
15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 7

COLLECT, SETS AND TABLES

SYNOPSIS

The collect operation
The map-collect-reduce paradigm
Sets
Tables

COLLECT, SETS AND TABLES 2/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE COLLECT OPERATION

Group items that share a common key.

Data = 〈(“jack sprat”, “15-210”),
(“jack sprat”, “15-213”),
(“mary contrary”, “15-210”),
(“mary contrary”, “15-251”),
(“mary contrary”, “15-213”),
(“peter piper”, “15-150”),
(“peter piper”, “15-251”),
. . .〉

↓

rosters = 〈(“15-150”, 〈 “peter piper”, . . . 〉)
(“15-210”, 〈 “jack sprat”, “mary contrary”, . . . 〉)
(“15-213”, 〈 “jack sprat”, . . . 〉)
(“15-251”, 〈 “mary contrary”, “peter piper” 〉)
. . .〉

COLLECT, SETS AND TABLES 3/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE COLLECT OPERATION

Very common operation in Relational Databases
Usually called the Group by operation.

rosters = 〈(“15-150”, 〈 “peter piper”, . . . 〉)
(“15-210”, 〈 “jack sprat”, “mary contrary”, . . . 〉)
(“15-213”, 〈 “jack sprat”, . . . 〉)
(“15-251”, 〈 “mary contrary”, “peter piper” 〉)
. . .〉

Students are grouped by Course Numbers.

COLLECT, SETS AND TABLES 4/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE COLLECT OPERATION

collect : (α× α→ order)→ (α× β) seq

→ (α× β seq) seq

1 α× α→ order is a function for comparing keys
of type α

2 (α× β) seq is a sequence of key-value pairs
3 (α× β seq) seq is the resulting sequence:

I each unique α value is paired with a sequence of all
β values it appears with

COLLECT, SETS AND TABLES 5/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE COLLECT OPERATION

collectStrings = collect String.compare

rosters = collectStrings(〈 (n, c) : (c,n) ∈ Data 〉)

rosters = 〈(“15-150”, 〈 “peter piper”, . . . 〉)
(“15-210”, 〈 “jack sprat”, “mary contrary”, . . . 〉)
(“15-213”, 〈 “jack sprat”, . . . 〉)
(“15-251”, 〈 “mary contrary”, “peter piper” 〉)
. . .〉

〈 (n, c) : (c,n) ∈ Data 〉 arranges the data
appropriately.

COLLECT, SETS AND TABLES 6/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE COLLECT OPERATION

How would you implement collect?
I Sort the items on their keys
I Partition the resulting sequence
I Pull out pairs between each key change

COLLECT, SETS AND TABLES 7/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE COLLECT OPERATION

The dominant cost of collect is in sorting.
Work is O(Wcn log n), Span is O(Sc log2 n)

I Wc work bound for the comparison function
I Sc span bound for the comparison function

A O(n) work can be implemented with hashing.
I Need a separate hash function
I Output not in sorted order

COLLECT, SETS AND TABLES 8/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

USING COLLECT IN MAP-REDUCE

The map-reduce paradigm is used to process
very large collection of documents.

I A document is a collection of words/strings.

I Not the mapReduce of 15-150!

map-reduce paradigm ≡ map-collect-reduce(s).

COLLECT, SETS AND TABLES 9/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

USING COLLECT IN MAP-REDUCE

fm maps each document to a sequence of
key-value pairs.

I fm : (document → (key × α) seq)

All key-value pairs in a document are collected.

fr is applied to the keys to get a single value for
a key.

I fr : key × α seq → β

COLLECT, SETS AND TABLES 10/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

AN EXAMPLE

docs = 〈“this is a document”,
“this is is another document”,
“a last document”〉

↓
〈(“this”,1), (“is”,1), (“a”,1), (“document”,1),
(“this”,1), (“is”,1), (“is”,1), (“another”,1),
(“document”,1), (“a”,1), (“last”,1), (“document”,1)〉

↓
〈(“a”,2), (“another”,1), (“document”,3), (“is”,3), (“last”,1),
(“this”,2)〉

COLLECT, SETS AND TABLES 11/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MAPREDUCE IN SML
1 fun mapCollectReduce fm fr docs =
2 let
3 pairs = flatten 〈 fm(s) : s ∈ docs 〉
4 groups = collect String.compare pairs
5 in
6 〈 fr(g) : g ∈ groups 〉
7 end

flatten 〈 〈a,b, c 〉 , 〈d ,e 〉 〉 ⇒ 〈 a,b, c,d ,e 〉

COLLECT, SETS AND TABLES 12/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MAPREDUCE IN SML
1 fun mapCollectReduce fm fr docs =
2 let
3 pairs = flatten 〈 fm(s) : s ∈ docs 〉
4 groups = collect String.compare pairs
5 in
6 〈 fr(g) : g ∈ groups 〉
7 end

fun fm(doc) = 〈 (w ,1) : tokens doc 〉
fun fr(w , s) = (w ,reduce + 0 s)

COLLECT, SETS AND TABLES 13/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MAPREDUCE EXAMPLE IN SML

fun fm(doc) = 〈 (w ,1) : tokens doc 〉
fun fr(w , s) = (w ,reduce + 0 s)

countWords = mapCollectReduce fm fr

countWords 〈“this is a document”,
“this is is another document”,
“a last document”〉

⇒ 〈(“a”, 2), (“another”, 1), (“document”, 3), (“is”, 3),
(“last”, 1), (“this”, 2)〉

COLLECT, SETS AND TABLES 14/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SETS

Sets play a very important role in math.
Often needed in many algorithms.
Many languages either support sets directly or
have libraries for sets.
In 15-210 we use a purely functional definition
for sets:

I When updates are done, a new set is returned.

COLLECT, SETS AND TABLES 15/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SETS AS AN ADT

U is a universe of elements.
The SET ADT is a type S that represents the
power set of U.

empty : S = ∅
size(S) : S→ Z≥0 = |S|
singleton(e) : U→ S = {e}
filter(f ,S) : ((U→ {T,F}) = {s ∈ S | f (s)}

×S)→ S

COLLECT, SETS AND TABLES 16/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SETS AS AN ADT

find(S,e) : S× U = |{s ∈ S | s = e}| = 1
→ {T,F}

insert(S,e) : S× U→ S = S ∪ {e}
delete(S,e) : S× U→ S = S \ {e}

intersection(S1,S2) : S× S→ S = S1 ∩ S2
union(S1,S2) : S× S→ S = S1 ∪ S2
difference(S1,S2) : S× S→ S = S1 \ S2

What is the relationship between these two
groups?

COLLECT, SETS AND TABLES 17/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SETS AS AN ADT

We do not really need find, insert, delete!

find(S,e) = size(intersection(S,singleton(e))) = 1
insert(S,e) = union(S,singleton(e))
delete(S,e) = difference(S,singleton(e))

intersection, union, and difference
I can operate on multiple elements, and
I are suitable for parallelism

COLLECT, SETS AND TABLES 18/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST MODEL FOR SETS

Underlying data structure can be
I hash-tables
I balanced trees

We will assume a balanced-tree implementation.
We will assume comparison of two set elements
take

I Wc work and Sc span.

COLLECT, SETS AND TABLES 19/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST MODEL FOR SETS

Work Span

size(S) O(1) O(1)
singleton(e)

filter(f ,S) O

(∑
e∈S

W (f (e))

)
O
(

log |S|+ max
e∈S

S(f (e))
)

find(S,e)
O(Wc · log |S|) O(Sc · log |S|)insert(S,e)

delete(S,e)

COLLECT, SETS AND TABLES 20/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST MODELS FOR SETS

intersection(S1,S2) Work = O
(
Wc ·m · log(1 + n

m)
)

union(S1,S2) ⇒
difference(S1,S2) Span = O (Sc · log(n + m))

n = max(|S1|, |S2|) m = min(|S1|, |S2|)

Sets are equal size (n = m)

I Work = O(Wc ·m · log(1 + 1)) = O(Wc · n)
I Span = O(Sc · log n)

One of the sets is a singleton (m = 1)
I Work = O(Wc · log(1 + n)) = O(Wc · log n)
I Span = O(Sc · log(n + 1)) = O(Sc · log n)

COLLECT, SETS AND TABLES 21/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLES

Table is an ADT for sets of key-value pairs.

{(k1 7→ v1), (k2 7→ v2), . . . , (kn 7→ vn)}
{(k1, v1), (k2, v2), . . . , (kn, vn)}

Each key appears only once
Many languages provide either built-in support
or libraries.

COLLECT, SETS AND TABLES 22/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLES

K is the universe of keys.
V is the universe of values.
T is a type that represents the power set of
K× V

I restricted so that each key appears at most once.
I S is the power set of K.
I Z≥0 denotes the positive integers.

COLLECT, SETS AND TABLES 23/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLE FUNCTIONS

empty : T = ∅
size(T) : T→ Z≥0 = |T |
singleton(k , v) : K× V→ T = {(k , v)}
filter(f ,T) : ((V→ {T,F})× T)

→ T = {(k , v) ∈ T | f (v)}
map(f ,T) : ((K× V→ V)× T)

→ T = {(k , f (k , v)) | ((k , v) ∈ T)}
insert(f ,T , (k , v)) : (V× V→ V)× T

×(K× V)→ T =

(T \ {(k , v)})∪
{(k , f (v , v ′))}
if (k , v ′) ∈ T

T ∪ {(k , v)}
otherwise

delete(T , k)) : T×K→ T = {(k ′, v) ∈ T |k 6= k ′}
COLLECT, SETS AND TABLES 24/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLE FUNCTIONS

find(T , k) : T×K→ (V ∪ ⊥) =

{
v (k , v) ∈ T
⊥ otherwise

merge(f ,T1,T2) : (V× V→ V)× T× T→ T =⋃
k∈K

 {(k , f (v1, v2))} (k , v1) ∈ T1 ∧ (k , v2) ∈ T2
{(k , v1)} (k , v1) ∈ T1 ∧ (k , v2) /∈ T2
{(k , v2)} (k , v2) ∈ T2 ∧ (k , v1) /∈ T1

extract(T ,S) : T× S→ T = {(k , v) ∈ T |k ∈ S}
erase(T ,S) : T× S→ T = {(k , v) ∈ T |k /∈ S}

COLLECT, SETS AND TABLES 25/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLE EXAMPLES

Suppose we have the two tables:
I Summer= {tree 7→ green, sky 7→ blue, cmuq 7→

tan}
I Fall = {grass 7→ gray , tree 7→ brown}

merge (fn (a,b)⇒ b) Summer Fall
I {grass 7→ gray , tree 7→ brown, sky 7→

blue, cmuq 7→ tan}

COLLECT, SETS AND TABLES 26/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLE EXAMPLES

Suppose we have the two tables:
I Summer= {tree 7→ green, sky 7→ blue, cmuq 7→

tan}
I Fall = {grass 7→ gray , tree 7→ brown}

extract(Summer , {sky , grass})
I {sky 7→ blue}

COLLECT, SETS AND TABLES 27/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLE EXAMPLES

Suppose we have the two tables:
I Summer= {tree 7→ green, sky 7→ blue, cmuq 7→

tan}
I Fall = {grass 7→ gray , tree 7→ brown}

erase(Summer , {sky , grass})
I {tree 7→ green, cmuq 7→ tan}

COLLECT, SETS AND TABLES 28/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLE EXAMPLES

Other useful functions from the library

collect:(key × α) seq → (α seq) table

fromSeq: (key × α) seq → α table
I fromSeq(A) = {k 7→ s0 : (k 7→ S) ∈ collect(A)}

COLLECT, SETS AND TABLES 29/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

TABLE FUNCTIONS

Major differences from sets:
I find returns the value if key is in the table else

returns ⊥ (NONE).
I insert/merge need a function to combine if the

key is already in the/both table(s).
Just as with sets, there is symmetry between

I extract and find
I merge and insert
I erase and delete

COLLECT, SETS AND TABLES 30/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST MODELS FOR TABLES

Work Span
size(T) O(1) O(1)
singleton(k , v)

filter(f ,T) O

 ∑
(k,v)∈T

W (f (v))

 O
(

log |T |+ max
(k,v)∈T

S(f (v))
)

map(f ,T) O

 ∑
(k,v)∈T

W (f (k , v))

 O
(

max
(k,v)∈T

S(f (k , v))
)

COLLECT, SETS AND TABLES 31/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST MODELS FOR TABLES

Work Span
find(S, k)

O(Wc log |T |) O(Sc log |T |)insert(T , (k , v))
delete(T , k)

extract(T1,T2)
O
(
Wcm log(1 + n

m)
)

O (Sc log(n + m))merge(T1,T2)
erase(T1,T2)

n = max(|T1|, |T2|) m = min(|T1|, |T2|)

COLLECT, SETS AND TABLES 32/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SUMMARY

Collect
Map-Collect-Reduce
Sets
Tables

COLLECT, SETS AND TABLES 33/33

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

