
15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 6

SEQUENCES - II

SYNOPSIS

The reduce operation
Implementing divide and conquer with reduce

I Implementing MCSS with reduce

Analyzing cost of higher order functions
I Cost analysis for reduce

SEQUENCES - II 2/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE REDUCE OPERATION

reduce f I S : (α× α→ α)→ α

→ α seq→ α

When f is associative, reduce returns sum with
respect to f .
Same result as iter f I S

I iter is sequential and allows more general f (e.g.,
β × α→ β

If f is not associative, reduce and iter results
may differ.

SEQUENCES - II 3/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE REDUCE OPERATION

Specific combination based on a perfect binary
tree.

x0 x1 x2 x3 x4 x5

= combine = "dummy" elements

x0 x1 x2 x3 x4 x5

SEQUENCES - II 4/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DIVIDE AND CONQUER WITH
REDUCE

Many divide and conquer have the following
structure

1 fun myDandC(S) =
2 case showt(S) of
3 EMPTY⇒ emptyVal

4 | ELT(v)⇒ base (v)
5 | NODE(L, R)⇒ let
6 (L′,R′) = (myDandC(L) ‖ myDandC(R))
7 in
8 someMessyCombine (L′,R′)

9 end

This corresponds to a binary tree combination
scheme.

SEQUENCES - II 5/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DIVIDE AND CONQUER WITH
REDUCE

someMessyCombine

base base base base

someMessyCombine

someMessyCombine

SEQUENCES - II 6/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DIVIDE AND CONQUER WITH
REDUCE

1 fun myDandC(S) =
2 case showt(S) of
3 EMPTY⇒ emptyVal

4 | ELT(v)⇒ base (v)
5 | NODE(L, R)⇒ let
6 (L′,R′) = (myDandC(L) ‖ myDandC(R))
7 in
8 someMessyCombine (L′,R′)

9 end
↓

reduce someMessyCombine emptyVal (map base S)

SEQUENCES - II 7/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MCSS USING REDUCE

mcss(s) = max
1≤i≤j≤n

{ j∑
k=i

sk

}

TotalL
mpsL mssL

mcssL

Left Subproblem

TotalR
mpsR mssR

mcssR

Right Subproblem

Total
mcss

mps mss

Total TotalL TotalR= +

mcss = max (mcssL mcssR, , mssL mpsR+)

mps = max (mpsL , TotalL + mpsR)

mss = max (mssL + TotalR , mssR)

SEQUENCES - II 8/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MCSS USING REDUCE

mcss(s) = max
1≤i≤j≤n

{ j∑
k=i

sk

}

fun combine((ML,PL,SL,TL), (MR,PR,SR,TR)) =
(max(SL + PR,ML,MR), max(PL,TL + PR),

max(SR,SL + TR), TL + TR)

fun base(v) = (v , v , v , v)

emptyVal = (−∞,−∞,−∞,0)

fun mcss(S) =
reduce combine emptyVal (map base S)

SEQUENCES - II 9/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SOME OBSERVATIONS

Which code to use is a matter of taste
I reduce version is shorter
I Divide and Conquer version exposes the inductive

structure.
reduce version not applicable when split is
complicated

I e.g., in Quicksort

SEQUENCES - II 10/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SCAN VIA REDUCE

How do we implement the divide and conquer
scan with this template?

I scan f I S ≡
reduce combine emptyVal (map base S)

emptyVal=? (〈 〉 , I)
fun base(v) =? (〈 I 〉 , f (I, v))
fun combine =?

fun combine((S1,T1), (S2,T2)) =
append(S1, (map (fn x ⇒ f (x ,T1)) S2), f (T1,T2))

I Is this right?

fun combine((S1,T1), (S2,T2)) =
(append(S1, (map (fn x ⇒ f (T1, x)) S2), f (T1,T2))

SEQUENCES - II 11/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST OF HIGHER ORDER
FUNCTIONS

We assume that f runs in O(1) work and span.
I ⇒ reduce has O(n) work and O(log n) span

Easy for map and tabulate

W (map f S) = 1 +
∑
s∈S

W (f (s))

S(map f S) = 1 + max
s∈S

S(f (s))

How about reduce?

SEQUENCES - II 12/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MERGESORT VIA REDUCE

Remember the reduce template for divide and
conquer?

reduce combine emptyVal (map base S)

combine = merge<

base = singleton

emptyVal = empty()

fun reduceSort(S) =

reduce combine emptyVal (map base S)

SEQUENCES - II 13/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST OF REDUCESORT

merge< is an associative function with costs:

W (merge<(S1,S2)) = O(n1 + n2)

S(merge<(S1,S2)) = O(log(n1 + n2))

f has no longer O(1) work and span.
What is the cost of reduceSort.

SEQUENCES - II 14/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST OF REDUCESORT

For costs, reduction sequence matters!
Sequential order
On input x = 〈 x0, x1, . . . , xn−1 〉, we get

merge<(. . . merge<(merge<(merge<(I, 〈 x0 〉), 〈 x1 〉), 〈 x2 〉), . . .)

Left arg. has length 0 through n − 1
Right arg. always has length 1.
Work:

W (reduceSort S) ≤
n−1∑
i=0

c · (1 + i) ∈ O(n2) Why?

SEQUENCES - II 15/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MERGESORT WITH REDUCE

Equivalent to iter version
fun reduceSort’(S) =

iter merge< (emptyVal (map base S)

Works really as an Insertion Sort.
I Inserts each element into a sorted prefix!

No parallelism except in merge

S(reduceSort S) ≤
n−1∑
i=0

c · log(1 + i) ∈ O(n log n)

SEQUENCES - II 16/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MERGESORT WITH REDUCE

The reduction tree is very unbalanced!
Suppose n = 2k and merge tree is as follows

x0 x1 x2 x3 x4 x5 x6 x7

= merge

SEQUENCES - II 17/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MERGESORT WITH REDUCE

x0 x1 x2 x3 x4 x5 x6 x7

= merge

n nodes at constant cost at each leaf (i = log2 n)
n/2 nodes one level up, each costing c(1 + 1)
(i = log2

n
2) (Why?)

In general, for level i , we have 2i nodes merging
two sequences each length n

2i+1
SEQUENCES - II 18/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MERGESORT WITH REDUCE

x0 x1 x2 x3 x4 x5 x6 x7

= merge

For level i , we have 2i nodes merging two
sequences each length n

2i+1

W (reduceSort x) ≤
log n∑
i=0

2i · c
(n

2i+1 +
n

2i+1

)
=

log n∑
i=0

2i · c
(n

2i

)
∈ O(n log n)

SEQUENCES - II 19/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MERGESORT WITH REDUCE

x0 x1 x2 x3 x4 x5 x6 x7

= merge

W (reduceSortS) ∈ O(n log n)⇒
mergeSort.
mergeSort and insertionSort are special
cases of reduceSort using different reduction
orders.

SEQUENCES - II 20/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

REDUCE ORDER

Result of reduce depends on the order when f
is not associative
When f is associative, different orders result in
different costs.

SEQUENCES - II 21/21

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

