
15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 24

HASH TABLES

SYNOPSIS

Hashing and Hash Tables
Handling Collisions

I Linear Probing
I Quadratic Probing

HASH TABLES 2/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

HASH TABLES – BASIC IDEAS

Data structure that allows you to quickly insert,
delete, and retrieve items with expected O(1)
work.
Relies on

I a fixed size array data structure (of some size m), and
I a hash function that can map from a potentially

infinite space of keys to integer indexes [0, . . . ,m − 1]

Disadvantages
I Collisions
I Increased memory use to avoid collisions
I Not work efficient for findmin, findmax, or extracting

keys in sorted order

HASH TABLES 3/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

HASH TABLE - BASIC IDEAS

HASH TABLES 4/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

HASH FUNCTIONS

There is a deep theory behind hash functions.
We will be interested in some simple functions.
We will assume hash functions have the
idealized property of simple uniform hashing:

I The hash function uniformly distributes keys in range
[0, . . . ,m − 1]

I Hash value for one key is independent of the hash
value for another key.

HASH TABLES 5/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

HASH FUNCTIONS

For integers key we can use a linear congruential
hash function

h(x) = (ax + b) mod m

where a ∈ [1, . . . ,m − 1], b ∈ [0, . . . ,m − 1], and
m is prime.

HASH TABLES 6/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

HASH FUNCTIONS

For strings, we can use a polynomial like

h(S) =

 |S|∑
i=1

siai

 mod m

HASH TABLES 7/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

HASH TABLES

Support insert, find and delete.
Can implement abstract data types Set and
Table.
Do not require total ordering on the universe of
keys.
Collision is the main issue

I Two keys hash to the same location.
I Impossible to avoid if we do not know the keys in

advance
F Size of key universe >> size of table.

HASH TABLES 8/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COLLISIONS

For a table size of 365, one needs 23 keys for a
50% chance of collision and 66 for a 99% chance
of collision (Why?)

I Birthday paradox

HASH TABLES 9/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

HANDLING COLLISIONS

Separate chaining
I Store elements not in a table, but in linked lists

(containers,bins) hanging off the table.
Open addressing:

I Put everything into the table, but not necessarily into
cell h(k).

The perfect hash:
I When you know the keys in advance, construct hash

functions that avoids collisions entirely.
Multiple-choice hashing/Cuckoo hashing:

I Consider exactly two locations h1(k) and h2(k) only.

HASH TABLES 10/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

HANDLING COLLISIONS

We will only consider the first two.
We will assume we have a set n keys K and a
hash function h : key→ [0, . . . ,m − 1] for some
m.

HASH TABLES 11/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SEPARATE CHAINING

Maintain an array of linked lists (buckets).
Keys that hash to the same value live in the
same list at location h(k)
Insertion: Insert at the beginning

I Multiple inserts for the same key⇒ traverse the list
I May as well insert at the end.

Find: hash to h(k) and search in the list.
Delete: remove from the list.

HASH TABLES 12/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SEPARATE CHAINING

Costs depend on the load factor λ = n/m which
is also the average length of a list.

HASH TABLES 13/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SEPARATE CHAINING

Assume h(k) takes O(1) work and we have
simple uniform hashing
Unsuccessful search takes expected Θ(1 + λ)
work.

I O(1) for h(k) and λ for traversing the list.

HASH TABLES 14/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SEPARATE CHAINING

Successful search takes expected Θ(1 + λ) work.
Cost of Successful search = Cost of unsuccessful
search at the time of insertion (Why?)
With i keys, the unsuccesssful search would take
(1 + i/m) work.
Averaging over i we get

1
n

n−1∑
i=0

(1+i/m) = 1+(n−1)/2m = 1+λ/2−λ/2m = Θ(1+λ)

Considering constant factors, successful search
looks at 1/2 the list on the average.

HASH TABLES 15/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPEN ADDRESSING

No lists – everything is stored in the array directly
The arrays is some constant factor larger than
the maximum number of keys we want to store.

HASH TABLES 16/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 17/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 18/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 19/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 20/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 21/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 22/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 23/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 24/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 25/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 26/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 27/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 28/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 29/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 30/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 31/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 32/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 33/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

HASH TABLES 34/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPEN ADDRESSING

Open addressing uses an ordered sequence of
locations.
h(k , i) gives us the i th location for key k .
〈h(k ,0),h(k ,1),h(k ,2), . . . 〉 is the probe
sequence.
Try these locations in order until an empty cell is
found and insert there.

HASH TABLES 35/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPEN ADDRESSING - INSERT

1 fun insert(T , k) =
2 let
3 fun insert′(T , k , i) =
4 case nth T h(k , i) of
5 NONE⇒ update(h(k , i), k) T
6 | ⇒ insert′(T , k , i + 1)
7 in
8 insert′(T , k ,1)
9 end

T must be an ST array - otherwise work and
span are not constant.
Need to check if table is full and the key is
already in the table or not.

HASH TABLES 36/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPEN ADDRESSING-SEARCH

1 fun find(T , k) =
2 let
3 fun find′(T , k , i) =
4 case nth T h(k , i) of
5 NONE⇒ false
6 | SOME(k ′)⇒ if (eq(k , k ′)) then true
7 else find′(T , k , i + 1)
8 in
9 find′(T , k ,1)

10 end

HASH TABLES 37/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPEN ADDRESSING-DELETE

We can not just delete an items and set its cell to
NONE! (Why ?)
find will stop searching if it encounters an
empty cell.
Use lazy delete

I Instead of deleting, use a special value HOLD.

1 datatype α entry = EMPTY | HOLD | FULL of α

Find and Insert will need to be changed
accordingly.
Lazy delete effectively increases load factor.
Rehashing to the rescue!

HASH TABLES 38/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

OPEN ADDRESSING

Linear Probing
Quadratic Probing
Double Hashing

HASH TABLES 39/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

LINEAR PROBING

We check cell at h(k , i) = (h(k) + i) mod m in
i th probe.
m possible probe sequences.
Keys tend to cluster – primary clustering.

I Inserts add to a cluster
I Probe sequences get longer and longer

HASH TABLES 40/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPACT OF CLUSTERING

Assume table is half full (λ = 1/2)

Minimum clustering when every other cell is
empty!
Average probes for insert is 3/2

I One probe to check cell h(k)
I + with 1/2 chance try the next cell (which by design

should be empty)

HASH TABLES 41/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

IMPACT OF CLUSTERING

Worst case: all keys are clustered to the second
half of the array. (Remember λ = 1/2⇒ m = 2n)
How many probes for positions 0 through n − 1?

I 1 (Why?)
How many probes when initial hash is to cell n?

I n (Why?)
How many probes when initial hash is to cell
n + 1?

I n − 1 (Why?)
Average is
(n+[n+(n−1)+(n−2)+....+1])/m = n/m+n(n+1)/2m ≈ n/4

Even though though the average cluster length is
2, the cost is about n/4 probes.

HASH TABLES 42/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS FOR LINEAR PROBING

Given a hash table of size m and with n = λm
keys.
The cost of an unsuccessful search/insert is

1
2

(
1 +

1
1− λ2

)
The cost of an successful search is

1
2

(
1 +

1
1− λ

)
.

HASH TABLES 43/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS FOR LINEAR PROBING

HASH TABLES 44/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS FOR LINEAR PROBING

HASH TABLES 45/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS FOR LINEAR PROBING

HASH TABLES 46/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COSTS FOR LINEAR PROBING

HASH TABLES 47/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

QUADRATIC PROBING

We check cell at h(k , i) = (h(k) + i2) mod m in
i th probe.
Makes longer jumps
Avoids primary clustering
But has secondary clustering.
Since there are m possible positions there are m
probe sequences.
Not all available cells get probed (Why?)

HASH TABLES 48/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

QUADRATIC PROBING

If m is prime and the table is at least half empty,
then quadratic probing will always find an empty
location.
Furthermore, no locations are checked twice.

HASH TABLES 49/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

QUADRATIC PROBING

Consider two probe locations h(k) + i2 and
h(k) + j2,0 ≤ i , j < dm/2e.
Suppose the locations are the same but i 6= j .

h(k) + i2 ≡ (h(k) + j2) mod m

i2 ≡ j2 mod m

i2 − j2 ≡ 0 mod m
(i − j)(i + j) ≡ 0 mod m

Therefore, either i − j or i + j are divisible by m.
But since both i − j and i + j are less than m and
m is prime, they cannot be divisible by m.
Thus the first dm/2e probes are distinct and
guaranteed to find an empty location.

HASH TABLES 50/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

QUADRATIC PROBING

Computing the next hash value is only slightly
more expensive

hi − hi−1 ≡ (i2 − (i − 1)2) mod m
hi ≡ (hi−1 + 2i − 1) mod m

If the table gets too full, one can resize and
rehash

I Constant additional overhead

HASH TABLES 51/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DOUBLE HASHING

Uses two hash-functions:
I initial location
I size of the jump

i th probe is

h(k , i) = (h1(k) + i · h2(k)) mod m.

Different keys are likely to have different values
jump function if they collide.
Avoids secondary clustering
h2(k) should be relatively prime to m to probe
each locations.

I m prime and 0 < h2(k) < m is one option.

HASH TABLES 52/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DOUBLE HASHING

The average number of probes for an
unsuccessful search or an insert is at most

1 + λ + λ2 + ... =

(
1

1− λ

)
I Why?

The average number of probes for a successful
search is

1
λ

(
1 + ln

(
1

1− λ

))
.

I Same argument of averaging over probes at insertion
time.

HASH TABLES 53/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

DOUBLE HASHING

λ 1/4 1/2 2/3 3/4 9/10

successful 1.2 1.4 1.6 1.8 2.6
unsuccessful 1.3 1.5 2.0 3.0 5.5

Allows for smaller tables than linear or quadratic
probing
Higher cost for hash function

HASH TABLES 54/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PARALLEL HASHING

injectCond(IV ,S) : (int × α)seq× (αoption)seq →
(αoption)seq.

Conditionally writes each value vj into location ij of S
I if the location is set to NONE

1 fun insert(T ,K) =

2 let
3 fun insert′(T ,K , i) =
4 if |K | = 0 then T
5 else let
6 T ′ = injectCond({(h(k , i), k) : k ∈ K} ,T)

7 K ′ = {k : k ∈ K | T [h(k , i)] 6= k}
8 in
9 insert′(T ′,K ′, i + 1) end

10 in
11 insert′(T , k , 1)
12 end

HASH TABLES 55/55

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

