
Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (CMUQ-S2014)

Lecture 24 — Hash Tables

Parallel and Sequential Data Structures and Algorithms, 15-210 (Qatar-Spring 2014)

Lectured by Kemal Oflazer — 20 April 2014

Today:
- Hashing
- Hash Tables

1 Hashing

hash: transitive verb1

1. (a) to chop (as meat and potatoes) into small pieces
(b) confuse, muddle

2. ...

This is the definition of hash from which the computer term was derived. The idea of hashing
as originally conceived was to take values and to chop and mix them to the point that the original
values are muddled. The term as used in computer science dates back to the early 1950’s.

More formally the idea of hashing is to approximate a random function h : α→ β from a source
(or universe) set U of type α to a destination set of type β . Most often the source set is significantly
larger than the destination set, so the function not only chops and mixes but also reduces. In fact the
source set might have infinite size, such as all character strings, while the destination set always has
finite size. Also the source set might consist of complicated elements, such as the set of all directed
graphs, while the destination are typically the integers in some fixed range. Hash functions are
therefore many to one functions.

Using an actual randomly selected function from the set of all functions from α to β is typically
not practical due to the number of such functions and hence the size (number of bits) needed to
represent such a function. Therefore in practice one uses some pseudorandom function.

Exercise 1. How many hash functions are there that map from a source set of size n to the
integers from 1 to m? How many bits does it take to represent them? What if the source set
consists of character strings of length up to 20? Assume there are 100 possible characters.

Why is it useful to have random or pseudo random functions that map from some large set to a
smaller set? Generally such functions might be used to hide data, to reorder data in a random order,
or to spread data smoothly over a range. Here we consider some applications of each.

†Lecture notes by Umut Acar, Guy E Blelloch, Margaret Reid-Miller, and Kanat Tangwongsan, with additional edits by
Kemal Oflazer

1Merriam Websters

1 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (CMUQ-S2014)

1. We saw how hashing can be used in treaps. In particular we suggested using a hash function
to hash the keys to generate the “random” priorities. Here what was important is that the
ordering of the priorities is somehow random with respect to the keys. Our analysis assumed
the priorities were truly random, but it can be shown that a limited form of randomness that
arise out of relatively simple hash functions is sufficient.

2. In cryptography hash functions can be used to hide information. One such application is in
digital signatures where a so-called secure hash is used to describe a large document with a
small number of bits.

3. A one-way hash function is used to hide a string, for example for password protection. Instead
of storing passwords in plain text, only the hash of the password is stored. To verify whether a
password entered is correct, the hash of the password is compared to the stored value. These
signatures can be used to authenticate the source of the document, ensure the integrity of the
document as any change to the document invalidates the signature, and prevent repudiation
where the sender denies signing the document.

4. String commitment protocols use hash functions to hide to what string a sender has committed
so that the receiver gets no information. Later, the sender sends a key that allows the receiver
to reveal the string. In this way, the sender cannot change the string once it is committed, and
the receiver can verify that the revealed string is the committed string. Such protocols might be
used to flip a coin across the internet: The sender flips a coin and commits the result. In the
mean time the receiver calls heads or tails, and the sender then sends the key so the receiver
can reveal the coin flip.

5. Hashing can be used to approximately match documents, or even parts of documents. Fuzzy
matching hashes overlapping parts of a document and if enough of the hashes match, then it
concludes that two documents are approximately the same. Big search engines look for similar
documents so that on search result pages they don’t show the many slight variations of the
same document (e.g., in different formats). It is also used in spam detection, as spammers
make slight changes to email to bypass spam filters or to push up a document’s content rank on
a search results page. When looking for malware, fuzzy hashing can quickly check if code is
similar to known malware. Geneticists use it to compare sequences of genes fragments with a
known sequence of a related organism as a way to assemble the fragments into a reasonably
accurate genome.

6. Hashing is used to implement hash tables. In hash tables one is given a set of keys K ⊂ α and
needs to map them to a range of integers so they can stored at those locations in an array. The
goal is to spread the keys out across the integers as well as possible to minimize the number of
keys that collide in the array. You should not confuse the terms hash function and hash table.
They are two separate ideas, and the latter uses the former.

There is a deep and interesting theory of hash functions. Depending on the application, the needs
of the hash function are very different. We will not cover the theory here but you will likely see it in
more advanced algorithms classes.

For hash table applications a hash function should have the following properties:

• It should distribute the keys evenly so that there are not many collisions.

2 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (CMUQ-S2014)

• It should be fast to compute.

Question 1.1. Can you think of some reasonable hash functions for integers and strings?

Here we consider some simple ones. For hashing integers we can use

h(x) = (ax + b)mod p

where a ∈ [1, . . . , p− 1], b ∈ [0, . . . , p− 1], and p is a prime. This is called a linear congruential
hash function has some nice properties that you will likely learn about in 15-451.

For strings we can simply use a polynomial

h(S) =

|S|
∑

i=1

sia
i

!

mod p

Sequentially, Horner’s method avoids computing ai explicitly. In parallel, simply use scan with
multiplication. This hash function tends to mix bits from earlier characters with bits in later characters.

In our analysis we will assume that we have hash functions with the following idealized property
called simple uniform hashing: The hash function uniformly distributes the n keys over the range
[0, . . . , m− 1] and the hash value for any key is independent of the hash value for any other key.

2 Hash Tables

Hash tables are used when an application needs to maintain a dynamic set where the main operations
are insert, find and delete. Hash tables can implement the abstract data types Set and Table.
Unlike binary search trees, which require the universe of keys has a total ordering, hash tables do not.
A total ordering enables the additional ordering operations provided by the Ordered Set abstract data
type.

The main issue with hash table is collisions, where two keys hash to the same location. Is it
possible to avoid collisions? Not if we don’t know the set of keys in advance. Since the size of the
table T is much smaller than the universe of keys U , |T |<< |U |, there must exist at least two keys
that map to the same index, by the Pigeonhole Principle: If you put more than m items into m bins,
then at least one bin contains more than one item. For a particular hash function, the subset of keys
K ⊂ U that we want to hash may or may not cause a collision even when the number of keys is much
smaller than the size of the table. Therefore, for general purpose dynamic hash tables we have to
assume that collisions will occur.

How likely is there at least one collision? This is the same question as the birthday paradox: When
there a n or more people in a room, what is the chance that two people have the same birthday?
It turns out that for a table of size 365 you need only 23 keys for a 50% chance of a collision, and
as little as 60 keys for a 99% chance. More interestingly, when hashing to m locations, you can

expect a collision after only
q

1
2π m insertions, and can expect every location in the table to have an

3 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (CMUQ-S2014)

element after Θ(m log m) insertions. The former is related to the birthday paradox, whereas the latter
is related to the coupon collector problem.

There are several well-studied collision resolution strategies:

• Separate chaining: Store elements not in a table, but in linked lists (containers, bins) hanging
off the table.

• Open addressing: Put everything into the table, but not necessarily into cell h(k).

• Perfect hashing: When you know the keys in advance, construct hash functions that avoids
collisions entirely.

• Multiple-choice hashing and Cuckoo hashing: Consider exactly two locations h1(k) and
h2(k) only.

We will consider the first two in this lecture.

In our discussion, we will assume we have a set of n keys K that we want to store and a hash
function h : key→ [0, . . . , m− 1] for some m.

2.1 Separate Chaining

In 15-122 you studied hash tables using separate chaining. As you may recall, the idea is to maintain
an array of linked lists. All keys that hash to the same location in the sequence are maintained in a
linked list. When inserting a key k, it inserts it at the beginning of the linked list at location h(k).
But if the application may attempt to insert the same key multiple times, separate chaining needs to
search down the list to check whether the key is already in the list, in which case it might just as well
add the key to the end of the linked list. To find a key, simply search for the key in the linked list at
location h(k). To delete a key, remove it from the linked list.

Exercise 2. Write pseudocode for inserting to, searching from and deleting from a separate
chaining hash table.

The costs of these operations is related to the average length of a chain, which is n/m when there
are n keys in a table with m chains. We call λ= n/m the load factor of the table.

We consider two cases when that can occur when applying these operations: an unsuccessful
search when the key is not in the table, and a successful search when the key is in the table. We
assume that we can compute the h(k) in O(1) work.

Claim 2.1. Assuming simple uniform hashing, an unsuccessful search takes expected Θ(1+λ) work.

Proof. The average length of a list is λ. If we search for a key that is not in the table, we need to
search the whole list to determine the key is not in the table. Including the cost of computing h(k),
the total work is Θ(1+λ).

Claim 2.2. Assuming simple uniform hashing, a successful search takes expected Θ(1+λ) work.

4 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (CMUQ-S2014)

Proof. To simplify the analysis, we assume that keys are added at the end of the chain2. The the cost
of a successful search is the same as an unsuccessful search at the time the key was added to the
table. That is, when we first insert a key, the cost to insert it is the same as the cost of an unsuccessful
search. Suppose this cost is Tk. Subsequent searches for this key is also Tk. When the table has i
keys, the cost of inserting a new key is expected to be (1+ i/m). Averaging over all keys, the cost of a
successful search is

1
n

n−1
∑

i=0

(1+ i/m) =
1
n
(n+ n(n− 1)/(2m)) = 1+ (n− 1)/(2m)≤ 1+λ/2= Θ(1+λ)

That is, for successful searches we examine half the list on average and unsuccessful searches the
full list. If n= O(m) then with simple uniform hashing, all operations have expected O(1) work and
span. Even more importantly, some chains can be long, O(n) in the worst case, but it is extremely
unlikely they will be longer than a small constant factor of λ. The advantage of separate chaining
is that it is not particularly sensitive to the size of the table. If the number of keys is more than
anticipated, the cost of search becomes only somewhat worse. If the number is less, then only a small
amount of space in the table is wasted and cost of search is faster.

2.2 Open Address Hash Tables

The next technique does not need any linked lists but instead stores every key directly in the array.
Open address hashing using so-called linear probing has an important practical advantage over
separate chaining: it causes fewer cache misses since typically all locations that are checked are on
the same cache line.

The basic idea of open addressing is to maintain an array that is some constant factor larger than
the number of keys and to store all keys directly in this array. Every cell in the array is either empty
or contains a key.

To decide to which cells to assign a key, open addressing uses an ordered sequence of locations in
which the key can be stored. In particular let’s assume we have a function h(k, i) that returns the
i th location for key k. We refer to the sequence 〈h(k, 0), h(k, 1), h(k, 2), . . . 〉 as the probe sequence.
We will get back to how the probe sequence might be assigned, but let’s first go through how these
sequences are used. When inserting a key the basic idea is to try each of the locations in order until it
finds a cell that is empty, and then insert the key at that location. Sequentially, insert would look like:

2The average successful search time is the same whether new keys are added to the front of the end of the chain.

5 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (CMUQ-S2014)

1 fun insert(T, k) =
2 let
3 fun insert′(T, k, i) =
4 case nth T h(k, i) of
5 NONE⇒ update(h(k, i), k) T
6 | ⇒ insert′(T, k, i + 1)
7 in
8 insert′(T, k, 0)
9 end

For example suppose the hash table has the following keys:

0 1 2 3 4 5 6 7
T = B E A F

Now if for a key D we had the probe sequence 〈1, 5,3, · · · 〉, then we would find location 1 and 5
full (with B and E) and place D in location 3 giving:

0 1 2 3 4 5 6 7
T = B D E A F

Note that, in order for the update operation to be constant work and span, T must be a single
threaded array. Also, the code will loop forever if all locations are full. Such an infinite loop can be
prevented by ensuring that h(k, i) tries every location as i is incremented, and checking when the
table is full. Also, as given, the code will insert the same key multiple times over. This problem is
easily corrected by checking if the key is in the table and if so returning immediately.

To search we have the following code:

1 fun find(T, k) =
2 let
3 fun find′(T, k, i) =
4 case T[h(k, i)] of
5 NONE⇒ false
6 | SOME(k′)⇒ if (eq(k, k′)) then true
7 else find′(T, k, i + 1)
8 in
9 find′(T, k, 0)

10 end

For example, in the table above, if key E has the probe sequence 〈7,4, 2, · · · 〉, find would first
search location 7, which is full, and then location 4 to find E.

Question 2.3. What if we want to delete a key?

6 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (CMUQ-S2014)

Let’s say we deleted A from the table above, and then searched for D. Will find locate it? No, it
will stop looking once it finds the empty cell where A was. One solution might be to rehash everything
after a delete. But that would be an extremely expensive operation for every delete. An alternative is
to use what is called a lazy delete. Instead of deleting the key, simply replace the key with a special
HOLD value. That is, introduce an entry data type:

1 datatype α entry= EMPTY | HOLD | FULL of α

Question 2.4. How do we change find and insert to handle HOLD entries?

For find, simply skip over a HOLD entry and move to the next probe. insert(v) can replace
the first HOLD entry with FULL(v). But if insert needs to check for duplicate keys, it first needs to
search for the key. If it finds the key it overwrites it with the new value. Otherwise it continues until
it finds an empty cell, at which point it can replace the first HOLD in the probe sequence.

The main concern with lazy deletes is that they effectively increase the load factor, increasing the
cost of the hash table operations. If the load factor becomes large and performance degrades, the
solution is to rehash everything to a new larger table. The table should be a constant fraction larger
each time the table grows so as to maintain amortized constant costs.

Now let’s consider some possible probe sequences we can use. Ideally, we would like a key to use
any of the possible m! probe sequences with equal probability. This ideal is called uniform hashing.
But uniform hashing is not practical. Common probe sequences, which we will consider next, are

• linear probing

• quadratic probing

• double hashing

2.2.1 Linear Probing

In linear probing, to insert a key k, it first checks h(k) and then checks each following location in
succession, wrapping around as necessary, until it finds an empty location. That is, the i th probe is

h(k, i) = (h(k) + i) mod m.

Each position determines a single probe sequence, so there are only m possible probe sequences.

Question 2.5. What are some advantages and disadvantages of linear probing?

The problem with linear probing is that keys tend to cluster. It suffers from primary clustering:
Any key that hashes to any position in a cluster (not just collisions), must probe beyond the cluster
and adds to the cluster size. Worse yet, primary clustering not only makes the probe sequence longer,
it also makes it more likely that it will be lengthen further.

7 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (CMUQ-S2014)

What is the impact of clustering for an unsuccessful search? Let’s consider two extreme examples
when the table is half full, λ= 1/2 (or equivalently, m= 2n). Clustering is minimized when every
other location in the table is empty. In this case, the average number of probes needed to insert a
new key k is 3/2: One probe to check cell h(k), and with probability 1/2 that cell is full and it needs
to look at the next location which, by construction, must be empty. In the worst case, all the keys
are clustered, let’s say at the end of the table. If k hashes to any of the first n locations, only one
probe is needed. But hashing to the nth location would require probing all n full locations before
finally wrapping around to find an empty location. Similarly, hashing to the second full cell, requires
probing (n− 1) full cells plus the first empty cell, and so forth. Thus, under uniform hashing the
average number of probes needed to insert a key would be

1+ [n+ (n− 1) + (n− 2) ++ 1]/m= 1+ n(n+ 1)/2m≈ n/4

Even though the average cluster length is 2, the cost for an unsuccessful search is n/4. In general,
each cluster j of length n j contributes n j(n j + 1)/2 towards the total number of probes for all keys.
Its contribution to the average is proportional the square of the length of the cluster, making long
cluster costly.

We won’t attempt to analyze the cost of successful and unsuccessful searches, as considering
cluster formation during linear probing is quite difficult. We make the following claim:

Claim 2.6. When using linear probing in a hash table of size m that contains n= λm keys, the average
number of probes needed for an unsuccessful search or an insert is

1
2

�

1+
1

(1−λ)2

�

and for a successful search is
1
2

�

1+
1

1−λ

�

.

As you can see from the following table, which shows the expected number of probes under
uniform hashing, the performance of linear probing degrades significantly when the load factor
increases:

λ 1/4 1/2 2/3 3/4 9/10

successful 1.2 1.5 2.0 3.0 5.5
unsuccessful 1.4 2.5 5.0 8.5 50.5

Linear probing is quite competitive, though, when the load factors are in the range 30-70% as
clusters tend to stay small. In addition, a few extra probes is mitigated when sequential access is
much faster than random access, as in the case of caching. Because of primary clustering, though, it
is sensitive to quality of the hash function or the particular mix of keys that result in many collisions
or clumping. Therefore, it may not be a good choice for general purpose hash tables.

8 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (CMUQ-S2014)

2.2.2 Quadratic Probing

Quadratic probe sequences cause probes to move away from clusters, by making increasing larger
jumps. The i th probe is

h(k, i) = (h(k) + i2) mod m.

Question 2.7. What are some advantages and disadvantages of quadratic probing?

Although, quadratic probing avoids primary clustering, it still has secondary clustering: When two
keys hash to the same location, they have the same probe sequence. Since there are only m locations
in the table, there are only m possible probe sequences.

One problem with quadratic probing is that probe sequences do not probe all locations in the
table. But since there are (p+ 1)/2 quadratic residues when p is prime, we can make the following
guarantee.

Claim 2.8. If m is prime and the table is at least half empty, then quadratic probing will always find an
empty location. Furthermore, no locations are checked twice.

Proof. (by contradiction) Consider two probe locations h(k) + i2 and h(k) + j2, 0 ≤ i, j < dm/2e.
Suppose the locations are the same but i 6= j. Then

h(k) + i2 ≡ (h(k) + j2) mod m

i2 ≡ j2 mod m

i2 − j2 ≡ 0 mod m

(i − j)(i + j)≡ 0 mod m

Therefore, since m is prime either i − j or i + j are divisible by m. But since both i − j and i + j are
less than m, they cannot be divisible by m. Contradiction.

Thus the first dm/2e probes are distinct and guaranteed to find an empty location.

Computing the next probe is only slightly more expensive than linear probing as it can be computed
without using multiplication:

hi − hi−1 ≡ (i2 − (i − 1)2) mod m

hi ≡ (hi−1 + 2i − 1) mod m

Unfortunately, requiring that the table remains less than half full makes quadratic probing space
inefficient.

2.2.3 Double Hashing

Double hashing uses two hash functions, one to find the initial location to place the key and a second
to determine the size of the jumps in the probe sequence. The i th probe is

h(k, i) = (h1(k) + i · h2(k)) mod m.

9 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (CMUQ-S2014)

Keys that hash to the same location, are likely to hash to a different jump size, and so will have
different probe sequences. Thus, double hashing avoids secondary clustering by providing as many
as m2 probe sequences.

How do we ensure every location is checked? Since each successive probe is offset by h2(k), every
cell is probed if h2(k) is relatively prime to m. Two possible ways to ensure h2(k) is relatively prime
to m are, either make m = 2k and design h2(k) so it is always odd, or make m prime and ensure
h2(k)< m. Of course, h2(k) cannot equal zero.

Double hashing behaves quite closely to uniform hashing for careful choices of h1 and h2. Under
uniform hashing the average number of probes for an unsuccessful search or an insert is at most

1+λ+λ2 + ...=
�

1
1−λ

�

and for a successful search is at most

1
λ

�

1+ ln
�

1
1−λ

��

.

The former bound is because the probability of needing more than i probes is at most λi. A
search always needs one probe, and with probability λ needs a second probe, and with probability λ2

needs a third probe, and so on. The bound for a successful search for a key k follows the same probe
sequences as when it was first inserted. So if k was the (j + 1)th key inserted the cost for inserting it
is at most 1/(1− j/m). Therefore the average cost of a successful search is at most

1
n

n−1
∑

j=0

1
1− j/m

=
m
n

n−1
∑

j=0

1
m− j

= 1
λ

m
∑

j=0

1
j
+

m−n
∑

j=0

1
j

!

= 1
λ(Hm −Hm−n)

≤ 1
λ(ln m+ 1− ln(m− n))

= 1
λ

�

1+ ln
�

1
1−λ

��

The table below shows the expected number of probes under the assumption of uniform hashing
and is the best one can expect by open addressing.

λ 1/4 1/2 2/3 3/4 9/10

successful 1.2 1.4 1.6 1.8 2.6
unsuccessful 1.3 2.0 3.0 4.0 10.0

Comparing these numbers with the numbers in the table for linear probing, the linear probing
numbers are remarkable close when the load factor is 50% or below.

Question 2.9. What are some advantages and disadvantages of double hashing?

10 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (CMUQ-S2014)

The main advantage with double hashing is that it allows for smaller tables (higher load factors)
than linear or quadratic probing, but at the expense of higher costs to compute the next probe. The
higher cost of computing the next probe may be preferable to longer probe sequences, especially
when testing two keys equal is expensive.

2.3 Hash Table Summary

Hashing is a classic example of a space-time tradeoff: increase the space so table operations are faster;
decrease the space but table operations are slower.

Separate chaining is simple to implement and is less sensitive to the quality of the hash function
or load factors, so it is often the choice when it is unknown how many and how frequently keys may
be inserted or deleted from the hash table. On the other hand open addressing can be more space
efficient as there are no linked lists. Linear probing has the advantage that it has small constants
and works well with caches since the locations checked are typically on the same cache line. But it
suffers from primary clustering, which means its performance is sensitive to collisions and to high
load factors. Quadratic probing, on the other hand, avoids primary clustering, but still suffers from
secondary clustering and requires rehashing as soon as the load factor reaches 50%. Although double
hashing reduces clustering, so high load factors are possible, finding suitable pairs of hash functions
is somewhat more difficult and increases the cost of a probe.

2.4 Parallel Hashing

Question 2.10. How can we parallelize open addressing?

In the parallel context, instead of inserting, finding or deleting one key at a time, each operation
takes a set of keys. Since a hash function distributes keys across slots in the table, we can expect many
keys will be hashed to different locations. The idea is to use open addressing in multiple rounds. For
insert, each round attempts to write the keys into the table at their appropriate hash position. For
any key that cannot be written because another key is already there, the key continues for another
round using its next probe location. Rounds repeat until all keys are written to the table.

In order to prevent writing to a position already occupied in the table, we introduce a variant of
the inject function. The function

injectCond(IV, S) : (int×α) seq× (α option) seq→ (α option) seq

takes a sequence of index-value pairs 〈 (i1, v1), . . . , (in, vn) 〉 and a target sequence S and conditionally
writes each value v j into location i j of S. In particular it writes the value only if the location is set to
NONE. If there are two or more values with the same index (a conflict) then it conditionally writes
the value only for the first occurrence of the index (recall that inject uses the last occurrence of
an index). Resolving conflicts in injectCond can be implemented using a parallel primitive called
write-with-min3.

3For more information, see the paper Reducing Contention Through Priority Updates by Julian Shun, Guy Blelloch, Jeremy
Fineman and Phillip Gibbons: http://www.cs.cmu.edu/~jshun/contention.pdf.

11 Version Q-S14: Based on Q-F13 and P-F13

http://www.cs.cmu.edu/~jshun/contention.pdf

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (CMUQ-S2014)

1 fun insert(T, K) =
2 let
3 fun insert′(T, K , i) =
4 if |K |= 0 then T
5 else let
6 T ′ = injectCond({(h(k, i), k) : k ∈ K} , T)
7 K ′ = {k : k ∈ K | T[h(k, i)] 6= k}
8 in
9 insert′(T ′, K ′, i + 1)

10 end
11 in
12 insert′(T, k, 0)
13 end

For round i, insert uses each key’s i th probe in its probe sequence and attempts to write the key
to the table. To see whether it successfully wrote a key to the table, it reads the value written to the
table and checks if it is the same as the key. In this way it can filter out all keys that it successfully
wrote to the table. It repeats the process on the keys it didn’t manage to write, using the keys’ (i + 1)
probes.

For example, let’s say that the table has the following entries before round i:

0 1 2 3 4 5 6 7
T = A B D C

If K = 〈 E, F 〉 and h(E, i) is 1 and h(F, i) is 2, then IV = 〈 (1, E), (2, F) 〉 and insert’ would fail
to write E to index 1 but would succeed in writing F to index 2 resulting in the following table:

0 1 2 3 4 5 6 7
T ′ = A F B D C

It then repeats the process with K ′ = 〈 E 〉 and i + 1.

Note that if T is implemented using a single threaded array, then parallel insert basically does
the same work as the sequential version adding the keys one by one. The only difference is that the
parallel version may add keys to the table in a different order than the sequential. For example, with
linear probing, the parallel version adds F first using 1 probe and then adds E at index 4 using 4
probes:

0 1 2 3 4 5 6 7
TP = A F B E D C

Whereas, the sequential version might add E first using 2 probes, and then F using 3 probes:

0 1 2 3 4 5 6 7
TS = A E B F D C

Both versions make 5 probes in the table. Since we showed that, with suitable hash functions
and load factors, the expected cost of insert is O(1), the expected work for the parallel version is
O(|K |). In addition, in each round, the expected size of K decreases by a constant fraction, so span is

12 Version Q-S14: Based on Q-F13 and P-F13

Parallel and Sequential Data Structures and Algorithms — Lecture 24 15-210 (CMUQ-S2014)

O(log |K |).

Exercise 3. Assuming uniform hashing and a hash table of size 2|K |, prove that the expected
size of K decreases by a constant fraction in each call to insert’.

Exercise 4. Describe how to do hash table searches in parallel and deletions in parallel.

2.5 Comparison to Tree Tables

Question 2.11. How does a hash table implementation compare with a tree table implemen-
tation of Set and Table?

• Searches are faster in expectation

• Insertions are faster in expectation

• Map, reduce, and filter remain linear work

• Union/merge can be slower.

Question 2.12. What does a tree table support efficiently that a hash table does not?

In contrast to a tree table, a hash table cannot support range queries efficiently since it does not
maintain any order on the keys.

13 Version Q-S14: Based on Q-F13 and P-F13

