15-210
PARALLEL AND SEQUENTIAL
ALGORITHMS AND DATA
STRUCTURES

LECTURE 23

DYNAMIC PROGRAMMING — 11

SYNOPSIS

@ Top-down Dynamic Programming
e Bottom-up Dynamic Programming
e Optimal Binary Search Trees

DYNAMIC PROGRAMMING - IT 2/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TOP-DOWN DP

e Run the recursive code as is:

» Start with the root

» Work down to the leaves
e Memoization: We need to avoid redundant

computation.
» If we encounter the same arguments, we just look up
the solution

» If not, we compute once and store in a memo table.

e Checking for equal arguments could be costly.

» We use simple surrogates for actual arguments (e.g.,
integers)

DYNAMIC PROGRAMMING - IT 3/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TOP-DOWN DP FOR MED

e MED takes two sequences and on each recursive
call, uses suffixes of the original sequences.
» There is a one-to-one mapping from non-negative
integers to suffixes (rather to suffix lengths!)
» Could also use prefixes!
» This makes indexing a bit easier.

DYNAMIC PROGRAMMING - IT 4/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ORIGINAL MED CODE

fun MED(S, T) =
case (showl(S),showl(T)) of
(_,NIL) = |S]
| NIz, _)=|T)
| (cons(s, S'), cons(t, T")) =
if (s=1t) then MED(S', T')
else 1+ min(MED(S, T'), MED(S', T))

N O G = W N -

DYNAMIC PROGRAMMING - IT 5/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MED WITH SURROGATES

1 fun MED(S,T) = let
2 fun MED'(i,0) =i
3 | MED(0,j) =]
4 | MED'(i,j) =case (S;=T;) of
5 true = MED'(I—1,j—1)
6 | false=1-+min(MED'(i,j— 1),
7 MED' (i — 1,j))
8 in
9 MED(|S],|T])
10 end
e MED’ hasiandj, instead of Sand T
» irepresents S(0,...,i—1)
» jrepresents T(0,...,j—1)
e No memo table yet!

DYNAMIC PROGRAMMING - IT 6/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MEMO TABLE

° Elye.)can now add a memo table, accessed with
l,]

» We can also use a two dimensional array!

fun memo f (M,a) =

case rind(M,a) of
SOME(V) = (M, v)

| NONE = let

(M',v) =1(M,a)
in
(update(M'; a,v),v)

end

1
2
3
4
5
6
7
8

DYNAMIC PROGRAMMING - IT 7/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MEMOIZED MED

1 fun MED(S, T) = let

2 fun MED'(M, (i,0)) = (M, i)

3 | MED(M, (0.))) = (M)

4 | MED'(M, (i,j)) =case (S;=T,;) of

5 true = MED"(M, (i —1,j—1))
6 | false = let

7 (M’ v1) = MED" (M, (i,j — 1))
8 (M", v3) = MED" (M, (i —1,}))
9 n (M’,1+min(vy,v2)) end
10 and MED"(M, (i,f)) = memo MED' (M, (i,)))

11 in

12 mep({}.(ISLIT))

13 end

@ Purely functional

@ but highly sequential

DYNAMIC PROGRAMMING - IT 8/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BoTtTOM-UP DP

e Start with the leaves

@ Works through the subproblems consistent with
the DAG
» if (u, v) is a dependency edge in the DAG, compute u
before v, for all such u.
» All values will be available for v when they are
needed!

e Uses a memo table.
e Understanding the DAG structure is important

DYNAMIC PROGRAMMING - IT 9/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP DP FOR MED

t c a t
0 1 2 3 4 i
Je) @)
al
t2Q
c3
J

Dag for MED(" tcat"," atc")

DYNAMIC PROGRAMMING - IT 10/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP DP FOR MED

t
4 .
o
9
o
(D

We can go by diagonals.

DYNAMIC PROGRAMMING - IT 11/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP DP FOR MED

We can go by rows.

DYNAMIC PROGRAMMING - IT 12/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP DP FOR MED

We can go by columns.

DYNAMIC PROGRAMMING - IT 13/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP DP FOR MED

fun MED(S, T) = let
fun MED'(M, (i,0)) =i
| MEDI(Mr ©.0))=J
| MED'(M,(i,j)) =case (S;=T,) of
true = Mi_q;_4
| false=1+ min(M,-,j,1 s Ml‘*‘],]')

fun diagonals(M, k) =
if (k>|S|+]|T|) then M

I g g S
O WNFROOVON] Uk WN -

else let
s=max(0,k — |T|)
e =min(k, |S])
M = MU {(i,k — i) — MED'(M, (i,k —i)) : i € {s,...,e}}
in
diagonals(M' k +1)
end
16 in
17 diagonals({},0)
18 end

DYNAMIC PROGRAMMING - IT 14/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP DP FOR MED

In Round 0, we compute My

In Round 1, we compute My 1 and My o

In Round 2, we compute My, M; 1, Mz

In Round 3, we compute My 3, Mi 2, Mz1, M3

How about parallelism?

DYNAMIC PROGRAMMING - IT 15/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL BINARY SEARCH TREES

@ Let’s revisit BSTs
» The cost of finding a key is proportional to the depth
of the key in the tree.
» Fully balanced BST with n nodes =- average depth is
log n
@ Suppose you have a (fixed/static) dictionary and
you know the probability that a given key will be
accessed

@ What is the BST structure with the lowest overall
cost?

DYNAMIC PROGRAMMING - IT 16/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL BINARY SEARCH TREES

OPTIMAL BST

The optimal binary search tree (OBST) problem is
given an ordered set of keys S and a probability
functionp: S —[0:1],tofind T

7\- = arg minTETrees(S) (Z d(S, T) ’ p(S))

seS

where Trees(S) is the set of all BSTs on S, and
d(s, T) is the depth of the key s in the tree T
(Assume the root has depth 1).

DYNAMIC PROGRAMMING - IT 17/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL BINARY SEARCH TREES

key ki ko K3 K4 ks Ke
p(key) 1/8 1/32 1/16 1/32 1/4 1/2

0

(=)
OO,
31

1 1 1 1 1 1
Cost = §X2+3_2X4+EX3+3_2X4+ZX1+§X2 =16

DYNAMIC PROGRAMMING - IT 18/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL BINARY SEARCH TREES

e How many binary search trees of n distinct keys
are there?
» Hint: Think of matrix chain multiplication!

@ in DP, an optimal solution should be based on
optimal subproblem solutions.
e One of the keys (S;) must be at the root of the
optimal tree.
» Both subtrees must be optimal.
e How do we select S,?
» Pick the key with highest probability and put it at the

root, and recurse?
» Does not really work!

DYNAMIC PROGRAMMING - IT 19/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL BINARY SEARCH TREES

e Try all elements as a potential root

e For each, recursively find their optimal solutions

e Pick the best among the |S| possibilities.

@ All elements under a root are contiguous in the
sorted sequence.

o e

DYNAMIC PROGRAMMING - IT 20/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL BINARY SEARCH TREES

e Use (i,j) as a surrogate for the tree spanning
S,', ceey Sj.

e Let T be the tree covering S;, .. ., S; with root
S, i < r <j,with T, Tg as the subtrees.

Cost(T) = > d(s,T)-p(s)

seT
= p(S)+ > (d(s,TL)+1)-p(s)+ > _ (d(s, T)+1) - p(s)
seT, s€TR
= S op(s)+ > d(s,T) - p(s)+ > d(s, Tr) - p(s)
seT SET, s€Tg
= > p(s)+ Cost(T.) + cost(Tg)
seT

e Find the r,i < r <j that minimizes this cost.

DYNAMIC PROGRAMMING - IT 21/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL BINARY SEARCH TREES

fun 0BsST(S) =
if |S|=0 then 0
else (ZSES ,D(S)) + min,-€<1_“|3|>(OBST(S1,,-_1)+
OBST(S,'_H,‘S‘))

=~ W N =

@ How many possible subproblems are there?

» A subsequence can end at n different positions
» For the i end position there are i possible start
positions.

@ Y, i=n(n+1)/2 € O(n?) possible subproblems.

@ Longest path of dependences in the DAG is O(n) since
recursion can go down for n levels (Why?)

DYNAMIC PROGRAMMING - IT 22/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

WORK AND SPAN

e Cost of each subproblem is not uniform! (Why?)

e Each subproblem has O(n) work and O(log n)
span (Why?)

e We get total O(n®) work and O(nlog n) span.
(Why?)

DYNAMIC PROGRAMMING - IT 23/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

CODE FOR OPTIMAL BST

1 fun 0BsST(S) = let

2 fun oBsT/(i,]) =

3 if /=0 then O

4 else >, p(Si.x) + min,_(0BST’ (i, k)+

5 OBST’(i+k+1,1—k—1))
6 1In

7 OBST’(1,]S])

8 end

DYNAMIC PROGRAMMING - IT 24/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP OPTIMAL BST

e For a bottom up version, a triangular table is
sufficient

C15 c35 | C45 C5

C24 C34 C4

C13 Cc23 C3

c12 Cc2

C1

cij = optimal cost of the tree covering Sij

DYNAMIC PROGRAMMING - IT 25/25

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

