
15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 2

ALGORITHMIC COST MODELS

SYNOPSIS

Cost Models
Parallelism
Scheduling
Cost Analysis for the Shortest Super String
Problem

I The Brute Force Algorithm
I The Greedy Algorithm

ALGORITHMIC COST MODELS 2/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST MODELS

Sequential: the Random Access Machine
(RAM) model

Parallel: the Parallel RAM model

Parallel: the 15-210 model
I Tied to high-level programming constructs –

operational semantics
I Think parallel!

ALGORITHMIC COST MODELS 3/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

15-210 COST MODEL

W (e): Work needed to evaluate e
S(e): Span of the evaluation of e

Parameterized with relevant problem size
measures.

Asymptotic Models
I How do algorithms scale to large problems!

ALGORITHMIC COST MODELS 4/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PARAMETERIZATION

We measure the size of representation of the
input.

Sorting: Number of items to sort
Map, Reduce: Number of items in the sequence
Graph Problems: Number of Nodes, Edges
Searching: Number of items in the database
Matrix operations: Number of rows and columns
Prime number testing: Size – number of bits to represent
the number (not the value!)
Computing nth Fibonacci number: Size – number of bits
to represent the number (not the value!)

ALGORITHMIC COST MODELS 5/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

RULES OF COMPOSITION

(e1,e2): Sequential Composition
I Add work and span

e1||e2: Parallel Composition
I Add work but take the maximum span

e1

e2

Work Span e1 e2

Work

Span

ALGORITHMIC COST MODELS 6/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

RULES OF COMPOSITION

e W(e) S(e)

c 1 1

op e 1 1

(e1,e2) 1 + W (e1) + W (e2) 1 + S(e1) + S(e2)

(e1||e2) 1 + W (e1) + W (e2) 1 + max(S(e1),S(e2))

let val x = e1 1 + W (e1)+ 1 + S(e1)+
in e2 end W (e2[Eval(e1)/x]) S(e2[Eval(e1)/x])

{f (x) | x ∈ A} 1 +
∑

x∈A W (f (x)) 1 + maxx∈A S(f (x))

ALGORITHMIC COST MODELS 7/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

RULES OF COMPOSITION

{f (x) | x ∈ A} ≡ map f A

•W (map f 〈 s0, . . . , sn−1 〉) = 1 +
n−1∑
i=0

W (f (si))

•S(map f 〈 s0, . . . , sn−1 〉) = 1 +
n−1

max
i=0

S(f (si))

ALGORITHMIC COST MODELS 8/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

UPPER AND LOWER BOUNDS

Upper bound: The maximum asymptotic work
(and span) that a given algorithm needs for all
inputs of size n.

Lower bound: The minimum asymptotic work
(and span) that any algorithm for a problem
needs for all inputs of size n.

ALGORITHMIC COST MODELS 9/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SYNOPSIS

Cost Models
Parallelism
Scheduling
Cost Analysis for the Shortest Super String
Problem

I The Brute Force Algorithm
I The Greedy Algorithm

ALGORITHMIC COST MODELS 10/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PARALLELISM

For a given W and S, what is the maximum
number of processors you can utilize?

• P =
W
S

Why?

Mergesort has W = θ(n log n) and S = θ(log2 n)
P = θ(n

log n)
I The larger the problem is, the higher the parallelism

ALGORITHMIC COST MODELS 11/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DESIGNING PARALLEL ALGORITHMS

Keep work as low as possible
I No unnecessary computation

Keep span as low as possible
I Hence get high-parallelism

ALGORITHMIC COST MODELS 12/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SYNOPSIS

Cost Models
Parallelism
Scheduling
Cost Analysis for the Shortest Super String
Problem

I The Brute Force Algorithm
I The Greedy Algorithm

ALGORITHMIC COST MODELS 13/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

UNDER THE HOOD:
TASK SCHEDULING

Mapping from a computation graph to
processors

ALGORITHMIC COST MODELS 14/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

GREEDY SCHEDULING

A greedy scheduler will schedule a ready task
on an available processor.

ALGORITHMIC COST MODELS 15/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

A LOWER BOUND

Let Tp be the “time” needed when using p
processors,

max(
W
p
,S) ≤ Tp

Why?

ALGORITHMIC COST MODELS 16/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN UPPER BOUND

With p processors

Tp <
W
p

+ S

Why?

ALGORITHMIC COST MODELS 17/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TYING THINGS TOGETHER

Speed-up is W
Tp

I Maximum possible speed-up is p.

Tp <
W
p

+ S

=
W
p

+
W
P

=
W
p

(
1 +

p
P

)
P� p → near perfect parallelism

ALGORITHMIC COST MODELS 18/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SYNOPSIS

Cost Models
Parallelism
Scheduling
Cost Analysis for the Shortest Super String
Problem

I The Brute Force Algorithm
I The Greedy Algorithm

ALGORITHMIC COST MODELS 19/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS FOR THE BRUTE FORCE SS
ALGORITHM

The brute-force algorithm
I For each permutation

F Remove overlaps
F Stitch strings

I Output (one of) the shortest string(s)

overlap(si , sj) will be needed many times.
I Preprocess S once and store overlaps as a table

F What prefix to remove
F Increase in length

ALGORITHMIC COST MODELS 20/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PREPROCESSING – INPUTS

A set S is n strings, s1, s2, · · · , sn

Define

m =
n∑

i=1

|si |

and observe n ≤ m.

ALGORITHMIC COST MODELS 21/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PREPROCESSING A PAIR

sj

sisi ….

Compare symbols
all in parallel

si
sj

and-reduce
over

comparison results

sj
….

si
sj

.......

Compare symbols
all in parallel

Compare symbols
all in parallel

and-reduce
over

comparison results

and-reduce
over

comparison results

Max reduce over matching overlap lengths

Max overlap identified

Work and span for preprocessing one pair, si
and sj?

I W = O(|si | · |sj |) Why?
I S = O(log(|si |+ |sj |)) Why?

ALGORITHMIC COST MODELS 22/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PREPROCESSING – WORK

Wov ≤
n∑

i=1

n∑
j=1

W (overlap(si , sj))

=
n∑

i=1

n∑
j=1

O(|si ||sj |)

≤
n∑

i=1

n∑
j=1

(k1 + k2|si ||sj |)

=
n∑

i=1

n∑
j=1

k1 +
n∑

i=1

n∑
j=1

(k2|si ||sj |)

= k1n2 + k2

n∑
j=1

|sj |(
n∑

i=1

|si |) = k1n2 + k2m2 ∈ O(m2)

ALGORITHMIC COST MODELS 23/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PREPROCESSING – SPAN

All si , sj pairs can be processed in parallel.

Sov ≤
n

max
i=1

n
max
j=1

S(overlap(si , sj)))

∈ O(log m)

ALGORITHMIC COST MODELS 24/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BRUTE FORCE SS ALGORITHM

Work:
I O(n) lookups each with O(1) work. Why?
I n! permutations
I O(n · n!) = O((n + 1)!)
I Wov can be ignored!

Span:
I All permutations can be done in parallel, but!
func permutations S =

if |S| = 1 then {S}
else

{append([s], p) :
s in S, p in permutations(S\s)}

I This has span O(n). Why?
I Sov can be ignored.

ALGORITHMIC COST MODELS 25/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SYNOPSIS

Cost Models
Parallelism
Scheduling
Cost Analysis for the Shortest Super String
Problem

I The Brute Force Algorithm
I The Greedy Algorithm

ALGORITHMIC COST MODELS 26/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE GREEDY SS ALGORITHM
1 fun greedyApproxSS(S) =
2 if |S| = 1 then s0
3 else let
4 O = {(overlap(si , sj), si , sj) : si ∈ S, sj ∈ S, si 6= sj}
5 (o, si , sj) = maxval <#1 O
6 sk = join(si , sj)
7 S′ = ({sk} ∪ S)\{si , sj}
8 in
9 greedyApproxSS(S′)

10 end

ALGORITHMIC COST MODELS 27/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE GREEDY SS ALGORITHM
1 fun greedyApproxSS(S) =
2 if |S| = 1 then s0
3 else let
4 O = {(overlap(si , sj), si , sj) : si ∈ S, sj ∈ S, si 6= sj}
5 (o, si , sj) = maxval <#1 O
6 sk = join(si , sj)
7 S′ = ({sk} ∪ S)\{si , sj}
8 in
9 greedyApproxSS(S′)

10 end

Wov = O(m2), Sov = O(log m)

ALGORITHMIC COST MODELS 28/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE GREEDY SS ALGORITHM
1 fun greedyApproxSS(S) =
2 if |S| = 1 then s0
3 else let
4 O = {(overlap(si , sj), si , sj) : si ∈ S, sj ∈ S, si 6= sj}
5 (o, si , sj) = maxval <#1 O
6 sk = join(si , sj)
7 S′ = ({sk} ∪ S)\{si , sj}
8 in
9 greedyApproxSS(S′)

10 end

Wmaxval = O(m2), Smaxval = O(log m)

Why?

ALGORITHMIC COST MODELS 29/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE GREEDY SS ALGORITHM
1 fun greedyApproxSS(S) =
2 if |S| = 1 then s0
3 else let
4 O = {(overlap(si , sj), si , sj) : si ∈ S, sj ∈ S, si 6= sj}
5 (o, si , sj) = maxval <#1 O
6 sk = join(si , sj)
7 S′ = ({sk} ∪ S)\{si , sj}
8 in
9 greedyApproxSS(S′)

10 end

No more than W = O(m2), S = O(log m)

Why?

ALGORITHMIC COST MODELS 30/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE GREEDY SS ALGORITHM
1 fun greedyApproxSS(S) =
2 if |S| = 1 then s0
3 else let
4 O = {(overlap(si , sj), si , sj) : si ∈ S, sj ∈ S, si 6= sj}
5 (o, si , sj) = maxval <#1 O
6 sk = join(si , sj)
7 S′ = ({sk} ∪ S)\{si , sj}
8 in
9 greedyApproxSS(S′)

10 end

At most n (sequential) calls to greedyApproxSS
I Each with W = O(m2), S = O(log m)

Wgreedy = O(nm2) and Sgreedy = O(n log m)

Why?
ALGORITHMIC COST MODELS 31/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SUMMARY

Cost Models: Rules of Composition
Parallelism and Scheduling
Cost Analysis for the Shortest Super String
Problem

I Preprocessing for overlaps
I The Brute Force Algorithm
I The Greedy Algorithm

ALGORITHMIC COST MODELS 32/32

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

