15-210
PARALLEL AND SEQUENTIAL
ALGORITHMS AND DATA
STRUCTURES

LECTURE 8

SETS AND TABLES—II

SYNOPSIS

e How search engines work
e Single-threaded sequences

SETS AND TABLES-II

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

2/28

SPRING 2014

BUILDING A SEARCH ENGINE

How do search engines work?

e What are the inputs?

» (Billions and billions of) documents consisting of
“‘words”.

e How do we interact with the search engine

» (Boolean) Keyword queries
» List of matching documents (URLS)

SETS AND TABLES-II 3/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

HOW DOES THE SEARCH REALLY
WORK?

e User inputs a query (say a couple of words)

e SE starts searching for the words in each
document one-by-one

e Returns documents when they match.

e Not really!
» Not scalable (even for one user)

@ Preprocessing

SETS AND TABLES-II

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

4/28
SPRING 2014

PREPROCESSING

Crawlers

i 1 C >

Preprocessing

Docy Doc,g

Index

Query

f ——» Result
Processing

SETS AND TABLES-II

15-210 P. LLEL AND SEQUEN RES AND ALGOR SPRING 2014

PLAN

e What kinds of queries we want to have.
e What is the interface we want to have.

e How do we implement all these

SETS AND TABLES-II 6/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

QUERIES

e Bingle (:-) supports logical queries on words
involving
» And: “15210” And “course” And “slides”
» Or: “15210” or “15150”

» AndNot: “15210” AndNot “Pittsburgh”

@ “CMU” And “fun” And (“courses Or “clubs”)

@ Result would be a list of webpages/documents
that match.

SETS AND TABLES-II 7/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE INTERFACE

signature INDEX = sig
type word = string
type docId = string
type "a seq
type index
type doclList

val makeIndex : (docId * string)

val find : index —-> word -> doclList
val And : doclist * doclist
val AndNot : docList * doclList

val Or : doclist x doclList
val size : docList —-> int

val toSeqg : docList -> docId seq

SETS AND TABLES-II

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

—> doclist
-> doclList
—> doclist

—> index

8/28
SPRING 2014

DOCUMENTS

e Indexing a tweet database.

T = ((jack”, “chess club was fun”),
(“mary”, “I had a fun time in 210 class today”),
(“nick”, “food at the cafeteria sucks”),
(“sue”, “In 217 class today | had fun reading my email”),
(“peter”, “I had fun at nick’s party”),
(“john”, “tiddlywinks club was no fun, but more fun than 218"
)

@ “jack” is a document id
@ “chess club was fun” is a document

SETS AND TABLES-II 9/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

USING THE INTERFACE

T = ((jack”, “chess club was fun”),

(“mary”, “I had a fun time in 210 class today”),

(“nick”, “food at the cafeteria sucks”),

(“sue”, “In 217 class today | had fun reading my email”),
(

(

)

“peter”, “I had fun at nick’s party”),

‘john”; “tiddlywinks club was no fun, but more fun than 218”),

f=(find (makeIndex(T))): word — doclist

toSeg(And(f "fun", Or(f "class", f "club")))
= ("jack", "mary", "sue", "john")

SETS AND TABLES-II 10/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

USING THE INTERFACE

T = ((jack”, “chess club was fun”),

(“mary”, “I had a fun time in 210 class today”),

(“nick”, “food at the cafeteria sucks”),
(“sue”, “In 217 class today | had fun reading my email”),
(“peter”, “I had fun at nick’s party”),
(“john”, “tiddlywinks club was no fun, but more fun than 218”),
)

size(AndNot(f "fun", f "tiddlywinks"))
= 4

SETS AND TABLES-II 11/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE MAKEINDEX FUNCTION

1 fun makeIndex(docs) =

2 let

3 fun tagwords(id,str)=((w,id): w € tokens(str))
4 Pairs = flatten(tagWords(d):d € docs)

5 Words = Table.collect (Pairs)

6 in

7 {wwr Set.fromSeqg(d): (w— d) € Wwords}

8 end

e What does taglWiords do?

tagWords(”jack”, “chess club was fun”)
:> <(/Ichess//,/Ijack/,),(//cll/lb”/ //]’ack//), (llzvas/// lljack//), (/flln//, /I]'ack//)>

SETS AND TABLES-II 12/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE PAIRS FUNCTION

1 fun makeIndex(docs) =

2 let

3 fun tagWords(id,str)= ((w,id): w € tokens(str))
4 Pairs = flatten(tagWords(d):d € docs)

5 Words = Table.collect (Pairs)

6 in

7 {w— Set.fromSeqg(d): (w— d) € Words}

8 end

@ What does Pairs do?

Pairs = ((“chess”,”“jack”),(“club”, “jack”), (“was”, “jack”) ,
(Il'fun//, Iljack//), (//I//, I/mary//), (/Ihad’,, Ilmury//),
(“fun”, “mary”),...)

SETS AND TABLES-II 13/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE COLLECT FUNCTION

1 fun makeIndex(docs) =

2 let

3 fun tagWords(id,str)=((w,id): w € tokens(str))
4 Pairs = flatten({tagWords(d):d € docs)

5 Words = Table.collect (Pairs)

6 1In

7 {wwr Set.fromSeqg(d): (w— d) € Wwords}

8 end

@ What does collect do?

words = {("a”w— (“mary”)),

(“at” — (“mary”, “peter”)),

”voou v s

(“fun” — (“jack”, “mary”, “sue”, “peter”, “john”")),

SETS AND TABLES-II 14/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

FINAL TOUCHES

fun makelndex(docs) =
let
fun tagwords(id, str)= ((w,id): w € tokens(str))
Pairs = flatten(tagWords(d):d € docs)
Words = Table.collect (Pairs)
in
{w— set. fromSeq(d): (w— d) € Words}
end

OG- WDN -

e What is happening here?
@ Sequences are converted to tables.

SETS AND TABLES-II 15/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MAKEINDEX COSTS

fun makelndex(docs) =
let
fun tagwords(id, str)= ((w,id): w € tokens(str))
Pairs = flatten(tagWords(d):d € docs)
Words = Table.collect (Pairs)
in
{w— Set.fromSeqg(d): (W — d) € words}
end

OG- WDN -

@ Assuming tokens have a upper bound on length

> makelndex(n) € O(n|09 n), Smakelndex € O(|092 n)
» What does n represent?

SETS AND TABLES-II 16/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

REST OF THE INTERFACE

fun find T v=Table.find T v
fun And(si,s2) =s1 NSy

fun 0r(sy,8) =s1US;

fun Andnot(s,S:) =51\ Sz

fun size(s)=|s|

fun toSeqg(s) = Set.toSeq(s)

SETS AND TABLES-II 17/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SINGLE-THREADED ARRAY
SEQUENCES

e Updating an array sequence in an imperative
language takes O(1) work.

@ In a functional setting, everything is persistent.
@ An update to a sequence of n elements needs
» O(n) work for arraySequence implementation to
copy and update.
» O(log n) work for t reesequence implementation
(because of substructure sharing)
e Interfaces do not provide functions for updating
a single position.
» to discourage sequential (and expensive)
computation.

SETS AND TABLES-II 18/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SINGLE-THREADED ARRAY
SEQUENCES

@ A map can be implemented as follows

fun map f S=
iter (fn((i,S),v) = (i+1,update (i,f(v)) S))
(0,5)
S
o lterates ntimes (i=0,...n—1)
e and updates the value S; with (S;).
@ arraySequence: Each update will do O(n)
work for a total O(n?) work
@ treeSequence: Each update will do O(log n)
work for a total O(nlog n) work.

SETS AND TABLES-II 19/28

SPRING 2014

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SINGLE-THREADED SEQUENCES

e A new ADT: Single Threaded Sequence: stseq

@ Useful when a bunch of items need to be
updated.

e Straigthforward interface

@ Cost specification imply non-functional stuff
under the hood!

SETS AND TABLES-II 20/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

STSEQ INTERFACE AND COSTS

Work

Span

fromSeqg(S) : o seq — «a stseq o(I8))
Converts from a regular sequence to a stseq.

toSeg(ST) : a stseqg — « seq o(|8))
Converts from a stseq to a regular sequence.

nth ST i : «a stseg — int — a 001)
Returns the i element of ST. Same as for seq.

update (i,v) S : (int X «a) — o(1)
a stseq — a stseq
Replaces the i element of S with v.

inject I S: (int X «@) seq o1
— o stseg — « stseq
For each (i, v) € I replaces the i element of S with v.

o(1)

o(1)

e Cost bounds for nth and update only valid for

the “current” version of the sequence.

SETS AND TABLES-II

21/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SPRING 2014

MAP WITH STSEQ

1 fun map f S=let

2 S’ = stSeq. fromSeq(S)

3 R=iter

4 (fn ((i,S"),v)= (i+1, StSeqg.update (i,f(v)) S"))
5 (0,8

6 S’

7 in

8 StSeq.toSeq(R)

9 end

e Overall work and span is O(n) (Why?)
e Multiple updates can be done in O(n) time.

SETS AND TABLES-II 22/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTING STSEQ

e Keep two full copies of the sequence
» Original and Current
» We keep a change log: updates to the original to get
Current.
@ When Current is updated
» We create a “new” Current with the update, and
update change log.
» Mark the previous version as old, remove its Current
and but keep the old change log.
e Any item from the current version is accessible
in constant work.
e Any item from the any previous version is
accessible but needs more work.

SETS AND TABLES-II 23/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTING STSEQ

Change Log

Original () Current

SETS AND TABLES-II

15-210 P. LLEL AND SEQUEN RES AND ALGOR SPRING 2014

IMPLEMENTING STSEQ

Change Log

Original () Current

update(3, 5)

Original () Old Version1

Original ((355)) 5 | Current

@ There really is only one copy of the Original.
e All point to that copy.

SETS AND TABLES-II 25/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTING STSEQ

Original

Original

Original

Original

Original

SETS AND TABLES-II

() Old Version1

((375)) 5 | Current
update(6, 7)

() Old Version1

((3!5)) Old Version2

Current

26/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SPRING 2014

IMPLEMENTING STSEQ

| Original | () Old Version1
| Original | ((315)) Old Version2
| origina |((6, 7)(3,5)) | | 5 |cr| 7 | |

u pd ateOIdversion2(4’ 5)

| Original | () 01d Versiont
| original | ((3,5)) 01d Version?
| original |((4, 5)(3,5)) oia versiona
| original |((6, 7)(3,5)) | | 5 |Current| 7 | |

SETS AND TABLES-II 27/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SUMMARY

e How search engines work
e Single-threaded sequences

SETS AND TABLES-II

28/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SPRING 2014

