15-210
PARALLEL AND SEQUENTIAL
ALGORITHMS AND DATA
STRUCTURES

LECTURE 18

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS

SYNOPSIS

@ Quicksort

e Work and Span Analysis of Randomized
Quicksort

e Lower Bound for Comparison-based Sorting
@ Lower Bound for Merging

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 2/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

QUICKSORT

e Originally invented and analyzed by Hoare in
1960’s.

e | strongly urge to watch Jon Bentley on “Three
beautiful Quicksorts” at

» www.youtube.com/watch?v=QvgYAQzglz8.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 3/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

www.youtube.com/watch?v=QvgYAQzg1z8

SEQUENTIAL QUICKSORT

int i, 3J;
for(i = low, j = high - 1; ;)
{

while(a[++1] < pivot);
while(pivot < al[—-3 1);
if(i >= 73)

break;

swap(a, i, J);
}
// Restore pivot
swap(a, i, high - 1);

quicksort(a, low, i - 1); // Sort small elements
quicksort(a, i + 1, high); // Sort large elements

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

4/28
SPRING 2014

QUICKSORT

fun quicksort(S) =
if |S|=0 then S
else let
p = pick a pivot from S
Si=(seS|s<p)
So=(seS|s=p)
S;3=(seS|s>p)
(Ry,R3) = (quicksort(Sy) || quicksort(Ss))
in
append(Ry, append(Sz, R3))
end

— OO NNNUITEk WN -

1
1

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 5/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

QUICKSORT

1 fun gquicksort(S) =

2 if |S|=0 then S

3 else let

4 p = pick a pivot from S

5 C (se S| (s,compare(p,s))
6 =(s|(s,LESS) e C)

7 Sg—< | (s, EQUAL) € C)

8 Ss = (s | (s, GREATER) € C)
9 (Ry, R3) = (quicksort(Sy) || quicksort(Ss))
10 in
11 append(Ry, append(S;, R3))
12 end

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 6/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

QUICKSORT

@ Each call to Quicksort either makes

» No recursive calls (base case), or
» Two recursive calls

e Call tree is a binary

@ Depth the call tree determines the span of the
algorithm.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 7/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PICKING THE PIVOT

e Always pick the first element

» Worst case O(n?) work.

» In practice, almost sorted inputs are not uncommon.
e Pick the median of 3 elements (e.g., first, middle

and last elements)

» could possible divide evenly

» worst case is still bad
e Pick an element at random

» we hope this divides evenly in expectation
» leading to expected O(nlog n) work and O(log?® n)
span.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 8/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PICKING THE PIVOT

@ Pick first element

» Worst case O(n?) work.
» Expected O(nlog n) work
* Averaged over all possible orderings.
» Works well on the average
» Slow on some, possibly common, cases.
e Pick a random element
» Expected worst-case O(nlog n) work.
* For input in any order, the expected work is O(nlog n)
» No input has expected O(n?) work.
» With a small probability, we could be unlucky and
have O(n?) work.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 9/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

RANDOMIZED QUICKSORT

@ Assign a uniformly random priority to each
number in [0, 1].

fun quicksort(S) =
if |S|=0 then S
else let
p = pick as pivot the highest priority element from S
Si=(seS|s<p)
S;=(seS|s=p)
S3=(seS|s>p)
(R1,R3) = (gquicksort(Sy) || quicksort(Ss))
in
append(Ry, append(S;z, Rs))
end

—OVOVONOUIRWN -

— =

@ Once the priorities are assigned, the algorithm is
deterministic.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 10/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

RANDOMIZED QUICKSORT

e Count comparisons made!
» Almost all the work is comparisons.

X, = + of comparisons quicksort
makes on input of size n

e Find E [X;] for any input sequence S

e Notation:
» Let T = sort(S)
» T;and T, refer to elements in the final sorted order
and/i<jand T; < T;.
» p; refers to priority chosen for T;.
» Ajj=1if T;and T; were ever compared during the
sort.

11/28
SPRING 2014

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

ANALYZING QUICKSORT

e Crucial point is how to model A; ;.

@ In any one call to quicksort, there are three
cases:
» Pivot pis either Tjor T, = A;; = 1
» Ti<p<Ti=T¢€S5,T€S53A;=0
» Eitherp< Tiorp>T;= T, T Syor T, T; € S3
e If two elements are compared in a quicksort
call, they will never be compared again in any
other call!

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 12/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ANALYZING QUICKSORT

n—1 n
Xo < D D A
i=1 j=i+1

@ The non-optimized code compares each element

to pivot 3 times, the optimized version compares
oPce.

2 C=(se S|(s,compare(p,s))

3

e By linearity of expectation

n—1

n-1 n n
EX <) > ElAl=) > PriA;=1]

i=1 j=i+1 i=1 j=i+1

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 13/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ANALYZING QUICKSORT

e Consider first when the pivot is one of
7-ia 7-f+1 PREES) 7}

e T;and T; are compared < p; or p; is the highest
priority among {pj, Pi+1, - - -, Pj}-
» Assume T, i < k < j has higher priority.
» For any subdivision --- | Tj, -~ Ty, -+, Tj, Tx will
become a pivot and separate T; and T;
» T;and T; will never be compared!

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS

14/28
SPRING 2014

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

ANALYZING QUICKSORT

E[A;] = Pr[A; =1]
= Pr[p; or p; is the maximum in {p;, ..., p;}]

2
- ?
7 Why?)

e j— i+ 1 elements between p; and p; and each is
equally likely to be the maximum

e We want either p; or p;, hencej =
@ T;is compared to T; ¢ with probability 1.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 15/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ANALYZING QUICKSORT

EX] <3 S EA)

i=1 j=i+1
=1 j:i+1j_l+1
n—1 n—i+1)
= P (change variables)
i=1 k=2
n

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

16/28
SPRING 2014

ANALYZING QUICKSORT

e Indirectly, average work for basic deterministic
quicksort is O(nlog n).
» Just shuffle data randomly and apply the basic
algorithm
» = to picking random priorities

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 17/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ALTERNATIVE ANALYSIS

@ Write a recurrence for the number of
comparisons:

Xn)=X(Yn)+X(n—Y,—1)+n—1

@ Random variable Y, is the size of S;.

E[X(n)] = E
E

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 18/28
15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ALTERNATIVE ANALYSIS

n—1

E[X(n)] = %Z(E[X(i)]JrE[X(n—i—1)])+n—1
i=0

- %25[}((/)]%-1

e With telescoping, this also solves as O(nlog n)

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 19/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED SPAN

e Sis splitinto L(ess), E(qual) and (g)R(eater).
e Let X, = max{|L|, |R|},
@ We use filter to partition.

S(n) = S(X,) + O(log n)

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 20/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED SPAN

e Let S(n) denote E [S(n)]
e We bound S(n) by considering Pr[X,, < 3n/4]
and Pr[X, > 3n/4].
e Pr[X,<3n/4]=1/2
» As with SmallestkK, 1/2 of the randomly chosen

pivots results in larger partition of at most size 3n/4
elements.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 21/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED SPAN

= Pr[X,=1i]-5(i) + clogn

) + Pr[X, > 31S(n) + c-log n
+c-logn
< 183" +clogn

3n
+325(n)
3)S(n) <

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 22/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

LOWER BOUND FOR SORTING

e What is asymptotically the minimum number
comparisons any sorting algorithm has to make?

e Lower-bounds apply to problems not to
algorithms.

» Algorithms provide upper bounds!
e We say sorting is Q(nlog n)
@ No (comparison-based) sorting algorithm has
work asymptotically lower than nlog n.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 23/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DECISION TREES

Does it live in the
water?
More than 4 legs?
Y N
Caniit fly? Can it fly?
Y N Y N

Cy > Coptderd

e If there are N outcomes, the number of questions
is at least log, N.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 24/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SORTING AS A DECISION PROBLEM

a<b<c

a<c<b

b<a<c

b<c<a

c<a<b

c<b<a

a<b b<a

a<h<c b<a<c
a<c<b b<c<a
c<a<b c<b<a

a<:///,/’//\\\\\5:? b<:///////\\“\\\5:?

a<b<c |c<a<b b<a<c c<b<a

a<c<b b<c<a

b<c c<b acc/ Nﬁ

| a<b<c | | a<c<h ‘ | b<a<c | I b<c<a l

@ For nitems, how many possible outcomes can there be?
» n! = we need at least log,(n') “questions”.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 25/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SORTING AS A DECISION PROBLEM

log(n') =logn+log(n—1)+---+log(n/2) + - - -+ log 1
>logn-+log(n—1)+---+log(n/2)
> 3 -log(n/2) € Q(nlog n)

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 26/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

LOWER BOUND FOR MERGING

e We have sorted sequences A, |A| = nand
B,|B| =mand m < n.
» Assume all elements are unique.
e All interleavings are possible
@ We need to choose m positions out of n+ mto
place the elements of B amongst elements of A.

e Finding the right sequence of m positions can be

done with at least log, (") comparisons.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 27/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

LOWER BOUND FOR MERGING

° (7)=(2)
» Se

ee Lemma in the notes.

n+m n+m n
og ("7") = fog ("L = miogy(1 4 1)

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 28/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

