
15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 20

SEARCH TREES II: TREAPS

SYNOPSIS

Overview of Binary Search Trees
Relationship between Quicksort and BSTs
Treaps
Expected Depth of a Treap

SEARCH TREES II: TREAPS 2/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BST OVERVIEW

There are many options for keeping trees
balanced.
split and join are the main structural
operations to implement find, insert,
delete, union, etc.
Cost of split and join are logarithmic in the
size of the input and output trees.
Union needs O(m log(1 + n

m)) work (m ≤ n).

SEARCH TREES II: TREAPS 3/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

QUICKSORT AND BSTS

Write out the recursion tree for quicksort.
I Assume distinct keys.

Annotate each node with the pivot picked at that
stage.
You get a BST.

SEARCH TREES II: TREAPS 4/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SEQUENCE TO BST

1 fun qs_tree(S) =
2 if |S| = 0 then LEAF
3 else let
4 p = pick a pivot from S
5 S1 = 〈 s ∈ S | s < p 〉
6 S3 = 〈 s ∈ S | s > p 〉
7 (TL,TR) = (qs_tree(S1) ‖ qs_tree(S3))
8 in
9 NODE(TL,p,TR)

10 end

Unlike Quicksort, we do not know what elements
will be in the tree, when we start.

I We can not select a (n) (future?) element to be the
root.

SEARCH TREES II: TREAPS 5/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TREAPS

Treap = TRee + hEAP
A treap is a randomized BST that maintains
balance in a probabilistic way.
Each element/key gets a unique random priority
The nodes in the treap satisfy BST property.

I Keys are stored in-order in the tree.

The associated priorities satisfy the (max) heap
property.

SEARCH TREES II: TREAPS 6/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE MAX-HEAP PROPERTY

Priority at each node is greater than the priorities
of the children.
Suppose we have
S = (a,3), (b,9), (c,2), (e,6), (f ,5)

(b,9)

(a,3) (e,6)

(c,2) (f,5)

SEARCH TREES II: TREAPS 7/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

LET’S DO AN EXAMPLE

Draw the treap for the following (key ,priority)
sequence.

(G,50),(C,35),(E,33),(H,29),(I,25),(B,24),(A,21),(L,16),(J,13),
(K,9),(D,8)

SEARCH TREES II: TREAPS 8/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TREAPS

THEOREM
For any set S of unique key-priority pairs, there is
exactly one treap T containing the key-priority pairs in
S which satisfies the treap properties.

Key k with highest priority must be at the root.
All keys < k must be in the left subtree
All keys > k must be in the right subtree
Subtrees of k are constructed inductively in the
same manner.

SEARCH TREES II: TREAPS 9/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BASIC BST OPERATIONS - SEARCH

1 fun search T k =
2 let (, v ,) = split(T , k)
3 in v
4 end

SEARCH TREES II: TREAPS 10/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BASIC BST OPERATIONS - INSERT

1 fun insert T (k , v) =
2 let (L, v ′,R) = split(T , k)
3 in join(L,SOME(k , v),R)
4 end

SEARCH TREES II: TREAPS 11/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BASIC BST OPERATIONS - DELETE

1 fun delete T k =
2 let (L, ,R) = split(T , k)
3 in join(L,NONE,R)
4 end

So if split and join are implemented the
other more useful operations are covered.

SEARCH TREES II: TREAPS 12/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

JOIN AND SPLIT

split(T , k) : BST× key→
BST× (data option)× BST

split divides T into two BSTs,
I one consisting of all the keys from T less than k
I the other all the keys greater than k

If k appears in the tree with associated data d
then split returns SOME(d)
Otherwise it returns NONE.

SEARCH TREES II: TREAPS 13/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

JOIN AND SPLIT

join(L,m,R) : BST× (key× data) option×
BST→ BST

Takes a left subtree (L) an optional key-data pair
m and a right subtree (R)

I Assumes all keys in L are less than all keys in R.
I If present, the optional key is also larger than all keys

in L and smaller than all keys in R.

Creates a new BST that is the union of L and R
and m.

SEARCH TREES II: TREAPS 14/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SPLIT ON TREAPS

Split code does not have to change.
Priority orders do not change.
Split does not put a larger priority below a
smaller priority.

SEARCH TREES II: TREAPS 15/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SPLIT ON TREAPS

datatype BST = Leaf |
Node of (BST * BST * key * data)

1 fun split(T , k) =
2 case T of
3 Leaf ⇒ (Leaf,NONE,Leaf)
4 | Node(L,R, k ′, v)⇒
5 case compare(k , k ′) of
6 LESS⇒
7 let (L′, r ,R′) = split(L, k)
8 in (L′, r ,Node(R′,R, k ′, v)) end
9 EQUAL⇒ (L,SOME(v),R)

10 GREATER⇒
11 let (L′, r ,R′) = split(R, k)
12 in (Node(L,L′, k ′, v), r ,R′) end

SEARCH TREES II: TREAPS 16/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

JOIN ON TREAPS

Join needs to change!
I The priorities of the roots of two trees need to be

compared.
I The root with the larger priority becomes the new

root.
Basic join took the root of the first tree of the new
node as the root.

1 fun join(T1,m,T2) =
2 case m of
3 SOME(k , v)⇒ Node(T1,T2,k,v)
4 | NONE⇒
5 case T1 of
6 Leaf⇒ T2
7 | Node(L,R,k,v)⇒ Node(L,join(R,NONE,T2),k,v)

SEARCH TREES II: TREAPS 17/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

JOIN ON TREAPS

1 fun join(T1,m,T2) =
2 let
3 fun singleton(k , v) = Node(Leaf,Leaf, k , v)
4 fun join′(T1,T2) =
5 case (T1,T2) of
6 (Leaf,)⇒ T2
7 | (,Leaf)⇒ T1
8 | (Node(L1,R1, k1, v1),Node(L2,R2, k2, v2))⇒
9 if (priority(k1) > priority(k2)) then

10 Node(L1,join
′(R1,T2), k1, v1)

11 else
12 Node(join′(T1,L2),R2, k2, v2)
13 in
14 case m of
15 NONE⇒ join′(T1,T2))
16 | SOME(k , v)⇒ join′(T1,join

′(singleton(k , v),T2))
17 end

SEARCH TREES II: TREAPS 18/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED DEPTH OF A KEY

Cost of split and join depend on the expected
depth of a key.
Given a set of keys K and priorities p : key→ int

I Priorities are unique!
Consider the elements of the tree laid out in
order

I keyi < keyj ⇒ · · · , keyi , · · · , keyj , · · ·
I keyj < keyi ⇒ · · · , keyj , · · · , keyi , · · ·

Aj
i is an indicator variable:

I Aj
i = 1 if keyj is an ancestor of keyi in the treap.

I Aj
i = 0 otherwise.

SEARCH TREES II: TREAPS 19/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED DEPTH OF A KEY
· · · , keyi , · · · , keyj , · · ·

keyj

keyi < keyj
pi= max(pi, …., pj)

keyi

keyjkeyi

keyk

pk= max(pi, …., pj)
i<k<j

pj= max(pi, …., pj)

keyi

keyj

Ai
j = 0 Ai

j = 0 Ai
j = 1

SEARCH TREES II: TREAPS 20/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED DEPTH OF A KEY
· · · , keyj , · · · , keyi , · · ·

keyj

keyi > keyj
pi= max(pj, …., pi)

keyi

keyikeyj

keyk

pk= max(pj, …., pi)
i<k<j

pj= max(pj, …., pi)

keyi

keyj

Ai
j = 0 Ai

j = 0 Ai
j = 1

SEARCH TREES II: TREAPS 21/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED DEPTH OF A KEY

E [depth of i in T] = E

 n∑
j=1,j 6=i

Aj
i

 =
n∑

j=1,j 6=i

E
[
Aj

i

]
.

E
[
Aj

i

]
=

1
|j − i |+ 1

(Why?)

SEARCH TREES II: TREAPS 22/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED DEPTH OF A KEY

E [depth of i in T] =
n∑

j=1,j 6=i

1
|j − i |+ 1

(Split | | ⇒) =
i−1∑
j=1

1
i − j + 1

+
n∑

j=i+1

1
j − i + 1

(Change variables ⇒) =
i∑

k=2

1
k
+

n−i+1∑
k=2

1
k

= Hi − 1 + Hn−i+1 − 1
(ln n<Hn<ln n+1⇒) < ln i + ln(n − i + 1)

= O(log n)

Relative (sorted) position of a key determines expected
depth in treap.

SEARCH TREES II: TREAPS 23/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST OF SPLIT AND JOIN

THEOREM
For treaps

join(T1,m,T2) returning T
split(T , (k , v))

have O(log |T |) expected work and span.

See notes for short proofs.

SEARCH TREES II: TREAPS 24/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED MAX DEPTH OF A TREAP

Expected depth of treap node is O(log n)
I Find takes on the average O(log n) work and span.

What is the expected maximum depth of a treap?

I Why is this important?
I Expected worst-case cost!

But E [maxi{Ai}] 6= maxi{E [Ai]}!
It turns out this is almost the same problem as
the expected span of the quicksort.

SEARCH TREES II: TREAPS 25/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

EXPECTED MAX DEPTH OF A TREAP

Yn

n-1-Yn D(n)D(Yn)

1

Yn is the size of the larger partition.

D(n) = D(Yn) + 1⇒ D(n) ∈ O(log n)

SEARCH TREES II: TREAPS 26/26

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

