15-210
PARALLEL AND SEQUENTIAL
ALGORITHMS AND DATA
STRUCTURES

LECTURE 7

COLLECT, SETS AND TABLES

SYNOPSIS

@ The collect operation

e The map-collect-reduce paradigm
e Sets

e Tables

COLLECT, SETS AND TABLES 2/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE COLLECT OPERATION

e Group items that share a common key.

Data = ((“jack sprat”, “15-210"),
(“jack sprat”, “15-213"),
(“mary contrary”, “15-210"),
(“mary contrary”, “15-251"),
(“mary contrary”, “15-213"),
(“peter piper”, “15-150"),

(“peter piper”, “15-251"),

1
‘peter piper”,...))

“jack sprat”, “mary contrary”,...))
“jack sprat”, . ..))
“mary contrary”, “peter piper”))

7

rosters = ((“15-150",
(“15-210",
(“15-213",
(“15-2517,
")

o~~~ o~

COLLECT, SETS AND TABLES

3/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SPRING 2014

THE COLLECT OPERATION

e Very common operation in Relational Databases
@ Usually called the Group by operation.

rosters = (("15-150", (“peter piper”,...))

(“15-210", (“jack sprat”, “mary contrary”,...))
(“15-213", (“jack sprat”,...))

(“15-251", (“mary contrary”, “peter piper”))

e Students are grouped by Course Numbers.

COLLECT, SETS AND TABLES 4/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE COLLECT OPERATION

collect : (a x a — order) — (a x B) seq
— (a x 5 seq) seq

@ o x a — order is a function for comparing keys
of type «
@ (a x) seq is a sequence of key-value pairs

@ («a x 8 seq) seq is the resulting sequence:
» each unique « value is paired with a sequence of all
[values it appears with

COLLECT, SETS AND TABLES 5/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE COLLECT OPERATION

collectStrings = collect String.compare

rosters = collectStrings({(n,c):(c,n) € Data))

1"

rosters = ((“15-150", (“peter piper”,...))

(“15-210”, (“jack sprat” ”mary contrary”,...))

(“15-213"7, { ’]ack sprat”,...))

(“15- 251” (“mary contrary” “peter piper”))
)

4

@ ((n,c):(c,n) € bata) arranges the data
appropriately.

COLLECT, SETS AND TABLES 6/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE COLLECT OPERATION

e How would you implement collect?
» Sort the items on their keys
» Partition the resulting sequence
» Pull out pairs between each key change

COLLECT, SETS AND TABLES 7/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE COLLECT OPERATION

@ The dominant cost of collect is in sorting.
o Work is O(W;nlog n), Span is O(S. log® n)

» W,; work bound for the comparison function
» S; span bound for the comparison function
@ A O(n) work can be implemented with hashing.

» Need a separate hash function
» Output not in sorted order

COLLECT, SETS AND TABLES 8/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

USING COLLECT IN MAP-REDUCE

@ The map-reduce paradigm is used to process
very large collection of documents.

» A document is a collection of words/strings.
» Not the mapReduce of 15-150!
e map-reduce paradigm = map-collect-reduce(s).

COLLECT, SETS AND TABLES 9/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

USING COLLECT IN MAP-REDUCE

e fn, maps each document to a sequence of
key-value pairs.

» fm @ (document — (key x «) seq)

e All key-value pairs in a document are collected.

e f.is applied to the keys to get a single value for
a key.
» f o key x a seq — 8

COLLECT, SETS AND TABLES 10/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

docs = ("this is a document”
“” . : . rr
this is is another document”
“a last document”)

!

((“this”,1),(“is”,1),(“a”, 1), (“document” 1),
(“this” 1), (" zs”, 1), (° zs”, 1), (“another” 1),
(“document”; 1), (“a”, 1), ("last”, 1), (“document” 1))

!

((“a”,2), (“another” 1), (“document”,3), (“is”,3), (“last”, 1),
(“this”, 2))

COLLECT, SETS AND TABLES 11/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MAPREDUCE IN SML

fun mapCollectReduce f, f, docs =
let
pairs = flatten(f,(s):s &€ docs)
groups = collect String.compare pairs
in
(1.(9) : g € groups)
end

NONUI B WDN -

e rlatten((a,b,c),(d,e))=(ab,cd e)

COLLECT, SETS AND TABLES 12/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MAPREDUCE IN SML

fun mapCollectReduce f, f, docs =
let
pairs = flatten(f,(s):s &€ docs)
groups = collect String.compare pairs
in
(1.(9) : g € groups)
end

NONUI B WDN -

fun f.(doc) = ((w,1): tokens doc)
fun f.(w,s) = (w, reduce + 0 9)

COLLECT, SETS AND TABLES 13/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MAPREDUCE EXAMPLE IN SML

fun f.,(doc) = ((w,1): tokens doc)
fun f.(w,s) = (w,reduce + 0 9)

countWords = mapCollectReduce f, f.

countWords (“this is a document”,
“this is is another document”,
“a last document”)

= (("a”, 2),(“another”, 1), ("document”; 3),(“is”, 3),
(“last”, 1), (“this”, 2))

COLLECT, SETS AND TABLES

14/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SETS

e Sets play a very important role in math.
e Often needed in many algorithms.

e Many languages either support sets directly or
have libraries for sets.

@ In 15-210 we use a purely functional definition
for sets:

» When updates are done, a new set is returned.

COLLECT, SETS AND TABLES 15/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SETS AS AN ADT

@ U is a universe of elements.

e The SET ADT is a type S that represents the
power set of U.

empty S =0

size(S) : S —Z>o = |
singleton(e) : U—S = {e}
filter(f,S) : (U—{1,F}) = {se S|f(s)}

xS) =S

COLLECT, SETS AND TABLES 16/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SETS AS AN ADT

find(S, e) . SxU = |{s€S|s=¢e}| =1
—{1,F}

insert(S,e) : SxU—=S = Su{e}

delete(S, e) . SxU—-S = S\{e}

intersection(Sy,S) @ SxS—=S = S$§nNS

union(S1, 32) . SxS—=S = SUS

difference(Sy, Sy) . SxS—=S = §\S

e What is the relationship between these two
groups?

COLLECT, SETS AND TABLES 17/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SETS AS AN ADT

@ We do notreally need find, insert, delete!

find(S,e) = size(intersection(S,singleton(e))) =1
insert(S,e) = wunion(S,singleton(e))
delete(S,e) = difference(S,singleton(e))

@ intersection, union, and difference

» can operate on multiple elements, and
» are suitable for parallelism

COLLECT, SETS AND TABLES 18/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST MODEL FOR SETS

e Underlying data structure can be
» hash-tables
» balanced trees
e We will assume a balanced-tree implementation.

e We will assume comparison of two set elements
take

» W, work and S, span.

COLLECT, SETS AND TABLES 19/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST MODEL FOR SETS

size(S)
singleton(e)

filter(f,S) O (Z W(f(e))) O (Iog S| + max S(f(e)))

eeS

find(S,e)
insert(S,e) O(W, -log|S]) O(S; - log|S))
delete(S, e)

COLLECT, SETS AND TABLES 20/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST MODELS FOR SETS

intersection(Sy, Sp) Work = O (WC -m-log(1 + %))
union(S1,32) =

difference(Si, Sy) Span = O (S; - log(n+ m))

n = max(|Si1. S.)) m = min(Si1, |S.))

@ Sets are equal size (n = m)
» Work = O(W; - m-log(1+ 1)) = O(W; - n)
» Span = O(S; - log n)

@ One of the sets is a singleton (m = 1)
» Work = O(W; - log(1 + n)) = O(W, - log n)
» Span = O(S;-log(n+ 1)) = O(S; - logn

COLLECT, SETS AND TABLES

PAVAEK

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLES

e Table is an ADT for sets of key-value pairs.

(] {(k1 —> V1), (k2 —> V2)7 e (kn —> Vn)}
(*] {(k1, V1), (kg, Vg), ceey (kn, Vn)}

e Each key appears only once

e Many languages provide either built-in support
or libraries.

COLLECT, SETS AND TABLES 22/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLES

e K is the universe of keys.

e V is the universe of values.
e T is a type that represents the power set of
KxV

» restricted so that each key appears at most once.
» S is the power set of K.
» Z>o denotes the positive integers.

COLLECT, SETS AND TABLES 23/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLE FUNCTIONS

empty T = 0
size(T) : T — ZZO = |T|
singleton(k, V) KxV—T = {(k,v)}
filter(f, T) S (Vo {T,F}) xT)
—T = {(k,v) e T|f(v)}
map(f, T) D (KxV—=V)xT)
T = {(k Kk, V)| (K, v) € T))
insert(f, T,(k,v)) @ (VxV—=V)xT
X(KxV)—=T =
(T\ {(k VU
(ke F(vv)}
if (k,v)e T
TU{(k)}
otherwise
delete(T,k)) : TxK—=T = {(K,v)eTlk#Kk}

COLLECT, SETS AND TABLES 24/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLE FUNCTIONS

£ind(T, k)
merge(f, Ty, T2)

extract(T,S)
erase(T,S)

COLLECT, SETS AND TABLES

Tx K — (VU L)
(VxV—=V)

kek | {(k, v2)}
TxS—T

TxS—T

XxTxT—T
{(kvf V1’V2))}
U{ {(ﬁ’v)}

—
= <

| x> x|

(k,v)eT
otherwise

2538

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SPRING 2014

TABLE EXAMPLES

@ Suppose we have the two tables:

» Summer= {tree — green, sky — blue, cmuq —
tan}
» Fall= {grass — gray, tree — brown}

e merge (fn (a,b) = b) Summer Fall

» {grass — gray, tree — brown, sky —
blue, cmuq — tan}

COLLECT, SETS AND TABLES PLYAK)

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLE EXAMPLES

@ Suppose we have the two tables:

» Summer= {tree — green, sky — blue, cmuq —
tan}
» Fall= {grass — gray, tree — brown}

@ extract(Summer,{sky, grass})
» {sky — blue}

COLLECT, SETS AND TABLES 27/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLE EXAMPLES

@ Suppose we have the two tables:

» Summer= {tree — green, sky — blue, cmuq —
tan}
» Fall= {grass — gray, tree — brown}

@ erase(Summer,{sky, grass})
» {tree — green, cmuq — tan}

COLLECT, SETS AND TABLES 28/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLE EXAMPLES

e Other useful functions from the library

@ collect:(key x) seq — («a seq) table

@ fromSeq: (key x «) seq — « table
» fromSeq(A) ={k+— Sy : (k— S) € collect(A)}

COLLECT, SETS AND TABLES 29/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLE FUNCTIONS

e Major differences from sets:
» find returns the value if key is in the table else
returns L (NONE).
» insert/merge need a function to combine if the
key is already in the/both table(s).

e Just as with sets, there is symmetry between

» extract and find
» merge and insert
» erase and delete

COLLECT, SETS AND TABLES 30/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST MODELS FOR TABLES

Work Span
size(T)
singleton(k,V) o(1) o(1)
filter(f, T) o ((k’v)eT W(f(v))) o] (Iog |T|+ (;Tv?é(r S(f(v)))
map(f, T) o ((k,v)eT W(f(k, V))) o <(m/?é(T S(f(k, V)))

COLLECT, SETS AND TABLES 31/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST MODELS FOR TABLES

Work Span
£ind(S, k)
insert(T, (k,V)) O(W,log|T|) O(Sclog|T))
delete(T, k)

extract(Ty, To)
merge(Ty, Tz) O (Wcmlog(1 + %)) O(S:log(n+ m))
erase(Tq, To)

n=max(|T1],|T2]) m=min(|T1],|T2|)

COLLECT, SETS AND TABLES 32/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SUMMARY

e Collect

e Map-Collect-Reduce
e Sets

e Tables

COLLECT, SETS AND TABLES

38/38

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SPRING 2014

