
15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 18

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS



SYNOPSIS

Quicksort
Work and Span Analysis of Randomized
Quicksort
Lower Bound for Comparison-based Sorting
Lower Bound for Merging

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 2/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



QUICKSORT

Originally invented and analyzed by Hoare in
1960’s.
I strongly urge to watch Jon Bentley on “Three
beautiful Quicksorts” at

I www.youtube.com/watch?v=QvgYAQzg1z8.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 3/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

www.youtube.com/watch?v=QvgYAQzg1z8


SEQUENTIAL QUICKSORT

int i, j;
for( i = low, j = high - 1; ; )
{

while( a[ ++i ] < pivot );
while( pivot < a[ --j ] );
if( i >= j )
break;
swap( a, i, j );

}
// Restore pivot
swap( a, i, high - 1 );
quicksort( a, low, i - 1 ); // Sort small elements
quicksort( a, i + 1, high ); // Sort large elements

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 4/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



QUICKSORT

1 fun quicksort(S) =
2 if |S| = 0 then S
3 else let
4 p = pick a pivot from S
5 S1 = 〈 s ∈ S | s < p 〉
6 S2 = 〈 s ∈ S | s = p 〉
7 S3 = 〈 s ∈ S | s > p 〉
8 (R1,R3) = (quicksort(S1) ‖ quicksort(S3) )
9 in

10 append(R1,append(S2,R3))
11 end

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 5/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



QUICKSORT

1 fun quicksort(S) =
2 if |S| = 0 then S
3 else let
4 p = pick a pivot from S
5 C = 〈 s ∈ S | (s, compare(p, s) 〉
6 S1 = 〈 s | (s,LESS) ∈ C 〉
7 S2 = 〈 s | (s,EQUAL) ∈ C 〉
8 S3 = 〈 s | (s,GREATER) ∈ C 〉
9 (R1,R3) = (quicksort(S1) ‖ quicksort(S3) )

10 in
11 append(R1,append(S2,R3))
12 end

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 6/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



QUICKSORT

Each call to Quicksort either makes
I No recursive calls (base case), or
I Two recursive calls

Call tree is a binary
Depth the call tree determines the span of the
algorithm.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 7/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



PICKING THE PIVOT

Always pick the first element
I Worst case O(n2) work.
I In practice, almost sorted inputs are not uncommon.

Pick the median of 3 elements (e.g., first, middle
and last elements)

I could possible divide evenly
I worst case is still bad

Pick an element at random
I we hope this divides evenly in expectation
I leading to expected O(n log n) work and O(log2 n)

span.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 8/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



PICKING THE PIVOT

Pick first element
I Worst case O(n2) work.
I Expected O(n log n) work

F Averaged over all possible orderings.
I Works well on the average
I Slow on some, possibly common, cases.

Pick a random element
I Expected worst-case O(n log n) work.

F For input in any order, the expected work is O(n log n)
I No input has expected O(n2) work.
I With a small probability, we could be unlucky and

have O(n2) work.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 9/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



RANDOMIZED QUICKSORT

Assign a uniformly random priority to each
number in [0,1].

1 fun quicksort(S) =

2 if |S| = 0 then S
3 else let
4 p = pick as pivot the highest priority element from S
5 S1 = 〈 s ∈ S | s < p 〉
6 S2 = 〈 s ∈ S | s = p 〉
7 S3 = 〈 s ∈ S | s > p 〉
8 (R1,R3) = (quicksort(S1) ‖ quicksort(S3) )

9 in
10 append(R1,append(S2,R3))

11 end

Once the priorities are assigned, the algorithm is
deterministic.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 10/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



RANDOMIZED QUICKSORT

Count comparisons made!
I Almost all the work is comparisons.

Xn = # of comparisons quicksort

makes on input of size n

Find E [Xn] for any input sequence S
Notation:

I Let T = sort(S)
I Ti and Tj refer to elements in the final sorted order

and i < j and Ti ≤ Tj .
I pi refers to priority chosen for Ti .
I Ai,j = 1 if Ti and Tj were ever compared during the

sort.
QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 11/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



ANALYZING QUICKSORT

Crucial point is how to model Ai ,j .
In any one call to quicksort, there are three
cases:

I Pivot p is either Ti or Tj ⇒ Ai,j = 1
I Ti < p < Tj ⇒ Ti ∈ S1,Tj ∈ S3,Ai,j = 0
I Either p < Ti or p > Tj ⇒ Ti ,Tj ∈ S1 or Ti ,Tj ∈ S3

If two elements are compared in a quicksort
call, they will never be compared again in any
other call!

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 12/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



ANALYZING QUICKSORT

Xn ≤
n−1∑
i=1

n∑
j=i+1

Aij

The non-optimized code compares each element
to pivot 3 times, the optimized version compares
once.

1 . . .
2 C = 〈 s ∈ S | (s, compare(p, s) 〉
3 . . .

By linearity of expectation

E [Xn] ≤
n−1∑
i=1

n∑
j=i+1

E [Aij ] =
n−1∑
i=1

n∑
j=i+1

Pr[Aij = 1]

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 13/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



ANALYZING QUICKSORT

Consider first when the pivot is one of
Ti ,Ti+1, ...,Tj

Ti and Tj are compared⇔ pi or pj is the highest
priority among {pi ,pi+1, . . . ,pj}.

I Assume Tk , i < k < j has higher priority.
I For any subdivision · · · ,Ti , · · · ,Tk , · · · , Tj , Tk will

become a pivot and separate Ti and Tj
I Ti and Tj will never be compared!

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 14/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



ANALYZING QUICKSORT

E [Aij ] = Pr[Aij = 1]

= Pr[pi or pj is the maximum in {pi , . . . ,pj}]

=
2

j − i + 1
(Why ?)

j − i + 1 elements between pi and pj and each is
equally likely to be the maximum.
We want either pi or pj , hence 2

j−i+1

Ti is compared to Ti+1 with probability 1.
QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 15/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



ANALYZING QUICKSORT

E [Xn] ≤
n−1∑
i=1

n∑
j=i+1

E [Aij ]

=
n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=
n−1∑
i=1

n−i+1∑
k=2

2
k

(change variables)

≤ 2
n∑

i=1

Hn

≤ 2 · n · Hn ∈ O(n log n)
QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 16/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



ANALYZING QUICKSORT

Indirectly, average work for basic deterministic
quicksort is O(n log n).

I Just shuffle data randomly and apply the basic
algorithm

I ≡ to picking random priorities

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 17/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



ALTERNATIVE ANALYSIS

Write a recurrence for the number of
comparisons:

X (n) = X (Yn) + X (n − Yn − 1) + n − 1

Random variable Yn is the size of S1.

E [X (n)] = E [X (Yn) + X (n − Yn − 1) + n − 1]

= E [X (Yn)] + E [X (n − Yn − 1)] + n − 1

=
1
n

n−1∑
i=0

(E [X (i)] + E [X (n − i − 1)]) + n − 1

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 18/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



ALTERNATIVE ANALYSIS

E [X (n)] =
1
n

n−1∑
i=0

(E [X (i)] + E [X (n − i − 1)]) + n − 1

=
2
n

n−1∑
i=0

E [X (i)] + n − 1

With telescoping, this also solves as O(n log n)

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 19/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



EXPECTED SPAN

S is split into L(ess), E(qual) and (g)R(eater).
Let Xn = max{|L|, |R|},
We use filter to partition.

S(n) = S(Xn) + O(log n)

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 20/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



EXPECTED SPAN

Let S(n) denote E [S(n)]

We bound S(n) by considering Pr[Xn ≤ 3n/4]
and Pr[Xn > 3n/4].
Pr[Xn ≤ 3n/4] = 1/2

I As with SmallestK, 1/2 of the randomly chosen
pivots results in larger partition of at most size 3n/4
elements.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 21/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



EXPECTED SPAN

S(n) =
∑

i

Pr[Xn = i ] · S(i) + c log n

≤ Pr[Xn ≤ 3n
4 ]S(3n

4 ) + Pr[Xn > 3n
4 ]S(n) + c · log n

≤ 1
2S(3n

4 ) + 1
2S(n) + c · log n

=⇒ (1− 1
2)S(n) ≤ 1

2S(3n
4 ) + c log n

=⇒ S(n) ≤ S(3n
4 ) + 2c log n

=⇒ S(n) ∈ O(log2 n)

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 22/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



LOWER BOUND FOR SORTING

What is asymptotically the minimum number
comparisons any sorting algorithm has to make?
Lower-bounds apply to problems not to
algorithms.

I Algorithms provide upper bounds!

We say sorting is Ω(n log n)

No (comparison-based) sorting algorithm has
work asymptotically lower than n log n.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 23/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



DECISION TREES

Does it live in the 
water?

Does it have fins? More than 4 legs?

Can it fly? Can it fly?fish frog

fly spider parrot bison

Y

Y Y

Y Y

N

N N

N N

If there are N outcomes, the number of questions
is at least log2 N.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 24/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



SORTING AS A DECISION PROBLEM

For n items, how many possible outcomes can there be?
I n!⇒ we need at least log2(n!) “questions”.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 25/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



SORTING AS A DECISION PROBLEM

log(n!) = log n + log(n − 1) + · · ·+ log(n/2) + · · ·+ log 1
≥ log n + log(n − 1) + · · ·+ log(n/2)

≥ n
2 · log(n/2) ∈ Ω(n log n)

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 26/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



LOWER BOUND FOR MERGING

We have sorted sequences A, |A| = n and
B, |B| = m and m ≤ n.

I Assume all elements are unique.

All interleavings are possible
We need to choose m positions out of n + m to
place the elements of B amongst elements of A.
Finding the right sequence of m positions can be
done with at least log2

(n+m
m

)
comparisons.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 27/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014



LOWER BOUND FOR MERGING(n
r

)
≥
(n

r

)r

I See Lemma in the notes.

log2

(
n + m

m

)
≥ log2(

n + m
m

)m = m log2(1 +
n
m

)

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 28/28

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014


