly
more expensive

hi—hi_1 = (i = (i—1)?) mod m
hi = (h,'_1 + 21 — 1) mod m

e If the table gets too full, one can resize and
rehash

» Constant additional overhead

HASH TABLES 51/55
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DOUBLE HASHING

@ Uses two hash-functions:
» initial location
» size of the jump

e /" probe is
h(k, i) = (hi(K) + i - ho(k)) mod m.

e Different keys are likely to have different values
jump function if they collide.

@ Avoids secondary clustering

@ ho(k) should be relatively prime to m to probe
each locations.
» mprime and 0 < ho(k) < mis one option.

HASH TABLES 52/55
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DOUBLE HASHING

@ The average number of probes for an
unsuccessful search or an insert is at most

1
1 24 =—
e (1)

@ The average number of probes for a successful

search is
T om(
A 1 — ) '

» Same argument of averaging over probes at insertion
time.
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DOUBLE HASHING

A 1/4 1/2 2/3 3/4 9/10

successful 12 14 16 1.8 2.6
unsuccessful 1.3 1.5 2.0 3.0 5.5

e Allows for smaller tables than linear or quadratic
probing
e Higher cost for hash function

HASH TABLES 54 /55
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PARALLEL HASHING

@ injectCond(lV,S): (int x a)seg x (anoption)seq —
(coption)seq.

@ Conditionally writes each value v; into location j; of S
» if the location is set to NONE

1 fun insert(T,K) =
2 et
3 fun insert/(T,K,i) =
4 if |[K|=0 then T
5 else let
6 T' = injectcond({(h(k,i),k) : k € K}, T)
7 K' = {k: ke K| T[h(k,i)] # k}
8 in
9 insert/(T',K',i+1)  end
10 in
11 insert’(T,k,1)
12 end

HASH TABLES 55/55
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SYNOPSIS

@ Priority Queues

e Heaps

e Meldable Priority Queues
o Leftist Heaps

PRIORITY QUEUES 2/36
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PRIORITY QUEUES

@ Abstract Data Type supporting
» deleteMin/deleteMax
» insert
e Used in many useful algorithms
Dijkstra’ Algorithm
Prim’s Algorithm for MST
Constructing Huffman Codes
Heapsort

>
>
>
>

PRIORITY QUEUES 3/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



HEAPSORT

fun sort S =
let

pg = iter Q.insert Q.empty S

fun sort’ pg=
let
case (PQ.deleteMin pq) of
NONE = ]
| SOME(v,pq’) = Vv :: sort'(pq’)

O 0 I O U1 W= W N =

in
Seq. fromList(sort’'pq)
end

S —Y
_ O

PRIORITY QUEUES 4/36
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UNDERLYING IMPLEMENTATIONS

e Sorted and Unsorted Lists/Arrays
» One of deleteMin and insert is fast (O(1))
» The other is slow. O(n)
e Balanced binary search trees
» Both operations have O(log n) work and span.
e Binary heaps
» Both operations have O(log n) work and span.

» But binary heaps provide a O(1) work £findMin
operation.

PRIORITY QUEUES 5/36
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HEAPS

@ A min-heap (max-heap) is a rooted tree

@ Key at every node is < (>) all descendants.
@ A binary heap is heap which has

» Shape property: The tree is a complete binary tree

* All levels of the tree are completely filled except the
bottom level, which is filled from the left

» Heap Property

PRIORITY QUEUES 6/36
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BINARY HEAPS

A complete tree

PRIORITY QUEUES 7/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014




BINARY HEAPS

An incomplete tree

PRIORITY QUEUES 8/36
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BINARY HEAPS

e Shape Property = binary heap can be
maintained in an array.

e Index of a parent or a child is very easy to
compute

@ Operations first restore shape property, then
heap property.

PRIORITY QUEUES 9/36
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BINARY HEAPS AND ARRAYS

PRIORITY QUEUES
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BUILDING PRIORITY QUEUES

@ We can insert elements one-by-one
» With balanced binary trees and binary heaps, work is
O(nlog n)
» Can we do better?
e Build the heap recursively

» |f left and right sides are already heaps, just shift
down the root element.

PRIORITY QUEUES 11/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014




BUILDING HEAPS DIRECTLY

fun sequentialFromSegS =
let
fun heapify(S,i) =
if (i>=|S|/2) then S
else let
S' = heapify(S, 2xi+1)
S" = heapify(S, 2xi+2)
in shiftbown(S”, i) end
in heapify(S,0) end

O 0 NI O U1l = L D -
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COST ANALYSIS

@ shiftDown does O(log n) work on subtree of
size n

o W(n)=2W(n/2)+ O(logn) € O(n)
@ Opportunities for parallelism?

n/8 n/4 n/2

PRIORITY QUEUES 13/36
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PARALLEL HEAPIFY

n/8 n/4 n/2

@ Green cells are OK
e All the pinks cells can be shifted down in parallel

e Then all purple cells can be shifted down in
parallel

@ (All) Red cell(s) can be shifted down in parallel

PRIORITY QUEUES 14/36
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PARALLEL HEAPIFY

PRIORITY QUEUES 15/36
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PARALLEL HEAPIFY

e We use Singlg-_threaded sequences

if (d=0) then S
else heapify (S, d—1)
in heapify (S, [log,n] —1) end

1 fun fromSeqg a seq =

2 let

3 fun heapify (S, d)=

4 let

5 S’ = shiftDown (S, <2d—1,...,2d+1—2>, d)
6 in

7

8

9

o S(n) = S(n/2) + O(log n) € O(log® n)

PRIORITY QUEUES 16/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



PARALLEL HEAPIFY

@ d=2= shiftDhown (S, <3, 4,5, 6>, 2)
@ d=1= shiftDhown (S, <1,2>,1)
@ d =0= shiftDhown (S, <0>, 0)




PRIORITY QUEUES — SUMMARY

Data. Str. findMin deleteMin insert fromSeq I
sorted linked O(1) O(1) O(n)  O(nlogn)
list

unsorted linked O(n) O(n) O(1) O(n)
list

balanced O(log n) O(log n) O(logn) O(nlogn)

search tree

binary heap O(1) O(log n) O(log n) O(n)
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MELDABLE PRIORITY QUEUES

e Priority Queues with an additional meld operation

» Just like the union in BSTs
» Takes two meldable PQs and returns the union as a
meldable PQ

e Implementation uses leftist heaps

» Same work and span as binary heaps for insert,
deletemin

» Meld has O(log n + log m) work and span where m
and n are the heap sizes

PRIORITY QUEUES 19/36
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MIN HEAPS

e Binary tree
e Maintains the heap property
e But does not maintain the complete binary tree
property
@ Here is an example
o 3

/ \
7 O o 8

/ \
11 o o 15

/\
22 O o 16
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MIN HEAPS

@ To implement deleteMin
» Remove the root

AN} o 8

/ N\
11 o o 15

/\
22 0O o 16

@ We can then use meld to union the heaps.
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MIN HEAPS

@ Toimplement insert

» We create a single node heap
» meld it with the original heap

@ fromSeq is also easy using reduce

val pg = Seqg.reduce Q.meld Q.empty
(Seg.map Q.singleton S)
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THE MELD OPERATION

@ S0 we only need the me1d operation
e Consider

4 0 o 3

/ \ / \
11 o o '/ 8 o o b5

/ \ /
19 o o 23 14 o

@ Which element goes to the root?
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THE MELD OPERATION

@ Select the tree with the smaller root and
recursively me1d with one of its children

o 3

/ \
8 © = meld ( 4 o , o 5 )
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THE MELD OPERATION

e Applying recursively

o 3

/ \
8 o o 4

/ / \
14 o 11 o = meld ( o 7 o 5)

/\
19 o o 23
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THE MELD OPERATION

e Applying recursively

o 3
/ \

19 o o 23 = meld( o 7 ,empty)

e Melding A with an empty heap gives A
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THE MELD OPERATION

datatype PQ = Leaf | Node of (key x PQ x PQ)

fun melid(A, B) =
case (A, B) of
(_,Leaf)= A
| (Leaf, _)=B
| (Node(ka, L,, Ra), Node(kb, Lp, Rb)):>
case Key.compare (ki Kkp) oOf
LESS = Node(ks, Lz, meld(R,;, B))
| _ = Node(ky, Lp, meld(A, Rp))

OO INUTH=WIN =

@ Traverses the right spines of the trees

@ Could be ©(|A| + |B|) in the worst case.
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LEFTIST HEAPS
e When melding, keep trees deeper on the left.
@ Define
rank(x) = # of nodes on the right

spine of the subtree rooted at x,
e For all nodes, rank can be inductively defined

rank(leaf) =0
rank(node(_, ., R) = 1 + rank(R)
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LEFTIST PROPERTY

e For all node x in a leftist heap,
rank(L(x)) > rank(R(x))

» L(x) and R(x) are the left and child children of x
e Allows for

O n

e But this is OK (Why?

PRIORITY QUEUES 29/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



LEFTIST HEAPS

@ Most items pile to the left
e Right spine is relatively short!

LEMMA

In a leftist heap with n entries, the rank of the root
node is at most log,(n + 1).
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LEFTIST HEAPS

datatype PQ = Leaf | Node of (int x key x PQ x PQ)

fun rank Leaf=0
| rank (Node(r, _,_,_))=r

(v, L, R)=
if (rank(L) < rank(R))
then Node(1 + rank(L), v, R, L)
else Node(1+ rank(R), v, L, R)

fun makeleftistNode

N OO OB WON -

@ Puts lower rank subtree to the right!
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LEFTIST HEAPS
1
2
3
4
5
6
7
:
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fun meld (A, B)=
case (A, B) of
(_, Leaf)=A
| (Leaf, _)=B
| (Node(_, kKa La, Ra), Node(_, kp, Lp, Rp))=
case Key.compare(K,, Kkp) Of
LESS = makeLeftistNode (Ka,La,meld(Rs, B))
| _ = makeLeftistNode (Kp,Lp, meld(A, Rp))
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LEFTIST HEAPS

THEOREM
It Aand B are leftist heaps then

e the meid(A, B) algorithm runs in
O(log(|A|) + log(|B|)) work, and

@ returns a leftist heap containing the union of A
and B.

@ Code traverses the right spines, one node at a
time
» S0 needs at most rank(A) + rank(B) steps
» Each step needs constant work

@ makeLeftistNode guarantees leftist result
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PROVING THE LEMMA

CLAIM
If a heap has rank r, it contains at least 2" — 1 entries.J

@ n(r) = nodes in the smallest heap of rank r
» Monotone: if r' > r, then n(r') > n(r)
» n(0)=0
@ rank(L(x)) > rank(R(x)) =r — 1
n(r) = 1+ n(rank(L(x))) + n(rank(R(x)))
> 1+n(r—1)+n(r—1)=14+2-n(r—1).

@ n(r)>2"—1
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PROVING THE LEMMA

e Apply the claim

@ Suppose leftist heap of n nodes has rank r
en>n(r)>2"-1

@ 2" <n+1=r<log,(n+1)

@ Rank of a leftist node of n nodes is at most
log,(n+ 1)
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SUMMARY OF PRIORITY QUEUES

Implementation insert findMin deleteMin meld
(Unsorted) Sequence O(n) o(n) o(n) O(m+ n)
Sorted Sequence O(n) o(1) O(n) O(m+ n)
Balanced Tree O(log n) O(log n) O(logn)  O(mlog(1 + 7))
Leftist Heap O(log n) Oo(1) O(logn)  O(log m+log n)
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