
15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 22

DYNAMIC PROGRAMMING

SYNOPSIS

Dynamic Programming
Subset Sum Problem
Minimum Edit Distance Problem
Additional example applications

DYNAMIC PROGRAMMING 2/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

ALGORITHMIC PARADIGMS
CONTRASTED

Inductive paradigms combine solutions to smaller
subproblem(s).

Paradigm Subproblems Reuse of
Solutions

Divide and Conquer > 1 NO
Contraction = 1 NO
Greedy = 1 NO
Dynamic Programming > 1 YES

DYNAMIC PROGRAMMING 3/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

REUSING SOLUTIONS

foo(A)

foo(C)

foo(B)

foo(D)

size k

size j < k

You can save some work if you remember the
solutions to the smaller subproblems.

DYNAMIC PROGRAMMING 4/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

REUSING SOLUTIONS

How much work does this code need?

1 fun fib(n) =
2 if (n ≤ 1) then 1
3 else fib(n − 1) + fib(n − 2)

It turns out Wfib(n) = O(cn) (Why?)

DYNAMIC PROGRAMMING 5/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

REUSING SOLUTIONS

It also turns out that fib(n) can be computed
with O(n) work.

I Note that n is not the right measure for modeling work
here (Why?) but it is convenient!

fib(5)

fib(3)

fib(4)

fib(2)

fib(1)

fib(0)

DYNAMIC PROGRAMMING 6/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SOLUTION COMPOSITION GRAPH

fib(5)

fib(3)

fib(4)

fib(2)

fib(1)

fib(0)

DAG
Each node is a subproblem
instance
Edges model dependences
Edges go from smaller to larger
subproblems
Vertices with no in-edges are
base cases
Vertices with no out edges are
the instance we are trying to
solve.

DYNAMIC PROGRAMMING 7/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DYNAMIC PROGRAMMING

Dynamic programming can be seen as evaluating
a DAG by navigating from the leaves to the root.

I Computing the subsolutions at each node as needed
and when possible.

Work and span fall out of the DAG structure!
I Work: sum over nodes
I Span: Find the longest path!

Many DP solutions have significant parallelism,
but some do not.

DYNAMIC PROGRAMMING 8/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DYNAMIC PROGRAMMING

The challenge is to find the appropriate DAG
structure for a given problem.
DP is most suitable for optimization problems.

I Solution optimizes (minimizes/maximizes) some
criteria.

DP is also suitable for decision problems.
I Is there a solution to this instance?

DYNAMIC PROGRAMMING 9/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DYNAMIC PROGRAMMING

Top-down approach
I Starts at the root
I Uses recursion to solve the subproblems
I But remembers the solutions – memoization.
I Usually elegant and evaluates only the needed

subproblems.
Bottom-up approach

I Starts at the leaves
I Traverses the DAG in some fashion.
I All subproblems may need to be computed.
I More parallelizable.

Coming up with the abstract inductive structure is
important.

I Sharing and coding comes later.
DYNAMIC PROGRAMMING 10/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SUBSET SUM PROBLEM

THE SUBSET SUM (SS) PROBLEM
Given a multiset of positive integers S and a positive
integer value k , determine if there is any X ⊆ S such
that

∑
x∈X x = k .

Given S = {1,4,2,9,9}
I No solution for k = 8
I For k = 7 {1,4,2} is a solution.

NP−hard if k is unconstrained.
We will include k in the work bounds.
k is polynomial in |S|, work is polynomial in |S|.
Pseudo-polynomial work solution.

DYNAMIC PROGRAMMING 11/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SUBSET SUM PROBLEM

Brute force: Consider all 2n subset for a total
work of O(n2n).
Divide and Conquer: also ends up being
exponential work without any sharing!
Sharing solutions however works.

DYNAMIC PROGRAMMING 12/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SUBSET SUM PROBLEM

To solve SS(S, k), pick some element a ∈ S
Solve (recursively) SS(S \ {a}, k − a)

I If there is a solution, we are done.

If not, solve SS(S \ {a}, k).

1 fun SS(S, k) =
2 case (showl(S), k) of
3 (,0)⇒ true
4 | (NIL,)⇒ false
5 | (CONS(a,R),)⇒
6 if (a > k) then SS(R, k)
7 else (SS(R, k − a) orelse SS(R, k))

DYNAMIC PROGRAMMING 13/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SUBSET SUM PROBLEM DAG

SS({1,1,1}, 3)

SS({1,1}, 2)

SS({1}, 1)

SS(ϕ, 0) SS(ϕ, 1) SS(ϕ, 1) SS(ϕ, 2) SS(ϕ, 1) SS(ϕ, 2) SS(ϕ, 2) SS(ϕ, 3)

SS({1}, 2)

SS({1,1}, 3)

SS({1}, 2) SS({1}, 3)

DYNAMIC PROGRAMMING 14/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SUBSET SUM PROBLEM DAG

SS({1,1,1}, 3)

SS({1,1}, 2)

SS({1}, 1)

SS(ϕ, 1) SS(ϕ, 0) SS(ϕ, 2) SS(ϕ, 3)

SS({1,1}, 3)

SS({1}, 2) SS({1}, 3)

How many distinct subproblems do we need to
solve?

DYNAMIC PROGRAMMING 15/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SUBSET SUM PROBLEM

For SS(S, k), there are only |S|+ 1 distinct lists
ever used.
The second argument decreases down to 0, so
has at most k + 1 values.
So we have at most |S|(k + 1) = O(k |S|)
instances.
Each instance has constant work⇒ total O(k |S|)
work.
Longest path in DAG is |S| ⇒ span is O(|S|)

I O(k) parallelism.

DYNAMIC PROGRAMMING 16/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE SUBSET SUM PROBLEM

Why pseudo-polynomial?
For k , the input size is log k , but the work is
O(2log k |S|)

I Exponential in input size!

If k ≤ |S|c for some constant c, then work is
O(k |S|) = O(|S|c+1) on input of size
c log |S|+ |S|

DYNAMIC PROGRAMMING 17/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MINIMUM EDIT DISTANCE

MINIMUM EDIT DISTANCE (MED)
Given a character set Σ and two sequences of
characters S = Σ∗ and T = Σ∗, determine the
minimum number of insertions and deletions of single
characters required to transform S to T .

Start with S = 〈A,B,C,A,D,A 〉
I Delete C
I Delete last A
I Insert a C

You get T = 〈A,B,A,D,C 〉
So MED(S,T) = 3

DYNAMIC PROGRAMMING 18/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

APPLICATIONS OF MED

Spelling correction
I What is an English word close to Ynglisd?

Storing multiple versions of files efficiently.
Approximate matching of genome sequences

DYNAMIC PROGRAMMING 19/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MINIMUM EDIT DISTANCE

Given S = s :: S′ and T = t :: T ′

If s = t , MED(S,T) is determined by S′ and T ′

Otherwise we have two subproblems:
I Find MED(S,T ′) – consider a deletion from T to get

T ′
I Find MED(S′,T) – consider a deletion to S to get S′

Find the minimum and add 1.

DYNAMIC PROGRAMMING 20/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MINIMUM EDIT DISTANCE

1 fun MED(S,T) =
2 case (showl(S),showl(T)) of
3 (,NIL)⇒ |S|
4 | (NIL,)⇒ |T |
5 | (CONS(s,S′),CONS(t ,T ′))⇒
6 if (s = t) then MED(S′,T ′)
7 else 1 + min(MED(S,T ′),MED(S′,T))

If run recursively, this would take exponential
work.

I Binary tree with linear depth!
But there is significant sharing!

DYNAMIC PROGRAMMING 21/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SUBPROBLEM SHARING IN MED

MED (ABC, DBC)

MED (BC, DBC) MED (ABC, BC)

MED (C, DBC) MED (BC, BC) MED (ABC, C)

MED (BC, C) MED (ABC,)

MED (C,C) MED (BC,)

MED (C, BC)

MED (, BC)

MED (, DBC)

DYNAMIC PROGRAMMING 22/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BOTTOM-UP DEPENDENCY GRAPH

MED (S3, T3)MED (S3, T2)

MED (S2, T3)

MED (S3,T1)

MED (S2, T2)

MED (S1, T3)MED (S1, T2)

MED (S0, T3)

MED (S2, T1)

MED (S3, T0)

MED (S0, T0)

MED (S1, T0)

MED (S2, T0)

MED (S1, T1)

MED (S0, T1) MED (S0, T2)

DYNAMIC PROGRAMMING 23/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MINIMUM EDIT DISTANCE

There are at most |S|+ 1 possible values for the
first argument.
There are at most |T |+ 1 possible values for the
second argument.
So we have (|S|+ 1)× (|T |+ 1) = O(|S||T |)
possible subproblems, each of constant work.

I Total work is O(|S||T |).
Total span is O(|S|+ |T |) (Why?)

DYNAMIC PROGRAMMING 24/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE LONGEST COMMON
SUBSEQUENCE (LENGTH)

A longest common subsequence of strings S1
and S2 is a longest subsequence shared by both.
LCS(ABCDEF ,EBCEG) = BCE
May be empty or not necessarily unique.
LLCS(S1,S2) computes the length of the LCS.
Subproblem structure is very similar to MED.
(Work it out!)

DYNAMIC PROGRAMMING 25/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL CHANGE

For a currency with coins C1,C2, . . .Cn = 1
(cents), what is the minimum number of coins
needed to make K cents of change.
US Currency has 25, 10, 5, 1 cent coins.
To give back 63 cents, you need to give
25+25+10+1+1+1, a total of 6 coins.

I Greedy works in this case, but not always
I If you had a 21 cent coin (for some strange reason),

greedy would not work.
DP solutions solves two subproblems K1 = i and
K2 = K − i for all i = 1, . . . bK/2c
Then chooses i that minimizes the sum of the
solutions

DYNAMIC PROGRAMMING 26/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

0-1 KNAPSACK

Items with “benefit” pi and cost wi
I xi = 1 or 0 – take item i or not.

Maximize
∑n

j=1 pj · xj

Subject to
∑n

j=1 wj · xj ≤ c
Optimal Exam Strategy Problem (:-)

I Questions 1 through n, worth p1, . . .pn points.
I Time estimate for solving question j is wj
I You have T units of time.
I Which questions do you solve to maximize your

grade?
I Subproblem structure is resembles the thinking for

subset sum problem

DYNAMIC PROGRAMMING 27/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL MATRIX MULTIPLICATION

We need to multiply n matrices A1 × A2 × · · ·An
I Ai has sizes pi−1 × pi and Ai+1 has sizes pi × pi+1
I Multiplying Ai and Ai+1 needs O(pi−1 · pi · pi+1) work

What is the best way to “parenthesize” the
sequence to minimize the number of scalar
mutiplications?
m[i , j] is the minimum number of scalar
multiplications for multiplying Ai × · · · × Aj

I A subproblem

DYNAMIC PROGRAMMING 28/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPTIMAL MATRIX MULTIPLICATION

m[i , j] =

{
0 i = j
mini≤k<j{m[i , k] + m[k + 1, j] + pi−1 · pk · pj} i < j

Find that k that minimizes the cost of multiplying
Ai × · · · × Aj

We need to compute m[1, n] and how we got that
(the choice of k ’s when we are minimizing
subproblems)

DYNAMIC PROGRAMMING 29/29

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

