15-210
PARALLEL AND SEQUENTIAL
ALGORITHMS AND DATA
STRUCTURES

LECTURE 10

BREADTH-FIRST SEARCH

SYNOPSIS

e Breadth-first search

e BFS Extensions

e BFS Costs

e BFS with Single-threaded Sequences

BREADTH-FIRST SEARCH 2/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

GRAPH SEARCH

e Fundamental operation of graphs

» Start at some (set of) vertex(s)

» Systematically visit all reachable vertices (only once)
e Used for determining properties of

graphs/vertices

» Connected?

» Bipartite?

» Vertex v reachable from vertex u?

» Shortest path from u to v?

BREADTH-FIRST SEARCH 3/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

GRAPH SEARCH METHODS

e Breadth-first Search (BFS)
» Parallelizable but for shallow graphs!
@ Depth-first Search (DFS)

» Inherently sequential!
@ Priority-first Search (PFS)

@ All reachable vertices from a source are visited,
but in different orders.

BREADTH-FIRST SEARCH 4/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BREADTH-FIRST SEARCH

e Applicable to a variety of problems
» Connectedness
» Reachability
» Shortest path
» Diameter
» Bipartiteness
e Applicable to both directed and undirected
graphs

» For digraphs, we only consider outgoing arcs.

BREADTH-FIRST SEARCH 5/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

GRAPH SEARCH

e For all graph search methods vertices can be
partitioned into three sets at any time during the
search:

@ vertices already visited (X C V),

@ the unvisited neighbors of the visited vertices, called
the frontier (F),

@ the rest; unseen vertices.

@ The search essential goes as follows:

while vertices remain
-visit some unvisited neighbors
of the visited set

e Web navigation analogy.

BREADTH-FIRST SEARCH 6/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BREADTH-FIRST SEARCH

e Starting from a source vertex s
» Visit all vertices that are (out-)neighbors of s (at
distance 1)
» Visit all vertices at distance 2 from s
» Visit all vertices at distance 3 from s, etc.
@ A vertex at distance / + 1 must have a

(in-)neighbor at distance i.

BREADTH-FIRST SEARCH 7/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BREADTH-FIRST SEARCH

e BFS needs to keep track of vertices already
visited
e X;: all vertices visited at start of level i
» Vertices in X; have distance less than i.
e F;: all unvisited neighbors of vertices in X;
» Vertices in F; have distance exactly i.
e “Visit” = Do something with the vertices (e.g.,
print it)
° X1 =X UF;

o Fip1 = Ng(Fi)\ Xi1 (Na(Fi) = U,cr N(v))

BREADTH-FIRST SEARCH

8/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BREADTH-FIRST SEARCH

1 fun BFS(G=(V,E), s)=
2 let
3 fun BFS'(X, F, i)=
4 if |F|=0 then (X,/)
5 else let
6 X' =XUF % Visit the Frontier
7 N = Ng(F) % Determine the neighbors
8 % of the frontier
9 FF=N\X % Remove vertices that have
10 % been visited
11 in BFS'(X', F', i+ 1)% Next level
12 end
13 in BFS'({}, {s}, 0)
14 end

BREADTH-FIRST SEARCH 9/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SOME DETAILS

e Adjacency table representation
» Entries of the sort (Vertex, { Neighbors}).

e Remember Ng(F) = U, N(v)

fun Ng(F) = Table.reduce Set.Union {}
Table.extract(G,F)

BREADTH-FIRST SEARCH 10/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PROVING BFS CORRECT

e State and prove an invariant.
e All reachable vertices are returned.
@ Algorithm terminates.

BREADTH-FIRST SEARCH 11/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PROVING BFS CORRECT

LEMMA

In algorithm BFS when calling BFS'(X, F, i), we have
@ X={veVsz|dig(s Vv)<i},and
] F:{VE V6|(56(S,V):i}

e By induction on levels i
e Forbase case (i =0) Xo = {}, Fo = {s}

» Only s has distance 0 from s
» No vertex has distance < 0 from s.

@ So base case is true!

BREADTH-FIRST SEARCH 12/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PROVING BFS CORRECT

@ Assume claims are true for /i, show for j + 1.
@ X1 is the union of
» X;: all vertices at distance < i
» F;: all vertices at distance =i
e Hence X, 1 must have all vertices at distance
<i+1
o Fip1 = Ng(Fi) \ Xi1
» Vertices in F; have distance exactly i
» Vertices in Ng(F;) have distance no more than i + 1
» Vertices in Ng(F;) are reachable from a vertex at
distance i
» When we remove X1 from Ng(F;) only unvisited
vertices at distance exactly / + 1 remain.

BREADTH-FIRST SEARCH 13/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ADDITIONAL OBSERVATIONS

e If vis reachable from s and has distance d,
there must be a vertex u at distance d — 1.
» BSF will not terminate without finding v.

e For any vertex (s, v) < | V|, so algorithm will
terminate in at most | V| rounds/levels.

14/34
SPRING 2014

BREADTH-FIRST SEARCH

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

EXTENSIONS TO BFS

e Finding shortest distances
e What do we need to keep?

1 fun BFS(G,s) = let

2 fun Brs'(X, F, i)=

3 if |F|=0 then X

4 else let

5 X =XU{v—i:veF}
6 F" = Ng(F) \ domain(X’)
7 in BFS' (X', F', i+1) end
8 in Brs'({}, {s}, 0) end

BREADTH-FIRST SEARCH 15/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXTENSIONS TO BFS

e Finding BFS trees.

e There could be multiple BFS trees.

BREADTH-FIRST SEARCH 16/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

FINDING BFS TREES

e What do we need to keep for each vertex?
e Record a parent
» If visin a frontier, then there should be one or more

visited vertices u such that (u,v) € E.
» Any of those could be the parent of v.

2
YA
S S oe—e S
1 2 1

2

BREADTH-FIRST SEARCH 17/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IDENTIFYING PARENTS

e Post-process the BFS distance table

e Identify one (in-)neighbor vertex in N~ (v) whose
distance is one less.

@ Another way is to keep a table of vertices
mapping to parents.

» Foreach v € F, generate atable {u+— v:u e N(v)}
» Maps each neighbor of v back to v.

@ Merge these tables to X
» Choose one if you have multiple parents.

BREADTH-FIRST SEARCH 18/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST ANALYSIS FOR BES

e Most graph algorithms do NOT use divide and
conquer.

» So no natural way to develop recurrences and solve
them.

e Instead, we just count steps

BREADTH-FIRST SEARCH 19/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST ANALYSIS FOR BES

e BFS works in a sequence rounds (one per level)
@ We can add up work and span in each round.
» But work at a level depends on number of outgoing
edges from the frontier!
e Take a more global view
» Each vertex appears exactly once in some frontier.
» All their (out-)edges are processed once.
@ Wges(n,m) = W,n+ Wem
» n=|V|and m= |E|

BREADTH-FIRST SEARCH 20/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS ANALYSIS FOR BEFS

@ Span is a bit more tricky!

@ Sgrs(n,m, d) = S,d where d is the maximum
distance (d = max,cy d(s, v))

e Assuming W, = O(log n) and W, = O(log n)
and span/level S, = O(log® n)

Wgrs(n,m) = O(nlogn+ mlogn)
= O(mlog n) (Why?)

SBFS(n7 m, d) - O(d Iogz n)

BREADTH-FIRST SEARCH

21/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS PER VERTEX AND EDGE

e Nontrivial operations are

Q@ X—XUF
Q@ N=Ng(F)
Q@ F =N\X.

@ These all depend on size of F and number of
outgoing edges from F.

o Let||F|| =3 ycr(1+dg(V))

» Vertices and outgoing edges in f.

BREADTH-FIRST SEARCH

22/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS PER VERTEX AND EDGE

Work | Span

XUF

N\ X'

O(|F]log n) | O(log n)

O(|F|log n) | O(log n)

e These come from set cost specs.

Work = O(W, - |F|log(1 +

7)) = OlIFliog)

Span = O(S; - log(n+ |F|)) = O(log n)

BREADTH-FIRST SEARCH

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

23/34

SPRING 2014

COSTS PER VERTEX AND EDGE

| Work | Span
Ng(F) | O(||F||log n) | O(log® n)

e Graph is represented as a table mapping
vertices to a set of their outneigbors.

fun Ng(F) = Table.reduce Set.Union {}
(Table.extract(G,F))

e Extract vertices from table: Work is O(|F|log n)

BREADTH-FIRST SEARCH 24/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DIGRESSION — BACK TO REDUCE!

fun Ng(F) = Table.reduce Set.Union {}
(Table.extract(G,F))

R(reduce f1S) = {all function applications f(a, b) in the reduction tree}.

W(reducefI1S) = O (n + Z W(f(a, b)))
f(a,b)

ER(F1S)

S(red fIS) = Ol S(f(a,b
(reduce) (anf(a,bQ%)((mS) (f(a,)))

BREADTH-FIRST SEARCH 25/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DIGRESSION — BACK TO REDUCE!

LEMMA
For any combine function f: a x @« — o and a
monotone size measure s: a« — R, if for any x, y,
Q@ s(f(x,y)) < s(x)+ s(y) and
Q@ W(f(x,y)) < cr(s(x)+ s(y)) for some universal
constant ¢; depending on the function f,
then

W(reduce f18S) =0 (Iog SI> (1+ s(x)))

XeS

BREADTH-FIRST SEARCH 26/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BACK TO COSTS

@ Inour case «a is the set type, fis Set .union, s
the size of a set.
@ Size of the union < sum of the sizes.
© Work of a union < is at most proportional to size of
the sets!
@ So Set .union satisfies the conditions of the
lemma.
@ Fpgh = Table.extract(G, F)
» Fngn is a set of neighbor sets.

W(reduce union {} Fagn) = O | 10g|Fugnl > (1 + |nghl)

ngh€Fpgp
= O(logn-||F|})

BREADTH-FIRST SEARCH 27/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BACK TO COSTS

S(reduce union {} Fpgn) = O(log® n)

e Each union has span O(log n)

@ The reduction tree is bounded by log n depth.
e So atlevel i, W = O(||Fj|| - log n) and each edge
is processed once, =
» work per edge is O(log n).
@ Span depends on d
(Sgrs(n, m, d) = O(dlog® n))

» In worst case, d € O(n) = BFS is sequential.

BREADTH-FIRST SEARCH 28/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BFS WITH ST SEQUENCES

@ BFS Costs revisited

Wers(n,m) = O(mlogn)
SBFS(”? m, d) - O(dlogz n)

e Using single-threaded sequences reduces costs
to

WBps(n, m) = O(m)
Sgrs(n,m,d) = O(dlogn)

BREADTH-FIRST SEARCH 29/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BFS WITH ST SEQUENCES

e Vertices are labeled with integers:
» V=1{01,...,n—1}
» Integer labeled (IL) graphs.
e We use (array) sequences to represent graphs.
» Constant work access to vertices.
» Neighbors also stored as integer indices
e IL graphs are implemented with type
(1nt seq) seq

BREADTH-FIRST SEARCH 30/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BFS WITH ST SEQUENCES

e BFS returns a mapping from each vertex to its
parent in the BFS tree.

e Visited vertices are maintained as
(Int option) stseq

» NONE: Vertex has not been visited
» SOME (v) : Vertex visited from parent v.

BREADTH-FIRST SEARCH 31/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BFS WITH ST SEQUENCES

1 fun BFS(G: (int seg) seg, S:int)=
2 et
3 fun BFS'(XF: int option stseq, F:int seq)=
4 if |F| =0 then stSeqg.toSeqg XF
5 else let
6 % compute neighbors of the frontier
7 N = flatten ({(u, SOME(V)) : u € G[v]&XF[u] = NONE) : v € F)
8 % add new parents
9 XF' = stSeqg.inject(N, XF)
10 % remove duplicates
11 F'=(u:(uv)eN|xru=v)
12 in BFS'(xr', F') end
13 X = stseq.tosTseq({NONE: v € (0,...,|G|—1)))
14 in
15 Brs/(stseq.update(s, SOME(S), X), (S))
16 end

BREADTH-FIRST SEARCH 32/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS

XF': stseqg
line work span
flatten |O([F[])| O(logn)

inject O(||Fil]) O(1)

remove dup. | O(||Fil|) | O(logn)

total across
all d rounds O(m) | O(dlog n)

BREADTH-FIRST SEARCH 33/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SUMMARY

e Breadth-first search

e BFS Extensions

e BFS Costs

e BFS with Single-threaded Sequences

BREADTH-FIRST SEARCH 34/34

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

