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SYNOPSIS

Overview of Discrete Probability
Finding the two largest elements
Find the k th smallest element.
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RANDOMIZED ALGORITHMS

Exploit randomness during computation
I Pivot selection in Quicksort
I Average case analysis
I Primality testing

Question: How many comparisons are needed to
find the second largest number on a sequence of
n numbers?

I Naive algorithm: 2n − 3 comparisons
I Divide and Conquer algorithm: 3n/2 comparisons
I Simple randomized algorithm: n − 1 + 2 log n

comparisons on the average.
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OVERVIEW OF DISCRETE
PROBABILITY

Probabilistic Experiment: outcome is
probabilistic.
Sample Space (Ω): arbitrary and possibly
countably infinite set of possible outcomes.

I Tossing a coin
I Throwing a die/pair of dice.

Primitive Event: Any one of the elements of Ω.
Event: Any subset of Ω

I First die is a 5
I Dice sum to 7
I Any die is even.
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PROBABILITY FUNCTION

Probability Function: Ω→ [0,1]∑
e∈Ω

Pr[e] = 1

Probability of an event A:∑
e∈A

Pr[e]

I Probability of “first die is 4”?
I Probability of “dice sum to to 4”?
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RANDOM VARIABLES

Random Variable: X : Ω→ <
I X is the sum of the two die rolls

Indicator Random Variable: Y : Ω→ {0,1}
I Y is 1 if the dice are the same, 0 otherwise
I Y is 1 if the total is larger than 7, 0 otherwise

For a ∈ <, the event “X = a” is the set

{ω ∈ Ω | X (ω) = a}
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EXPECTATION

The expectation of a random variable

E
Ω,Pr[]

[X ] =
∑
e∈Ω

X (e) · Pr[e] .

The expectation of an indicator random variable:

E [Y ] =
∑

e∈Ω,p(e)=true

Pr[e] =
∑
e∈Ω

Pr[{e ∈ Ω | p(e)}] .

I p : Ω→ bool
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INDEPENDENCE

Events A and B are independent if the occurence
of one does not affect the probability of the other

Pr[A ∩ B] = Pr[A] · Pr[B]

I A = {(d1,d2) ∈ Ω | d1 = 1} and
B = {(d1,d2) ∈ Ω | d2 = 1} are independent.

I C = {(d1,d2) ∈ Ω | d1 + d2 = 4} is NOT independent
of A (Why?)
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INDEPENDENCE

Events A1, . . . ,Ak are mutually independent if
and only if for any non-empty subset
I ⊆ {1, . . . , k},

Pr[
⋂
i∈I

Ai ] =
∏
i∈I

Pr[Ai ].

Random variable X and Y are independent if
fixing one does NOT affect the probability
distribution of the other.

I X = “value of the first die” is independent of Y =
“value of the second die”.

I X is NOT independent of Z = “sum of the dice”
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LINEARITY OF EXPECTATIONS

Important Theorem: given two random variables
X and Y

E [X ] + E [Y ] = E [X + Y ]

Easy to show!∑
e∈Ω

Pr[e]X (e) +
∑
e∈Ω

Pr[e]Y (e) =
∑
e∈Ω

Pr[e](X (e) + Y (e))

Expected sum of two dice
I Consider 36 outcomes and take average
I Sum expectations for each dice (3.5 + 3.5 = 7)
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LINEARITY OF EXPECTATIONS

In general, for a binary function f the equality

f (E [X ] ,E [Y ]) = E [f (X ,Y )]

is not true in general.
I max(E [X ] ,E [Y ]) 6= E [max(X ,Y )]
I What is E [max(X ,Y )]?

E [X ]× E [Y ] = E [X × Y ] is true if X and Y are
independent.
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EXAMPLES

Toss n coins with probability of heads, p. What is
the expected value of X , the number of heads?

E [X ] =
n∑

k=0

k · Pr[X = k ]

=
n∑

k=1

k · pk (1− p)n−k
(

n
k

)
(Why?)

=
n∑

k=1

k · n
k

(
n − 1
k − 1

)
pk (1− p)n−k [because

(
n
k

)
=

n
k

(
n − 1
k − 1

)
]

= n
n∑

k=1

(
n − 1
k − 1

)
pk (1− p)n−k
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EXAMPLES

Toss n coins with probability of heads, p. What is
the expected value of X , the number of heads?

E [X ] =
n∑

k=0

k · Pr[X = k ]

. . .

= n
n−1∑
j=0

(
n − 1

j

)
pj+1(1− p)n−(j+1) [ because k = j + 1 ]

= n · p
n−1∑
j=0

(
n − 1

j

)
pj (1− p)(n−1)−j)

= n · p · (p + (1− p))n−1 [ Binomial Theorem ]
= n · p
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EXAMPLES

Toss n coins with probability of heads, p. What is
the expected value of X , the number of heads?
Using linearity of expectations.

I Xi = I{i-th coin turns up heads}
I X =

∑n
i=1 Xi

E [X ] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi ] =
n∑

i=1

p = n · p

I because E [Xi ] = p.
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EXAMPLES

A coin has a probability p of coming up heads.
What is the expected value of Y representing the
number of flips until we see a head?
Write a recurrence!

I With probability p, we’ll get a head and we are done,
I With probability 1− p, we’ll get a tail and we’ll go

back to square one

E [Y ] = p · 1 + (1− p)
(

1 + E [Y ]
)

= 1 + (1− p) E [Y ] =⇒ E [Y ] = 1/p.
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FINDING THE TOP TWO ELEMENTS

1 fun max2(S) = let
2 fun replace((m1,m2), v) =
3 if v ≤ m2 then (m1,m2)
4 else if v ≤ m1 then (m1, v)
5 else (v ,m1)

6 start = if S1 ≥ S2 then (S1,S2) else (S2,S1)

7 in iter replace start S 〈3, . . . ,n 〉
8 end

We will do exact analysis.

1 + 2(n − 2) = 2n − 3 comparisons in the worst case.
(Why?)

A Divide and Conquer algorithm gives 3n/2− 2
comparison. (How?)PROBABILITY AND RANDOMIZED ALGORITHMS 16/28
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WORST CASE ANALYSIS

1 fun max2(S) = let
2 fun replace((m1,m2), v) =
3 if v ≤ m2 then (m1,m2)
4 else if v ≤ m1 then (m1, v)
5 else (v ,m1)

6 start = if S1 ≥ S2 then (S1,S2) else (S2,S1)

7 in iter replace start S 〈3, . . . ,n 〉
8 end

An already sorted sequence (e.g., 〈1, 2, 3, . . . , n〉)
will need exactly 2n − 3 comparisons.
But this happens with 1/n! chance!
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A RANDOMIZED ALGORITHM

The worst-case analysis is overly pessimistic.
Consider the following variant:
On input of a sequence S of n elements:

1 Let T = permute(S, π), where π is a random
permutation (i.e., we choose one of the n!
permutations).

2 Run the naı̈ve algorithm on T .
No need to really generate the permutation!

I Just pick an unprocessed element randomly until all
elements are processed.

I It is convenient to model this by one initial
permutation!
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ANALYSIS
1 fun max2(S) = let
2 fun replace((m1,m2), v) =

3 if v ≤ m2 then (m1,m2)

4 else if v ≤ m1 then (m1, v)

5 else (v ,m1)

6 start = if S1 ≥ S2 then (S1,S2) else (S2,S1)

7 in iter replace start S 〈 3, . . . , n 〉
8 end

Xi = 1 if Ti is compared in Line 4, 0 otherwise.
Y is the number of comparisons

Y = 1︸︷︷︸
Line 6

+ n − 2︸ ︷︷ ︸
Line 3

+
n∑

i=3

Xi ;︸ ︷︷ ︸
Line 4
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ANALYSIS

This expression in true regardless of the random
choice we’re making.
We’re interested in computing the expected value
of Y .
By linearity of expectation,

E [Y ] = E

[
1 + (n − 2) +

n∑
i=3

Xi

]

= 1 + (n − 2) +
n∑

i=3

E [Xi ] .
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ANALYSIS

Problem boils down to computing E [Xi ], for
i = 3, . . . ,n!
What is the probability that Ti > m2?

I Ti > m2 holds when Ti is either the largest or the
second largest in {T1, . . . ,Ti}

So, what is the probability that Ti is one of the
two largest elements in a randomly permuted
sequence of length i?

I 1
i + 1

i = 2
i

E [Xi ] = 1 · 2
i = 2/i
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ANALYSIS

E [Y ] = 1 + (n − 2) +
n∑

i=3

E [Xi ]

= 1 + (n − 2) +
n∑

i=3

2
i

= 1 + (n − 2) + 2
(

1
3 + 1

4 + . . . 1
n

)
= n − 4 + 2

(
1 + 1

2 + 1
3 + 1

4 + . . . 1
n

)
= n − 4 + 2Hn

Hn is the nth Harmonic number
Hn ≤ 1 + log2 n
E [Y ] ≤ n − 2 + 2 log2 n
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FINDING THE k th SMALLEST
ELEMENT

Input: a sequence of n numbers (not necessarily
sorted)
Output: the k th smallest value in S (i.e., (nth
(sort S) k)).
Requirement: O(n) expected work and O(log2 n)
span.
k is 0-based. (For the third smallest element we
set k = 2).

We can’t really sort the sequence!
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FINDING THE k th SMALLEST
ELEMENT

1 fun kthSmallest(k ,S) = let
2 p = a value from S picked uniformly at random
3 L = 〈 x ∈ S | x < p 〉
4 R = 〈 x ∈ S | x > p 〉
5 in if (k < |L|) then kthSmallest(k ,L)
6 else if (k < |S| − |R|) then p
7 else kthSmallest(k − (|S| − |R|),R)

Let Xn = max{|L|, |R|}
W (n) = W (Xn) + O(n)

S(n) = S(Xn) + O(log n)
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FINDING THE k th SMALLEST
ELEMENT

We want to find E [Xn]?

RL

max(L, R)

E [Xn] =
n−1∑
i=1

max{i ,n − i} · 1
n ≤

n−1∑
j=n/2

2
n
· j ≤ 3n

4
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FINDING THE k th SMALLEST
ELEMENT

E [Xn] ≤ 3n
4 ⇒ geometrically decreasing sum

⇒ O(n) work.
What is Pr[Xn ≤ 3

4n]?
Since |R| < n − |L|,

Xn ≤
3
4

n⇔ n/4 < |L| ≤ 3n/4

and the probability is
3n/4− n/4

n
=

n/2
n

=
1
2
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FINDING THE k th SMALLEST
ELEMENT

W (n) =
∑

i

Pr[Xn = i ] ·W (i) + c · n

Using stepwise approximation

≤ Pr[Xn ≤ 3n
4 ]W (3n/4) + Pr[Xn >

3n
4 ]W (n) + c · n

= 1
2W (3n/4) + 1

2W (n) + c · n
=⇒ (1− 1

2)W (n) = 1
2W (3n/4) + c · n

=⇒ W (n) ≤W (3n/4) + 2c · n

Root Dominated hence solves to O(n).
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FINDING THE k th SMALLEST
ELEMENT

S(n) = S(Xn) + O(log n)

S(n) =≤
∑

i

Pr[Xn = i ] · S(i) + c log n

≤ Pr[Xn ≤ 3n
4 ]S(3n/4) + Pr[Xn >

3n
4 ]S(n) + c · log n

≤ 1
2S(3n/4) + 1

2S(n) + c · log n

=⇒ (1− 1
2)S(n) ≤ 1

2S(3n/4) + c log n

=⇒ S(n) ≤ S(3n/4) + 2c log n

This solves to O(log2 n).
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