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ORDERED SETS AND TABLES

So far, we did not worry about the ordering of the
values/keys in sets and tables.

I Find, union, intersect, merge, etc.
For many applications, exploiting any order is
very important!

I Find all elements between 3 and 17.
I Find all customers who bought more that 5 of one

item.
I Find all emails in the week of March 31st.

Ordered sets and tables.
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ORDERED SET ADT

We have a totally ordered universe U, and S
represents the set of all subsets of U.
With the following operations

all operations supported by the Set ADT, and

last(S) : S→ U = max S
first(S) : S→ U = min S

split(S, k) : S× U→ S = ({k ′ ∈ S | k ′ < k} , k
?
∈ S,

×bool × S {k ′ ∈ S | k ′ > k})
join(S1,S2) : S× S→ S = S1 ∪ S2,assuming

max S1 < min S2
getRange(S, k1, k2) : S× U× U→ S = {k ∈ S | k1 ≤ k ≤ k2}
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ORDERED SET ADT

Underlying implementation uses trees.
first and last are easy

I first traverses down the left spine to the minimum
value.

I last traverses down the right spine to the maximum
value.

getRange involves two splits.
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IMPROVISING BINGLE
signature INDEX = sig
type word = string
type docId = string
type ’a seq
type index
type docList

val makeIndex : (docId * string) seq -> index
val find : index -> word -> docList
val And : docList * docList -> docList
val AndNot : docList * docList -> docList
val Or : docList * docList -> docList
val size : docList -> int
val toSeq : docList -> docId seq

end

docList is a set.
index is a table.
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IMPROVISING BINGLE

We want to limit the search to certain domains
(e.g., cmu.edu)

I or docs with a certain name.
We want to add
val inDomain : domain * docList -> docList

For example
inDomain("cs.cmu.edu",

and(find idx "cool", find idx "TAs"))
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IMPROVISING BINGLE

Assume doc ids are URLs.
Assume they are “reverse” lexicographically
ordered.

I The last character is the most important!

1 fun inDomain(domain,L) =
2 getRange(L,domain,string.prepend(domain,"$"))

$ is a character that is greater than any character.
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AUGMENTING BALANCED TREES

Sets (and underlying trees) hold the key and any
associated values.
We can add other additional values to help with
other search operations.

I Track key positions and certain subset sizes.

rank(S, k): How many elements in S are less
than k?
select(S, i): Which element in S has rank i?
splitIdx(S,i): Split S into two sets: first i
keys and the remaining n − i keys.
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AUGMENTING BALANCED TREES

rank(S, k) : S× U→ int = | {k ′ ∈ S | k ′ < k} |

select(S, i) : S× int → U = k such that | {k ′ ∈ S | k ′ < k} | = i

splitIdx(S, i) : S× int → = ({k ∈ S | k < select(S, i)} ,
S× S {k ∈ S | k ≥ select(S, i)})

Without additional information stored with the
keys, these operations would take θ(|S|) work.
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AUGMENTING BALANCED TREES

Let S = {1,2,3,4,5,6}
rank(S, 4) = |{1,2,3}| = 3
select(S, 3) = 4 since rank(S, 4) = 3
splitIdx(S, 3) = ({1,2,3}, {4,5,6})
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AUGMENTING BALANCED TREES

At each node keep the size of the subtree.
This allows size and the three other operations
in O(d) work with d as the depth of the tree.
Size can be computed on the fly by adding 1 to
the sum of the subtree sizes!
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SELECT WITH AUGMENTED TREES

1 fun select(T , i) =
2 case expose(T ) of
3 NONE⇒ raise Range
4 | SOME(L,R, k)⇒
5 case compare(i , |L|) of
6 LESS⇒ select(L, i)
7 | EQUAL⇒ k
8 | GREATER⇒ select(R, i − |L| − 1)
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RANK AND SPLITIDX

rank is easy: just split and return the size of the
left tree!
splitIdx is just like split (or you navigate using
sizes (as opposed to key values))
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ORDERED TABLES WITH REDUCED
VALUES

Maintain at each node a “sum” based on an
associative operator f .

I Updated during insert/delete, merge, extract, etc.
Given f : v × v → v , and If

I All operations on ordered tables are supported, and
I

reduceVal(A) : T→ v = reduce f If A

I We want to be able to do reduceVal in O(1) work
(assuming f needs O(1) work).

I f is known beforehand!
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ORDERED TABLES WITH REDUCED
VALUES

(e,2,13)

(c, 1, 6)

(a, 3, 3) (d, 2, 2)

(g,5,5)

f is +

(e,2,5)

(c, 1, 3)

(a, 3, 3) (d, 2, 2)

(g,5,5)

f is max
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IMPLEMENTATION

1 datatype Treap = Leaf | Node of (Treap× Treap
2 ×key× data× data)

3 fun reduceVal(T ) =
4 case T of
5 Leaf⇒ Reduce.I
6 | Node( , , , , r)⇒ r

7 fun makeNode(L,R, k , v) =
8 Node(L,R, k , v ,Reduce.f (reduceVal(L),
9 Reduce.f (v ,reduceVal(R))))
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IMPLEMENTATION

1 fun join(T1,T2) =
2 case (T1,T2) of
3 (Leaf, )⇒ T2
4 | ( ,Leaf)⇒ T1
5 | (Node(L1,R1, k1, v1, s1),Node(L2,R2, k2, v2, s2))⇒
6 if (priority(k1) > priority(k2)) then
7 makeNode(L1,join(R1,T2), k1, v1)
8 else
9 makeNode(join(T1,L2),R2, k2, v2)
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EXAMPLE APPLICATION - SALES
DATA

Sales information are kept by the time stamp in
an ordered table.

I (2/3/2013− 12 : 30, $120)

Find the total sales between t1 and t2
f is +

reduceVal(getRange(T , t1, t2)) takes O(logn)
work
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EXAMPLE APPLICATION - STOCK
DATA

Stock prices information are kept by the time
stamp in an ordered table.

I (2/3/2013− 12 : 30, $120/share)

Find the maximum price between t1 and t2
f is max
reduceVal(getRange(T , t1, t2)) takes O(logn)
work
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EXAMPLE APPLICATION- INTERVAL
TREES

An interval is a region on the real number line
starting at xl and ending at xr

an interval table supports the following
operations on intervals:

insert(A, I) : T× (real× real)→ T insert interval I into table A
delete(A, I) : T× (real× real)→ T delete interval I from table A
count(A, x) : T× real→ int return the number of

intervals crossing x in A
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INTERVAL TREES

Organize intervals as a BST based on
lower-boundary as key
Use the max upper boundary in the subtree as
additional information.

[16,21]
30

[8,9]
23

[25,30]
30

[5,8]
10

[0,3]
3

[6,10]
10

[15,23]
23

[17,19]
20

[19,20]
20

[26,26]
26
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COUNTING INTERVALS

1 datatype intTree = Leaf | Node of (intTree× intTree
2 ×real× real× real)

3 fun overlap(x , low ,high) =
4 if (x ≥ low & x ≤ high) then 1 else 0

5 fun countInt(T , x) =
6 case T of
7 Leaf⇒ 0
8 | Node(L,R, low ,high,max)⇒
9 if (x > max) then 0

10 else countInt(L, x)+
11 overlap(x , low ,high)+
12 if (x > low) then countInt(R, x) else 0
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