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BINARY TREES

@ Trees where each node has at most 2 children
each of which is a binary tree.

» Left child / Left subtree
» Right child / Right subtree
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BINARY SEARCH TREES

e Binary trees with the “search” property
e For each node v with key k

» The key of the left child k, < k

» The key of the right child kg > k
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THINGS CAN GET PRETTY BAD
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BALANCED TREES

e We try to keep binary search trees balanced.

» Both children are about the same height
» Both subtrees are about the same size

@ AVL Trees
» Left and right subtree heights differ by at most 1.
» O(log n) root height maintained after each insertion
and deletion.

e Splay Trees
» Balanced in the amortized sense
» A sequence of n find, insert, or delete
operations take O(nlog n) work.
» So average is O(log n) work.
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BASIC BST OPERATIONS

e Data type is defined by structural induction
» Leaf
» Node with a left child, a right child, a key, optional
additional data.

datatype BST = Leaf |
Node of (BST x BST * key x data)
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BASIC BST OPERATIONS

@ split(T,K):BST X key —
BST x (data option) X BST

@ split divides T into two BSTs,

» one consisting of all the keys from T less than k
» the other all the keys greater than k

e If k appears in the tree with associated data d
then split returns soME(d)

@ Otherwise it returns NONE.
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BASIC BST OPERATIONS

@ join(L,m,R):BST x (key x data) option X
BST — BST

e Takes a left subtree (L) an optional key-data pair
m and a right subtree (R)
» Assumes all keys in L are less than all keys in R.
» If present, the optional key is also larger than all keys
in L and smaller than all keys in R.

@ Creates a new BST that is the union of L and R
and m.

e We also assume both split and join maintain
balance.
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BASIC BST OPERATIONS

@ expose(T): BST —
(BST X BST X key x data) option

@ Returns the components if BST T is not empty.
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BASIC BST OPERATIONS - SEARCH

fun search T k=

let (_,v,_)=split(T,k)
in v

end
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BASIC BST OPERATIONS - INSERT

fun insert T (k,v)=

let (L,V,R)=split(T,k)
in join(L, SOME(k,V),R)
end
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BAsSIC BST OPERATIONS - DELETE

fun delete T k=

let (L,_,R)=split(T,k)
in join(L, NONE, R)

end
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CONCRETE IMPLEMENTATIONS:
SPLIT

datatype BST = Leaf |
Node of (BST *x BST * key % data)

fun spl1it(T,k) =
case T of
Leaf = (Leaf, NONE,Leaf)
| Node(L,R,K',v)=
case compare(k,k’) of
LESS =
let (L',r,R)=split(L, k)
in (L',r,Node(R',R,k',v)) end
EQUAL = (L, SoME(V), R)
10 GREATER =
11 let (L',r,R)=split(R,k)
12 in (Node(L,L’,k’,v),r,R") end

OOV WN -
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CONCRETE IMPLEMENTATIONS: JOIN

fun join(Ti,m, T,) =
case m of
SOME(K, v) = Node(Ty, Tz, Kk, V)
| NONE =
case T; of
Leaf= T,
| Node(L, R, k,v) = Node(L, join(R,NONE, Tz), K, v))

NONUI s WN -

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION 15/22

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



CONCRETE IMPLEMENTATIONS:
UNION

@ For T; with key k; and children L; and R; at the root, use
kq to split T, into L, and R..

@ Recursively find L, = union(L4, L) and
R, = union(Ri, R2).

° NOW jOiI] Lu,k‘],Ru .
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CONCRETE IMPLEMENTATIONS:
UNION

fun union(Tq, Tp) =

case expose(Ty) of
NONE = T5

’ SOME(L1, R1,k1, V1) =
let (Lg, Vo, Rg) = Split(Tg, k1)

(L, R) = union(Ly,Ly) || union(Ry, R2)

in join(L, SoME(ki,vi), R)
end

OG- WDN -

e Returns the value from T, if a key appears in
both trees.
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ANALYSIS OF UNION

fun union(Ty, T,) =

case expose(T;) of
NONE = T5

| SOME(L1, R1,k1, V1) =
let (L2,V27R2) = Split(Tg,k1)

(L, R) = union(Ly, Ly) || union(Ry, Ry)

in jOiI’Z(L? SOZWE(/Q7 V1)? R)
end

RO OT s WIN-

@ split costs O(log|Tz|).
@ Two recursive calls to union
@ join costs O(log(|T1| + | T2|)
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ANALYSIS OF UNION -
ASSUMPTIONS

e T; is perfectly balanced.

» expose return subtrees of size |T;|/2
» Each a key from T; splits T, it splits exactly in half.
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ANALYSIS OF UNION

WATil,ITel) = 2W( T1l/2, | T2|/2) + O(0g(IT1] + | T21));

recursive umon calls split and join

and

W(1,[Tze|) = O(log(1 + [Tzl)).

@ When |T{| =1, expose give us two empty
subtrees L4 and R;

@ union(Ly,Lp) returns Ly, union(Ry, R2) returns
R> immediately!

@ Joining these costs at most
O(log(| 71| + [ T2])) = O(log(1 + [ T2|)
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ANALYSIS OF UNION

o letm=|Tiylandn=|Tsland N=n+m

kq log (NI2)

( k; log (N/4) )( ky log (N/4) ) ( ky log (N/4) ) ( ky log (N/4) ) - - - - ky 4log (N/4)
o o o

OOOO0O000000O0

Bottom level: each costs log (1+ (n/m))

e Leaf dominated (Why?)
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ANALYSIS OF UNION

e How many leaves are there in this recursion
tree?

» T, has no impact.
» We get m = |T;| leaves.
How deep is the tree?
» 1+log, m
@ What is the size of T, at the leaves?
> n/zlogzm — %

o Total cost at the leaves = O(mlog(1 + 2))
e Union cost = O(mlog(1 + 1))
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