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SYNOPSIS

Hashing and Hash Tables
Handling Collisions

I Linear Probing
I Quadratic Probing
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HASH TABLES – BASIC IDEAS

Data structure that allows you to quickly insert,
delete, and retrieve items with expected O(1)
work.
Relies on

I a fixed size array data structure (of some size m), and
I a hash function that can map from a potentially

infinite space of keys to integer indexes [0, . . . ,m − 1]

Disadvantages
I Collisions
I Increased memory use to avoid collisions
I Not work efficient for findmin, findmax, or extracting

keys in sorted order
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HASH TABLE - BASIC IDEAS
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HASH FUNCTIONS

There is a deep theory behind hash functions.
We will be interested in some simple functions.
We will assume hash functions have the
idealized property of simple uniform hashing:

I The hash function uniformly distributes keys in range
[0, . . . ,m − 1]

I Hash value for one key is independent of the hash
value for another key.
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HASH FUNCTIONS

For integers key we can use a linear congruential
hash function

h(x) = (ax + b) mod m

where a ∈ [1, . . . ,m − 1], b ∈ [0, . . . ,m − 1], and
m is prime.
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HASH FUNCTIONS

For strings, we can use a polynomial like

h(S) =

 |S|∑
i=1

siai

 mod m
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HASH TABLES

Support insert, find and delete.
Can implement abstract data types Set and
Table.
Do not require total ordering on the universe of
keys.
Collision is the main issue

I Two keys hash to the same location.
I Impossible to avoid if we do not know the keys in

advance
F Size of key universe >> size of table.
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COLLISIONS

For a table size of 365, one needs 23 keys for a
50% chance of collision and 66 for a 99% chance
of collision (Why?)

I Birthday paradox
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HANDLING COLLISIONS

Separate chaining
I Store elements not in a table, but in linked lists

(containers,bins) hanging off the table.
Open addressing:

I Put everything into the table, but not necessarily into
cell h(k).

The perfect hash:
I When you know the keys in advance, construct hash

functions that avoids collisions entirely.
Multiple-choice hashing/Cuckoo hashing:

I Consider exactly two locations h1(k) and h2(k) only.
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HANDLING COLLISIONS

We will only consider the first two.
We will assume we have a set n keys K and a
hash function h : key→ [0, . . . ,m − 1] for some
m.
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SEPARATE CHAINING

Maintain an array of linked lists (buckets).
Keys that hash to the same value live in the
same list at location h(k)
Insertion: Insert at the beginning

I Multiple inserts for the same key⇒ traverse the list
I May as well insert at the end.

Find: hash to h(k) and search in the list.
Delete: remove from the list.
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SEPARATE CHAINING

Costs depend on the load factor λ = n/m which
is also the average length of a list.
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SEPARATE CHAINING

Assume h(k) takes O(1) work and we have
simple uniform hashing
Unsuccessful search takes expected Θ(1 + λ)
work.

I O(1) for h(k) and λ for traversing the list.
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SEPARATE CHAINING

Successful search takes expected Θ(1 + λ) work.
Cost of Successful search = Cost of unsuccessful
search at the time of insertion (Why?)
With i keys, the unsuccesssful search would take
(1 + i/m) work.
Averaging over i we get

1
n

n−1∑
i=0

(1+i/m) = 1+(n−1)/2m = 1+λ/2−λ/2m = Θ(1+λ)

Considering constant factors, successful search
looks at 1/2 the list on the average.
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OPEN ADDRESSING

No lists – everything is stored in the array directly
The arrays is some constant factor larger than
the maximum number of keys we want to store.
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE

HASH TABLES 20/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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OPEN ADDRESSING

Open addressing uses an ordered sequence of
locations.
h(k , i) gives us the i th location for key k .
〈h(k ,0),h(k ,1),h(k ,2), . . . 〉 is the probe
sequence.
Try these locations in order until an empty cell is
found and insert there.
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OPEN ADDRESSING - INSERT

1 fun insert(T , k) =
2 let
3 fun insert′(T , k , i) =
4 case nth T h(k , i) of
5 NONE⇒ update(h(k , i), k) T
6 | ⇒ insert′(T , k , i + 1)
7 in
8 insert′(T , k ,1)
9 end

T must be an ST array - otherwise work and
span are not constant.
Need to check if table is full and the key is
already in the table or not.
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OPEN ADDRESSING-SEARCH

1 fun find(T , k) =
2 let
3 fun find′(T , k , i) =
4 case nth T h(k , i) of
5 NONE⇒ false
6 | SOME(k ′)⇒ if (eq(k , k ′)) then true
7 else find′(T , k , i + 1)
8 in
9 find′(T , k ,1)

10 end
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OPEN ADDRESSING-DELETE

We can not just delete an items and set its cell to
NONE! (Why ?)
find will stop searching if it encounters an
empty cell.
Use lazy delete

I Instead of deleting, use a special value HOLD.

1 datatype α entry = EMPTY | HOLD | FULL of α

Find and Insert will need to be changed
accordingly.
Lazy delete effectively increases load factor.
Rehashing to the rescue!
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OPEN ADDRESSING

Linear Probing
Quadratic Probing
Double Hashing
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LINEAR PROBING

We check cell at h(k , i) = (h(k) + i) mod m in
i th probe.
m possible probe sequences.
Keys tend to cluster – primary clustering.

I Inserts add to a cluster
I Probe sequences get longer and longer
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IMPACT OF CLUSTERING

Assume table is half full (λ = 1/2)

Minimum clustering when every other cell is
empty!
Average probes for insert is 3/2

I One probe to check cell h(k)
I + with 1/2 chance try the next cell (which by design

should be empty)
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IMPACT OF CLUSTERING

Worst case: all keys are clustered to the second
half of the array. (Remember λ = 1/2⇒ m = 2n)
How many probes for positions 0 through n − 1?

I 1 (Why?)
How many probes when initial hash is to cell n?

I n (Why?)
How many probes when initial hash is to cell
n + 1?

I n − 1 (Why?)
Average is
(n+[n+(n−1)+(n−2)+....+1])/m = n/m+n(n+1)/2m ≈ n/4

Even though though the average cluster length is
2, the cost is about n/4 probes.
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COSTS FOR LINEAR PROBING

Given a hash table of size m and with n = λm
keys.
The cost of an unsuccessful search/insert is

1
2

(
1 +

1
1− λ2

)
The cost of an successful search is

1
2

(
1 +

1
1− λ

)
.
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COSTS FOR LINEAR PROBING
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COSTS FOR LINEAR PROBING
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COSTS FOR LINEAR PROBING
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COSTS FOR LINEAR PROBING
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QUADRATIC PROBING

We check cell at h(k , i) = (h(k) + i2) mod m in
i th probe.
Makes longer jumps
Avoids primary clustering
But has secondary clustering.
Since there are m possible positions there are m
probe sequences.
Not all available cells get probed (Why?)
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QUADRATIC PROBING

If m is prime and the table is at least half empty,
then quadratic probing will always find an empty
location.
Furthermore, no locations are checked twice.
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QUADRATIC PROBING

Consider two probe locations h(k) + i2 and
h(k) + j2,0 ≤ i , j < dm/2e.
Suppose the locations are the same but i 6= j .

h(k) + i2 ≡ (h(k) + j2) mod m

i2 ≡ j2 mod m

i2 − j2 ≡ 0 mod m
(i − j)(i + j) ≡ 0 mod m

Therefore, either i − j or i + j are divisible by m.
But since both i − j and i + j are less than m and
m is prime, they cannot be divisible by m.
Thus the first dm/2e probes are distinct and
guaranteed to find an empty location.
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QUADRATIC PROBING

Computing the next hash value is only slightly
more expensive

hi − hi−1 ≡ (i2 − (i − 1)2) mod m
hi ≡ (hi−1 + 2i − 1) mod m

If the table gets too full, one can resize and
rehash

I Constant additional overhead
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DOUBLE HASHING

Uses two hash-functions:
I initial location
I size of the jump

i th probe is

h(k , i) = (h1(k) + i · h2(k)) mod m.

Different keys are likely to have different values
jump function if they collide.
Avoids secondary clustering
h2(k) should be relatively prime to m to probe
each locations.

I m prime and 0 < h2(k) < m is one option.
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DOUBLE HASHING

The average number of probes for an
unsuccessful search or an insert is at most

1 + λ + λ2 + ... =

(
1

1− λ

)
I Why?

The average number of probes for a successful
search is

1
λ

(
1 + ln

(
1

1− λ

))
.

I Same argument of averaging over probes at insertion
time.
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DOUBLE HASHING

λ 1/4 1/2 2/3 3/4 9/10

successful 1.2 1.4 1.6 1.8 2.6
unsuccessful 1.3 1.5 2.0 3.0 5.5

Allows for smaller tables than linear or quadratic
probing
Higher cost for hash function
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PARALLEL HASHING

injectCond(IV ,S) : (int × α)seq× (αoption)seq →
(αoption)seq.

Conditionally writes each value vj into location ij of S
I if the location is set to NONE

1 fun insert(T ,K ) =

2 let
3 fun insert′(T ,K , i) =
4 if |K | = 0 then T
5 else let
6 T ′ = injectCond({(h(k , i), k) : k ∈ K} ,T )

7 K ′ = {k : k ∈ K | T [h(k , i)] 6= k}
8 in
9 insert′(T ′,K ′, i + 1) end

10 in
11 insert′(T , k , 1)
12 end
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