
15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 5

DATA ABSTRACTION AND SEQUENCES

SYNOPSIS

Abstractions and Implementations
I Meldable Priority Queues

The Sequence ADT
The scan operation
Introduction to contraction

DATA ABSTRACTION AND SEQUENCES 2/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ABSTRACTIONS AND
IMPLEMENTATIONS

Abstraction Implementation

Functions Problem Algorithm
Data Abstract Data Type Data Structure

DATA ABSTRACTION AND SEQUENCES 3/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MELDABLE PRIORITY QUEUES

Priority Queues
I Insert an item – insert
I Return and delete the item with the minimum priority

– deleteMin

Meldable Priority Queue
I Join two priority queues into one – meld

DATA ABSTRACTION AND SEQUENCES 4/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MELDABLE PRIORITY QUEUES

S is a totally ordered set (integers, strings, reals,
. . .).
T is a type representing subsets of S.

empty : T = {}

insert(S,e) : T× S→ T = S ∪ {e}

deleteMin(S) :
T→ T×

(S ∪ {⊥}) =

{
(S,⊥) S = {}
(S \ {min S},min S) otherwise

meld(S1,S2) : T× T→ T = S1 ∪ S2

DATA ABSTRACTION AND SEQUENCES 5/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MPQ DEFINITION IN SML

signature MPQ
sig

struct S : ORD
type t
val empty : t
val insert : t * S.t -> t
val deleteMin : t -> t * S.t option
val meld : t * t -> t

end

No semantics, only the types.

DATA ABSTRACTION AND SEQUENCES 6/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MPQ: COST SPECIFICATIONS

Implementation 1:

Operation Work
insert(S,e) O(|S|)

deleteMin(S) O(1)

meld(S1,S2) O(|S1|+ |S2|)
What is the underlying data structure? Sorted
Array
meld is actually an array merge.

DATA ABSTRACTION AND SEQUENCES 7/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MPQ: COST SPECIFICATIONS

Implementation 2:

Operation Work
insert(S,e) O(log |S|)

deleteMin(S) O(log |S|)

meld(S1,S2) O(|S1|+ |S2|)
What is the underlying data structure? Heaps

DATA ABSTRACTION AND SEQUENCES 8/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MPQ: COST SPECIFICATIONS

Implementation 3:

Operation Work
insert(S,e) O(log |S|)

deleteMin(S) O(log |S|)

meld(S1,S2) O(log(|S1|+ |S2|))
Later!

DATA ABSTRACTION AND SEQUENCES 9/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ABSTRACTIONS AND
IMPLEMENTATIONS

The Abstract Data Type
I Functionality
I Correctness

The Cost Specification
I Multiple Cost Specifications
I We only need these to do cost analysis.

Underlying Data Structure
I Multiple Data Structures

DATA ABSTRACTION AND SEQUENCES 10/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SEQUENCE ADT - SOME BASICS

A relation is a set of ordered pairs.
I First from set A, second from set B

A relation ρ ⊆ A× B.
A function is a relation ρ, where for every a ∈ A
there is only one b such that (a,b) ∈ ρ.
A sequence is a function where
A = {0, . . . ,n − 1} for some n ∈ N.

DATA ABSTRACTION AND SEQUENCES 11/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SEQUENCE ADT –
FUNCTIONALITY

A sequence is a type Sα representing functions
from {0, . . . ,n − 1} to α.

empty : Sα = {}
length(A) : Sα → N = |A|
singleton(v) : α→ Sα = {(0, v)}
nth(A, i) : Sα → α = A(i)
map(f ,A) : (α→ β)× Sα → Sβ = {(i , f (v)) : (i , v) ∈ A}
tabulate(f ,n) : (N→ α)× N→ Sα = {(i , f (i)) : i ∈ {0, . . . ,n − 1}}
take(A,n) : Sα × N→ Sα = {(i , v) ∈ A | i < n}
drop(A,n) : Sα × N→ Sα = {(i − n, v) : (i , v) ∈ A | i ≥ n}
append(A,B) : Sα × Sα → Sα = A ∪ {(i + |A|, v) : (i , v) ∈ B}

DATA ABSTRACTION AND SEQUENCES 12/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SEQUENCE ADT – COST SPECS

ArraySequence
Work Span

length(T) O (1) O (1)

nth(T) O (1) O (1)

append(S1,S2) O (|S1|+ |S2|) O (1)

DATA ABSTRACTION AND SEQUENCES 13/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SEQUENCE ADT – COST SPECS

ArraySequence
Work Span

tabulate f n O

(
n∑

i=0

W (f (i))

)
O
(

n
max

i=0
S(f (i))

)

map f S O

(∑
s∈S

W (f (s))

)
O
(

max
s∈S

S(f (s))
)

DATA ABSTRACTION AND SEQUENCES 14/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SEQUENCE ADT – COST
SPECIFICATIONS

TreeSequence
Work Span

length(T) O (1) O (1)

nth(T) O (log n) O (log n)

append(S1,S2) O (log(|S1|+ |S2|)) O (log(|S1|+ |S2|))

DATA ABSTRACTION AND SEQUENCES 15/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SEQUENCE ADT – COST
SPECIFICATIONS

TreeSequence
Work Span

tabulate f n O

(
n∑

i=0

W (f (i))

)
O
(

log n +
n

max
i=0

S(f (i))
)

map f S O

(∑
s∈S

W (f (s))

)
O
(

log |S|+ max
s∈S

S(f (s))
)

DATA ABSTRACTION AND SEQUENCES 16/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SOME NOTATIONAL CONVENTIONS

Si The i th element of sequence S
|S| The length of sequence S
〈 〉 The empty sequence
〈 v 〉 A sequence with a single element v
〈 i , . . . , j 〉 A sequence of integers starting at i and

ending at j ≥ i .
〈e : p ∈ S 〉 Map the expression e to each element p of

sequence S.
The same as “map (fn p ⇒ e) S” in ML.

〈p ∈ S | e 〉 Filter out the elements p in S that satisfy the
predicate e.
The same as “filter (fn p ⇒ e) S” in ML.

More examples are given in the “Syntax and
Costs” document.

DATA ABSTRACTION AND SEQUENCES 17/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SCAN OPERATION

Related to reduce.

scan f I S : (α× α→ α)→ α→ α seq

→ (α seq× α)
I is the identity value
f is an (associative) function
S is a sequence
Produces 〈 I, f (I,S0), f (f (I,S0),S1), . . . 〉 and
reduce f I S

I scan+ 0 〈2,1,4,6 〉 = (〈0,2,3,7 〉 ,13)

DATA ABSTRACTION AND SEQUENCES 18/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SCAN OPERATION

scan computes prefix sums.
1 fun scan f I S =
2 (〈reduce f I (take(S, i)) : i ∈ 〈0, . . .n − 1 〉 〉 ,
3 reduce f I S)

S has n elements
Apply reduce to each prefix of S of i elements,
0 ≤ i ≤ n − 1

I Gives you the α seq part
Apply reduce to S

I Gives you the α part

So you get (α seq→ α)

DATA ABSTRACTION AND SEQUENCES 19/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SCAN OPERATION

scan + 0 〈2,1,3 〉 = (〈 reduce + 0 〈 〉 ,
reduce + 0 〈2 〉 ,
reduce + 0 〈2,1 〉 〉
reduce + 0 〈2,1,3 〉)

= (〈0,2,3 〉 ,6)

This is obviously not efficient!
We will see how to do this with

W (scan f I S) = O(|S|)
S(scan f I S) = O(log |S|)

DATA ABSTRACTION AND SEQUENCES 20/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE INCLUSIVE SCAN OPERATION

reduce all prefixes ending at position i ,
0 ≤ i ≤ n − 1

scanI + 0 〈2,1,3 〉 = 〈2,3,6 〉

DATA ABSTRACTION AND SEQUENCES 21/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

USING SCAN IN THE MCSS PROB.

THE MAXIMUM CONTIGUOUS SUBSEQUENCE SUM PROBLEM

Given a sequence of numbers S = 〈s1, . . . , sn〉,
Find

mcss(S) = max
1≤i≤j≤n

{ j∑
k=i

sk

}

S = 〈0,−1,2,−1,4,−1,0〉, mcss(S) = 5

DATA ABSTRACTION AND SEQUENCES 22/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

USING SCAN IN THE MCSS PROB.

Consider S = 〈1,−2,3,−1,2,−3 〉

Let X = scanI + 0 S = 〈1,−1,2,1,3,0 〉

What is Xj − Xi for j > i?
I
∑j

k=i+1 Sk
I X4 − X0 = 3− 1 = 2

DATA ABSTRACTION AND SEQUENCES 23/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

USING SCAN IN THE MCSS PROB.

Define Rj as the maximum sum that starts at
some i and ends at j ≥ i .

Rj =
j

max
i=0

j∑
k=i

Sk

=
j

max
i=0

(Xj − Xi−1)

= Xj +
j

max
i=0

(−Xi−1)

= Xj +
j−1

max
i=0

(−Xi) = Xj −
j−1
min
i=0

Xi (Why?)

DATA ABSTRACTION AND SEQUENCES 24/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

USING SCAN IN THE MCSS PROB.

Rj = Xj −
j−1
min
i=0

Xi

You need Xj and the minimum previous Xi , i < j
I can be done by a minimum scan

(M,) = scan min 0 X = (〈0,0,−1,−1,−1,−1 〉 ,−1)

R = 〈Xj −Mj : 0 ≤ j < |S| 〉 = 〈1,−1,3,2,4,1 〉

DATA ABSTRACTION AND SEQUENCES 25/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

LET’S RECAP

Given S = 〈1,−2,3,−1,2,−3 〉
We computed X with a + scanI.

I X = 〈1,−1,2,1,3,0 〉
We computed M with a min scan

I M = 〈0,0,−1,−1,−1,−1 〉
We computed R = 〈Xj −Mj : 0 ≤ j < |S| 〉

I R = 〈1,−1,3,2,4,1 〉
A final max reduce on R gives us the MCSS, 4.

DATA ABSTRACTION AND SEQUENCES 26/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

USING SCAN IN THE MCSS PROB.

1 fun MCSS(S) =
2 let
3 X = scanI + 0 S
4 (M,) = scan min 0 X
5 in
6 max 〈Xj −Mj : 0 ≤ j < |S| 〉
7 end

Work? O(n)
Span? O(log n)

DATA ABSTRACTION AND SEQUENCES 27/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COPY SCAN

Scan can also be used to pass information
along a sequence.

〈NONE, SOME(7), NONE, NONE, SOME(3), NONE 〉
↓

〈NONE, NONE, SOME(7), SOME(7), SOME(7), SOME(3) 〉

Each element receives the nearest previous
SOME() value.
Easy to do sequentially with iter.

DATA ABSTRACTION AND SEQUENCES 28/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COPY SCAN

Can we do this with scan?
f : α option × α option→ α option

1 fun copy(a,b) =
2 case b of
3 SOME()⇒ b
4 | NONE⇒ a

Passes its right argument if it is SOME, else
passes its left argument.
How do you show copy is associative.

DATA ABSTRACTION AND SEQUENCES 29/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTING SCAN –
CONTRACTION

scan looks inherently sequential.
I Naive implementation needs O(n2) work.
I Slightly clever sequential implementation needs

O(n) work.
I Divide an Conquer approaches do not break the

sequentiality. (Why?)
Contraction

1 Construct a much smaller instance of the problem
2 Solve the smaller instance recursively
3 Construct solution to the original instance.

DATA ABSTRACTION AND SEQUENCES 30/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTING REDUCE WITH
CONTRACTION

Given 〈2,1,3,2,2,5,4,1 〉
Apply + pairwise and (in parallel) to get
〈3,5,7,5 〉

I This is the contracted instance!

Apply + pairwise to get 〈8,12 〉
Finally apply + pairwise to get 〈20 〉
The 3rd step of the contraction does nothing in
this case.

DATA ABSTRACTION AND SEQUENCES 31/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTING SCAN WITH
CONTRACTION

Given S = 〈2,1,3,2,2,5,4,1 〉
I scan + 0 S = (〈0,2,3,6,8,10,15,19 〉 ,20)

First do pairwise + on S to get 〈3,5,7,5 〉
Now (recursively) do scan on this to get
(〈0,3,8,15 〉 ,20)

I What is the relation to the final scan?

We have every other element of the final scan!
How do we fill in the rest?

DATA ABSTRACTION AND SEQUENCES 32/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTING SCAN WITH
CONTRACTION

Input = h2, 1, 3, 2, 2, 5, 4, 1i

Partial Output = (h0, 3, 8, 15i, 20)

Desired Output = (h0, 2, 3, 6, 8, 10, 15, 19i, 20)

+ + + +

DATA ABSTRACTION AND SEQUENCES 33/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPLEMENTING SCAN WITH
CONTRACTION

1 % implements: the Scan problem on sequences that have a power of 2 length
2 fun scanPow2 f i s =

3 case |s| of
4 0⇒ (〈〉, i)
5 | 1⇒ (〈i〉, s[0])
6 | n⇒
7 let
8 s′ = 〈f (s[2i], s[2i + 1]) : 0 ≤ i < n/2〉
9 (r , t) = scanPow2 f i s′

10 in

11 (〈pi : 0 ≤ i < n〉, t), where pi =

{
r [i/2] if even(i)
f (r [i/2], s[i − 1]) otherwise.

12 end

General case is in the course notes.
DATA ABSTRACTION AND SEQUENCES 34/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SUMMARY

Abstractions and Implementations
I Meldable Priority Queues

The Sequence ADT
The scan operation
Introduction to contraction
Implementing scan with contraction.

DATA ABSTRACTION AND SEQUENCES 35/35

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

