
15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 10

BREADTH-FIRST SEARCH

SYNOPSIS

Breadth-first search
BFS Extensions
BFS Costs
BFS with Single-threaded Sequences

BREADTH-FIRST SEARCH 2/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

GRAPH SEARCH

Fundamental operation of graphs
I Start at some (set of) vertex(s)
I Systematically visit all reachable vertices (only once)

Used for determining properties of
graphs/vertices

I Connected?
I Bipartite?
I Vertex v reachable from vertex u?
I Shortest path from u to v?

BREADTH-FIRST SEARCH 3/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

GRAPH SEARCH METHODS

Breadth-first Search (BFS)
I Parallelizable but for shallow graphs!

Depth-first Search (DFS)
I Inherently sequential!

Priority-first Search (PFS)
All reachable vertices from a source are visited,
but in different orders.

BREADTH-FIRST SEARCH 4/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BREADTH-FIRST SEARCH

Applicable to a variety of problems
I Connectedness
I Reachability
I Shortest path
I Diameter
I Bipartiteness

Applicable to both directed and undirected
graphs

I For digraphs, we only consider outgoing arcs.

BREADTH-FIRST SEARCH 5/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

GRAPH SEARCH

For all graph search methods vertices can be
partitioned into three sets at any time during the
search:

1 vertices already visited (X ⊆ V),
2 the unvisited neighbors of the visited vertices, called

the frontier (F),
3 the rest; unseen vertices.

The search essential goes as follows:
while vertices remain

-visit some unvisited neighbors
of the visited set

Web navigation analogy.
BREADTH-FIRST SEARCH 6/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BREADTH-FIRST SEARCH

Starting from a source vertex s
I Visit all vertices that are (out-)neighbors of s (at

distance 1)
I Visit all vertices at distance 2 from s
I Visit all vertices at distance 3 from s, etc.

A vertex at distance i + 1 must have a
(in-)neighbor at distance i .

BREADTH-FIRST SEARCH 7/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BREADTH-FIRST SEARCH

BFS needs to keep track of vertices already
visited
Xi : all vertices visited at start of level i

I Vertices in Xi have distance less than i .
Fi : all unvisited neighbors of vertices in Xi

I Vertices in Fi have distance exactly i .

“Visit”⇒ Do something with the vertices (e.g.,
print it)
Xi+1 = Xi ∪ Fi

Fi+1 = NG(Fi) \ Xi+1 (NG(Fi) =
⋃

v∈Fi
N(v))

BREADTH-FIRST SEARCH 8/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BREADTH-FIRST SEARCH

1 fun BFS(G = (V ,E), s) =
2 let
3 fun BFS′(X , F , i) =
4 if |F | = 0 then (X , i)
5 else let
6 X ′ = X ∪ F % Visit the Frontier
7 N = NG(F) % Determine the neighbors
8 % of the frontier
9 F ′ = N \ X ′ % Remove vertices that have

10 % been visited
11 in BFS′(X ′, F ′, i + 1)% Next level
12 end

13 in BFS′({}, {s}, 0)
14 end

BREADTH-FIRST SEARCH 9/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SOME DETAILS

Adjacency table representation
I Entries of the sort (Vertex , {Neighbors}).

Remember NG(F) =
⋃

v∈F N(v)

fun NG(F) = Table.reduce Set.Union {}
Table.extract(G,F)

X2

F1

F2

NG(F1)

X1

BREADTH-FIRST SEARCH 10/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PROVING BFS CORRECT

State and prove an invariant.
All reachable vertices are returned.
Algorithm terminates.

BREADTH-FIRST SEARCH 11/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PROVING BFS CORRECT

LEMMA
In algorithm BFS when calling BFS′(X ,F , i), we have

X = {v ∈ VG | δG(s, v) < i}, and
F = {v ∈ VG | δG(s, v) = i}

By induction on levels i
For base case (i = 0) X0 = {}, F0 = {s}

I Only s has distance 0 from s
I No vertex has distance < 0 from s.

So base case is true!

BREADTH-FIRST SEARCH 12/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PROVING BFS CORRECT

Assume claims are true for i , show for i + 1.
Xi+1 is the union of

I Xi : all vertices at distance < i
I Fi : all vertices at distance = i

Hence Xi+1 must have all vertices at distance
< i + 1
Fi+1 = NG(Fi) \ Xi+1

I Vertices in Fi have distance exactly i
I Vertices in NG(Fi) have distance no more than i + 1
I Vertices in NG(Fi) are reachable from a vertex at

distance i
I When we remove Xi+1 from NG(Fi) only unvisited

vertices at distance exactly i + 1 remain.
BREADTH-FIRST SEARCH 13/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ADDITIONAL OBSERVATIONS

If v is reachable from s and has distance d ,
there must be a vertex u at distance d − 1.

I BSF will not terminate without finding v .

For any vertex δ(s, v) < |V |, so algorithm will
terminate in at most |V | rounds/levels.

BREADTH-FIRST SEARCH 14/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXTENSIONS TO BFS

Finding shortest distances
What do we need to keep?

1 fun BFS(G, s) = let
2 fun BFS′(X , F , i) =
3 if |F | = 0 then X
4 else let
5 X ′ = X ∪ {v 7→ i : v ∈ F}
6 F ′ = NG(F) \ domain(X ′)
7 in BFS′(X ′, F ′, i + 1) end
8 in BFS′({} , {s} , 0) end

BREADTH-FIRST SEARCH 15/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXTENSIONS TO BFS

Finding BFS trees.

s s s

s s
1

1

2

2

2 3
s

1

1

2

2

2 3

There could be multiple BFS trees.

BREADTH-FIRST SEARCH 16/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

FINDING BFS TREES

What do we need to keep for each vertex?
Record a parent

I If v is in a frontier, then there should be one or more
visited vertices u such that (u, v) ∈ E .

I Any of those could be the parent of v .

s s s

s s
1

1

2

2

2 3
s

1

1

2

2

2 3

BREADTH-FIRST SEARCH 17/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IDENTIFYING PARENTS

Post-process the BFS distance table
Identify one (in-)neighbor vertex in N−(v) whose
distance is one less.
Another way is to keep a table of vertices
mapping to parents.

I For each v ∈ F , generate a table {u 7→ v : u ∈ N(v)}
I Maps each neighbor of v back to v .

Merge these tables to X
I Choose one if you have multiple parents.

BREADTH-FIRST SEARCH 18/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST ANALYSIS FOR BFS

Most graph algorithms do NOT use divide and
conquer.

I So no natural way to develop recurrences and solve
them.

Instead, we just count steps

BREADTH-FIRST SEARCH 19/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST ANALYSIS FOR BFS

BFS works in a sequence rounds (one per level)
We can add up work and span in each round.

I But work at a level depends on number of outgoing
edges from the frontier!

Take a more global view
I Each vertex appears exactly once in some frontier.
I All their (out-)edges are processed once.

WBFS(n,m) = Wvn + Wem
I n = |V | and m = |E |

BREADTH-FIRST SEARCH 20/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS ANALYSIS FOR BFS

Span is a bit more tricky!
SBFS(n,m,d) = Sld where d is the maximum
distance (d = maxv∈V δ(s, v))
Assuming Wv = O(log n) and We = O(log n)
and span/level Sl = O(log2 n)

WBFS(n,m) = O(n log n + m log n)
= O(m log n) (Why?)

SBFS(n,m,d) = O(d log2 n)

BREADTH-FIRST SEARCH 21/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS PER VERTEX AND EDGE

Nontrivial operations are
1 X ′ = X ∪ F
2 N = NG(F)
3 F ′ = N \ X ′.

These all depend on size of F and number of
outgoing edges from F .
Let ||F || =

∑
v∈F (1 + d+

G (v))
I Vertices and outgoing edges in f .

BREADTH-FIRST SEARCH 22/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS PER VERTEX AND EDGE

Work Span
X ∪ F O(|F | log n) O(log n)

N \ X ′ O(|F | log n) O(log n)

These come from set cost specs.

Work = O(Wc · |F | log(1 +
n
|F |

)) = O(|F | log n)

Span = O(Sc · log(n + |F |)) = O(log n)

BREADTH-FIRST SEARCH 23/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS PER VERTEX AND EDGE

Work Span
NG(F) O(||F || log n) O(log2 n)

Graph is represented as a table mapping
vertices to a set of their outneigbors.

fun NG(F) = Table.reduce Set.Union {}
(Table.extract(G,F))

Extract vertices from table: Work is O(|F | log n)
BREADTH-FIRST SEARCH 24/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DIGRESSION – BACK TO REDUCE!

fun NG(F) = Table.reduce Set.Union {}
(Table.extract(G,F))

R(reduce f I S) =
{

all function applications f (a,b) in the reduction tree
}
.

W (reduce f I S) = O

n +
∑

f (a,b)∈R(f I S)

W (f (a,b))


S(reduce f I S) = O

(
log n max

f (a,b)∈R(f I S)
S(f (a,b))

)

BREADTH-FIRST SEARCH 25/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DIGRESSION – BACK TO REDUCE!

LEMMA
For any combine function f : α× α→ α and a
monotone size measure s : α→ R+, if for any x , y ,

1 s(f (x , y)) ≤ s(x) + s(y) and
2 W (f (x , y)) ≤ cf (s(x) + s(y)) for some universal

constant cf depending on the function f ,
then

W (reduce f I S) = O

(
log |S|

∑
x∈S

(1 + s(x))

)

BREADTH-FIRST SEARCH 26/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BACK TO COSTS

In our case α is the set type, f is Set.union , s
the size of a set.

1 Size of the union ≤ sum of the sizes.
2 Work of a union ≤ is at most proportional to size of

the sets!
So Set.union satisfies the conditions of the
lemma.
Fngh = Table.extract(G,F)

I Fngh is a set of neighbor sets.

W (reduce union {} Fngh) = O

log |Fngh|
∑

ngh∈Fngh

(1 + |ngh|)


= O (log n · ||F ||)

BREADTH-FIRST SEARCH 27/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BACK TO COSTS

S(reduce union {} Fngh) = O(log2 n)

Each union has span O(log n)
The reduction tree is bounded by log n depth.
So at level i , W = O(||Fi || · log n) and each edge
is processed once,⇒

I work per edge is O(log n).
Span depends on d
(SBFS(n,m,d) = O(d log2 n))

I In worst case, d ∈ O(n)⇒ BFS is sequential.

BREADTH-FIRST SEARCH 28/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BFS WITH ST SEQUENCES

BFS Costs revisited

WBFS(n,m) = O(m log n)
SBFS(n,m,d) = O(d log2 n)

Using single-threaded sequences reduces costs
to

WBFS(n,m) = O(m)

SBFS(n,m,d) = O(d log n)

BREADTH-FIRST SEARCH 29/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BFS WITH ST SEQUENCES

Vertices are labeled with integers:
I V = {0,1, . . . ,n − 1}
I Integer labeled (IL) graphs.

We use (array) sequences to represent graphs.
I Constant work access to vertices.
I Neighbors also stored as integer indices

IL graphs are implemented with type
(int seq) seq

BREADTH-FIRST SEARCH 30/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BFS WITH ST SEQUENCES

BFS returns a mapping from each vertex to its
parent in the BFS tree.
Visited vertices are maintained as
(int option) stseq

I NONE: Vertex has not been visited.
I SOME(v): Vertex visited from parent v .

BREADTH-FIRST SEARCH 31/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BFS WITH ST SEQUENCES

1 fun BFS(G : (int seq) seq, s : int) =

2 let
3 fun BFS′(XF : int option stseq, F : int seq) =

4 if |F | = 0 then stSeq.toSeq XF

5 else let
6 % compute neighbors of the frontier
7 N = flatten 〈 〈 (u,SOME(v)) : u ∈ G[v]&XF [u] = NONE 〉 : v ∈ F 〉
8 % add new parents
9 XF′ = stSeq.inject(N, XF)

10 % remove duplicates
11 F ′ = 〈 u : (u, v) ∈ N | XF′[u] = v 〉
12 in BFS′(XF′, F ′) end
13 X0 = stSeq.toSTSeq(〈NONE : v ∈ 〈 0, . . . , |G| − 1 〉 〉)
14 in
15 BFS′(stSeq.update(s,SOME(s),X0), 〈 s 〉)
16 end

BREADTH-FIRST SEARCH 32/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS

XF : stseq
line work span

flatten O(||Fi ||) O(log n)

inject O(||Fi ||) O(1)

remove dup. O(||Fi ||) O(log n)

total across
all d rounds

O(m) O(d log n)

BREADTH-FIRST SEARCH 33/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SUMMARY

Breadth-first search
BFS Extensions
BFS Costs
BFS with Single-threaded Sequences

BREADTH-FIRST SEARCH 34/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

