
15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 25

PRIORITY QUEUES

SYNOPSIS

Priority Queues
Heaps
Meldable Priority Queues
Leftist Heaps

PRIORITY QUEUES 2/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PRIORITY QUEUES

Abstract Data Type supporting
I deleteMin/deleteMax
I insert

Used in many useful algorithms
I Dijkstra’ Algorithm
I Prim’s Algorithm for MST
I Constructing Huffman Codes
I Heapsort

PRIORITY QUEUES 3/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

HEAPSORT

1 fun sort S =
2 let
3 pq = iter Q.insert Q.empty S

4 fun sort′ pq =
5 let
6 case (PQ.deleteMin pq) of
7 NONE ⇒ []
8 | SOME(v ,pq′)⇒ v :: sort′(pq′)
9 in

10 Seq.fromList(sort′pq)
11 end

PRIORITY QUEUES 4/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

UNDERLYING IMPLEMENTATIONS

Sorted and Unsorted Lists/Arrays
I One of deleteMin and insert is fast (O(1))
I The other is slow. O(n)

Balanced binary search trees
I Both operations have O(log n) work and span.

Binary heaps
I Both operations have O(log n) work and span.
I But binary heaps provide a O(1) work findMin

operation.

PRIORITY QUEUES 5/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

HEAPS

A min-heap (max-heap) is a rooted tree
Key at every node is ≤ (≥) all descendants.
A binary heap is heap which has

I Shape property: The tree is a complete binary tree
F All levels of the tree are completely filled except the

bottom level, which is filled from the left
I Heap Property

PRIORITY QUEUES 6/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BINARY HEAPS

A complete tree

PRIORITY QUEUES 7/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BINARY HEAPS

An incomplete tree

PRIORITY QUEUES 8/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BINARY HEAPS

Shape Property⇒ binary heap can be
maintained in an array.
Index of a parent or a child is very easy to
compute
Operations first restore shape property, then
heap property.

PRIORITY QUEUES 9/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BINARY HEAPS AND ARRAYS

PRIORITY QUEUES 10/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BUILDING PRIORITY QUEUES

We can insert elements one-by-one
I With balanced binary trees and binary heaps, work is

O(n log n)
I Can we do better?

Build the heap recursively
I If left and right sides are already heaps, just shift

down the root element.

PRIORITY QUEUES 11/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

BUILDING HEAPS DIRECTLY

1 fun sequentialFromSeqS =
2 let
3 fun heapify(S, i) =
4 if (i >= |S|/2) then S
5 else let
6 S′ = heapify(S, 2 ∗ i + 1)
7 S′′ = heapify(S′, 2 ∗ i + 2)
8 in shiftDown(S′′, i) end
9 in heapify(S,0) end

PRIORITY QUEUES 12/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

COST ANALYSIS

shiftDown does O(log n) work on subtree of
size n
W (n) = 2W (n/2) + O(log n) ∈ O(n)

Opportunities for parallelism?

PRIORITY QUEUES 13/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PARALLEL HEAPIFY

Green cells are OK
All the pinks cells can be shifted down in parallel
Then all purple cells can be shifted down in
parallel
(All) Red cell(s) can be shifted down in parallel

PRIORITY QUEUES 14/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PARALLEL HEAPIFY

0

1 2

3 4 5 6

87 109 1211 1413

PRIORITY QUEUES 15/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PARALLEL HEAPIFY

We use Single-threaded sequences
1 fun fromSeq S : ’a seq =
2 let
3 fun heapify (S, d) =
4 let
5 S′ = shiftDown (S,

〈
2d − 1, . . . ,2d+1 − 2

〉
, d)

6 in
7 if (d = 0) then S′

8 else heapify (S′, d − 1)
9 in heapify (S, blog2 nc − 1) end

S(n) = S(n/2) + O(log n) ∈ O(log2 n)

PRIORITY QUEUES 16/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PARALLEL HEAPIFY
0

1 2

3 4 5 6

87 109 1211 1413

d = 2⇒ shiftDown (S, <3, 4, 5, 6>, 2)
d = 1⇒ shiftDown (S, <1, 2>, 1)
d = 0⇒ shiftDown (S, <0>, 0)

PRIORITY QUEUES 17/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PRIORITY QUEUES – SUMMARY

Data. Str. findMin deleteMin insert fromSeq

sorted linked O(1) O(1) O(n) O(n log n)
list

unsorted linked O(n) O(n) O(1) O(n)
list

balanced O(log n) O(log n) O(log n) O(n log n)
search tree

binary heap O(1) O(log n) O(log n) O(n)

PRIORITY QUEUES 18/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MELDABLE PRIORITY QUEUES

Priority Queues with an additional meld operation

I Just like the union in BSTs
I Takes two meldable PQs and returns the union as a

meldable PQ
Implementation uses leftist heaps

I Same work and span as binary heaps for insert,
deletemin

I Meld has O(log n + log m) work and span where m
and n are the heap sizes

PRIORITY QUEUES 19/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MIN HEAPS

Binary tree
Maintains the heap property
But does not maintain the complete binary tree
property
Here is an example

o 3
/ \

7 o o 8
/ \

11 o o 15
/ \

22 o o 16
PRIORITY QUEUES 20/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MIN HEAPS

To implement deleteMin
I Remove the root

7 o o 8
/ \

11 o o 15
/ \

22 o o 16

We can then use meld to union the heaps.

PRIORITY QUEUES 21/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

MIN HEAPS

To implement insert
I We create a single node heap
I meld it with the original heap

fromSeq is also easy using reduce
val pq = Seq.reduce Q.meld Q.empty

(Seq.map Q.singleton S)

PRIORITY QUEUES 22/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE MELD OPERATION

So we only need the meld operation
Consider

4 o o 3
/ \ / \

11 o o 7 8 o o 5
/ \ /

19 o o 23 14 o

Which element goes to the root?

PRIORITY QUEUES 23/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE MELD OPERATION

Select the tree with the smaller root and
recursively meld with one of its children

o 3
/ \

8 o = meld (4 o , o 5)
/ / \

14 o 11 o o 7
/ \

19 o o 23

PRIORITY QUEUES 24/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE MELD OPERATION

Applying recursively

o 3
/ \

8 o o 4
/ / \

14 o 11 o = meld (o 7 o 5)
/ \

19 o o 23

PRIORITY QUEUES 25/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE MELD OPERATION

Applying recursively

o 3
/ \

8 o o 4
/ / \

14 o 11 o o 5
/ \ \

19 o o 23 = meld(o 7 ,empty)

Melding A with an empty heap gives A

PRIORITY QUEUES 26/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

THE MELD OPERATION

1 datatype PQ = Leaf | Node of (key× PQ × PQ)

2 fun meld(A,B) =
3 case (A,B) of
4 (,Leaf)⇒ A
5 | (Leaf,)⇒ B
6 | (Node(ka, La, Ra), Node(kb, Lb, Rb))⇒
7 case Key.compare (ka, kb) of
8 LESS⇒ Node(ka, La, meld(Ra, B))
9 | ⇒ Node(kb, Lb, meld(A, Rb))

Traverses the right spines of the trees

Could be Θ(|A|+ |B|) in the worst case.

PRIORITY QUEUES 27/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

LEFTIST HEAPS

When melding, keep trees deeper on the left.
Define

rank(x) = # of nodes on the right

spine of the subtree rooted at x ,

For all nodes, rank can be inductively defined

rank(leaf) = 0
rank(node(, ,R) = 1 + rank(R)

PRIORITY QUEUES 28/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

LEFTIST PROPERTY

For all node x in a leftist heap,

rank(L(x)) ≥ rank(R(x))

I L(x) and R(x) are the left and child children of x
Allows for

o 1
/
o 2
/
o 3
.
.
o n

But this is OK (Why?)
PRIORITY QUEUES 29/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

LEFTIST HEAPS

Most items pile to the left
Right spine is relatively short!

LEMMA
In a leftist heap with n entries, the rank of the root
node is at most log2(n + 1).

PRIORITY QUEUES 30/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

LEFTIST HEAPS

1 datatype PQ = Leaf | Node of (int× key× PQ × PQ)

2 fun rank Leaf = 0
3 | rank (Node(r , , ,)) = r

4 fun makeLeftistNode (v , L, R) =
5 if (rank(L) < rank(R))
6 then Node(1 + rank(L), v , R, L)
7 else Node(1 + rank(R), v , L, R)

Puts lower rank subtree to the right!

PRIORITY QUEUES 31/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

LEFTIST HEAPS

1 fun meld (A, B) =
2 case (A, B) of
3 (, Leaf)⇒ A
4 | (Leaf,)⇒ B
5 | (Node(, ka, La, Ra), Node(, kb, Lb, Rb))⇒
6 case Key.compare(ka, kb) of
7 LESS⇒ makeLeftistNode (ka,La,meld(Ra, B))
8 | ⇒ makeLeftistNode (kb,Lb,meld(A, Rb))

PRIORITY QUEUES 32/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

LEFTIST HEAPS

THEOREM
If A and B are leftist heaps then

the meld(A,B) algorithm runs in
O(log(|A|) + log(|B|)) work, and
returns a leftist heap containing the union of A
and B.

Code traverses the right spines, one node at a
time

I so needs at most rank(A) + rank(B) steps
I Each step needs constant work

makeLeftistNode guarantees leftist result
PRIORITY QUEUES 33/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PROVING THE LEMMA

CLAIM
If a heap has rank r , it contains at least 2r − 1 entries.

n(r) ≡ nodes in the smallest heap of rank r
I Monotone: if r ′ ≥ r , then n(r ′) ≥ n(r)
I n(0) = 0

rank(L(x)) ≥ rank(R(x)) = r − 1

n(r) = 1 + n(rank(L(x))) + n(rank(R(x)))

≥ 1 + n(r − 1) + n(r − 1) = 1 + 2 · n(r − 1).

n(r) ≥ 2r − 1

PRIORITY QUEUES 34/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

PROVING THE LEMMA

Apply the claim
Suppose leftist heap of n nodes has rank r
n ≥ n(r) ≥ 2r − 1
2r ≤ n + 1⇒ r ≤ log2(n + 1)

Rank of a leftist node of n nodes is at most
log2(n + 1)

PRIORITY QUEUES 35/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

SUMMARY OF PRIORITY QUEUES

Implementation insert findMin deleteMin meld

(Unsorted) Sequence O(n) O(n) O(n) O(m + n)

Sorted Sequence O(n) O(1) O(n) O(m + n)

Balanced Tree O(log n) O(log n) O(log n) O(m log(1 + n
m))

Leftist Heap O(log n) O(1) O(log n) O(log m + log n)

PRIORITY QUEUES 36/36

15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2014

