
1/31

11-411
Natural Language Processing

Overview

Kemal Oflazer

Carnegie Mellon University in Qatar

∗ Content mostly based on previous offerings of 11-411 by LTI Faculty at CMU-Pittsburgh.

2/31

What is NLP?

I Automating the analysis, generation, and acquisition of human (”natural”) language
I Analysis (or “understanding” or “processing”, . . .)
I Generation
I Acquisition

I Some people use “NLP” to mean all of language technologies.
I Some people use it only to refer to analysis.

3/31

Why NLP?
I Answer questions using the Web
I Translate documents from one language to another
I Do library research; summarize
I Manage messages intelligently
I Help make informed decisions
I Follow directions given by any user
I Fix your spelling or grammar
I Grade exams
I Write poems or novels
I Listen and give advice
I Estimate public opinion
I Read everything and make predictions
I Interactively help people learn
I Help disabled people
I Help refugees/disaster victims
I Document or reinvigorate indigenous languages

4/31

What is NLP? More Detailed Answer

I Automating language analysis, generation, acquisition.
I Analysis (or “understanding” or “processing” ...): input is language, output is some

representation that supports useful action
I Generation: input is that representation, output is language
I Acquisition: obtaining the representation and necessary algorithms, from knowledge and

data
I Representation?

5/31

Levels of Linguistic Representation

6/31

Why it’s Hard

I The mappings between levels are extremely complex.
I Details and appropriateness of a representation depends on the application.

7/31

Complexity of Linguistics Representations

I Input is likely to be noisy.
I Linguistic representations are theorized constructs; we cannot observe them directly.
I Ambiguity: each linguistic input may have many possible interpretations at every

level.
I The correct resolution of the ambiguity will depend on the intended meaning, which is

often inferable from context.
I People are good at linguistic ambiguity resolution.
I Computers are not so good at it.

I How do we represent sets of possible alternatives?
I How do we represent context?

8/31

Complexity of Linguistics Representations

I Richness: there are many ways to express the same meaning, and immeasurably
many meanings to express. Lots of words/phrases.

I Each level interacts with the others.
I There is tremendous diversity in human languages.

I Languages express the same kind of meaning in different ways
I Some languages express some meanings more readily/often.

I We will study models.

9/31

What is a Model?

I An abstract, theoretical, predictive construct. Includes:
I a (partial) representation of the world
I a method for creating or recognizing worlds,
I a system for reasoning about worlds

I NLP uses many tools for modeling.
I Surprisingly, shallow models work fine for some applications.

10/31

Using NLP Models and Tools

I This course is meant to introduce some formal tools that will help you navigate the
field of NLP.

I We focus on formalisms and algorithms.
I This is not a comprehensive overview; it’s a deep introduction to some key topics.
I We’ll focus mainly on analysis and mainly on English text (but will provide examples from

other languages whenever meaningful)
I The skills you develop will apply to any subfield of NLP

11/31

Applications / Challenges

I Application tasks evolve and are often hard to define formally.
I Objective evaluations of system performance are always up for debate.

I This holds for NL analysis as well as application tasks.
I Different applications may require different kinds of representations at different levels.

12/31

Expectations from NLP Systems

I Sensitivity to a wide range of the phenomena and constraints in human language
I Generality across different languages, genres, styles, and modalities
I Computational efficiency at construction time and runtime
I Strong formal guarantees (e.g., convergence, statistical efficiency, consistency, etc.)
I High accuracy when judged against expert annotations and/or task-specific

performance

13/31

Key Applications (2017)

I Computational linguistics (i.e., modeling the human capacity for language
computationally)

I Information extraction, especially “open” IE
I Question answering (e.g., Watson)
I Conversational Agents (e.g., Siri, OK Google)
I Machine translation
I Machine reading
I Summarization
I Opinion and sentiment analysis
I Social media analysis
I Fake news detection
I Essay evaluation
I Mining legal, medical, or scholarly literature

14/31

NLP vs Computational Linguistics

I NLP is focussed on the technology of processing language
I Computational Linguistics is focussed on using technology to support/implement

linguistics.
I The distinction is

I Like “artificial intelligence” vs. “cognitive science”
I Like “ building airplanes” vs. “understanding how birds fly”

15/31

Let’s Look at Some of the Levels

16/31

Morphology

I Analysis of words into meaningful components – morphemes.
I Spectrum of complexity across languages
I Isolating Languages: mostly one morpheme (e.g., Chinese/Mandarin)
I Inflectional Languages: mostly two morphemes (e.g., English, French, one

morpheme may mean many things)
I go+ing, habla+mos “I have spoken” (SP)

17/31

Morphology

I Agglutinative Languages: Mostly many morphemes stacked like
“beads-on-a-string” (e.g., Turkish, Finnish, Hungarian, Swahili)

I uygar+laş+tır+ama+dık+lar+ımız+dan+mış+sınız+casına
“(behaving) as if you are among those whom we could not civilize”

I Polysynthetic Languages: A word is a sentence! (e.g., Inuktikut)
I Parismunngaujumaniralauqsimanngittunga

Paris+mut+nngau+juma+niraq+lauq+si+ma+nngit+jun
“I never said that I wanted to go to Paris”

I Reasonably dynamic:
I unfriend, Obamacare

18/31

Let’s Look at Some of the Levels

19/31

Lexical Processing

I Segmentation
I Normalize and disambiguate words

I Words with multiple meanings: bank, mean
I Extra challenge: domain-specific meanings (e.g., latex)

I Process multi-word expressions
I make . . . decision, take out, make up, kick the . . . bucket

I Part-of-speech tagging
I Assign a syntactic class to each word (verb, noun, adjective, etc.)

I Supersense tagging
I Assign a coarse semantic category to each content word (motion event, instrument,

foodstuff, etc.)
I Syntactic “supertagging”

I Assign a possible syntactic neighborhood tag to each word (e.g., subject of a verb)

20/31

Let’s Look at Some of the Levels

21/31

Syntax

I Transform a sequence of symbols into a hierarchical or compositional structure.
I Some sequences are well-formed, others are not

X I want a flight to Tokyo.
X I want to fly to Tokyo.
X I found a flight to Tokyo.
× I found to fly to Tokyo.
X Colorless green ideas sleep furiously.
× Sleep colorless green furiously ideas.

I Ambiguities explode combinatorially
I Students hate annoying professors.
I John saw the woman with the telescope.
I John saw the woman with the telescope wrapped in paper.

22/31

Some of the Possible Syntactic Analyses

23/31

Morphology–Syntax

I A ship-shipping ship, shipping shipping-ships.

24/31

Let’s Look at Some of the Levels

25/31

Semantics

I Mapping of natural language sentences into domain representations.
I For example, a robot command language, a database query, or an expression in a formal

logic
I Scope ambiguities:

I In this country a woman gives birth every fifteen minutes.
I Every person on this island speaks three languages.
I (TR) Üç doktor her hastaya baktı “Three doctors every patient saw”

⇒ ∃d1, d2, d3, doctor(d1)&doctor(d1)&doctor(d1) (∀p, patient(p), saw(d1, p)&saw(d2, p)&saw(d3, p))

I (TR) Her hastaya üç doktor baktı “Every patient three doctors saw”

⇒ ∀p, patient(p)(∃d1, d2, d3, doctor(d1)&doctor(d1)&doctor(d1)&saw(d1, p)&saw(d2, p)&saw(d3, p))

I Going beyond specific domains is a goal of general artificial Intelligence.

26/31

Syntax–Semantics

We saw the woman with the telescope wrapped in paper.

I Who has the telescope?
I Who or what is wrapped in paper?
I Is this an event of perception or an assault?

27/31

Let’s Look at Some of the Levels

28/31

Pragmatics/Discourse

I Pragmatics
I Any non-local meaning phenomena

I “Can you pass the salt?”
I “Is he 21?” “Yes, he’s 25.”

I Discourse
I Structures and effects in related sequences of sentences

I “I said the black shoes.”
I “Oh, black.” (Is that a sentence?)

29/31

Course Logistics/Administrivia

I Web page: piazza.com/qatar.cmu/fall2017/11411/home
I Course Material:

I Book: Speech and Language Processing, Jurafsky and Martin, 2nd ed.
I As needed, copies of papers, etc. will be provided.
I Lectures slides will be provided after each lecture.

I Instructor: Kemal Oflazer

piazza.com/qatar.cmu/fall2017/11411/home

30/31

Your Grade

I Class project, 30%
I In-class midterm (October 11, for the time being), 20%
I Final exam (date TBD), 20%
I Unpredictable in-class quizzes, 15%
I Homework assignments, 15%

31/31

Policies

I Everything you submit must be your own work
I Any outside resources (books, research papers, web sites, etc.) or collaboration

(students, professors, etc.) must be explicitly acknowledged.
I Project

I Collaboration is required (team size TBD)
I It’s okay to use existing tools, but you must acknowledge them.
I Grade is mostly shared.
I Programming language is up to you.

I Do people know Python? Perl?

1/19

11-411
Natural Language Processing

Applications of NLP

Kemal Oflazer

Carnegie Mellon University in Qatar

∗ Content mostly based on previous offerings of 11-411 by LTI Faculty at CMU-Pittsburgh.

2/19

Information Extraction – Bird’s Eye View

I Input: text, empty relational database
I Output: populated relational database

Senator John Edwards is to drop out of the race to become the

Democratic party’s presidential candidate after consistently trail-

ing in third place. In the latest primary, held in Florida yesterday,

Edwards gained only 14% of the vote, with Hillary Clinton polling

50% and Barack Obama on 33%. A reported 1.5m voters turned

out to vote.

⇒
State Party Cand. %

FL Dem. Edwards 14
FL Dem. Clinton 50
FL Dem. Obama 33

3/19

Named-Entity Recognition

I Input: text
I Output: text annotated with named-entities

Senator John Edwards is to drop out of the race to be-

come the Democratic party’s presidential candidate after

consistently trailing in third place. In the latest primary,

held in Florida yesterday, Edwards gained only 14% of the

vote, with Hillary Clinton polling 50% and Barack Obama

on 33%. A reported 1.5m voters turned out to vote.

⇒

[PER Senator John Edwards] is to drop out of the race

to become the [GPE Democratic party]’s presidential can-

didate after consistently trailing in third place. In the lat-

est primary, held in [LOC Florida] yesterday, [PER Edwards]

gained only 14% of the vote, with [PER Hillary Clinton]

polling 50% and [PER Barack Obama] on 33%. A reported

1.5m voters turned out to vote.

4/19

Reference Resolution

I Input: text possibly with annotated named-entities
I Output: text annotated with named-entities and the real-world entitities they refer to.

[PER Senator John Edwards] is to drop out of the race

to become the [GPE Democratic party]’s presiden-

tial candidate after consistently trailing in third place.

In the latest primary, held in [LOC Florida] yesterday,

[PER Edwards] gained only 14% of the vote, with [PER

Hillary Clinton] polling 50% and [PER Barack Obama]

on 33%. A reported 1.5m voters turned out to vote.

⇒ [PER Senator John Edwards] refers to

[PER Edwards] refers to

5/19

Coreference Resolution

I Input: text possibly with annotated named-entities
I Output: text with annotations of coreference chains.

[PER Senator John Edwards] is to drop out of the race

to become the [GPE Democratic party]’s presidential can-

didate after consistently trailing in third place. In the lat-

est primary, held in [LOC Florida] yesterday, [PER Edwards]

gained only 14% of the vote, with [PER Hillary Clinton]

polling 50% and [PER Barack Obama] on 33%. A reported

1.5m voters turned out to ote. This was a huge setback for

the Senator from [LOC North Carolina].

⇒

[PER Senator John Edwards],

[PER Edwards]

Senator from [LOC North Carolina]

refer to the same entity.

6/19

Relation Extraction

I Input: text annotated with named-entitites
I Output: populated relational database with relations between entities.

Senator John Edwards is to drop out of the race to be-

come the Democratic party’s presidential candidate after

consistently trailing in third place. In the latest primary,

held in Florida yesterday, Edwards gained only 14% of the

vote, with Hillary Clinton polling 50% and Barack Obama

on 33%. A reported 1.5m voters turned out to vote.

⇒
Person Member-of
John Edwards Democrat Party
Hillary Clinton Democrat Party
Barack Obama Democrat Party

7/19

Encoding for Named-Entity Recognition

I Named-entity recognition is typically formulated as a sequence tagging problem.
I We somehow encode the boundaries and types of the named-entities.
I BIO Encoding

I B-type indicates the beginning token/word of a named-entity (of type type)
I I-type indicates (any) other tokens of a named-entity (length > 1)
I O indicates that a token is not a part of any named-entity.

I BIOLU Encoding
I BIO same as above
I L-type indicates last token of a named-entity (length > 1)
I U-type indicates a single token named-entity (length = 1)

8/19

Encoding for Named-Entity Recognition

With that , Edwards ’ campaign will end the way
O O O B-PER O O O O O O

it began 13 months ago – with the candidate pitching

O O O O O O O O O O

in to rebuild lives in a city still ravaged by

O O O O O O O O O O

Hurricane Katrina . Edwards embraced New Orleans as a glaring

B-NAT I-NAT O B-PER O B-LOC I-LOC O O O

symbol of what he described as a Washington that did
O O O O O O O B-GPE O O

n’t hear the cries of the downtrodden .
O O O O O O O O

9/19

NER as a Sequence Modeling Problem

10/19

Evaluation of NER Performance
I Recall: What percentage of the actual named-entities did you correctly label?
I Precision: What percentage of the named-entities you labeled were actually correctly

labeled?

Correct
NEs
(C)

Hypothesized
NEs
(H) C ∩ H

R =
| C ∩ H |
| C |

P =
| C ∩ H |
| H |

F1 =
2 · R · P
R + P

I Actual: [Microsoft Corp.] CEO [Steve Ballmer] announced the
release of [Windows 7] today

I Tagged: [Microsoft Corp.] [CEO] [Steve] Ballmer announced the
release of Windows 7 [today]

I What is R, P, and F?

11/19

NER System Architecture

12/19

Relation Extraction

Some types of relations:

Relations Examples Type
Affiliations

Personal married to, mother of PER→ PER
Organizational spokeman for, president of PER→ ORG
Artifactual owns, invented, produces (PER | ORG)→ ART

Geospatial
Proximity near, on outskirts of LOC→ LOC
Directional southeast of LOC→ LOC

Part-Of
Organizational unit of, parent-of ORG→ ORG
Political annexed, acquired GPE → GPE

13/19

Seeding Tuples

I Provide some examples
I Brad is married to Angelina.
I Bill is married to Hillary.
I Hillary is married to Bill.
I Hillary is the wife of Bill.

I Induce/provide seed patterns.
I X is married to Y
I X is the wife or Y

I Find other examples of X and Y mentioned closely and generate new patterns
I Hillary and Bill wed in 1975 ⇒ X and Y wed

14/19

Bootstrapping Relations

15/19

Information Retrieval – the Vector Space Model
I Each document Di is represented by a |V|-dimensional vector ~di (V is the vocabulary

of words/tokens.)

~di[j] = count of word ωj in document Di

I A query Q is represented the same way with the vector ~q:

~q[j] = count of word ωj in query Q

I Vector Similarity⇒ Relevance of Document Di to Query Q

cosine similarity(~di,~q) =
~di ·~q

‖~di‖ × ‖~q‖

I Twists: tf − idf term frequency – inverse document frequency

x[j] = count(ωj)× log
docs

docs with ωj

I Recall, Precision, Ranking

16/19

Information Retrieval – Evaluation

I Recall?

Recall =
Number of Relevant Documents Retrieved

Number of Actual Relevant Documents in the Database

I Precision?
Precision =

Number of Relevant Documents Retrieved
Number of Documents Retrieved

I Can you fool these?
I Are these useful? (Why did Google win the IR wars?)
I Ranking?

I Is the “best” document close to the top if the list?

17/19

Question Answering

18/19

Question Answering Evaluation

I We typically get a list of answers back.
I Higher ranked correct answers are more valued.
I Mean reciprocal rank

mean reciprocal rank =
1
T

T∑
i=1

1
rank of the first correct answer to question i

19/19

Some General Tools

I Supervised classification
I Feature vector representations
I Bootstrapping
I Evaluation:

I Precision and recall (and their curves)
I Mean reciprocal rank

8/28/17

1

Words and
Computational Morphology

Kemal Oflazer
Carnegie Mellon University - Qatar

11-411
Natural Language Processing

2

Words, Words, Words

n Words in natural languages usually encode
many pieces of information.
¨What the word “means” in the real world
¨What categories, if any, the word belongs to
¨What the function of the word in the sentence

is

¨Nouns: How many?, Do we already know what
they are?, How does it relate to the verb?, …

¨Verbs: When, how, who,…

8/28/17

2

3

Morphology

n Languages differ widely in
¨What information they encode in their words
¨How they encode the information.

4

n I am swim-m+ing.
¨(Presumably) we know what swim “means”
¨The +ing portion tells us that this event is

taking place at the time the utterance is taking
place.

¨What’s the deal with the extra m?

8/28/17

3

5

n (G) Die Frau schwimm+t.
¨The schwimm(en) refers to the same meaning
¨The +t portion tells us that this event is taking

place now and that a single entity other than
the speaker and the hearer is swimming (or
plural hearers are swimming)
n Ich schwimme, Du schwimmst, Er/Sie/Es schwimmt,

Wir schwimmen, Ihr schwimmt Sie schwimmen

6

n (T) Ben eve git+ti+m.
n I to-the-house I-went.

n (T) Sen evi gör+dü+n
n You the-house you-saw.

n What’s the deal with +ti vs +dü?
n What’s deal with +m and +n?

8/28/17

4

7

Dancing in Andalusia

n A poem by the early 20th century Turkish
poet Yahya Kemal Beyatlı.

ENDÜLÜSTE RAKS
Zil, şal ve gül, bu bahçede raksın bütün hızı
Şevk akşamında Endülüs, üç defa kırmızı
Aşkın sihirli şarkısı, yüzlerce dildedir
İspanya neşesiyle bu akşam bu zildedir

Yelpaze gibi çevrilir birden dönüşleri
İşveyle devriliş, saçılış, örtünüşleri
Her rengi istemez gözümüz şimdi aldadır
İspanya dalga dalga bu akşam bu şaldadır

Alnında halka halkadır âşufte kâkülü
Göğsünde yosma Gırnata'nın en güzel gülü
Altın kadeh her elde, güneş her gönüldedir
İspanya varlığıyla bu akşam bu güldedir

Raks ortasında bir durup oynar, yürür gibi
Bir baş çevirmesiyle bakar öldürür gibi
Gül tenli, kor dudaklı, kömür gözlü, sürmeli
Şeytan diyor ki sarmalı, yüz kerre öpmeli

Gözler kamaştıran şala, meftûn eden güle
Her kalbi dolduran zile, her sineden ole!

8/28/17

5

ENDÜLÜSTE RAKS
Zil, şal ve gül, bu bahçede raksın bütün hızı
Şevk akşamında Endülüs, üç defa kırmızı
Aşkın sihirli şarkısı, yüzlerce dildedir
İspanya neşesiyle bu akşam bu zildedir

Yelpaze gibi çevrilir birden dönüşleri
İşveyle devriliş, saçılış, örtünüşleri
Her rengi istemez gözümüz şimdi aldadır
İspanya dalga dalga bu akşam bu şaldadır

Alnında halka halkadır âşufte kâkülü
Göğsünde yosma Gırnata'nın en güzel gülü
Altın kadeh her elde, güneş her gönüldedir
İspanya varlığıyla bu akşam bu güldedir

Raks ortasında bir durup oynar, yürür gibi
Bir baş çevirmesiyle bakar öldürür gibi
Gül tenli, kor dudaklı, kömür gözlü, sürmeli
Şeytan diyor ki sarmalı, yüz kerre öpmeli

Gözler kamaştıran şala, meftûn eden güle
Her kalbi dolduran zile, her sineden ole!

zildedir: a verb derived from the
locative case of the noun “zil”
(castanet)
“is at the castanet”

dönüşleri: plural infinitive and
possessive form of the verb “dön”
(rotate)

“their (act of) rotating”

istemez: negative present form of
the verb “iste” (want)
“it does not want”

varlığıyla: singular possessive
instrumental-case of the noun
“varlık” (wealth)
“with its wealth”

kamaştıran: present participle of
the verb “kamaş” (blind)
“that which blinds….”

BAILE EN ANDALUCIA
Castañuela, mantilla y rosa. El baile veloz llena el jardín...
En esta noche de jarana, Andalucíá se ve tres veces carmesí...
Cientas de bocas recitan la canción mágica del amor.
La alegría española esta noche, está en las castañuelas.

Como el revuelo de un abanico son sus vueltas súbitas,
Con súbitos gestos se abren y se cierran las faldas.
Ya no veo los demás colores, sólo el carmesí,
La mantilla esta noche ondea a españa entera en sí.

Con un encanto travieso, cae su pelo hacia su frente;
La mas bonita rosa de Granada en su pecho rebelde.
Se para y luego continúa como si caminara,
Vuelve la cara y mira como si apuntara y matara.

Labios ardientes, negros ojos y de rosa su tez!
Luzbel me susurra: ¡Ánda bésala mil veces!

¡Olé a la rosa que enamora! ¡Olé al mantilla que deslumbra!
¡Olé de todo corazón a la castañuela que al espíritu alumbra!”

8/28/17

6

BAILE EN ANDALUCIA
Castañuela, mantilla y rosa. El baile veloz llena el jardín...
En esta noche de jarana, Andalucíá se ve tres veces carmesí...
Cientas de bocas recitan la canción mágica del amor.
La alegría española esta noche, está en las castañuelas.

Como el revuelo de un abanico son sus vueltas súbitas,
Con súbitos gestos se abren y se cierran las faldas.
Ya no veo los demás colores, sólo el carmesí,
La mantilla esta noche ondea a españa entera en sí.

Con un encanto travieso, cae su pelo hacia su frente;
La mas bonita rosa de Granada en su pecho rebelde.
Se para y luego continúa como si caminara,
Vuelve la cara y mira como si apuntara y matara.

Labios ardientes, negros ojos y de rosa su tez!
Luzbel me susurra: ¡Ánda bésala mil veces!

¡Olé a la rosa que enamora! ¡Olé al mantilla que deslumbra!
¡Olé de todo corazón a la castañuela que al espíritu alumbra!”

castañuelas:
either
the plural feminine form of
the adjective “castañuelo”
(Castilian)
or
the plural of the feminine noun
“castañuela” (castanet)

BAILE EN ANDALUCIA
Castañuela, mantilla y rosa. El baile veloz llena el jardín...
En esta noche de jarana, Andalucíá se ve tres veces carmesí...
Cientas de bocas recitan la canción mágica del amor.
La alegría española esta noche, está en las castañuelas.

Como el revuelo de un abanico son sus vueltas súbitas,
Con súbitos gestos se abren y se cierran las faldas.
Ya no veo los demás colores, sólo el carmesí,
La mantilla esta noche ondea a españa entera en sí.

Con un encanto travieso, cae su pelo hacia su frente;
La mas bonita rosa de Granada en su pecho rebelde.
Se para y luego continúa como si caminara,
Vuelve la cara y mira como si apuntara y matara.

Labios ardientes, negros ojos y de rosa su tez!
Luzbel me susurra: ¡Ánda bésala mil veces!

¡Olé a la rosa que enamora! ¡Olé al mantilla que deslumbra!
¡Olé de todo corazón a la castañuela que al espíritu alumbra!”

vueltas:
either
the plural form of the
feminine noun “vuelta” (spin?)
or
the feminine plural
past participle of the verb
“volver”

8/28/17

7

BAILE EN ANDALUCIA
Castañuela, mantilla y rosa. El baile veloz llena el jardín...
En esta noche de jarana, Andalucíá se ve tres veces carmesí...
Cientas de bocas recitan la canción mágica del amor.
La alegría española esta noche, está en las castañuelas.

Como el revuelo de un abanico son sus vueltas súbitas,
Con súbitos gestos se abren y se cierran las faldas.
Ya no veo los demás colores, sólo el carmesí,
La mantilla esta noche ondea a españa entera en sí.

Con un encanto travieso, cae su pelo hacia su frente;
La mas bonita rosa de Granada en su pecho rebelde.
Se para y luego continúa como si caminara,
Vuelve la cara y mira como si apuntara y matara.

Labios ardientes, negros ojos y de rosa su tez!
Luzbel me susurra: ¡Ánda bésala mil veces!

¡Olé a la rosa que enamora! ¡Olé al mantilla que deslumbra!
¡Olé de todo corazón a la castañuela que al espíritu alumbra!”

veo:
First person present indicative
of the verb “ver” (see?)

BAILE EN ANDALUCIA
Castañuela, mantilla y rosa. El baile veloz llena el jardín...
En esta noche de jarana, Andalucíá se ve tres veces carmesí...
Cientas de bocas recitan la canción mágica del amor.
La alegría española esta noche, está en las castañuelas.

Como el revuelo de un abanico son sus vueltas súbitas,
Con súbitos gestos se abren y se cierran las faldas.
Ya no veo los demás colores, sólo el carmesí,
La mantilla esta noche ondea a españa entera en sí.

Con un encanto travieso, cae su pelo hacia su frente;
La mas bonita rosa de Granada en su pecho rebelde.
Se para y luego continúa como si caminara,
Vuelve la cara y mira como si apuntara y matara.

Labios ardientes, negros ojos y de rosa su tez!
Luzbel me susurra: ¡Ánda bésala mil veces!

¡Olé a la rosa que enamora! ¡Olé al mantilla que deslumbra!
¡Olé de todo corazón a la castañuela que al espíritu alumbra!”

enamora:
either
the 3rd person singular
present indicative
or
the 2nd person imperative of
the verb “enamorar” (woo)

8/28/17

8

DANCE IN ANDALUSIA
Castanets, shawl and rose. Here's the fervour of dance,
Andalusia is threefold red in this evening of trance.
Hundreds of tongues utter love's magic refrain,
In these castanets to-night survives the gay Spain,

Animated turns like a fan's fast flutterings,
Fascinating bendings, coverings, uncoverings.
We want to see no other color than carnation,
Spain does subsist in this shawl in undulation.

Her bewitching locks on her forehead is overlaid,
On her chest is the fairest rose of Granada.
Golden cup in hand, sun in every mind,
Spain this evening in this shawl defined.

'Mid a step a halt, then dances as she loiters,
She turns her head round and looks daggers.
Rose-complexioned, fiery-lipped, black-eyed, painted,
To embracing and kissing her over one's tempted,

To dazzling shawl, to the rose charmingly gay
To castanets from every heart soars an "ole!".

DANCE IN ANDALUSIA
Castanets, shawl and rose. Here's the fervour of dance,
Andalusia is threefold red in this evening of trance.
Hundreds of tongues utter love's magic refrain,
In these castanets to-night survives the gay Spain,

Animated turns like a fan's fast flutterings,
Fascinating bendings, coverings, uncoverings.
We want to see no other color than carnation,
Spain does subsist in this shawl in undulation.

Her bewitching locks on her forehead is overlaid,
On her chest is the fairest rose of Granada.
Golden cup in hand, sun in every mind,
Spain this evening in this shawl defined.

'Mid a step a halt, then dances as she loiters,
She turns her head round and looks daggers.
Rose-complexioned, fiery-lipped, black-eyed, painted,
To embracing and kissing her over one's tempted,

To dazzling shawl, to the rose charmingly gay
To castanets from every heart soars an "ole!".

castanets: Plural noun

8/28/17

9

DANCE IN ANDALUSIA
Castanets, shawl and rose. Here's the fervour of dance,
Andalusia is threefold red in this evening of trance.
Hundreds of tongues utter love's magic refrain,
In these castanets to-night survives the gay Spain,

Animated turns like a fan's fast flutterings,
Fascinating bendings, coverings, uncoverings.
We want to see no other color than carnation,
Spain does subsist in this shawl in undulation.

Her bewitching locks on her forehead is overlaid,
On her chest is the fairest rose of Granada.
Golden cup in hand, sun in every mind,
Spain this evening in this shawl defined.

'Mid a step a halt, then dances as she loiters,
She turns her head round and looks daggers.
Rose-complexioned, fiery-lipped, black-eyed, painted,
To embracing and kissing her over one's tempted,

To dazzling shawl, to the rose charmingly gay
To castanets from every heart soars an "ole!".

bewitching: gerund form of the
verb bewitch

DANCE IN ANDALUSIA
Castanets, shawl and rose. Here's the fervour of dance,
Andalusia is threefold red in this evening of trance.
Hundreds of tongues utter love's magic refrain,
In these castanets to-night survives the gay Spain,

Animated turns like a fan's fast flutterings,
Fascinating bendings, coverings, uncoverings.
We want to see no other color than carnation,
Spain does subsist in this shawl in undulation.

Her bewitching locks on her forehead is overlaid,
On her chest is the fairest rose of Granada.
Golden cup in hand, sun in every mind,
Spain this evening in this shawl defined.

'Mid a step a halt, then dances as she loiters,
She turns her head round and looks daggers.
Rose-complexioned, fiery-lipped, black-eyed, painted,
To embracing and kissing her over one's tempted,

To dazzling shawl, to the rose charmingly gay
To castanets from every heart soars an "ole!".

evening:
either
a noun
or
the present continuous
form of the verb “even”

8/28/17

10

Spanischer Tanz
Zimbel, Schal und Rose- Tanz in diesem Garten loht.
In der Nacht der Lust ist Andalusien dreifach rot!
Und in tausend Zungen Liebeszauberlied erwacht-
Spaniens Frohsinn lebt in diesen Zimbeln heute Nacht!

Wie ein Fäscher: unvermutet das Sich-Wenden, Biegen,
Ihr kokettes Sich - Verhüllen, Sich - Entfalten, Wiegen -
Unser Auge, nichts sonst wünschend - sieht nur Rot voll Pracht:
Spanien wogt und wogt in diesem Schal ja heute Nacht!

Auf die Stirn die Ringellocken fallen lose ihr,
Auf der Brust erblüht Granadas schönste Rose ihr,
Goldpokal in jeder Hand, im Herzen Sonne lacht
Spanien lebt und webt in dieser Rose heute Nacht!

Jetzt im Tanz ein spielend Schreiten, jetz ein Steh’n, Zurück
Tötend, wenn den Kopf sie wendet, scheint ihr rascher Blick.
Rosenleib, geschminkt, rotlippig, schwarzer Augen Strahl
Der Verführer lockt: «Umarme, küsse sie hundertmal!»

Für den Schal so blendend, Zaubervoller Rose Lust,
Zimbel herzerfüllend, ein Ole aus jeder Brust!

Spanischer Tanz
Zimbel, Schal und Rose- Tanz in diesem Garten loht.
In der Nacht der Lust ist Andalusien dreifach rot!
Und in tausend Zungen Liebeszauberlied erwacht-
Spaniens Frohsinn lebt in diesen Zimbeln heute Nacht!

Wie ein Fäscher: unvermutet das Sich-Wenden, Biegen,
Ihr kokettes Sich - Verhüllen, Sich - Entfalten, Wiegen -
Unser Auge, nichts sonst wünschend - sieht nur Rot voll Pracht:
Spanien wogt und wogt in diesem Schal ja heute Nacht!

Auf die Stirn die Ringellocken fallen lose ihr,
Auf der Brust erblüht Granadas schönste Rose ihr,
Goldpokal in jeder Hand, im Herzen Sonne lacht
Spanien lebt und webt in dieser Rose heute Nacht!

Jetzt im Tanz ein spielend Schreiten, jetz ein Steh’n, Zurück
Tötend, wenn den Kopf sie wendet, scheint ihr rascher Blick.
Rosenleib, geschminkt, rotlippig, schwarzer Augen Strahl
Der Verführer lockt: «Umarme, küsse sie hundertmal!»

Für den Schal so blendend, Zaubervoller Rose Lust,
Zimbel herzerfüllend, ein Ole aus jeder Brust!

Zimbeln: plural of the feminine
noun “Zimbel”

8/28/17

11

Spanischer Tanz
Zimbel, Schal und Rose- Tanz in diesem Garten loht.
In der Nacht der Lust ist Andalusien dreifach rot!
Und in tausend Zungen Liebeszauberlied erwacht-
Spaniens Frohsinn lebt in diesen Zimbeln heute Nacht!

Wie ein Fäscher: unvermutet das Sich-Wenden, Biegen,
Ihr kokettes Sich - Verhüllen, Sich - Entfalten, Wiegen -
Unser Auge, nichts sonst wünschend - sieht nur Rot voll Pracht:
Spanien wogt und wogt in diesem Schal ja heute Nacht!

Auf die Stirn die Ringellocken fallen lose ihr,
Auf der Brust erblüht Granadas schönste Rose ihr,
Goldpokal in jeder Hand, im Herzen Sonne lacht
Spanien lebt und webt in dieser Rose heute Nacht!

Jetzt im Tanz ein spielend Schreiten, jetz ein Steh’n, Zurück
Tötend, wenn den Kopf sie wendet, scheint ihr rascher Blick.
Rosenleib, geschminkt, rotlippig, schwarzer Augen Strahl
Der Verführer lockt: «Umarme, küsse sie hundertmal!»

Für den Schal so blendend, Zaubervoller Rose Lust,
Zimbel herzerfüllend, ein Ole aus jeder Brust!

Liebeszauberlied: compound noun
Magic love song (?)

Spanischer Tanz
Zimbel, Schal und Rose- Tanz in diesem Garten loht.
In der Nacht der Lust ist Andalusien dreifach rot!
Und in tausend Zungen Liebeszauberlied erwacht-
Spaniens Frohsinn lebt in diesen Zimbeln heute Nacht!

Wie ein Fäscher: unvermutet das Sich-Wenden, Biegen,
Ihr kokettes Sich - Verhüllen, Sich - Entfalten, Wiegen -
Unser Auge, nichts sonst wünschend - sieht nur Rot voll Pracht:
Spanien wogt und wogt in diesem Schal ja heute Nacht!

Auf die Stirn die Ringellocken fallen lose ihr,
Auf der Brust erblüht Granadas schönste Rose ihr,
Goldpokal in jeder Hand, im Herzen Sonne lacht
Spanien lebt und webt in dieser Rose heute Nacht!

Jetzt im Tanz ein spielend Schreiten, jetz ein Steh’n, Zurück
Tötend, wenn den Kopf sie wendet, scheint ihr rascher Blick.
Rosenleib, geschminkt, rotlippig, schwarzer Augen Strahl
Der Verführer lockt: «Umarme, küsse sie hundertmal!»

Für den Schal so blendend, Zaubervoller Rose Lust,
Zimbel herzerfüllend, ein Ole aus jeder Brust!

Ringellocken: compound noun
Convoluted curls (?)

8/28/17

12

Spanischer Tanz
Zimbel, Schal und Rose- Tanz in diesem Garten loht.
In der Nacht der Lust ist Andalusien dreifach rot!
Und in tausend Zungen Liebeszauberlied erwacht-
Spaniens Frohsinn lebt in diesen Zimbeln heute Nacht!

Wie ein Fäscher: unvermutet das Sich-Wenden, Biegen,
Ihr kokettes Sich - Verhüllen, Sich - Entfalten, Wiegen -
Unser Auge, nichts sonst wünschend - sieht nur Rot voll Pracht:
Spanien wogt und wogt in diesem Schal ja heute Nacht!

Auf die Stirn die Ringellocken fallen lose ihr,
Auf der Brust erblüht Granadas schönste Rose ihr,
Goldpokal in jeder Hand, im Herzen Sonne lacht
Spanien lebt und webt in dieser Rose heute Nacht!

Jetzt im Tanz ein spielend Schreiten, jetz ein Steh’n, Zurück
Tötend, wenn den Kopf sie wendet, scheint ihr rascher Blick.
Rosenleib, geschminkt, rotlippig, schwarzer Augen Strahl
Der Verführer lockt: «Umarme, küsse sie hundertmal!»

Für den Schal so blendend, Zaubervoller Rose Lust,
Zimbel herzerfüllend, ein Ole aus jeder Brust!

herzerfüllend: noun-verb/participle
compound
“that which fulfills the heart”(?)

24

Zil, şal ve gül, bu bahçede raksın bütün hızı
Şevk akşamında Endülüs, üç defa kırmızı
Aşkın sihirli şarkısı, yüzlerce dildedir
İspanya neş'esiyle bu akşam bu zildedir

Castañuela, mantilla y rosa. El baile veloz llena el jardín...
En esta noche de jarana, Andalucíá se ve tres veces carmesí...
Cientas de bocas recitan la canción mágica del amor.
La alegría española esta noche, está en las castañuelas.

Castanets, shawl and rose. Here's the fervour of dance,
Andalusia is threefold red in this evening of trance.
Hundreds of tongues utter love's magic refrain,
In these castanets to-night survives the gay Spain,

Zimbel, Schal und Rose- Tanz in diesem Garten loht.
In der Nacht der Lust ist Andalusien dreifach rot!
Und in tausend Zungen Liebeszauberlied erwacht-
Spaniens Frohsinn lebt in diesen Zimbeln heute Nacht!

Aligned Verses

8/28/17

13

25

Why do we care about words?

n Many language processing applications need to
extract the information encoded in the words.
¨ Parsers which analyze sentence structure need to

know/check agreement between
n subjects and verbs
n Adjectives and nouns
n Determiners and nouns, etc.

¨ Information retrieval systems benefit from know what
the stem of a word is

¨ Machine translation systems need to analyze words to
their components and generate words with specific
features in the target language

26

Computational Morphology

n Computational morphology deals with
¨developing theories and techniques for
¨computational analysis and synthesis of word

forms.

8/28/17

14

27

Computational Morphology -Analysis

n Extract any information encoded in a word
and bring it out so that later layers of
processing can make use of it.

n books Þ book+Noun+Plural
Þ book+Verb+Pres+3SG.

n stopping Þ stop+Verb+Cont
n happiest Þ happy+Adj+Superlative
n went Þ go+Verb+Past

28

Computational Morphology -Generation

n In a machine translation application, one
may have to generate the word
corresponding to a set of features

n stop+Past Þ stopped
n (T) dur+Past+1Pl Þ durduk

+2Pl Þ durdunuz

8/28/17

15

29

Computational Morphology-Analysis

n Input raw text
n Segment / Tokenize
n Analyze individual

words
n Analyze multi-word

constructs
n Disambiguate

Morphology
n Syntactically analyze

sentences
n ….

Pre-processing}

} Morphological
Processing

} Syntactic
Processing

30

Some other applications

n Spelling Checking
¨ Check if words in a text are all valid words

n Spelling Correction
¨ Find correct words “close” to a misspelled word.

n For both these applications, one needs to know
what constitutes a valid word in a language.
¨ Rather straightforward for English
¨ No so for Turkish –

n cezalandırılacaklardan (ceza+lan+dır+ıl+acak+lar+dan)

8/28/17

16

31

Some other applications

n Grammar Checking
¨Checks if a (local) sequence of words violate

some basic constraints of language (e.g.,
agreement)

n Text-to-speech
¨Proper stress/prosody may depend on proper

identification of morphemes and their
properties.

n Machine Translation (especially between
closely related languages)
¨E.g., Turkmen to Turkish translation

Text-to-speech

n I read the book.
¨Can’t really decide what the pronunciation is

n Yesterday, I read the book.
¨read must be a past tense verb.

n He read the book
n read must be a past tense verb.

¨ (T) oKU+ma (don’t read)
oku+MA (reading)
ok+uM+A (to my arrow)

32

8/28/17

17

33

Morphology
n Morphology is the study of the structure of

words.
¨Words are formed by combining smaller units

of linguistic information called morphemes, the
building blocks of words.

¨Morphemes in turn consist of phonemes and,
in abstract analyses, morphophonemes.
Often, we will deal with orthographical
symbols.

34

Morphemes
n Morphemes can be classified into two

groups:
¨Free Morpheme: Morphemes which can

occur as a word by themselves.
n e.g., go, book,

¨Bound Morphemes: Morphemes which are
not words in their own right, but have to be
attached in some way to a free morpheme.
n e.g., +ing, +s, +ness

8/28/17

18

35

Dimensions of Morphology

n “Complexity” of Words
¨How many morphemes?

n Morphological Processes
¨What functions do morphemes perform?

n Morpheme combination
¨How do we put the morphemes together to

form words?

36

“Complexity” of Word Structure
n The kind and amount information that is

conveyed with morphology differs from
language to language.
¨Isolating Languages

¨Inflectional Languages

¨Agglutinative Languages

¨Polysynthetic Languages

8/28/17

19

37

Isolating languages

n Isolating languages do not (usually) have any
bound morphemes
¨ Mandarin Chinese
¨ Gou bu ai chi qingcai (dog not like eat vegetable)
¨ This can mean one of the following (depending on the

context)
n The dog doesn’t like to eat vegetables
n The dog didn’t like to eat vegetables
n The dogs don’t like to eat vegetables
n The dogs didn’t like to eat vegetables.
n Dogs don’t like to eat vegetables.

38

Inflectional Languages

n A single bound morphemes conveys
multiple pieces of linguistic information

n (R) most+u: Noun, Sing, Dative
pros+u: Verb, Present, 1sg

n (S) habla+mos: Verb, Perfect, 1pl
Verb, Pres.Ind., 1pl

8/28/17

20

39

Agglutinative Languages

n (Usually multiple) Bound morphemes are
attached to one (or more) free morphemes,
like beads on a string.
¨ Turkish/Turkic, Finnish, Hungarian
¨ Swahili, Aymara

n Each morpheme encodes one "piece" of
linguistic information.
¨(T) gid+iyor+du+m: continuous, Past, 1sg (I

was going)

40

Agglutinative Languages

n Turkish

n Finlandiyalılaştıramadıklarımızdanmışsınızcasına
n (behaving) as if you have been one of those whom we could not

convert into a Finn(ish citizen)/someone from Finland
n Finlandiya+lı+laş+tır+ama+dık+lar+ımız+dan+mış+sınız+casına

¨ Finlandiya+Noun+Prop+A3sg+Pnon+Nom
n ^DB+Adj+With/From
n ^DB+Verb+Become
n ^DB+Verb+Caus
n ^DB+Verb+Able+Neg
n ^DB+Noun+PastPart+A3pl+P1pl+Abl
n ^DB+Verb+Zero+Narr+A2pl
n ^DB+Adverb+AsIf

8/28/17

21

41

Agglutinative Languages

n Aymara
¨ ch’uñüwinkaskirïyätwa
¨ ch’uñu +: +wi +na -ka +si -ka -iri +: +ya:t(a) +wa

n I was (one who was) always at the place for making ch’uñu’
ch’uñu N ‘freeze-dried potatoes’

+: N>V be/make …
+wi V>N place-of
+na in (location)
-ka N>V be-in (location)
+si continuative
-ka imperfect
-iri V>N one who
+: N>V be
+ya:ta 1P recent past
+wa affirmative sentencial

Example Courtesy of Ken Beesley

42

Agglutinative Languages
n Finnish Numerals

¨Finnish numerals are written as one word and
all components inflect and agree in all aspects

¨ Kahdensienkymmenensienkahdeksansien

Example Courtesy of Lauri Karttunen

two ten eighth (28th)
kaksi+Ord+Pl+Gen kymmenen+Ord+Pl+Gen kahdeksan+Ord+Pl+Gen
kahde ns i en kymmene ns i en kahdeksa ns i en

8/28/17

22

43

Agglutinative Languages

n Hungarian
¨szobáikban = szoba[N/room] + ik[PersPl-3-

PossPl] + ban[InessiveCase]
n In their rooms

¨faházaikból = fa[N/wooden] + ház[N/house] +
aik[PersPl3-PossPl] +ból[ElativeCase]
n From their wooden houses

¨olvashattam = olvas[V/read] +
hat[DeriV/is_able] + tam[Sg1-Past]
n I was able to read

Examples courtesy of Gabor Proszeky

Agglutinative Languages

n Swahili
¨walichotusomea = wa[Subject

Pref]+li[Past]+cho[Rel Prefix]+tu[Obj Prefix
1PL]+som[read/Verb]+e[Prep Form]+a[]
n that (thing) which they read for us

¨tulifika=tu[we]+li[Past]+fik[arrive/Verb]+a[]
n We arrived

¨ninafika=ni[I]+na[Present]+fik[arrive/Verb]+a[]
n I am arriving

44

8/28/17

23

45

Polysynthetic Languages

n Use morphology to combine syntactically
related components (e.g. verbs and their
arguments) of a sentence together
¨ Certain Eskimo languages, e.g., Inuktikut

¨ qaya:liyu:lumi: he was excellent at making
kayaks

46

Polysynthetic Languages

n Use morphology to combine syntactically
related components (e.g. verbs and their
arguments) of a sentence together
• Parismunngaujumaniralauqsimanngittunga
Paris+mut+nngau+juma+niraq+lauq+si+ma+nn
git+jun

¨“I never said that I wanted to go to Paris”

Example Courtesy of Ken Beesley

8/28/17

24

Arabic

n Arabic seems to have aspects of
¨Inflecting languages

n wktbt (wa+katab+at “and she wrote …”)
¨Agglutinative languages

n wsyktbunha (wa+sa+ya+ktub+ūn+ha “and will
(masc) they write her)

¨Polysynthetic languages

47

48

Morphological Processes

n There are essentially 3 types of
morphological processes which determine
the functions of morphemes:

¨Inflectional Morphology

¨Derivational Morphology

¨Compounding

8/28/17

25

49

Inflectional Morphology

n Inflectional morphology introduces relevant
information to a word so that it can be used
in the syntactic context properly.
¨That is, it is often required in particular

syntactic contexts.
n Inflectional morphology does not change

the part-of-speech of a word.
n If a language marks a certain piece of

inflectional information, then it must mark
that on all appropriate words.

50

Inflectional Morphology
n Subject-verb agreement, tense, aspect

n Constituent function (indicated by case marking)

Ich gehe
Du gehst
Er/Sie/Es geht
Wir gehen
Ihr geht
Sie gehen

(Ben) gidiyorum
(Sen) gidiyorsun
(O) gidiyor
(Biz) gidiyoruz
(Siz) gidiyorsunuz
(Onlar) gidiyorlar

I/you/we/they go
He/She/It goes

Biz eve gittik – We went to the house.
Biz evi gördük – We saw the house.
Biz evden nefret ettik – We hated the house
Biz evde kaldık. – We stayed at the house.

8/28/17

26

51

Inflectional Morphology

n Number, case, possession, gender, noun-
class for nouns
¨(T) ev+ler+in+den (from your houses)
¨Bantu marks noun class by a prefix.

n Humans: m+tu (person) wa+tu (persons)
n Thin-objects: m+ti (tree) mi+ti (trees)
n Paired things: ji-cho (eye) ma+cho (eyes)
n Instrument: ki+tu (thing) vi+tu (things)
n Extended body parts: u+limi (tongue) n+dimi

(tongues)

52

Inflectional Morphology

n Gender and/or case marking may also
appear on adjectives in agreement with the
nouns they modify
(G) ein neuer Wagen

eine schöne Stadt
ein altes Auto

8/28/17

27

53

Inflectional Morphology

n Case/Gender agreement for determiners

n (G) Der Bleistift (the pencil)
Den Blestift (the pencil (object/Acc))
Dem Bleistift (the pencil (Dative))
Des Bleistifts (of the pencil)

Die Frau (the woman)
Die Frau (the woman (object(Acc))
Der Frau (the woman (Dative)
Der Frau (of the woman)

Inflectional Morphology

n (A) Perfect verb subject conjugation (masc form
only)

n (A) Imperfect verb subject conjugation

54

Singular
katabtu
katabta
kataba

Dual

katabtumā
katabā

Plural
katabnā
katabtum
katabtū

Singular
aktubu
taktubu
yaktubu

Dual

taktubān
yaktubān

Plural
naktubu
taktubūn
yaktubūn

8/28/17

28

55

Derivational Morphology

n Derivational morphology produces a new
word with usually a different part-of-speech
category.
¨e.g., make a verb from a noun.

n The new word is said to be derived from
the old word.

56

Derivational Morphology

¨happy (Adj) Þ happi+ness (Noun)

¨(T) elçi (Noun, ambassador) Þ
elçi+lik (Noun, embassy)

¨(G) Botschaft (Noun, embassy) Þ
Botschaft+er (Noun, ambassador)

¨(T) git (Verb, go) Þ
gid+er+ken (Adverb, while going)

8/28/17

29

57

Derivational Morphology

n Productive vs. unproductive derivational
morphology

¨Productive: can apply to almost all members of
a class of words

¨Unproductive: applies to only a few members
of a class or words
n lexicalized derivations (e.g., application as in

“application program”)

58

Compounding

n Compounding is concatenation of two or
more free morphemes (usually nouns) to
form a new word (though the boundary between normal
words and compounds is not very clear in some languages)

¨firefighter / fire-fighter
¨(G)

Lebensversicherungsgesellschaftsangesteller
(life insurance company employee)

¨(T) acemborusu ((lit.) Persian pipe – neither
Persian nor pipe, but a flower)

8/28/17

30

59

Combining Morphemes

n Morphemes can be combined in a variety of ways
to make up words:
¨ Concatenative

¨ Infixation

¨ Circumfixation

¨ Templatic Combination

¨ Reduplication

60

Concatenative Combination

n Bound morphemes are attached before or
after the free morpheme (or any other
intervening morphemes).
¨Prefixation: bound morphemes go before the

free morpheme
n un+happy

¨Suffixation: bound morphemes go after the free
morpheme
n happi+ness

¨ Need to be careful about the order [un+happi]+ness (not
un +[happi+ness]

n el+ler+im+de+ki+ler

8/28/17

31

61

Concatenative Combination

n Such concatenation can trigger spelling
(orthographical) and/or phonological
changes at the concatenation boundary (or
even beyond)
¨happi+ness
¨(T) şarap (wine) Þ şarab+ı
¨(T) burun (nose) Þ burn+a
¨(G) der Mann (man) Þ die Männ+er (men)

62

Infixation

n The bound morpheme is inserted into free
morpheme stem.

¨Bontoc (due to Sproat)
n fikas (Adj, strong) Þ fumikas (Verb, to be

strong)
¨Tagalog

n pili Þ pumili, pinili

8/28/17

32

63

Circumfixation

n Part of the morpheme goes before the
stem, part goes after the stem.

n German past participle
¨ tauschen (Verb, to exchange) Þ getauscht (Participle)
¨ Sagen (Verb, to say) Þ gesagt

64

Templatic Combination

n The root is modulated with a template to generate
stem to which other morphemes can be added by
concatentaion etc.

n Semitic Languages (e.g., Arabic)
¨ root ktb (the general concept of writing)
¨ template CVCCVC
¨ vocalism (a,a)

k t b
k a t t a b
C V C C V C

8/28/17

33

65

Templatic Combination

n More examples of templatic combination

TEMPLATE VOVEL PATTERN
aa (active) ui (passive)

CVCVC katab kutib ‘write’
CVCCVC kattab kuttib ‘cause to write’
CVVCVC ka:tab ku:tib ‘correspond’
tVCVVCVC taka:tab tuku:tib ‘write each other’
nCVVCVC nka:tab nku:tib ‘subscribe’
CtVCVC ktatab ktutib ‘write’
stVCCVC staktab stuktib ‘dictate’

66

Reduplication

n Some or all of a word is duplicated to mark a
morphological process
¨ Indonesian

n orang (man) Þ orangorang (men)
¨ Bambara

n wulu (dog) Þ wuluowulu (whichever dog)
¨ Turkish

n mavi (blue) Þ masmavi (very blue)
n kırmızı (red) Þ kıpkırmızı (very red)

n koşa koşa (by running)

8/28/17

34

67

Zero Morphology

n Derivation/inflection takes place without any
additional morpheme
¨ English

n second (ordinal) Þ (to) second (a motion)
n man (noun) Þ (to) man (a place)

68

Subtractive morphology

n Part of the stem is removed to mark a
morphological feature

n Sproat (1992) gives Koasati as a language where
part of the word is removed to indicate a plural
subject agreement.

¨ obkahitiplin (go backwards, singular subject)
¨ obakhitlin (go backwards, plural subject)

8/28/17

35

69

(Back to) Computational Morphology

n Computational morphology deals with
¨developing theories and techniques for
¨computational analysis and synthesis of word

forms.
n Analysis: Separate and identify the constituent

morphemes and mark the information they encode
n Synthesis (Generation): Given a set constituent

morphemes or information be encoded, produce the
corresponding word(s)

70

Computational Morphology
n Morphological analysis

Break down a given word
form into its constituents
and map them to features

Morphological
Analyzer

Word

All Possible
Analyses

Lemma/Root+Features encoded in the word

Sequence of characters

8/28/17

36

71

Computational Morphology
n Morphological analysis

Break down a given word
form into its constituents
and map them to features

Morphological
Analyzer

stopping

stop+Verb+PresCont

72

Computational Morphology

n Ideally we would like to be able to use the
same system “in reverse” to generate
words from a given sequence or
morphemes
¨Take “analyses” as input
¨Produce words.

8/28/17

37

73

Computational Morphology
n Morphological generation

Morphological
Generator

Word(s)

Analysis

74

Computational Morphology
n Morphological generation

Morphological
Generator

stopping

stop+Verb+PresCont

8/28/17

38

75

Computational Morphology
n What is in the box?

Morphological
Analyzer/
Generator

Word(s)

Analyses

76

Computational Morphology
n What is in the box?

n Data
¨ Language Specific

n Engine
¨ Language Independent

Word(s)

Analyses

EngineData

8/28/17

39

77

Issues in Developing a Morphological
Analyzer

n What kind of data needs to be compiled?

n What kinds of ambiguity can occur?

n What are possible implementation
strategies?

78

Some Terminology

n Lexicon is a structured collection of all the
morphemes
¨Root words (free morphemes)
¨Morphemes (bound morphemes)

n Morphotactics is a model of how and in
what order the morphemes combine.

n Morphographemics is a model of what/how
changes occur when morphemes are
combined.

8/28/17

40

79

Data Needed - Lexicon

n A list of root words with parts-of-speech and any
other information (e.g. gender, animateness, etc.)
that may be needed by morphotactical and
morphographemic phenomena.
¨ (G) Kind (noun, neuter), Hund (noun, masculin)

n A list of morphemes along with the morphological
information/features they encode (using some
convention for naming)
¨ +s (plural, PL), +s (present tense, 3rd person singular,

A3SG)

80

Data Needed - Morphotactics

n How morphemes are combined
¨ Valid morpheme sequences

n Usually as “paradigms” based on (broad) classes of root words
¨ (T) In nouns, plural morpheme precedes possessive morpheme

which precedes case morpheme
¨ (Fin) In nouns, Plural morpheme precedes case morpheme

which precedes possessive morpheme
¨ (F,P) Certain classes of verbs follow certain “conjugation

paradigms”

¨ Exceptions
n go+ed is not a valid combination of morphemes

¨ go+ing is!

8/28/17

41

81

Data Needed - Morphotactics

n Co-occurence/Long distance Constraints
¨This prefix only goes together with this suffix!

n (G) ge+tausch+t
¨This prefix can not go with this suffix

n (A) The prefix bi+ can only appear with genitive
case

¨ bi+l+kaatib+u is not OK
¨ bi+l+kaatib+i is OK

n (A) Definite nouns can not have indefinite endings
¨ al+kaatib+an is not OK
¨ al+kaatib+a is OK

n Only subset of suffixes apply to a set of roots
¨ sheep does not have a plural form!

82

Data Needed - Morphographemics

n A (comprehensive) inventory of what
happens when morphemes are combined.
¨Need a consistent representation of

morphemes
n look+ed Þ looked, save+ed Þ saved

¨ Morpheme is +ed but under certain “conditions” the e may
be deleted

n look+d Þ looked, save+d Þ saved
¨ Morpheme is +d but under certain “conditions” the e may

be inserted

8/28/17

42

83

Representation
n Lexical form: An underlying representation of

morphemes w/o any morphographemic changes
applied.
¨ easy+est
¨ shop+ed
¨ blemish+es
¨ vase+es

n Surface Form: The actual written form
¨ easiest
¨ shopped
¨ blemishes
¨ vases

84

Representation
n Lexical form: An underlying representation of

morphemes w/o any morphographemic changes
applied.
¨ ev+lAr A={a,e}
¨ oda+lAr
¨ tarak+sH H={ı, i, u, ü}
¨ kese+sH

n Surface Form: The actual written form
¨ evler
¨ odalar
¨ tarağı
¨ kesesi

Abstract meta-phonemes

8/28/17

43

85

Data Needed – Word List

n A (large) list of words compiled from actual
text
¨Test coverage
¨See if all ambiguities are produced.

86

Morphological Ambiguity

n Morphological structure/interpretation is
usually ambiguous
¨Part-of-speech ambiguity

n book (verb), book (noun)
¨Morpheme ambiguity

n +s (plural) +s (present tense, 3rd singular)
n (T) +mA (infinitive), +mA (negation)

¨Segmentation ambiguity
n Word can be legitimately divided into morphemes in

a number of ways

8/28/17

44

87

Morphological Ambiguity

n The same surface form is interpreted in
many possible ways in different syntactic
contexts.
(F) danse

danse+Verb+Subj+3sg (lest s/he dance)
danse+Verb+Subj+1sg (lest I dance)
danse+Verb+Imp+2sg ((you) dance!)
danse+Verb+Ind+3sg ((s/he) dances)
danse+Verb+Ind+1sg ((I) dance)
danse+Noun+Fem+Sg (dance)

(E) read
read+Verb+Pres+N3sg (VBP-I/you/we/they read)
read+Verb+Past (VBD - read past tense)
read+Verb+Participle+(VBN – participle form)
read+Verb (VB - infinitive form)
read+Noun+Sg (NN – singular noun)

88

Morphological Ambiguity

n The same morpheme can be interpreted
differently depending on its position in the
morpheme order:

¨(T) git+me ((the act of) going),
¨ git+me (don’t go)

8/28/17

45

89

Morphological Ambiguity

n The word can be segmented in different
ways leading to different interpretations,
e.g. (T) koyun:
¨ koyun+Noun+Sg+Pnon+Nom (koyun-sheep)
¨ koy+Noun+Sg+P2sg+Nom (koy+un-your bay)
¨ koy+Noun+Sg+Pnon+Gen (koy+[n]un – of the bay)
¨ koyu+Adj+^DB+Noun+Sg+P2sg+Nom

(koyu+[u]n – your dark (thing)
¨ koy+Verb+Imp+2sg (koy+un – put (it) down)

90

Morphological Ambiguity

n The word can be segmented in different
ways leading to different interpretations,
e.g.
(Sw) frukosten:

frukost + en ‘the breakfast’
frukost+en ‘breakfast juniper’
fru+kost+en ‘wife nutrition juniper’
fru+kost+en ‘the wife nutrition’
fru+ko+sten ‘wife cow stone’

(H) ebth:
e+bth ‘that field’
e+b+th ‘that in tea(?)’
ebt+h ‘her sitting’
e+bt+h ‘that her daughter’

8/28/17

46

91

Morphological Ambiguity

n Orthography could be ambiguous or
underspecified.

91

…

16 possible interpretations

92

Morphological Disambiguation

n Morphological Disambiguation or Tagging
is the process of choosing the "proper"
morphological interpretation of a token in a
given context.

He can can the can.

8/28/17

47

93

Morphological Disambiguation

n He can can the can.
¨Modal
¨Infinitive form
¨Singular Noun
¨Non-third person present tense verb

n We can tomatoes every summer.

94

Morphological Disambiguation

n These days standard statistical approaches
(e.g., Hidden Markov Models) can solve
this problem with quite high accuracy.

n The accuracy for languages with complex
morphology/ large number of tags is lower.

8/28/17

48

95

Implementation Approaches for
Computational Morphology
n List all word-forms as a database

n Heuristic/Rule-based affix-stripping

n Finite State Approaches

96

Listing all Word Forms

n List of all word forms and corresponding
features in the analyses.
¨Feasible if the word list is “small”

…..
harass harass V INF
harassed harass V PAST
harassed harass V PPART WK
harasser harasser N 3sg
harasser's harasser N 3sg GEN
harassers harasser N 3pl
harassers' harasser N 3pl GEN
harasses harass V 3sg PRES
harassing harass V PROG
harassingly harassingly Adv
harassment harassment N 3sg
harassment's harassment N 3sg GEN
harassments harassment N 3pl
harassments' harassment N 3pl GEN
harbinger harbinger N 3sg
harbinger harbinger V INF
harbinger's harbinger N 3sg GEN
…..

8/28/17

49

97

Listing all Word Forms

n No need for spelling rules
n Analysis becomes a simple search

procedure
¨get the word form and search for matches,
¨output the features for all matching entries.

n However, not very easy to create
¨Labor intensive

n Not feasible for large / “infinite” vocabulary
languages
¨Turkish, Aymara

98

Heuristic/Rule-based Affix-stripping

n Uses ad-hoc language-specific rules
¨to split words into morphemes
¨to “undo” morphographemic changes

¨scarcity
n -ity looks like a noun making suffix, let’s strip it
n scarc is not a known root, so let’s add e and see if

we get an adjective

8/28/17

50

99

Heuristic/Rule-based Affix-stripping

n Uses ad-hoc language-specific rules
¨to split words into morphemes
¨to “undo” morphographemic changes

¨Lots of language-specific heuristics and rule
development

¨Practically impossible to use in reverse as a
morphological generator

100

Finite State Approaches

n Finite State Morphology
¨Represent

n lexicons and
n morphographemic rules

in one unified formalism of finite state
transducers.

n Two Level Morphology
n Cascade Rules

8/28/17

51

101

OVERVIEW

n Overview of Morphology
n Computational Morphology
n Overview of Finite State Machines
n Finite State Morphology

¨Two-level Morphology
¨Cascade Rules

102

Why is the Finite State Approach
Interesting?
n Finite state systems are mathematically

well-understood, elegant, flexible.
n Finite state systems are computationally

efficient.
n For typical natural language processing

tasks, finite state systems provide compact
representations.

n Finite state systems are inherently
bidirectional

8/28/17

52

103

Finite State Concepts

n Alphabet (A): Finite set of symbols
A={a,b}

n String (w): concatenation of 0 or more
symbols.
abaab, e(empty string)

104

Finite State Concepts

n Alphabet (A): Finite set of symbols
n String (w): concatenation of 0 or more

symbols.
n A*: The set of all possible strings

A*={e,a,b,aa,ab,ba,bb,aaa,aab … }

8/28/17

53

105

Finite State Concepts

n Alphabet (A): Finite set of symbols
n String (w): concatenation of 0 or more

symbols.
n A*: The set of all possible strings
n (formal) Language (L): a subset of A*

¨The set of strings with an even number of a's
n e.g. abbaaba but not abbaa

¨The set of strings with equal number of a's and
b's
n e.g., ababab but not bbbaa

106

Alphabets and Languages

A A*
LFinite

Infinite
L can be finite or infinite

A={a,b}

A*={e,a,b,aa,ab,ba,bb,aaa,aab … }

The set of strings with an even number of a's

8/28/17

54

107

Describing (Formal) Languages

n L = {a, aa, aab} – description by enumeration
n L = {anbn: n³ 0} = { e, ab, aabb, aaabbb,….}
n L = { w | w has even number of a’s}
n L = {w | w = wR} – All strings that are the same as

their reverses, e.g., a, abba
n L = {w | w = x x} – All strings that are formed by

duplicating strings once, e.g., abab
n L = {w | w is a syntactically correct Java program}

108

Describing (Formal) Languages

n L = {w : w is a valid English word}
n L = {w: w is a valid Turkish word}
n L = {w: w is a valid English sentence}

8/28/17

55

109

Languages

n Languages are sets. So we can do “set”
things with them
¨Union
¨Intersection
¨Complement with respect to the universe set

A*.

110

Describing (Formal) Languages

n How do we describe languages?
¨L = {anbn: n³ 0} is fine but not that terribly

useful
n We need finite descriptions (of usually

infinite sets)
n We need to be able to use these

descriptions in “mechanizable” procedures.
¨e.g., to check if a given string is in the

language or not

8/28/17

56

111

Recognition Problem

n Given a language L and a string w
¨Is w in L?

¨The problem is that interesting languages are
infinite!

¨We need finite descriptions of (infinite)
languages.

112

Classes of Languages

A A*
L1Finite

Infinite

L2

L3

Alphabet

Set of all possible strings Set of all languages
(set of all subsets of A*)

A class of languages

8/28/17

57

113

Classes of (Formal) Languages

n Chomksy Hierarchy
¨Regular Languages (simplest)
¨Context Free Languages
¨Context Sensitive Languages
¨Recursively Enumerable Languages

114

Regular Languages

n Regular languages are those that can be
recognized by a finite state recognizer.

8/28/17

58

115

Regular Languages

n Regular languages are those that can be
recognized by a finite state recognizer.

n What is a finite state recognizer?

116

Finite State Recognizers
n Consider the mechanization of “recognizing”

strings with even number of a’s.
¨Input is a string consisting of a’s and b’s

n abaabbaaba
¨Count a’s but modulo 2, i.e., when count

reaches 2 reset to 0. Ignore the b’s – we are
not interested in b’s.
n 0a1b1a0a1b1b1a0a1b1a0

¨Since we reset to 0 after seeing two a’s, any
string that ends with a count 0 matches our
condition.

8/28/17

59

117

Finite State Recognizers
n 0a1b1a0a1b1b1a0a1b1a0

n The symbols shown in between input symbols
encode/remember some “interesting” property of
the string seen so far.
¨ e.g., a 0 shows that we have seen an even number of

a’s, while a 1, shows an odd number of a’s, so far.
n Let’s call this “what we remember from past” as

the state.
n A “finite state recognizer” can only remember a

finite number of distinct pieces of information from
the past.

118

Finite State Recognizers

n We picture FSRs with state graphs.

q0 q1

b a b

a
Start State

States

Transitions

Input Symbols

Accept State

8/28/17

60

119

Finite State Recognizers

q0 q1

b a b

a

Is abab in the language?

a b a b
^

120

Finite State Recognizers

q0 q1

b a b

a

Is abab in the language?

a b a b
^

8/28/17

61

121

Finite State Recognizers

q0 q1

b a b

a

Is abab in the language?

a b a b
^

122

Finite State Recognizers

q0 q1

b a b

a

Is abab in the language?

a b a b
^

8/28/17

62

123

Finite State Recognizers

q0 q1

b a b

a

Is abab in the language? YES

a b a b
^

124

Finite State Recognizers

q0 q1

b a b

a

Is abab in the language? YES

a b a b
^

The state q0 remembers the fact that we have seen an even number of a’s
The state q1 remembers the fact that we have seen an odd number of a’s

8/28/17

63

125

Finite State Recognizers

n Abstract machines for regular languages:
M = {Q, A, q0, Next, Final}

126

Finite State Recognizers

n Abstract machines for regular languages:
M = {Q, A, q0, Next, Final}
¨Q: Set of states

8/28/17

64

127

Finite State Recognizers

n Abstract machines for regular languages:
M = {Q, A, q0, Next, Final}
¨Q: Set of states
¨A: Alphabet

128

Finite State Recognizers

n Abstract machines for regular languages:
M = {Q, A, q0, Next, Final}
¨Q: Set of states
¨A: Alphabet
¨q0: Initial state

8/28/17

65

129

Finite State Recognizers

n Abstract machines for regular languages:
M = {Q, A, q0, Next, Final}
¨Q: Set of states
¨A: Alphabet
¨q0: Initial state
¨Next: Next state function Q x A ® Q

130

Finite State Recognizers

n Abstract machines for regular languages:
M = {Q, A, q0, Next, Final}
¨Q: Set of states
¨A: Alphabet
¨q0: Initial state
¨Next: Next state function Q x A ® Q
¨Final: a subset of the states called the final

states

8/28/17

66

131

Finite State Recognizers

q0 q1

b a b

a

A = {a,b}
Q = {q0, q1}
Next = {((q0,b),q0),

((q0,a),q1),
((q1,b),q1),
((q1,a),q0))}

Final = {q0}

If the machine is in state q0 and the input is a then
the next state is q1

132

Finite State Recognizers

n Abstract machines for regular languages:
M = {Q, A, q0, Next, Final}

n M accepts w Î A*, if
¨starting in state q0, M proceeds by looking at

each symbol in w, and
¨ends up in one of the final states when the

string w is exhausted.

8/28/17

67

133

Finite State Recognizers

n Note that the description of the recognizer
itself is finite.
¨Finite number of states
¨Finite number of alphabet symbols
¨Finite number of transitions

n Number of strings accepted can be infinite.

134

Another Example

s

l

e e
p

i

n

g

Accepts sleep, sleeping

IMPORTANT CONVENTION
If at some state, there is no transition for a symbol, we assume that
the FSR rejects the string.

8/28/17

68

135

Another Example

s

l

e e
p

i

n

g

p

t

s

Accepts sleep, sleeping, sleeps, slept

136

Another Example

s

l

e e
p

i

n

g

p

t

s
w

Accepts sleep, sleeping, sleeps, slept, sweep, ….

8/28/17

69

137

Another Example

s

l

e e
p

i

n

g

p

t

s
w

k

Accepts sleep, sleeping, sleeps, slept, sweep, …., keep,…

138

Another Example

s

l

e e
p

i

n

g

p

t

s
w

k

Accepts …..save, saving, saved, saves

a

v i

e
s

d

8/28/17

70

139

Regular Languages

n A language whose strings are accepted by
some finite state recognizer is a regular
language.

Regular
Languages

Finite State
Recognizers

140

Regular Languages

n A language whose strings are accepted by
some finite state recognizer is a regular
language.

n However, FSRs can get rather wieldy; we
need higher level notations for describing
regular languages.

Regular
Languages

Finite State
Recognizers

8/28/17

71

141

142

8/28/17

72

143

Regular Expressions

n A regular expression is compact formula or
metalanguage that describes a regular
language.

144

Constructing Regular Expressions
Expression

n F
n e
n a,"a Î A
n R1 | R2
n R1 R2
n [R]

Language
n { }
n {e}
n {a}
n L1 È L2
n {w1w2: w1ÎL1 and w2ÎL2}
n L

8/28/17

73

145

Constructing Regular Expressions
Expression

n F
n e
n a,"a Î A
n R1 | R2
n R1 R2
n [R]

Language
n { }
n {e}
n {a}
n L1 È L2
n {w1w2: w1ÎL1 and w2ÎL2}
n L

a b [a | c] [d | e]

146

Constructing Regular Expressions
Expression

n F
n e
n a,"a Î A
n R1 | R2
n R1 R2
n [R]

Language
n { }
n {e}
n {a}
n L1 È L2
n {w1w2: w1ÎL1 and w2ÎL2}
n L

a b [a | c] [d | e] { abad, abae, abcd, abae}

8/28/17

74

147

Constructing Regular Expressions
n This much is not that interesting; allows us

to describe only finite languages.
n The Kleene Star operator describes infinite

sets.
R*

{e} È L È L L È L L L È ….

148

Kleene Star Operator

n a* Þ {e, a, aa, aaa, aaaa, …..}

8/28/17

75

149

Kleene Star Operator

n a* Þ {e, a, aa, aaa, aaaa, …..}
n [ab]* Þ {e, ab, abab, ababab, … }

150

Kleene Star Operator

n a* Þ {e, a, aa, aaa, aaaa, …..}
n [ab]* Þ {e, ab, abab, ababab, … }
n ab*a Þ {aa, aba, abba, abbba,…}

8/28/17

76

151

Kleene Star Operator

n a* Þ {e, a, aa, aaa, aaaa, …..}
n [ab]* Þ {e, ab, abab, ababab, … }
n ab*a Þ {aa, aba, abba, abbba,…}
n [a|b]*[c|d]* Þ {e, a, b, c, d, ac, ad, bc, bd,

aac, abc,bac, bbc, …..}

152

Regular Expressions

n Regular expression for set of strings with
an even number of a's.

[b* a b* a]* b*
¨Any number of concatenations of strings of the

sort
n Any number of b's followed by an a followed by any

number of b's followed by another a
¨Ending with any number of b's

8/28/17

77

153

Regular Expressions

n Regular expression for set of strings with
an even number of a's.

[b* a b* a]* b*
¨b b a b a b b a a b a a a b a b b b

b*b* a b* a b* a b* a b* a b* a b* a b* a

Any number of strings matching b*ab*a concatenated

Ending with any number of
b’s

154

Regular Languages

n Regular languages are described by
regular expressions.

n Regular languages are recognized by finite
state recognizers.

n Regular expressions define finite state
recognizers.

8/28/17

78

155

More Examples of Regular Expressions

n All strings ending in a
¨[a|b]*a

n All strings in which the first and the last
symbols are the same
¨[a [a|b]* a] | [b [a|b]* b] | a | b

n All strings in which the third symbol from
the end is a b
¨[a|b]* b [a|b] [a|b]

156

More Examples of Regular Expressions

n Assume an alphabet A={a,b,…,z}
n All strings ending in ing

¨A* i n g
n All strings that start with an a and end with

a ed
¨a A* e d

8/28/17

79

157

Regular Languages to Regular Relations

n A regular language is a set of strings, e.g.
{ “cat”, “fly”, “big” }.

158

Regular Languages to Regular Relations

n A regular language is a set of strings, e.g.
{ “cat”, “fly”, “big” }.

n An ordered pair of strings, notated
<“upper”, “lower”>, relates two strings, e.g.
<“wiggle+ing”, “wiggling”>.

8/28/17

80

159

Regular Languages to Regular Relations
n A regular language is a set of strings, e.g. { “cat”,

“fly”, “big” }.
n An ordered pair of strings, notated <“upper”,

“lower”>, relates two strings, e.g. <“wiggle+ing”,
“wiggling”>.

n A regular relation is a set of ordered pairs of
strings, e.g.
¨ { <“cat+N”, “cat”> , <“fly+N”, “fly”> , <“fly+V”, “fly”>,

<“big+A”, “big”> }

¨ { <“cat”, “cats”> , <“zebra”, “zebras”> , <“deer”, “deer”>,
<“ox”, “oxen”>, <“child”, “children”> }

160

Regular Relations

n The set of upper-side strings in a regular
relation (upper language) is a regular
language.
¨{ cat+N , fly+N, fly+V, big+A}

n The set of lower-side strings in a regular
relation (lower language) is a regular
language.
¨{cat ,fly, big }

8/28/17

81

161

Regular Relations

n A regular relation is a “mapping” between
two regular ranguages. Each string in one
of the languages is “related” to one or more
strings of the other language.

n A regular relation can be described in a
regular expression and encoded in a Finite-
State Transducer (FST).

162

Finite State Transducers

n Regular relations can be defined by regular
expressions over an alphabet of pairs of symbols
u:l (u for upper, l for lower)

n In general either u or l may be the empty string
symbol.
¨ e:l: a symbol on the lower side maps to “nothing” on the

upper side
¨ u: e: a symbol on the upper side maps to “nothing” on

the lower side
n It is also convenient to view any recognizer as an

identity transducer.

8/28/17

82

163

qi qj

b/a

Finite State Transducers

n Now the automaton outputs a symbol at every
transition, e.g., if the lower input symbol is a, then
b is output as the upper symbol (or vice-versa).

n The output is defined iff the input is accepted (on
the input side), otherwise there is no output.

164

Relations and Transducers

Regular relation

Regular expression
Finite-state transducer

{ <ac,ac>, <abc,adc>, <abbc,addc>, <abbbc,adddc>... }

a:a [b:d]* c:c

between [a b* c] and [a d* c].

0
a:a c:c

21

b:d

“upper language” “lower language”

Slide courtesy of Lauri Karttunen

8/28/17

83

165

Relations and Transducers

Regular relation

Regular expression
Finite-state transducer

{ <ac,ac>, <abc,adc>, <abbc,addc>, <abbbc,adddc>... }

a [b:d]* c

between [a b* c] and [a d* c].

0
a c

21

b:d

“upper language” “lower language”

Slide courtesy of Lauri Karttunen

Convention: when both upper and lower
symbols are same

166

Finite State Transducers

n If the input string has an even number of
a's then flip each symbol.

q0 q1

a:b b:a a:b

b:a

8/28/17

84

167

A Linguistic Example

v o u l o i r +IndP +SG +P3

v e u t0 0 0 0 0 0

From now on we will use the symbol 0 (zero) to denote the empty string e

Maps the lower string veut to the upper string
vouloir+IndP+SG+P3 (and vice versa)

168

Finite State Transducers – Black Box View

n We say T transduces
the lower string w1 into
string upper string w2
in the upward direction
(lookup)

n We say T transduces
the upper string w2
into string lower string
w1 in the downward
direction (lookdown)

n A given string may
map to >=0 strings

Finite State
Transducer

T

w1 e L1

w2 e L2

8/28/17

85

169

Combining Transducers

n In algebra we write
¨ y=f(x) to indicate that function f maps x to y
¨ Similarly in z=g(y), g maps y to z

n We can combine these to
¨ z= g(f(x)) to map directly from x to z and write

this as z = (g · f) (x)
¨ g · f is the composed function
¨ If y=x2 and z = y3 then z = x6

170

Combining Transducers

n The same idea can be applied to
transducers – though they define relations
in general.

8/28/17

86

171

Composing Transducers

f

U1

L1

g

U2

L2

f

g
f °g

L2’ = g(L1 Ç U2)

U1’= f-1(L1 Ç U2)
x

y

y

z

172

Composing Transducers

f

U1

L1

g

U2

L2

f

g
f °g

L2’ = g(L1 Ç U2)

U1’= f-1(L1 Ç U2)
x

y

y

z
f ° g = {<x,z>: $y (<x,y> Î f and <y,z> Î g)}

where x, y, z are strings

The y’s have to be equal, so there is an implicit intersection

8/28/17

87

173

Composing Transducers
n Composition is an operation that merges two

transducers “vertically”.
¨ Let X be a transducer that contains the single ordered

pair < “dog”, “chien”>.
¨ Let Y be a transducer that contains the single ordered

pair <“chien”, “Hund”>.
¨ The composition of X over Y, notated X o Y, is the

relation that contains the ordered pair <“dog”, “Hund”>.

n Composition merges any two transducers
“vertically”. If the shared middle level has a non-
empty intersection, then the result will be a non-
empty relation.

174

Composing Transducers

n The crucial property is that the two finite
state transducers can be composed into a
single transducer.
¨Details are hairy and not relevant.

8/28/17

88

175

Composing Transducers - Example

n Maps a (finite) set of
English numerals to
integers

n Take my word that this
can be done with a
finite state transducer.

English Numeral to
Number Transducer

One thousand two hundred seventy three

1273

176

Composing Transducers - Example

n Maps a (finite) set of
numbers to Turkish
numerals

n Again, take my word
that this can be done
with a finite state
transducer.

Numbers to
Turkish Numerals

Transducer

Bin iki yüz yetmiş üç

1273

8/28/17

89

177

Composing Transducers - Example

Number to
Turkish Numeral Transducer

Bin iki yüz yetmiş üç

English Numeral to
Number Transducer

One thousand two hundred seventy three

1273

178

Composing Transducers - Example

Number to
Turkish Numeral Transducer

Bin iki yüz yetmiş üç

English Numeral to
Number Transducer

One thousand two hundred seventy three

1273

Bin iki yüz yetmiş üç

One thousand two hundred seventy three

English Numeral
to

Turkish Numeral
Transducer

Compose

8/28/17

90

179

Composing Transducers - Example

Number to
Finnish Numeral Transducer

satakaksikymmentäkolme

English Numeral to
Number Transducer

One hundred twenty three

123

English Numeral
to

Finnish Numeral
Transducer

One hundred twenty three

satakaksikymmentäkolme

Compose

180

Morphology & Finite State Concepts

n Some references:
¨ Hopcroft, Motwani and Ullman, Formal Languages and

Automata Theory, Addison Wesley
¨ Beesley and Karttunen, Finite State Morphology, CSLI,

2003
¨ Kaplan and Kay. “Regular Models of Phonological

Rule Systems” in Computational Linguistics 20:3,
1994. Pp. 331-378.

¨ Karttunen et al., Regular Expressions for Language
Engineering, Natural Language Engineering, 1996

8/28/17

91

181

End of digression

n How does all this tie back to computational
morphology?

182

OVERVIEW

n Overview of Morphology
n Computational Morphology
n Overview of Finite State Machines
n Finite State Morphology

¨Two-level Morphology
¨Cascade Rules

8/28/17

92

183

Morphological Analysis and Regular Sets
n Assumption:

The set of words in a (natural) language is a regular
(formal) language.

n Finite: Trivially true; though instead of listing all words, one
needs to abstract and describe phenomena.

n Infinite: Very accurate approximation.

n BUT: Processes like (unbounded) reduplication
are out of the finite state realm.

n Let’s also assume that we combine morphemes
by simple concatenation.
¨ Not a serious limitation

184

Morphological Analysis

n Morphological
analysis can be seen
as a finite state
transduction

Finite State
Transducer

T

happiest Î English_Words

happy+Adj+Sup

8/28/17

93

185

Morphological Analysis as FS Transduction

n First approximation

n Need to describe
¨Lexicon (of free and bound morphemes)

¨Spelling change rules in a finite state
framework.

186

The Lexicon as a Finite State Transducer

n Assume words have the form
prefix+root+suffix where the prefix and the
suffix are optional.
So:
Prefix = [P1 | P2 | …| Pk]
Root = [R1 | R2| … | Rm]
Suffix = [S1 | S2 | … | Sn]
Lexicon = (Prefix) Root (Suffix)

(R) = [R | e], that is, R is optional.

8/28/17

94

187

The Lexicon as a Finite State Transducer

n Prefix = [[u n +] | [d i s +] | [i n +]]
Root = [[t i e] | [e m b a r k] | [h a p p y]

| [d e c e n t] | [f a s t e n]]
Suffix = [[+ s] | [+ i n g] | [+ e r] | [+ e d]]

Tie, embark, happy, un+tie, dis+embark+ing,
in+decent, un+happy √

un+embark, in+happy+ing …. X

188

The Lexicon as a Finite State Transducer

n Lexicon =
[([u n +]) [[t i e] | [f a s t e n]] ([[+e d] | [+ i n g] | [+ s]])]

|
[([d i s +]) [e m b a r k] ([[+e d] | [+ i n g] | [+ s]])]

|
[([u n +]) [h a p p y] ([+ e r])]

|
[(i n +) [d e c e n t]]

Note that some patterns are now emerging
tie, fasten, embark are verbs, but differ in prefixes,
happy and decent are adjectives, but behave differently

8/28/17

95

189

The Lexicon

n The lexicon structure can be refined to a
point so that all and only valid forms are
accepted and others rejected.

n This is very painful to do manually for any
(natural) language.

190

Describing Lexicons

n Current available systems for morphology provide
a simple scheme for describing finite state
lexicons.
¨ Xerox Finite State Tools
¨ PC-KIMMO

n Roots and affixes are grouped and linked to each
other as required by the morphotactics.

n A compiler (lexc) converts this description to a
finite state transducer

8/28/17

96

191

Describing Lexicons
LEXICON NOUNS

abacus NOUN-STEM; ;; same as abacus:abacus
car NOUN-STEM;
table NOUN-STEM;

…
information+Noun+Sg: information End;

…
zymurgy NOUN-STEM;

LEXICON NOUN-STEM
+Noun:0 NOUN-SUFFIXES

Think of these as (roughly) the NEXT function of a transducer
upper:lower next-state (but strings of symbols)

192

Describing Lexicons

LEXICON NOUN-SUFFIXES
+Sg:0 End;
+Pl:+s End;

LEXICON REGULAR-VERBS
admire REG-VERB-STEM;
head REG-VERB-STEM;
..
zip REG-VERB-STEM;

LEXICON IRREGULAR-VERBS
…..

LEXICON REG-VERB-STEM
+Verb:0 REG-VERB-SUFFIXES;

LEXICON REG-VERB-SUFFIXES
+Pres+3sg:+s End;
+Past:+ed End;
+Part:+ed End;
+Cont:+ing End;

8/28/17

97

193

How Does it Work?

n Suppose we have the string abacus+s
¨ The first segment matches abacus in the NOUNS

lexicon, “outputs” abacus and we next visit the NOUN-
STEM lexicon.

¨ Here, the only option is to match to the empty string
and “output” +Noun and visit the NOUN-SUFFIXES
lexicon.

¨ Here we have two options
n Match the epsilon and “output” +Sg but there is more stuff so

this fails.
n Match the +s and “output” +Plu and the finish.

¨ Output is abacus+Noun+Pl

194

Describing Lexicons
LEXICON ADJECTIVES
…

LEXICON ADVERBS
…

LEXICON ROOT
NOUNS;
REGULAR-VERBS;
….
ADJECTIVES;
….

Lexicon Transducer

happy+est

happy+Adj+Sup

8/28/17

98

195

Lexicon as a FS Transducer
h a p p y +Adj +Sup 0 0
h a p p y + e s t

s
s

a v e +Verb +Past 0
a v e + e d

t
t

a b l e +Noun +Pl
a b l e + s

+ +Verb

s 0

+Pres +3sg

.

.

.

.

.

.

.

.

.

A typical lexicon will be represented with 105 to 106 states.

Morphotactics in Arabic

n As we saw earlier, words in Arabic are
based on a root and pattern scheme:
¨A root consisting of 3 consonants (radicals)
¨A template and a vocalization.
which combine to give a stem.

n Further prefixes and suffixes can be
attached to the stem in a concatenative
fashion.

196

8/28/17

99

Morphotactics in Arabic

197

CVCVC

d r s

a a

wa+ +at

Pattern

Root

Vocalization

Prefix Suffix

daras

wa+daras+at

“and she learned/studied”

FormI+Perfect+Active

learn/study

Morphotactics in Arabic

198

CVCVC

d r s

u i

wa+ +at

Pattern

Root

Vocalization

Prefix Suffix

duris

wa+duris+at

“and she was learned/studied”

FormI+Perfect+Passive

learn/study

8/28/17

100

Morphotactics in Arabic

199

CVCVC

k t b

a a

wa+ +at

Pattern

Root

Vocalization

Prefix Suffix

katab

wa+katab+at

“and she wrote”

FormI+Perfect+Active

write

Morphotactics in Arabic

200

CVCCVC

d r s

a a

wa+ +at

Pattern

Root

Vocalization

Prefix Suffix

darras

wa+darras+at

“and *someone* taught/instructed her/it”

FormII+Perfect+Active

learn/study

8/28/17

101

Morphotactics in Arabic

201

wa+duris+at

wa+drs+CVCVC+ui+at

wa+Conj+drs+FormI+Perfect+Passive+3rdPers+Fem+Sing

Morphotactics in Arabic

202

wa+duris+at

wa+drs+CVCVC+ui+at

wa+Conj+drs+FormI+Perfect+Passive+3rdPers+Fem+Sing

wadurisat

8/28/17

102

Morphotactics in Arabic

203

wa+duris+at

wa+drs+CVCVC+ui+at

wa+Conj+drs+FormI+Perfect+Passive+3rdPers+Fem+Sing

wadurisat

wdrst

Morphotactics in Arabic

204

…

…
16 possible interpretations

+drs+… +drs+… +drs+… +drs+… +drs+…

8/28/17

103

Arabic Morphology on Web

n Play with XRCE’s Arabic Analyzer at
¨https://open.xerox.com/Services/arabic-

morphology

205

206

Lexicon as a FS Transducer
h a p p y +Adj +Sup 0 0
h a p p y + e s t

s
s

a v e +Verb +Past 0
a v e + e d

t
t

a b l e +Noun +Pl
a b l e + s

+ +Verb

s 0

+Pres +3sg

.

.

.

.

.

.

.

.

.

Nondeterminism

8/28/17

104

207

The Lexicon Transducer

n Note that the lexicon transducer solves part
of the problem.
¨It maps from a sequence of morphemes to root

and features.

¨Where do we get the sequence of
morphemes?

208

Morphological Analyzer Structure

Lexicon Transducer

happy+est

happy+Adj+Sup

Morphographemic
Transducer

happiest

????????

8/28/17

105

209

Sneak Preview (of things to come)

Lexicon Transducer

happy+est

happy+Adj+Sup

Morphographemic
Transducer

happiest

Compose
Morphological

Analyzer/Generator

happy+Adj+Sup

happiest

210

The Morphographemic Transducer

n The morphographemic transducer
generates
¨all possible ways the input word can be

segmented and “unmangled”
¨As sanctioned by the alternation rules of the

language
n Graphemic conventions
n Morphophonological processes (reflected to the

orthography)

8/28/17

106

211

The Morphographemic Transducer
n The morphographic

transducers thinks:
¨ There may be a

morpheme boundary
between i and e, so let
me mark that with a +.

¨ There is i+e situation,
now and

¨ There is a rule that
says, change the i to a
y in this context.

¨ So let me output
happy+est

Morphographemic
Transducer

happiest

happy+est

212

The Morphographemic Transducer

n However, the
morphographemic
transducer is oblivious
to the lexicon,
¨ it does not really know

about words and
morphemes,

¨ but rather about what
happens when you
combine them

Morphographemic
Transducer

happiest

…
happy+est
h+ap+py+e+st
….
happiest
…

Only some of these will actually be sanctioned by the lexicon

8/28/17

107

213

The Morphographemic Transducer

n This obliviousness is actually a good thing
¨Languages easily import, generate new words
¨But not necessarily such rules! (and usually

there are a “small” number of rules.)
¨bragÞbragged, flog Þ flogged

n In a situation like vowel g + vowel insert another g

¨And you want these rules to also apply to new
words coming to the lexicon
n blog Þ blogged, vlog Þvlogged, etc.

214

The Morphographemic Transducer

n Also, especially in
languages that allow
segmentation
ambiguity, there may
be multiple legitimate
outputs of the
transducer that are
sanctioned by the
lexicon transducer.

Morphographemic
Transducer

….
koyun
koy+Hn
koy+nHn
koyu+Hn
….

koyun

8/28/17

108

215

What kind of changes does the MG
Transducer handle?
n Agreement

¨consonants agree in certain features under
certain contexts
n e.g., Voiced, unvoiced

¨ (T) at+tı (it was a horse, it threw)
¨ (T) ad+dı (it was a name)

¨vowels agree in certain features under certain
contexts
n e.g., vowel harmony (may be long distance)

¨ (T) el+ler+im+de (in my hands)
¨ (T) masa+lar+ım+da (on my tables)

216

What kind of changes does the MG
Transducer handle?
n Insertions

¨brag+ed Þ bragged
n Deletions

¨(T) koy+nHn Þ koyun (of the bay)
¨(T) alın+Hm+yA Þ alnıma (to my forehead)

n Changes
¨happy+est Þ happiest
¨(T) tarak+sH Þ tarağı (his comb)
¨(G) Mann+er Þ Männer

8/28/17

109

217

Approaches to MG Transducer Architecture

n There are two main approaches to the
internal architecture of the
morphographemics transducers.
¨The parallel constraints approach

n Two-level Morphology

¨Sequential transduction approach
n Cascade Rules

218

The Parallel Constraints Approach

n Two-level Morphology
¨Koskenniemi ’83, Karttunen et al. 1987,

Karttunen et al. 1992

fst 1 fst 2 fst n...

Surface form

Lexical form

Set of parallel
of two-level rules
compiled into finite-state
automata interpreted as
transducers

Describe constraints

Slide courtesy of Lauri Karttunen

8/28/17

110

219

Sequential Transduction Approach

n Cascaded ordered rewrite rules
¨Johnson ’71 Kaplan & Kay ’81 based on

Chomsky & Halle ‘64

Slide courtesy of Lauri Karttunen

...

Surface form

Intermediate form

Lexical form

fst 1

fst 2

fst n

Ordered cascade
of rewrite rules
compiled into finite-state
transducers

220

Spoiler

n At the end both approaches are equivalent

...

Surface form

Intermediate form

Lexical form

fst 1

fst 2

fst n

fst 1 fst 2 fst n...

Surface form

Lexical form

FST
Slide courtesy of Lauri Karttunen

8/28/17

111

221

Sequential vs. Parallel

n Two different ways of decomposing the
complex relation between lexical and
surface forms into a set of simpler relations
that can be more easily understood and
manipulated.
¨The sequential model is oriented towards

string-to-string relations,
¨The parallel model is about symbol-to-symbol

relations.
n In some cases it may be advantageous to

combine the two approaches.
Slide courtesy of Lauri Karttunen

222

Two-Level Morphology

n Basic terminology and concepts
n Examples of morphographemic alternations
n Two-level rules
n Rule examples

8/28/17

112

223

Terminology

n Representation
Surface form/string : happiest
Lexical form/string: happy+est

n Aligned correspondence:
happy+est
happi0est

n 0 will denote the empty string symbol, but
we will pretend that it is an actual symbol!!

You may think of these
as the upper and lower
symbols in a FST

224

Feasible Pairs

n Aligned correspondence:
happy+est
happi0est

n Feasible Pairs: The set of possible lexical
and surface symbol correspondences.
¨All possible pairs for insertions, deletions,

changes
¨{h:h, a:a, p:p, y:i, +:0, e:e, s:s, t:t, y:y …}

8/28/17

113

225

Aligned Correspondence

n Aligned correspondence:
happy+est

happi0est

n The alignments can be seen as
¨Strings in a regular language over the alphabet

of feasible pairs, (i.e., symbols that look like
“y:i”) or

226

Aligned Correspondence

n Aligned correspondence:
happy+est
happi0est

n The alignments can be seen as
¨Strings in a regular language over the alphabet

of feasible pairs, (i.e., symbols that look like
“y:i”) or

¨Transductions from surface strings to lexical
strings (analysis), or

8/28/17

114

227

Aligned Correspondence
n Aligned correspondence:

happy+est
happi0est

n The alignments can be seen as
¨Strings in a regular language over the alphabet

of feasible pairs, (i.e., symbols that look like
“y:i”) or

¨Transductions from surface strings to lexical
strings (analysis), or

¨Transductions from lexical strings to surface
strings (generation)

228

The Morphographemic Component

n So how do we define this regular language
(over the alphabet of feasible pairs) or the
transductions?
¨We want to accept the pairs

n stop0+ed try+ing try+ed
n stopp0ed try0ing tri0ed

¨but reject
n stop+ed try+ing try+ed
n stop0ed tri0ing try0ed

8/28/17

115

229

The Morphographemic Component

n Basically we need to describe
¨what kind of changes can occur, and
¨under what conditions

n contexts
n optional vs obligatory.

n Typically there will be few tens of different
kinds of “spelling change rules.”

230

The Morphographemic Component

¨The first step is to create an inventory of
possible spelling changes.
n What are the changes? Þ Feasible pairs
n How can we describe the contexts it occurs?
n Is the change obligatory or not?
n Consistent representation is important

¨The second step is to describe these changes
in a computational formalism.

8/28/17

116

231

Inventory of Spelling Changes

n In general there are many ways of looking at a
certain phenomena
¨ An insertion at the surface can be viewed as a deletion

on the surface
¨ Morpheme boundaries on the lexical side can be

matched with 0 or some real surface symbol
n For the following examples we will have +s and

+ed as the morphemes.
n Rules will be devised relative to these

representations.

232

Inventory of Spelling Changes

n An extra e is needed before +s after consonants
s, x, z, sh, or ch
box+0s kiss+0s blemish+0s preach+0s
box0es kiss0es blemish+0s preach0es

8/28/17

117

233

Inventory of Spelling Changes

n Sometimes a y will be an i on the surface.
try+es spot0+y+ness
tri0es spott0i0ness

n But not always
try+ing country+'s spy+'s
try0ing country0's spy+'s

234

Inventory of Spelling Changes

n Sometimes lexical e may be deleted
move+ed move+ing persuade+ed
mov00ed mov00ing persuad00ed

dye+ed queue+ing tie+ing
dy00ed queu00ing ty00ing

n but not always
trace+able change+able
trace0able change0able

8/28/17

118

235

Inventory of Spelling Changes

n The last consonant may be duplicated
following a stressed syllable.
re'fer0+ed 'travel+ed
re0ferr0ed 0travel0ed

n So if you want to account for this, stress will
have to be somehow represented and we
will have a feasible pair (':0)

236

Inventory of Spelling Changes

n Sometimes the s of the genitive marker (+’s)
drops on the surface
boy+s+'s dallas's
boy0s0'0 dallas'0

8/28/17

119

237

Inventory of Spelling Changes

n Sometimes an i will be a y on the surface.
tie+ing
ty00ing

Inventory of Spelling Changes

n In Zulu, the n of the basic prefix changes to m
before labial consonants b, p, f, v.
i+zin+philo
i0zim0p0ilo (izimpilo)

n Aspiration (h) is removed when n is followed by
kh, ph, th, bh
i+zin+philo
i0zim0p0ilo (izimpilo)

238

8/28/17

120

Inventory of Spelling Changes

n In Arabic “hollow” verbs, the middle radical w
between two vowels is replaced by vowel
lengthening
zawar+tu
z0U0r0tu (zUrtu – I visited)

qawul+a
qaA0l0a (qaAla – he said)

qaAla => qawul+a => qwl+CaCuC+a =>
qwl+FormI+Perfect+3Pers+Masc+Sing

239

240

The Computational Formalism

n So how do we (formally) describe all such
phenomena
¨Representation

n lexical form
n surface form

¨Conditions
n Context
n Optional vs Obligatory Changes

8/28/17

121

241

Parallel Rules

n A well-established formalism for describing
morphographemic changes.

. . .R1 R2 R3 R4 Rn

Surface Form

Lexical Form
Each rule describes
a constraint on legal
Lexical - Surface
pairings.

All rules operate in
parallel!

242

Parallel Rules

n Each morphographemic constraint is
enforced by a finite state recognizer over
the alphabet of feasible-pairs.

. . .

t i e + i n g

t y 0 0 i n g

R1 R2 R3 R4 Rn

Assume that the 0’s are magically
There.
The reason and how are really technical

8/28/17

122

243

Parallel Rules

n A lexical-surface string pair is "accepted" if
NONE of the rule recognizers reject it.

n Thus, all rules must put a good word in!

. . .

t i e + i n g

t y 0 0 i n g

R1 R2 R3 R4 Rn

244

Parallel Rules

n Each rule independently checks if it has
any problems with the pair of strings.

. . .

t i e + i n g

t y 0 0 i n g

R1 R2 R3 R4 Rn

8/28/17

123

245

Two-level Morphology

n Each recognizer sees that same pair of
symbols

. . .

t i e + i n g

t y 0 0 i n g

R1 R2 R3 R4 Rn

Each Ri sees t:t
and makes a state
change accordingly

246

Two-level Morphology

n Each recognizer sees that same pair of
symbols

. . .

t i e + i n g

t y 0 0 i n g

R1 R2 R3 R4 Rn

8/28/17

124

247

Two-level Morphology

n Each recognizer sees that same pair of
symbols

. . .

t i e + i n g

t y 0 0 i n g

R1 R2 R3 R4 Rn

248

Two-level Morphology

n Each recognizer sees that same pair of
symbols

. . .

t i e + i n g

t y 0 0 i n g

R1 R2 R3 R4 Rn

At this point all
Ri should be in
an accepting state.

8/28/17

125

249

The kaNpat Example
n Language X has a root kaN, including an

underspecified nasal morphophoneme N, that
can be followed by the suffix pat to produce the
well-formed, but still abstract, word kaNpat. We
may refer to this as the “underlying” or “lexical” or
“morphophonemic” form.

n The morphophonology of this language has an
alternation: the morphophoneme N becomes m
when it is followed by a p.

n In addition, a p becomes an m when it is
preceded by an underlying or derived m.

n The “surface” form or “realization” of this word
should therefore be kammat.

250

The kaNpat Example

The morphophonology
of this language has an
alternation: the
morphophoneme N
becomes m when it is
followed by a p.
In addition,

a p becomes an m
when it is preceded by
an underlying or
derived m

8/28/17

126

251

The kaNpat Example

n Ignore everything until
you see a N:m pair,
and make sure it is
followed with some
p:@ (some feasible
pair with p on the
lexical side)

n If you see a N:x (x≠m)
then make sure the
next pair is not p:@.

252

The kaNpat Example: N:m rule

n Ignore everything until
you see a N:m pair,
and make sure it is
followed with some
p:@ (some feasible
pair with p on the
lexical side)

n If you see a N:x (x≠m)
then make sure the
next pair is not p:@.

p Þ {p:p, p:m} a denotes eveything else Also remember FST rejects if no arc
is found

8/28/17

127

253

The kaNpat Example: p:m rule

n Make sure that a p:m
pairing is preceded by
a feasible pair like
@:m

n And, no p:x (x ≠ m)
follows a @:m

254

The kaNpat Example: p:m rule

n Make sure that a p:m
pairing is preceded by
a feasible pair like
@:m

n And, no p:x (x ≠ m)
follows a @:m

M Þ{m:m, N:m}, a everything else

Also remember that if an unlisted input
İs encountered, the string is rejected

8/28/17

128

255

Rules in parallel

Both FSRs see the k:k pair and stay in state 1

a t

256

Rules in parallel

Both FSRs see the a:a pair and stay in state 1

a t

8/28/17

129

257

Rules in parallel

Both FSRs see the N:m 1st one goes to state 3 2nd one goes to state 2

a t

258

Rules in parallel

Both FSRs see the p:m 1st one back goes to state 1 2nd one stays in state 2

a t

8/28/17

130

259

Rules in parallel

Both FSRs see the a:a 1st one stays in state 1 2nd one goes to state 1

a t

260

Rules in parallel

Both FSRs see the t:t 1st one stays in state 1 2nd one stays in state 1

a t

8/28/17

131

261

Rules in parallel

Both machines are now in accepting states

a t

262

Rules in parallel

Try kaNpat and kampat pairing

a t

p

8/28/17

132

263

Crucial Points
n Rules are implemented by recognizers over

strings of pairs of symbols.

264

Crucial Points
n Rules are implemented by recognizers over

strings of pairs of symbols.
n The set of strings accepted by a set of such

recognizers is the intersection of the languages
accepted by each!
¨ Because, all recognizers have to be in the accepting

state– the pairing is rejected if at least one rule rejects.

8/28/17

133

265

Crucial Points
n Rules are implemented by recognizers over

strings of pairs of symbols.
n The set of strings accepted by a set of such

recognizers is the intersection of the languages
accepted by each!

n Such recognizers can be viewed as transducers
between lexical and surface string languages.

266

Crucial Points
n Rules are implemented by recognizers over

strings of pairs of symbols.
n The set of strings accepted by a set of such

recognizers is the intersection of the languages
accepted by each!

n Such machines can be viewed as transducers
between lexical and surface string languages.

n Each transducer defines a regular relation or
transduction.

8/28/17

134

267

Some Technical Details
n Such machines can be viewed as transducers

between lexical and surface string languages.
n Each transducer defines a regular relation or

transduction.
n The intersection of the regular relations over

equal length strings is a regular relation (Kaplan
and Kay 1994).
¨ In general the intersection of regular relations need not

be regular!
n So, 0 is treated as a normal symbol internally, not

as e. So there are no transitions with real e
symbols.

268

Intersecting the Transducers

n The transducers for each rule can now be
intersected to give a single transducer.

. . .

t i e + i n g

t y 0 0 i n g

R1 R2 R3 R4 RnÇ Ç Ç ÇÇ

8/28/17

135

269

The Intersected Transducer

n The resulting transducer can be used for
analysis

t i e + i n g

t y 0 0 i n g

Morphographemic Rule Transducer

270

The Intersected Transducer

n The resulting transducer can be used for
analysis, or generation

t i e + i n g

t y 0 0 i n g

Morphographemic Rule Transducer

8/28/17

136

271

Describing Phenomena

n Finite state transducers are too low level.

n Need high level notational tools for
describing morphographemic phenomena

n Computers can then compile such rules
into transducers; compilation is too much of
a hassle for humans!

272

Two-level Rules

n Always remember the set of feasible
symbols = sets of legal correspondences.

n Rules are of the sort:
a:b op LC __ RC

Feasible
Pair

8/28/17

137

273

Two-level Rules

n Rules are of the sort:

a:b op LC __ RC

Feasible
Pair

Operator

274

Two-level Rules

n Rules are of the sort:

a:b op LC __ RC

Feasible
Pair

Operator Left Context Right Context

8/28/17

138

275

Two-level Rules

n Rules are of the sort:

a:b op LC __ RC

Feasible
Pair

Operator Left Context Right Context
Regular expressions
that define what comes before
and after the pair.

276

The Context Restriction Rule

n a:b => LC _ RC;

¨a lexical a MAY be paired with a surface b only
in this context

¨correspondence implies the context
¨occurrence of a:b in any other context is not

allowed (but you can specify multiple contexts!)

8/28/17

139

277

The Context Restriction Rule

a:b => LC _ RC;

y:i => Consonant (+:0) _ +:0

Left Context:
Some consonant possibly followed
by an optional) morpheme boundary

Right Context:
A morpheme boundary

try+0s spot0+y+ness day+s
tri0es spott0i0ness dai0s

278

The Surface Coercion Rule

n a:b <= LC _ RC

¨A lexical a MUST be paired with a surface b in
the given context; no other pairs with a as its
lexical symbol can appear in this context.

¨Context implies correspondence
¨ Note that there may be other contexts where

an a may be paired with b (optionally)

8/28/17

140

279

The Surface Coercion Rule

n The s of the genitive suffix MUST drop after
the plural suffix.

a:b <= LC __ RC

s:0 <= +:0 (0:e) s:s +:0 ':' _ ;

book+s+'s blemish+0s+'s book+s+'s
book0s0'0 blemish0es0'0 book0s0's

280

The Composite Rule

n a:b <=> LC _ RC

¨A lexical a must be paired with a surface b only
in this context and this correspondence is
valid only in this context.

¨Combination of the previous two rules.
¨Correspondence Û Context

8/28/17

141

281

The Composite Rule

n i:y is valid only before an e:0 correspondence
followed by a morpheme boundary and followed
by an i:i correspondence, and

n in this context i must be paired with a y.
a:b <=> LC _ RC

i:y <=> _ e:0 +:0 i

tie+ing tie+ing tie+ing
ty00ing ti00ing tye0ing

282

The Exclusion Rule
n a:b /<= LC _ RC

¨A lexical a CANNOT be paired with a b in this
context

¨Typically used to constrain the other rules.

8/28/17

142

283

The Exclusion Rule

n The y:i correspondence formalized earlier can
not occur if the morpheme on the right hand side
starts with an i or the ' (the genitive marker)

a:b /<= LC _ RC
y:i /<= Consonant (+:0) _ +:0 [i:i |

’:’]

try+ing
try0ing

try+ing
tri+ing

Note that the previous
context restriction rule
sanctions this case

284

Rules to Transducers

n All the rule types can be compiled into finite
state transducers
¨Rather hairy and not so gratifying (J)

8/28/17

143

285

Rules to Transducers

n Let’s think about a:b => LC _ RC
n If we see the a:b pair we want
to make sure
¨It is preceded by a (sub)string
that matches LC, and

¨It is followed by a (sub)string
that matches RC

n So we reject any input that
violates either or both of these
constraints

286

Rules to Transducers

n Let’s think about a:b => LC _ RC
n More formally

¨It is not the case that we have a:b not
preceded by LC, or not followed by RC

¨~[
[~ [?* LC] a:b ?*] |
[~ ?* a:b ~[RC ?*]]

]
(~ is the complementation operator)

8/28/17

144

287

Summary of Rules

n <= a:b <= c _ d
¨ a is always realized as b in the context c _ d.

n => a:b => c _ d
¨ a is realized as b only in the context c _ d.

n <=> a:b <=> c _ d
¨ a is realized as b in c _ d and nowhere else.

n /<= a:b /<= c _ d
¨ a is never realized as b in the context c _ d.

288

How does one select a rule?

a:b => LC _ RC

a:b <= LC _ RC

a:b <=> LC_ RC

a:b /<= LC _ RC

Is a:b allowed
in this context?

Is a:b only allowed
in this context?

Must a always correspond
to b in this context?

Yes

Yes

Yes

Yes

No

No

Yes

YesYes

No NA NA

8/28/17

145

289

More Rule Examples - kaNpat

n N:m <=> _ p:@;
¨N:n is also given as a feasible pair.

n p:m <=> @:m _ ;

290

More Rule Examples

n A voiced consonant is devoiced word-finally
¨b:p <=> _ #;
¨d:t <=> _ #;
¨c:ç <=> _ #;

n Xrce formalism lest you write this as a
single rule

n Cx:Cy <=> _ #: ;
where Cx in (b d c)

Cy in (p t ç) matched ;

8/28/17

146

291

Two-level Morphology

n Beesley and Karttunen, Finite State Morphology,
CSLI Publications, 2004 (www.fsmbook.com)

n Karttunen and Beesley: Two-level rule compiler,
Xerox PARC Tech Report

n Sproat, Morphology and Computation, MIT Press
n Ritchie et al. Computational Morphology, MIT

Press
n Two-Level Rule Compiler

http://www.xrce.xerox.com/competencies/content-
analysis/fssoft/docs/twolc-92/twolc92.html

292

Engineering a Real Morphological Analyzer

8/28/17

147

293

Turkish

n Turkish is an Altaic language with over 60
Million speakers (> 150 M for Turkic
Languages: Azeri, Turkoman, Uzbek, Kirgiz,
Tatar, etc.)

n Agglutinative Morphology
¨Morphemes glued together like "beads-on-a-

string"
¨Morphophonemic processes (e.g.,vowel

harmony)

294

Turkish Morphology

n Productive inflectional and derivational
suffixation.

n No prefixation, and no productive
compounding.

n With minor exceptions, morphotactics, and
morphophonemic processes are very
"regular."

8/28/17

148

295

Turkish Morphology

n Too many word forms per root.
¨Hankamer (1989) e.g., estimates few million

forms per verbal root (based on generative
capacity of derivations).

¨Nouns have about 100 different forms w/o any
derivations

¨Verbs have a thousands.

296

Word Structure

n A word can be seen as a sequence of inflectional
groups (IGs) of the form

Lemma+Infl1^DB+Infl2^DB+…^DB+Infln

¨ evinizdekilerden (from the ones at your house)

8/28/17

149

297

Word Structure

n A word can be seen as a sequence of inflectional
groups (IGs) of the form

Lemma+Infl1^DB+Infl2^DB+…^DB+Infln

¨ evinizdekilerden (from the ones at your house)

¨ ev+iniz+de+ki+ler+den

298

Word Structure

n A word can be seen as a sequence of inflectional
groups (IGs) of the form

Lemma+Infl1^DB+Infl2^DB+…^DB+Infln

¨ evinizdekilerden (from the ones at your house)

¨ ev+iniz+de+ki+ler+den
¨ ev+HnHz+DA+ki+lAr+DAn

A = {a,e}, H={ı, i, u, ü}, D= {d,t}

8/28/17

150

299

Word Structure
n A word can be seen as a sequence of

inflectional groups (IGs) of the form
Lemma+Infl1^DB+Infl2^DB+…^DB+Infln

¨ evinizdekilerden (from the ones at your house)
¨ ev+iniz+de+ki+ler+den
¨ ev+HnHz+DA+ki+lAr+DAn

A = {a,e}, H={ı, i, u, ü}, D= {d,t}

¨ cf. odanızdakilerden
oda+[ı]nız+da+ki+ler+den
oda+[H]nHn+DA+ki+lAr+DAn

300

Word Structure

n A word can be seen as a sequence of inflectional
groups (IGs) of the form

Lemma+Infl1^DB+Infl2^DB+…^DB+Infln

¨ evinizdekilerden (from the ones at your house)

¨ ev+iniz+de+ki+ler+den
¨ ev+HnHz+DA+ki+lAr+DAn
¨ ev+Noun+A3sg+P2pl+Loc ^DB+Adj

^DB+Noun+A3pl+Pnon+Abl

8/28/17

151

301

Word Structure

n sağlamlaştırdığımızdaki ((existing) at the time we caused
(something) to become strong.)

n Morphemes
¨ sağlam+lAş+DHr+DHk+HmHz+DA+ki

n Features
¨ sağlam(strong)

n +Adj
n ^DB+Verb+Become (+lAş)
n ^DB+Verb+Caus+Pos (+DHr)
n ^DB+Noun+PastPart+P1sg+Loc

(+DHk,+HmHz,+DA)
n ^DB+Adj (+ki)

302

Lexicon – Major POS Categories
n +Noun (*) (Common

(Temporal, Spatial),
Proper, Derived)

n +Pronoun (*) (Personal,
Demons, Ques,
Quant,Ques, Derived)

n +Verb (*) (Lexical,
derived)

n +Adjectives(+) (Lexical,
Derived)

n +Number (+) (Cardinal,
Ordinal, Distributive, Perc,
Ratio, Real, Range)

n +Adverbs
n +Postpositions (+)

(subcat)
n +Conjunctions
n +Determiners/Quant
n +Interjections
n +Question (*)
n +Punctuation
n +Dup (onomatopoeia)

8/28/17

152

303

Morphological Features

n Nominals
¨Nouns
¨Pronouns
¨Participles
¨Infinitives

inflect for
¨Number, Person (2/6)
¨Possessor (None, 1sg-3pl)
¨Case

n Nom,Loc,Acc,Abl,Dat,Ins,Gen

304

Morphological Features

n Nominals
¨Productive Derivations into

n Nouns (Diminutive)
¨ kitap(book), kitapçık (little book)

n Adjectives (With, Without….)
¨ renk (color), renkli (with color), renksiz (without color)

n Verbs (Become, Acquire)
¨ taş (stone), taşlaş (petrify)
¨ araba (car) arabalan (to acquire a car)

8/28/17

153

305

Morphological Features

n Verbs have markers for
¨Voice:

n Reflexive/Reciprocal,Causative (0 or more),Passive
¨Polarity (Neg)
¨Tense-Aspect-Mood (2)

n Past, Narr,Future, Aorist,Pres
n Progressive (action/state)
n Conditional, Necessitative, Imperative, Desiderative,

Optative.
¨Number/Person

306

Morphological Features

n öl-dür-ül-ec ek-ti
(it) was going to be killed (caused to die)
¨ öl - die
¨ -dür: causative
¨ -ül: passive
¨ -ecek: future
¨ -ti: past
¨ -0: 3rd Sg person

8/28/17

154

307

Morphological Features

n Verbs also have markers for
¨Modality:

n able to verb (can/may)
n verb repeatedly
n verb hastily
n have been verb-ing ever since
n almost verb-ed but didn't
n froze while verb-ing
n got on with verb-ing immediately

308

Morphological Features

n Productive derivations from Verb
¨ (e.g: Verb Þ Temp/Manner Adverb)

n after having verb-ed,
n since having verb-ed,
n when (s/he) verbs
n by verbing
n while (s/he is) verbing
n as if (s/he is) verbing
n without having verb-ed

¨ (e.g. Verb Þ Nominals)

n Past/Pres./Fut. Participles
n 3 forms of infinitives

8/28/17

155

309

Morphographemic Processes

n Vowel Harmony
¨Vowels in suffixes agree in certain

phonological features with the preceding
vowels.

High Vowels H = {ı, i, u, ü}
Low Vowels = {a, e, o, ö}
Front Vowels = {e, i, ö, ü}
Back Vowels = {a, ı, o, u}
Round Vowels = { o, ö, u, ü}
Nonround Vowels = {a, e, ı, i}
Nonround Low A= {a, e}

Morphemes use A and H as
underspecified
meta symbols on the lexical
side.
+lAr : Plural Marker
+nHn: Genitive Case Marker

310

Vowel Harmony

n Some data
masa+lAr okul+lAr ev+lAr gül+lAr
masa0lar okul0lar ev0ler gül0ler

¨ If the last surface vowel is a back vowel, A is paired
with a on the surface, otherwise A is paired with e.
(A:a and A:e are feasible pairs)

8/28/17

156

311

Vowel Harmony

n Some data
masa+lAr okul+lAr ev+lAr gül+lAr+yA
masa0lar okul0lar ev0ler gül0ler+0e

¨ If the last surface vowel is a back vowel. A is paired
with a on the surface, otherwise A is paired with e.
(A:a and A:e are feasible pairs)

n Note that this is chain effect

A:a <=> @:Vback [@:Cons]* +:0 [@:Cons| Cons:@ | :0]*
_;

A:e <=> @:Vfront [@:Cons]* +:0 [@:Cons| Cons:@ |
:0]* _;

312

Vowel Harmony

n Some data
masa+nHn okul+nHn ev+nHn gül+Hn+DA
masa0nın okul00un ev00in gül0ün+de

¨ H is paired with ı if the previous surface vowel is a or ı
¨ H is paired with i if the previous surface vowel is e or i
¨ H is paired with u if the previous surface vowel is o or u
¨ H is paired with ü if the previous surface vowel is ö or ü

H:ü <=> [@:ü | ö] [@:Cons]* +:0 [@:Cons|
Cons:@ | :0]* _ ;

8/28/17

157

313

Vowel Harmony

n Some data
masa+nHn okul+nHn ev+nHn gül+nHn
masa0nın okul00un ev00in gül+0ün

H:ü <=> [@:ü | ö] [@:Cons]* +:0 [@:Cons| Cons:@ | :0]* _ ;
¨ @:ü stands for both H:ü and ü:ü pairs
¨ ö stands for ö:ö
¨ @:Cons stands for any feasible pair where the surface symbol is a

consonant (e.g., k:ğ, k:k, 0:k)
¨ Cons:@ stands for any feasible pair where the lexical symbol is a

consonant (e.g., n:0, n:n, D:t)

314

Other interesting phenomena

n Vowel ellipsis
masa+Hm av$uc+yH+nA but kapa+Hyor
masa00m av00c00u0na kap00ıyor
masam avcuna kapıyor

n Consonant Devoicing
kitab+DA tad+DHk tad+sH+nA kitab
kitap0ta tat0tık tad00ı0na kitap
kitapta tattık tadına

n Gemination
tıb0+yH üs0+sH şık0+yH
tıbb00ı üss00ü şıkk+0ı
tıbbı üssü şıkkı

8/28/17

158

315

Other interesting phenomena

n Consonant ellipsis
ev+nHn kalem+sH ev+yH
ev00in kalem00i ev00i

n Other Consonant Changes
ayak+nHn renk+yH radyolog+sH
ayağ00ın reng00i radyoloğ00u

k:ğ <=> @:Vowel _ +:0 ([s:0|n:0|y:0]) @:Vowel

316

Reality Check-1

n Real text contains phenomena that causes
nasty problems:
¨Words of foreign origin - 1

alkol+sH kemal0+yA
alkol00ü kemal'00e

Use different lexical vowel symbols for these
¨Words of foreign origin -2

Carter'a serverlar Bordeaux'yu
n This needs to be handled by a separate analyzer

using phonological encodings of foreign words, or
n Using Lenient morphology

8/28/17

159

317

Reality Check-2

n Real text contains phenomena that cause
nasty problems:
¨Numbers, Numbers:

2'ye, 3'e, 4'ten, %6'dan, 20inci,100üncü
16:15 vs 3:4, 2/3'ü, 2/3'si

Affixation proceeds according to how the number is
pronounced, not how it is written!

The number lexicon has to be coded so that a
representation of the last bits of its pronunciation is
available at the lexical level.

318

Reality Check-3

n Real text contains phenomena that causes
nasty problems:
¨ Acronyms

PTTye -- No written vowel to harmonize to!

¨ Stash an invisible symbol (E:0) into the lexical
representation so that you can force harmonization
pttE+yA
ptt00ye

8/28/17

160

319

Reality Check-4

n Interjections
¨Aha!, Ahaaaaaaa!, Oh, Oooooooooh
¨So the lexicon may have to encode lexical

representations as regular expresions
n ah[a]+, [o]+h

n Emphasis
¨çok, çooooooook

320

Reality Check-5

n Lexicons have to be kept in check to
prevent overgeneration*
¨Allomorph Selection

n Which causative morpheme you use depends on
the (phonological structure of the) verb, or the
previous causative morpheme

¨ ye+DHr+t oku+t+DHr
n Which case morpheme you use depends on the

previous morpheme.
oda+sH+nA oda+yA
oda0sı0na oda0ya
to his room to
(the) house

*Potentially illegitimate word structures.

8/28/17

161

321

Reality Check-6

n Lexicons have to be kept in check to
prevent overgeneration

n +ki can only follow suffix only after +Loc case
marked nouns, or

n after singular nouns in +Nom case denoting
temporal entities (such as day, minute, etc)

322

Taming Overgeneration

n All these can be specified as finite state
transducers.

Lexicon Transducer

Constraint Transducer 1

Constraint Transducer 2

Constrained
Lexicon Transducer

8/28/17

162

323

Turkish Analyzer Architecture

Tes-is

Tis-lx

TR1 TR2 TR3 TR4 TRn
...

= intersection of rule transducers

Tlx-if

TC

Tif-ef

Transducer to normalize case.

Morphographemic
transducer

Root and morpheme
lexicon transducer

Transducers for morphotactic
constraints (300)

Transducer to generate
symbolic output

324

Turkish Analyzer Architecture

Tes-is

Tis-lx

TR1 TR2 TR3 TR4 TRn
...

= intersection of rule transducers

Tlx-if

TC

Tif-ef

kütüğünden, Kütüğünden, KÜTÜĞÜNDEN

8/28/17

163

325

Turkish Analyzer Architecture

Tes-is

Tis-lx

TR1 TR2 TR3 TR4 TRn
...

= intersection of rule transducers

Tlx-if

TC

Tif-ef

kütüğünden, Kütüğünden, KÜTÜĞÜNDEN

kütüğünden

326

Turkish Analyzer Architecture

Tes-is

Tis-lx

TR1 TR2 TR3 TR4 TRn
...

= intersection of rule transducers

Tlx-if

TC

Tif-ef

kütüğünden, Kütüğünden, KÜTÜĞÜNDEN

kütüğünden

kütük+sH+ndAn

8/28/17

164

327

Turkish Analyzer Architecture

Tes-is

Tis-lx

TR1 TR2 TR3 TR4 TRn
...

= intersection of rule transducers

Tlx-if

TC

Tif-ef

kütüğünden, Kütüğünden, KÜTÜĞÜNDEN

kütüğünden

kütük+sH+ndAn

kütük+Noun+A3sg+P3sg+nAbl

328

Turkish Analyzer Architecture

Tes-is

Tis-lx

TR1 TR2 TR3 TR4 TRn
...

= intersection of rule transducers

Tlx-if

TC

Tif-ef

kütüğünden, Kütüğünden, KÜTÜĞÜNDEN

kütüğünden

kütük+sH+ndAn

kütük+Noun+A3sg+P3sg+nAbl

kütük+Noun+A3sg+Pnon+Abl

8/28/17

165

329

Turkish Analyzer Architecture

kütüğünden, Kütüğünden, KÜTÜĞÜNDEN

kütük+Noun+A3sg+Pnon+Abl

Turkish Analyzer
(After all transducers

are intersected and composed)
(~1M States, 1.6M Transitions)

330

Turkish Analyzer Architecture

Turkish Analyzer
(After all transducers

are intersected and composed)
(~1M States, 1.6M Transitions)

22K Nouns
4K Verbs
2K Adjective
100K Proper Nouns

8/28/17

166

331

Finite State Transducers Employed

Modified Inverse Two-Level Rule Transducer

SAMPA Mapping Transducer

Exceptional Phonology
Transducer

Syllabification Transducer

Stress Computation
Transducer

Surface form evinde

Two-Level Rule Transducer

(Duplicating) Lexicon and Morphotactic Constraints Transducer

Filters

Filters

Filters

Total of 750 xfst regular expressions +
100K root words (mostly proper names)
over about 50 files

Feature Form

•ev+Noun+A3sg+P3sg+Loc
•ev+Noun+A3sg+P2sg+Loc

Lexical Morpheme
Sequence

•ev+sH+ndA
•ev+Hn+DASurface Morpheme

Sequence

•ev+i+nde
•ev+in+de

(e - v)ev+Noun+A3sg(i)+P3sg(n - "d e)+Loc
(e - v)ev+Noun+A3sg(i n)+P2sg(- "d e)+Loc

Morphology+Pronuncation Resulting FST has 10M states 16M transitions

Pronunciation Generation

n gelebilecekken
¨ (gj e - l)gel+Verb+Pos(e - b i - l) ^DB+Verb
+Able(e - "dZ e c) +Fut(- c e n
)^DB+Adverb+While

n okuma
¨ (o - k)ok+Noun+A3sg(u - "m) +P1sg(a)+Dat

¨ (o - "k u) oku+Verb(- m a) +Neg+Imp+A2sg

¨ (o - k u) oku+Verb+Pos(- "m a)
^DB+Noun+Inf2+A3sg+Pnon+Nom

332

8/28/17

167

333

Are we there yet?

n How about all these foreign words?
¨serverlar, clientlar, etc.

334

Are we there yet?

n How about all these foreign words?
¨serverlar, clientlar, etc.

n A solution is to use Lenient Morphology
¨Find the two-level constraints violated
¨Allow violation of certain constraints

8/28/17

168

335

Are we there yet?

n How about unknown words?
¨zaplıyordum (I was zapping)

336

Are we there yet?

n How about unknown words?
¨zaplıyordum (I was zapping)

n Solution
¨Delete all lexicons except noun and verb root

lexicons.
¨Replace both lexicons by

n [Alphabet Alphabet*]
¨Thus the analyzer will parse any prefix string

as a root provide it can parse the rest as a
sequence of Turkish suffixes.

8/28/17

169

337

Are we there yet?

n How about unknown words?
¨zaplıyordum (I was zapping)

n Solution
¨zaplıyordum

n zapla+Hyor+DHm (zapla+Verb+Pos+Pres1+A1sg)
n zapl +Hyor+DHm (zapl+Verb+Pos+Pres1+A1sg)

338

Systems Available

n Xerox Finite State Suite (lexc, twolc,xfst)
¨ Commercial (Education/research license available)
¨ Lexicon and rule compilers available
¨ Full power of finite state calculus (beyond two-level

morphology)
¨ Very fast (thousands of words/sec)

n Beesley and Karttunen, Finite State Morphology,
CSLI Publications, 2004 (www.fsmbook.com)
comes with (a version of) this software
¨ New versions of the software now available on the web

via a click-through license (with bonus C++ and Pyhton
API)

8/28/17

170

339

Systems Available

n Schmid’s SFST-- the Stuttgart Finite State
Transducer Tool
¨SFST is a toolbox for the implementation of

morphological analysers and other tools which
are based on finite state transducer
technology.

¨Available at http://www.ims.uni-
stuttgart.de/projekte/gramotron/SOFTWARE/S
FST.html

340

Systems Available

n AT&T FSM Toolkit
¨Tools to manipulate (weighted) finite state

transducers
n Now an open source version available as OpenFST

n Carmel Toolkit
¨http://www.isi.edu/licensed-sw/carmel/

n FSA Toolkit
¨http://www-i6.informatik.rwth-

aachen.de/~kanthak/fsa.html

8/28/17

171

341

OVERVIEW

n Overview of Morphology
n Computational Morphology
n Overview of Finite State Machines
n Finite State Morphology

¨Two-level Morphology
¨Cascade Rules

342

Morphological Analyzer Structure

Lexicon Transducer

happy+est

happy+Adj+Sup

Morphographemic
Transducer

happiest

????????

8/28/17

172

343

The Parallel Constraints Approach

n Two-level Morphology
¨Koskenniemi ’83, Karttunen et al. 1987,

Karttunen et al. 1992

fst 1 fst 2 fst n...

Surface form

Lexical form

Set of parallel
of two-level rules
compiled into finite-state
automata interpreted as
transducers

Describe constraints

Slide courtesy of Lauri Karttunen

344

Sequential Transduction Approach

n Cascaded ordered rewrite rules
¨Johnson ’71 Kaplan & Kay ’81 based on

Chomsky & Halle ‘64

Slide courtesy of Lauri Karttunen

...

Surface form

Intermediate form

Lexical form

fst 1

fst 2

fst n

Ordered cascade
of rewrite rules
compiled into finite-state
transducers

8/28/17

173

345

Sequential vs. Parallel

n At the end both approaches are equivalent

...

Surface form

Intermediate form

Lexical form

fst 1

fst 2

fst n

fst 1 fst 2 fst n...

Surface form

Lexical form

FST
Slide courtesy of Lauri Karttunen

346

Sequential vs. Parallel

n Two different ways of decomposing the
complex relation between lexical and
surface forms into a set of simpler relations
that can be more easily understood and
manipulated.

n Sequential model is oriented towards
string-to-string relations, the parallel model
is about symbol-to-symbol relations.

n In some cases it may be advantageous to
combine the two approaches.

Slide courtesy of Lauri Karttunen

8/28/17

174

347

Cascaded Ordered Rewrite Rules
n In this architecture,

one transforms the
lexical form to the
surface form (or vice
versa) through a
series of
transformations.

n In a sense, it is a
procedural model.
¨ What do I do to a

lexical string to convert
to a surface string?

...

Surface form

Intermediate form

Lexical form

fst 1

fst 2

fst n

348

The kaNpat Example (again)

n A lexical N before a lexical p is realized on
the surface as an m.

n A p after an m is realized as m on the
surface.

8/28/17

175

349

The kaNpat Example

n A lexical N before a lexical p is realized on
the surface as an m.

n A p after an m is realized as m on the
surface.
...N p...

...m p...

350

The kaNpat Example

n A lexical N before a lexical p is realized on
the surface as an m.

n A p after an m is realized as m on the
surface.
...N p...

...m p...

...m m...

8/28/17

176

351

The kaNpat Example

n A lexical N before a lexical p is realized on
the surface as an m.

n A p after an m is realized as m on the
surface.
kaNpat

kampat

kammat

So we obtain the surface form after a
sequence of transformations

Lexical

Surface

Intermediate

352

The kaNpat Example

n A lexical N before a lexical p is realized on
the surface as an m.

n A p after an m is realized as m on the
surface.
kaNpat

kampat

kammat

There is minor problem with this!

What happens if N is NOT followed by a p?

It has to be realized as an n.

Lexical

Surface

Intermediate

8/28/17

177

353

The kaNpat Example

n A lexical N before a lexical p is realized on
the surface as an m.

n A p after an m is realized as m on the
surface.
kaNmat

kanmat

kanmat

There is minor problem with this!

What happens if N is NOT followed by a p?

It has to be realized as an n.

Lexical

Surface

Intermediate

354

The kaNpat Example

n A lexical N before a lexical p is realized on
the surface as an m.
¨Otherwise it has to be replaced by an n.

n A p after an m is realized as m on the
surface.

8/28/17

178

355

The kaNpat Example

N->m
transformation

N->n
transformation

p->m
transformation

kaNpat

kampat

kampat

kammat

356

The kaNpat Example

N->m
transformation

N->n
transformation

p->m
transformation

kaNpat

kampat

kampat

kammat

kaNtat

kaNtat

kantat

kantat

8/28/17

179

357

The kaNpat Example

N->m
transformation

N->n
transformation

p->m
transformation

kaNpat

kampat

kampat

kammat

kaNtat

kaNtat

kantat

kantat

kammat

kammat

kammat

kammat

358

The kaNpat Example

N->m
transformation

N->n
transformation

p->m
transformation

kaNpat

kampat

kampat

kammat

kaNtat

kaNtat

kantat

kantat

kammat

kammat

kammat

kammat

8/28/17

180

359

The kaNpat Example

N->m
transformation

N->n
transformation

p->m
transformation

kaNpat

kampat

kampat

kammat

kampat

kampat

kampat

kammat

kammat

kammat

kammat

kammat

360

The kaNpat Example

N->m
transformation

N->n
transformation

p->m
transformation

{kaNpat, kammat, kampat}

kammat

8/28/17

181

361

Finite State Transducers

N->m
transformation

N->n
transformation

p->m
transformation

m:m p:p ? m:m ? N:N

N:mN:m

p:p

N:N

N

N:n
n:n
?

p:p ?
m:m

m:m

?

p:m

Courtesy of Ken Beesley

362

Finite State Transducers

N->m
Transducer

N->n
Transducer

p->m
Transducer

Composition

Courtesy of Lauri Karttunen

The Morphographemic Transducer

8/28/17

182

363

Finite State Transducers

n Again, describing transformations with
transducers is too low level and tedious.

n One needs to use a higher level formalism

n Xerox Finite State Tool Regular Expression
language
http://www.stanford.edu/~laurik/fsmbook/on
line-documentation.html

364

Rewrite Rules

n Originally rewrite rules were proposed to
describe phonological changes

n u -> l / LC _ RC
¨Change u to l if it is preceded by LC and

followed by RC.

8/28/17

183

365

Rewrite Rules

n These rules of the sort u -> l / LC _ RC
look like context sensitive grammar rules,
so can in general describe much more
complex languages.

n Johnson (1972) showed that such rewrite
rules are only finite-state in power, if some
constraints on how they apply to strings are
imposed.

366

Replace Rules

n Replace rules define regular relations
between two regular languages

n In general A, B, LC and RC are regular
expressions.

The relation that replaces A by B between L and R leaving
everything else unchanged.

A -> B
Replacement

LC _ RC

Context

8/28/17

184

367

Replace Rules

n Let us look at the simplest replace rule
¨ a -> b

n The relation defined by this rule contains among
others
¨ {..<abb, bbb>,<baaa, bbbb>, <cbc, cbc>, <caad,

cbbd>, …}
n A string in the upper language is related to a

string in the lower language which is exactly the
same, except all the a’s are replaced by b’s.
¨ The related strings are identical if the upper string does

not contain any a’s

368

Replace Rules

n Let us look at the simplest replace rule with
a context
¨a->b || d _ e

n a’s are replaced by b, if they occur after a d
and before an e.
¨<cdaed, cdbed> are related

n a appears in the appropriate context in the upper
string

¨<caabd, cbbbd> are NOT related,
n a’s do not appear in the appropriate context.

¨<caabd, caabd> are related (Why?)

8/28/17

185

369

Replace Rules

n Although replace rules define regular
relations, sometimes it may better to look at
them in a procedural way.
¨a -> b || d _ e

n What string do I get when I apply this rule
to the upper string bdaeccdaeb?
• bdaeccdaeb
• bdbeccdbeb

370

Replace Rules – More examples

n a -> 0 || b _ b;
¨Replace an a between two b’s with an epsilon

(delete the a)
¨abbabab Þ abbbb so <abbabab,abbbb>
¨ababbb Þ abbbb so <ababbb, abbbb>

¨In fact all of map to abbbb!abababab
abababb
ababbab
ababbb
abbabab
abbabb
abbbab
abbbb

8/28/17

186

371

Replace Rules – More examples

n [..] -> a || b _ b
¨Replace a single epsilon between two b’s with

an a (insert an a)
¨abbbbe Þ ababababe so

<abbbbe,ababababe>
n 0 -> a || b _ b is a bit tricky.

372

Rules and Contexts

n Contexts around the replacement can be
specified in 4 ways.

A -> B
Replacement

LC _ RC

Context

A

B

Upper String

Lower String

8/28/17

187

373

Rules and Contexts

n Both LC and RC are checked on the upper
string.

A -> B || LC _ RC

LC RCA

B

Upper String

Lower String

374

Rules and Contexts

n LC is checked on the lower string, RC is
checked on the upper string

A -> B // LC _ RC

LC

RCA

B

Upper String

Lower String

8/28/17

188

375

Rules and Contexts

n LC is checked on the upper string, RC is
checked on the lower string

A -> B \\ LC _ RC

LC

RC

A

B

Upper String

Lower String

376

Rules and Contexts

n LC is checked on the lower string, RC is
checked on the lower string

A -> B \/ LC _ RC

LC RC

A

B

Upper String

Lower String

8/28/17

189

377

Replace Rules – More Variations

n Multiple parallel replacements
¨A->B, C->D

n A is replaced by B and C is replaced by D

n Multiple parallel replacements in the same
context
¨A->B, C->D || LC _ RC

n A is replaced by B and C is replaced by D in the
same context

378

Replace Rules – More Variations

n Multiple parallel replacements in multiple
contexts
¨A->B, C->D || LC1 _ RC2, LC2_RC2…

n A is replaced by B and C is replaced by D in any
one of the listed contexts

n Independent multiple replacements in
different contexts
¨A->B || LC1_ LC2 ,, C->D || LC2_RC2

8/28/17

190

379

Replace Rules for KaNpat

n N->m || _ p;
¨replace N with m just before an upper p;

n N-> n;
¨Replace N with n otherwise

n p -> m || m _;
¨Replace p with an m just after an m (in the

upper string

380

Replace Rules for KaNpat

n N->m || _ p;

n N-> n;

n p -> m || m _

kaNpat

kampat

kampat

kammat

kaNtat

kaNtat

kantat

kantat

kammat

kammat

kammat

kammat

8/28/17

191

381

Replace Rules for KaNpat (combined)

n Defines a single transducer that
“composes” the three transducers.

N->m || _ p;
.o.

N-> n;
.o.

p -> m || m _

FST1

FST2

FST3

kaNpat
transducer

382

A Cascade Rule Sequence for Turkish

n Remember the conventions
¨A = {a, e}, H= {ı, i, u, ü}
¨VBack = [a | ı | o | u] //the back vowels
¨VFront = [e | i | ö | ü] //the front vowels
¨Vowel = VBack | VFront
¨Consonant = […all consonants ..]

8/28/17

192

383

Stem Final Vowel Deletion

n A vowel ending a stem is deleted if it is
followed by the morpheme +Hyor
¨ata+Hyor (is assigning)
¨at+Hyor

n Vowel ->0 || _ “+” H y o r

384

Morpheme Initial Vowel Deletion

n A high vowel starting a morpheme is
deleted if it is attached to a segment ending
in a vowel.
¨masa+Hm (my table)
¨masa+m

n H ->0 || Vowel “+” _ ;
n Note that the previous rule is a more

special case rule

8/28/17

193

385

Vowel Harmony

n A bit tricky
¨A->a or A->e
¨H->ı, H->i, H->u, H->ü

n These two (groups of) rules are
interdependent

n They have to apply concurrently and each
is dependent on the outputs of the others

386

Vowel Harmony

n So we need
¨ Parallel Rules
¨ Each checking its left context on the output (lower-

side)
n A->a // VBack Cons* “+” Cons* _ ,,
n A->e // VFront Cons* “+” Cons* _ ,,
n H->u // [o | u] Cons* “+” Cons* _ ,,
n H->ü // [ö | ü] Cons* “+” Cons* _ ,,
n H->ı // [a | ı] Cons* “+” Cons* _ ,,
n H->i // [e | i] Cons* “+” Cons* _

8/28/17

194

387

Consonant Resolution

n d is realized as t either at the end of a word
or after certain consonants

n b is realized as p either at the end of a
word or after certain consonants

n c is realized as ç either at the end of a word
or after certain consonants

n d-> t, b->p, c->ç // [h | ç | ş | k | p | t | f | s] “+” _

388

Consonant Deletion

n Morpheme initial s, n, y is deleted if it is
preceded by a consonant

n [s|n|y] -> 0 || Consonant “+” _ ;

8/28/17

195

389

Cascade

Stem Final Vowel Deletion

Morpheme Initial
Vowel Deletion

Vowel Harmony

Consonant Devoicing

Consonant Deletion

Boundary Deletion

(Partial) Morphographemic
Transducer

390

Cascade

Stem Final Vowel Deletion

Morpheme Initial
Vowel Deletion

Vowel Harmony

Consonant Devoicing

Consonant Deletion

Boundary Deletion

(Partial)
Morphographemic

Transducer

Lexicon
Transducer

(partial)
TMA

8/28/17

196

391

Some Observations

n We have not really seen all the nitty gritty
details of both approaches but rather the
fundamental ideas behind them.
¨Rule conflicts in Two-level morphology

n Sometimes the rule compiler detects a conflict:
¨ Two rules sanction conflicting feasible pairs in a context

n Sometimes the compiler can resolve the conflict but
sometimes the developer has to fine tune the
contexts.

392

Some Observations

n We have not really seen all the nitty gritty
details of both approaches but rather the
fundamental ideas behind them.
¨Unintended rule interactions in rule cascades

n When one has 10’s of replace rule one feeding into
the other, unintended/unexpected interactions are
hard to avoid

n Compilers can’t do much
n Careful incremental development with extensive

testing

8/28/17

197

393

Some Observations

n For a real morphological analyzer, my
experience is that developing an accurate
model of the lexicon is as hard as (if not
harder than) developing the
morphographemic rules.
¨Taming overgeneration
¨Enforcing “semantic” constraints
¨Enforcing long distance co-occurance

constraints
n This suffix can not occur with that prefix, etc.

¨Special cases, irregular cases

1/46

11-411
Natural Language Processing

Language Modelling and Smoothing

Kemal Oflazer

Carnegie Mellon University in Qatar

2/46

What is a Language Model?

I A model that estimates how likely it is that a sequence of words belongs to a (natural)
language

I Intuition
I p(A tired athlete sleeps comfortably)� p(Colorless green ideas sleep furiously)
I p(Colorless green ideas sleep furiously)� p(Salad word sentence is this)

3/46

Let’s Check How Good Your Language Model is?

I Guess the most likely next word
I The prime of his life . . . {is, was, . . . }
I The prime minister gave an . . . {ultimatum, address, expensive, . . . }
I The prime minister gave a . . . {speech, book, cheap, . . . }
I The prime number after eleven . . . {is, does, could, has, had . . . }
I The prime rib was . . . {delicious, expensive, flavorful, . . . ,} but NOT green

4/46

Where do we use a language model?
I Language models are typically used as components of larger systems.
I We’ll study how they are used later, but here’s some further motivation.

I Speech transcription:
I I want to learn how to wreck a nice beach.
I I want to learn how to recognize speech.

I Handwriting recognition:
I I have a gub!
I I have a gun!

I Spelling correction:
I We’re leaving in five minuets.
I We’re leaving in five minutes.

I Ranking machine translation system outputs

5/46

Very Quick Review of Probability

I Event space (e.g., X ,Y), usually discrete for the purposes of this class.
I Random variables (e.g., X, Y)
I We say “Random variable X takes value x ∈ X with probability p(X = x)”

I We usually write p(X = x) as p(x).
I Joint probability: p(X = x,Y = y)

I Conditional probability: p(X = x | Y = y) =
p(X = x,Y = y)

p(Y = y)
I This always holds

p(X = x,Y = y) = p(X = x | Y = y) · p(Y = y)︸ ︷︷ ︸= p(Y = y | X = x) · p(X = x)︸ ︷︷ ︸
I This sometimes holds: p(X = x,Y = y) = p(X = x) · p(Y = y)
I True and estimated probability distributions.

6/46

Language Models: Definitions
I V is a finite set of discrete symbols (characters, words, emoji symbols, . . .), V = |V|.
I V+ is the infinite set of finite-length sequence of symbols from V whose final symbol

is 2.
I p : V+ → R such that

I For all x ∈ V+p(x) ≥ 0
I p is a proper probability distribution:

∑
x∈V+

p(x) = 1

I Language modeling: Estimate p from the training set examples

x1:n = 〈x1, x2, . . . , xn〉

I Notation going forward:
I x a single symbol (word, character, etc.) from V
I x is a sequence of symbols in V+ as defined above. xi is the ith symbol of x.
I x1:n denotes n sequences, 〈x1, x2, . . . , xn〉.

I xi is the ith sequence in x1:n.
I [xi]j is the jth symbol of the ith sequence in x1:n.

7/46

Issues

I Why would we want to do this?
I Are the nonnegativity and sum-to-one constraints really necessary?
I Is “finite V” realistic?

8/46

Motivation – Noisy Channel Models

I Noisy channel models are very suitable models for many NLP problems:

Source (Generator) → Y → Channel (Blender) → X

I Y is the plaintext, the true message, the missing information, the output
I X is the ciphertext, the garbled message, the observable evidence, the input
I Decoding: select the best y given X = x.

ŷ = argmax
y

p(y | x)

= argmax
y

p(x | y) · p(y)
p(x)

= argmax
y

p(x | y)︸ ︷︷ ︸
Channel Model

· p(y)︸︷︷︸
Source Model

9/46

Noisy Channel Example – Speech Recognition

Source → Y (Seq. of words)→ Vocal Tract → X (Acoustic Waves)

I “Mining a year of speech”→

I Source model characterizes p(y), “What are possible sequences of words I can say?”
I Channel model characterizes p(Acoustics | y)

I It is hard to recognize speech
I It is hard to wreck a nice beach
I It is hard wreck an ice beach
I It is hard wreck a nice peach
I It is hard wreck an ice peach
I It is heart to wreck an ice peach
I · · ·

10/46

Noisy Channel Example – Machine Translation

Source → Y (Seq. of Turkish words)→ Translation → X (Seq. of English Words)

I p(x | y) models the translation process.
I Given an observed sequence of English words, presumably generated by translating

from Turkish, what is the most likely source Turkish sentence, that could have given
rise to this translation?

11/46

Machine Transliteration

I Phonetic translation across language pairs with very different alphabets and sound
system is called transliteration.

I Golfbag in English is to be transliterated to Japanese.
I Japanese has no distinct l and r sounds - these in English collapse to the same sound.

Same for English h and f.
I Japanese uses alternating vowel-consonant syllable structure: lfb is impossible to

pronounce without any vowels.
I Katagana writing is based on syllabaries: different symbols for ga, gi, gu, etc.
I So Golfbag is transliterated as and pronounced as go-ru-hu-ba-ggu.

I So when you see a transliterated word in Japanese text, how can you find out what
the English is?

I nyuuyooko taimuzu → New York Times
I aisukuriimu → ice-cream (and not “I scream”)
I ranpu→ lamp or ramp
I masutaazutoonamento→ Master’s Tournament

12/46

Noisy Channel Model – Other Applications

I Spelling Correction
I Grammar Correction
I Optical Character Recognition
I Sentence Segmentation
I Part-of-speech Tagging

13/46

Is finite V realistic?

I NO!
I We will never see all possible words in a language no matter how large the sample we

look at, is.

14/46

The Language Modeling Problem

I Input: x1:n – the “training data”.

I Output: p : V+ → R+

I p should be a “useful” measure of plausibility (not necessarily of grammaticality).

15/46

A Very Simple Language Model

I We are given x1:n as the training data
I Remember that each xi is a sequence of symbols, that is, a “sentence”
I So we have n sentences, and we count how many times the sentence x appears

I p(x) is estimated as

p(x) =
|{i : xi = x}|

n
=

cx1:n(x)
n

I So we only know about n sentences and nothing else!

I What happens when you want to assign a probability to some x that is not in the
training set?

I Is there a way out?

16/46

Chain Rule to the Rescue

I We break down p(x) mathematically

p(X = x) = p(X1 = x1)×
p(X2 = x2 | X1 = x1)×
p(X3 = x3 | X1:2 = x1:2)×
...
p(X` = 2) | X1:`−1 = x1:`−1)

=
∏̀
j=1

p(Xj = xj | X1:j−1 = x1:j−1)

I This is an exact formulation.
I Each word is conditioned on all the words coming before it!

17/46

Approximating the Chain Rule Expansion – The Unigram Model

p(X = x) =
∏̀
j=1

p(Xj = xj | X1:j−1 = x1:j−1)

assumption
=

∏̀
j=1

pθ(Xj = xj) =
∏̀
j=1

θxj ≈
∏̀
j=1

θ̂xj

I θ̂′s are maximum likelihood estimates:

∀v ∈ V, θ̂v =
|(i, j) : [xi]j = v|

N
=

cx1:n(v)

N

I N =

n∑
i=1
|xi|

I This is also known as “relative frequency estimation”.
I The unigram model is also known as the “bag of words” model. Why?

18/46

Unigram Models – The Good and the Bad

Pros:
I Easy to understand
I Cheap

I Not many parameters
I Easy to compute

I Good enough for maybe information
retrieval

Cons:
I “Bag of Words” assumption is not

linguistically accurate.
I

p(the the the the)� p(I want to run)
I “Out of vocabulary” problem.

I What happens if you encounter a
word you never saw before?

I Generative Process: keep on randomly picking words until you pick 2.
I We really never use unigram models!

19/46

Approximating the Chain Rule Expansion – Markov Models

Markov Models ≡ n-gram Models

p(X = x) =
∏̀
j=1

p(Xj = xj | X1:j−1 = x1:j−1)

assumption
=

∏̀
j=1

pθ(Xj = xj | Xj−n+1:j−1 = xj−n+1:j−1︸ ︷︷ ︸
last n− 1 words

)

I n-gram models ≡ (n− 1)th-order Markov assumption.
I Unigram model model with when n = 1
I Trigram models (n = 3) are widely used.
I 5-gram models (n = 5) are quite common in statistical machine translation.

20/46

Estimating n-gram Models
unigram bigram trigram general n-gram

pθ(x) =
∏̀
j=1

θxj

∏̀
j=1

θxj|xj−1

∏̀
j=1

θxj|xj−2xj−1

∏̀
j=1

θxj|xj−n+1:j−1

Parameters: θv θv|v′ θv|v′′v′ θv|h
∀v ∈ V ∀v′ ∈ V, ∀v′, v′′ ∈ V, ∀h ∈ Vn−1,

∀v ∈ V ∪ {2} ∀v ∈ V ∪ {2} ∀v ∈ V ∪ {2}

MLE:
c(v)
N

c(v′v)
c(v′)

c(v′′v′v)
c(v′′v′)

c(hv)
c(h)

21/46

The Problem with MLE

I The curse of dimensionality: the number of parameters grows exponentially in n.
I Data sparseness: most n-grams will never be observed – even when they are

linguistically plausible.
I What is the probability of unseen words? (0 ?)
I But that’s not what you want. Test set will usually include words not in training set.

I What is p(Nebuchadnezzur | son of) ?
I A single 0 probability will set the estimate to 0. Not acceptable!

22/46

Engineering Issues – Log Probabilities

I Note that computation of pθ(x) involves multiplication of numbers each of which are
between 0 and 1.

I So multiplication hits underflow: computationally the product can not be represented
or computed.

I In implementation, probabilities are represented by the logarithms (between −∞ and
0) and multiplication is replaced by addition.

23/46

Dealing with Out-of-Vocabulary Words

I Quick and dirty approach
I Decide what is in the vocabulary (e.g., all words with frequency > say 10).
I Add UNK to the vocabulary.
I Replace all unknown words with UNK
I Estimate as usual.

I Build a language model at the character level.
I What are advantages and disadvantages?

24/46

Smoothing Language Models

I We can not have 0 probability n-grams. So we should shave off some probability
mass from seen n-grams to give to unseen n-grams.

I The Robin-Hood Approach – steal some probability from the haves to have-nots.
I Simplest method: Laplace Smoothing
I Interpolation
I Stupid backoff.
I Long-standing best method: modified Kneser-Ney smoothing

25/46

Laplace Smoothing

I We add 1 to all counts! So words with 0 counts will be assumed to have count 1.
I Unigram probabilities: p(v) =

c(v) + 1
N + V

I Bigram probabilities: p(v | v′) =
c(v′v) + 1
c(v′) + V

I One can also use Add-k smoothing for some fractional k, 0 < k ≤ 1)
I It turns out this method is very simple but shaves off too much of the probability mass.

(See book for an example.)

26/46

Interpolation

I We estimate n-gram probabilities by combining count-based estimates from n- and
lower grams.

p̂(v | v′′v′) = λ1p(v | v′′v′) + λ2p(v | v′) + λ3p(v)

I
∑

i
λi = 1

I λ’s are estimated by maximizing the likelihood of a held-out data.

27/46

Stupid Backoff

I Gives up the idea of making the language model a true probability distribution.
I Works quite well with very large training data (e.g. web scale) and large language

models
I If a given n-gram has never been observed, just use the next lower gram’s estimate

scaled by a fixed weight λ (terminates when you reach the unigram)

28/46

Kneser-Ney Smoothing

I Kneser-Ney smoothing and its variants (interpolated Kenser-Ney or modified
Kneser-Ney) use absolute discounting.

I The math is a bit more involved. See the book if you are interested.

29/46

Toolkits

I These days people build language models using well-established toolkits:
I SRILM Toolkit (https://www.sri.com/engage/products-solutions/
sri-language-modeling-toolkit)

I CMU Statistical Language Modeling Toolkit
(http://www.speech.cs.cmu.edu/SLM_info.html)

I KenLM Language Model Toolkit (https://kheafield.com/code/kenlm/)
I Each toolkit provides executables and/or API and options to build, smooth, evaluate

and use language models. See their documentation.

https://www.sri.com/engage/products-solutions/sri-language-modeling-toolkit
https://www.sri.com/engage/products-solutions/sri-language-modeling-toolkit
http://www.speech.cs.cmu.edu/SLM_info.html
https://kheafield.com/code/kenlm/

30/46

n-gram Models– Assessment

Pros:
I Easy to understand
I Cheap (with modern

hardware/memory)
I Good enough for machine

translation, speech recognition,
contextual spelling correction, etc.

Cons:
I Markov assumption is not

linguistically accurate.
I but not as bad as unigram models

I “Out of vocabulary” problem.

31/46

Evaluation – Language Model Perplexity
I Consider language model that assigns probabilities to a sequence of digits (in speech

recognition)
I Each digit occurs with the same probability p = 0.1
I Perplexity for a sequence of N digits D = d1d2 · · · dn is

PP(D)
def
= p(d1d2 · · · dn)

− 1
N

= N
√

1
p(d1d2 · · · dn)

= N
√

1∏N
i=1 p(di)

= N
√

1

(1
10)

N

= 10

I How can we interpret this number?

32/46

Evaluation – Language Model Perplexity
I Intuitively, language models should assign high probability to “real language” they

have not seen before.
I Let x1:m be a sequence of m sentences, that we have not seen before (held-out or

test set)

I Probability of x1:m =

m∏
i=1

p(xi)⇒ Log probability of x1:m =

m∑
i=1

log2 p(xi)

I Average log probability of per word of x1:m is:

l =
1
M

m∑
i=1

log2 p(xi)

where M =

m∑
i=1
|xi|

I Perplexity relative to x1:m
def
= 2−l

I Intuitively, perplexity is average “confusion” after each word. Lower is better!

33/46

Understanding Perplexity

I 2

− 1
M

m∑
i=1

log2 p(~xi)

is really a branching factor.
I Assign probability of 1 to the test data⇒ perplexity = 1. No confusion.

I Assign probability of
1
V

to each word⇒ perplexity = V . Equal confusion after each

word!
I Assign probability of 0 to anything⇒ perplexity =∞

I We really should have for any x ∈ V+p(x) > 0

34/46

Entropy and Cross-entropy

I Suppose that there are eight horses running in an upcoming race.
I Your friend is on the moon.
I It’s really expensive to send a bit to the moon!
I You want to send him the results.
I

Clinton 000 Huckabee 100
Edwards 001 McCain 101
Kucinich 010 Paul 110
Obama 011 Romney 111

I Expected number of bits to convey a message is 3 bits.

35/46

Entropy and Cross-entropy

I Suppose the probabilities over the outcome of the race are not at all even.
I

Clinton 1/4 Huckabee 1/64
Edwards 1/16 McCain 1/8
Kucinich 1/64 Paul 1/64
Obama 1/2 Romney 1/64

I You can encode the winner using the following coding scheme

Clinton 10 Huckabee 111101
Edwards 1110 McCain 110
Kucinich 11110 Paul 111110
Obama 0 Romney 111111

I How did we get these codes?

36/46

Another View

37/46

Bits vs Probabilities

38/46

Entropy

I Entropy of a Distribution
H(p) = −

∑
x∈X

p(x) log p(x)

I Always ≥ 0 and maximal when p is uniform.

H(puniform) = −
∑
x∈X

1
|X |

log
1
|X |

= log |X |

39/46

Cross-entropy

I Cross-entropy uses one distribution to tell us something about another distribution.

H(p; q) = −
∑
x∈X

p(x) log q(x)

I The difference H(p; q)− H(p) tells us how many extra bits (on average) we waste by
using q instead of p.

I Extra bits make us sad; we can therefore think of this as a measure of regret.
I We want to choose q so that H(p; q) is small.
I Cross-entropy is an estimate of of the average code-length (bits per message) when

using q as a proxy for p.

40/46

Cross-entropy and Betting

I Before the horse race, place your bet.
I Regret is how sad you feel after you find out who won.
I What’s your average score after you place your bets and test many times?
I Upper bound on regret: uniform betting
I Lower bound on regret: proportional betting on the true distribution for today’s race.
I The better our estimated distribution is, the closer we get to the lower bound (lower

regret)!

41/46

How does this Relate to Language Models?

I ptrain: training sample (which horses we have seen before)
I ptest: test sample (which horse will win today)
I q: our (estimated) model (or code)
I Real goal when training: make H(ptest; q) small.
I We don’t know ptest! The closest we have is ptrain.
I So make H(ptrain; q)small.
I But that overfits and can lead to infinite regret.
I Smoothing hopefully makes q more like ptest.

42/46

What do n-gram Models Know?

I They (sort of) learn:
I Rare vs. common words and patterns
I Local syntax (an elephant, a rhinoceros)
I Words with related meanings (ate apples)
I Punctuation and spelling

I They have no idea about:
I Sentence structure
I Underlying rules of agreement/spelling/etc.
I Meaning
I The World

43/46

Unigram Model Generation

first, from less the This different 2004), out which goal 19.2 Model
their It ˜(i?1), given 0.62 these (x0; match 1 schedule. x 60
1998. under by Notice we of stated CFG 120 be 100 a location accuracy
If models note 21.8 each 0 WP that the that Novak. to function; to
[0, to different values, model 65 cases. said -24.94 sentences not
that 2 In to clustering each K&M 100 Boldface X))] applied; In 104
S. grammar was (Section contrastive thesis, the machines table -5.66
trials: An the textual (family applications.We have for models 40.1 no
156 expected are neighborhood

44/46

Bigram Model Generation

e. (A.33) (A.34) A.5 ModelS are also been completely surpassed in
performance on drafts of online algorithms can achieve far more so
while substantially improved using CE. 4.4.1 MLEasaCaseofCE 71 26.34
23.1 57.8 K&M 42.4 62.7 40.9 44 43 90.7 100.0 100.0 100.0 15.1 30.9
18.0 21.2 60.1 undirected evaluations directed DEL1 TRANS1
neighborhood. This continues, with supervised init., semisupervised
MLE with the METU-Sabanci Treebank 195 ADJA ADJD ADV APPR APPRART APPO
APZR ART CARD FM ITJ KOUI KOUS KON KOKOM NN NN NN IN JJ NN Their
problem is y x. The evaluation offers the hypothesized link grammar
with a Gaussian

45/46

Trigram Model Generation

top(xI ,right,B). (A.39) vine0(X, I) rconstit0(I 1, I). (A.40)
vine(n). (A.41) These equations were presented in both cases; these
scores u<AC>into a probability distribution is even smaller(r
=0.05). This is exactly fEM. During DA, is gradually relaxed. This
approach could be efficiently used in previous chapters) before
training (test) K&MZeroLocalrandom models Figure4.12: Directed
accuracy on all six languages. Importantly, these papers achieved
state-of-the-art results on their tasks and unlabeled data and the
verbs are allowed (for instance) to select the cardinality of discrete
structures, like matchings on weighted graphs (McDonald et al., 1993)
(35 tag types, 3.39 bits). The Bulgarian,

46/46

The Trade-off

I As we increase n, the stuff the model generates looks better and better, and the
model gives better probabilities to the training data.

I But as n gets big, we tend toward the history model, which has a lot of zero counts
and therefore isn’t helpful for data we haven’t seen before.

I Generalizing vs. Memorizing

1/36

11-411
Natural Language Processing

Classification

Kemal Oflazer

Carnegie Mellon University in Qatar

2/36

Text Classification

I We have a set of documents (news items, emails, product reviews, movie reviews,
books, . . .)

I Classify this set of documents into a small set classes.
I Applications:

I Topic of a news article (classic example: finance, politics, sports, . . .)
I Sentiment of a movie or product review (good, bad, neutral)
I Email into spam or not or into a category (business, personal, bills, . . .)
I Reading level (K-12) of an article or essay
I Author of a document (Shakespeare, James Joyce, . . .)
I Genre of a document (report, editorial, advertisement, blog, . . .)
I Language identification

3/36

Notation and Setting

I We have a set of n documents (texts) xi ∈ V+
I We assume the texts are segmented already.

I We have set L of labels, `i
I Human experts annotate documents with labels and give us
{(x1, `1), (x2, `2), · · · , (xn, `n)}

I We learn a classifier classify : V+ → L with this labeled training data.
I Afterwards, we use classify to classify new documents into their classes.

4/36

Evaluation

I Accuracy:
A(classify) =

∑
x∈V+,`∈L,

classify(x)=`

p(x, `)

where p is the true distribution over data. Error is 1− A.
I This is estimated using a test set {(x1, `1), (x2, `2), · · · , (xm, `m)}

Â(classify) =
1
m

m∑
i=1

1{classify(xi) = `i}

5/36

Issues with Using Test Set Accuracy

I Class imbalance: if p(L = not spam) = 0.99, then you can get Â ≈ 0.99 by always
guessing “not spam”

I Relative importance of classes or cost of error types.
I Variance due to the test data.

6/36

Evaluation in the Two-class case
I Suppose we have one of the classes t ∈ L as the target class.
I We would like to identify documents with label t in the test data.

I Like information retrieval
I We get

I Precision P̂ =
C
B

(percentage of documents classify correctly labeled as t)

I Recall R̂ =
C
A

(percentage of actual t labeled documents correctly labeled as t)

I F1 = 2
P̂ + R̂
P̂ · R̂

7/36

A Different View – Contingency Tables

L = t L 6= t

classify(X) = t C(true positives) B\C(false positives) B

classify(X) 6= t C\A(false negatives) (true negatives)

A

8/36

Evaluation with > 2 Classes

I Macroaveraged precision and recall: let each class be the target and report the
average P̂ and R̂ across all classes.

I Microaveraged precision and recall: pool all one-vs.-rest decisions into a single
contingency table, calculate P̂ and R̂ from that.

9/36

Cross-validation

I Remember that Â, P̂, R̂, and F̂1 are all estimates of the classifier’s quality under the
true data distribution.

I Estimates are noisy!
I K-fold cross validation

I Partition the training data into K nonverlapping “folds”, x1, x2, . . . , xK ,
I For i ∈ {1, . . . ,K}

I Train on x1:n\xi, using xi as development data
I Estimate quality on the xi development set as Â

i

I Report average accuracy as Â =
1
K

K∑
i=1

Â
i
and perhaps also the standard deviation.

10/36

Features in Text Classification

I Running example x = “The spirit is willing but the flesh is weak”
I Feature random variables
I For j ∈ {1, . . . , d} Fj is a discrete random variable taking values in Fj
I Most of the time these can be frequencies of words or n-grams in a text.

I ff−spirit = 1, ff−is = 2, ff−the−flesh = 1, . . .
I They can be boolean “exists” features.

I fe−spirit = 1, fe−is = 1, ff−strong = 0, . . .

11/36

Spam Detection

I A training set of email messages (marked Spam or Not-Spam)
I A set of features for each message (considered as a bag of words)

I For each word: Number of occurrences
I Whether phrases such as “Nigerian Prince”, “email quota full”, “won ONE HUNDRED

MILLION DOLLARS” are in the message
I Whether it is from someone you know
I Whether it is reply to your message
I Whether it is from your domain (e.g., cmu.edu)

12/36

Movie Ratings

I A training set of movie reviews (with star ratings 1 - 5)
I A set of features for each message (considered as a bag of words)

I For each word: Number of occurrences
I Whether phrases such as Excellent, sucks, blockbuster, biggest, Star Wars, Disney, Adam

Sandler, . . . are in the review

13/36

Probabilistic Classification

I Documents are preprocessed: each document x is mapped to a d-dimensional
feature vector f .

I Classification rule

classify(f) = argmax
`∈L

p(` | f)

= argmax
`∈L

p(`,f)
p(f)

= argmax
`∈L

p(`, f)(Why?)

14/36

Naive Bayes Classifier

p(L = `,F1 = f1, . . . ,Fd = fd) = p(`)
d∏

j=1
p(Fj = fj | `)

= π`

d∏
j=1

θfj|j,`

I Parameters: π` is the class or label prior.
I The probability that a document belongs to class ` – without considering any of its

features.
I They can be computed directly from the training data {(x1, `1), (x2, `2), · · · , (xn, `n)}. These

sum to 1.
I For each feature function j and label `, a distribution over values θ∗|j,`

I These sum to 1 for every (j, `) pair.

15/36

Generative vs Discriminative Classifier

I Naive Bayes is known as a Generative classifier.
I Generative Classifiers build a model of each class.
I Given an observation (document), they return the class most likely have generated

that observation.

I A discriminative classifier instead learns what features from the input are useful to
discriminate between possible classes.

16/36

The Most Basic Naive Bayes Classifier

17/36

The Most Basic Naive Bayes Classifier

I Features are just words xj in x
I Naive Assumption: Word positions do not matter – “bag of words”.
I Conditional Independence: Feature probabilities p(xi | `) are independent given the

class `.

I p(x | `) =
|x|∏

j=1

p(xj | `)

I The probability that a word in a sports document is “soccer” is estimated as
p(soccer | sports) by counting “soccer” in all sports documents.

I So

classify(x) = argmax
`∈L

π`

|x|∏
j=1

p(xj | `)

I Smoothing is very important as any new document may have unseen words.

18/36

The Most Basic Naive Bayes Classifier

classify(x) = argmax
`∈L

π`

|x|∏
j=1

p(xj | `)

⇓

classify(x) = argmax
`∈L

log π` +

|x|∑
j=1

log p(xj | `)

I All computations are done in log space to avoid underflow and increase speed.
I Class prediction is based on a linear combination of the inputs.
I Hence Naive Bayes is confidered as a linear classifier.

19/36

An Example

I |V| = 20
I Add 1 Laplace smoothing

π− = p(−) = 3
5

π+ = p(+) =
2
5

N− = 14 N+ = 9

p(“predictable” | −) = 1 + 1
14 + 20

p(“predictable” | +) =
0 + 1

9 + 20

p(“no” | −) = 1 + 1
14 + 20

p(“no” | +) =
0 + 1
9 + 20

p(“fun” | −) = 0 + 1
14 + 20

p(“fun” | +) =
1 + 1
9 + 20

p(+)p(s | +) =
2
5
×1× 1× 2

293 = 3.2×10−5

p(−)p(s | −) = 3
5
×2× 2× 1

343 = 6.1×10−5

20/36

Other Optimizations for Sentiment Analysis

I Ignore unknown words in the test.
I Ignore stop words like the, a, with, etc.

I Remove most frequent 10-100 words from the training and test documents.
I Count vs existence of words: Binarized features.
I Negation Handling didnt like this movie , but I → didnt NOT like
NOT this NOT movie , but I

21/36

Formulation of a Discriminative Classifier
I A discriminative model computes p(` | x) to discriminate among different values of `,

using combinations of d features of x.

ˆ̀= argmax
`∈L

p(` | x)

I There is no obvious way to map features to probabilities.
I Assuming features are binary-valued and they are both functions of x and class ` we

can write

p(` | x) = 1
Z

exp

 d∑
i=1

wi fi(`, x)

where Z is the normalization factor to make everything a probability and wi are
weights for features.

I p(` | x) can be then be formally defined with normalization as

p(` | x) =
exp
(∑d

i=1 wi fi(`, x)
)

∑
`′∈L exp

(∑d
i=1 wi fi(`′, x)

)

22/36

Some Features

I Remember features are binary-valued and are both functions of x and class `.
I Suppose we are doing sentiment classification. Here are some sample feature

functions:
I f1(`, x) =

{
1 if “great” ∈ x & ` = +
0 otherwise

I f2(`, x) =
{

1 if “second-rate” ∈ x & ` = −
0 otherwise

I f3(`, x) =
{

1 if “no” ∈ x & ` = +
0 otherwise

I f4(`, x) =
{

1 if “enjoy” ∈ x & ` = −
0 otherwise

23/36

Mapping to a Linear Formulation

I If the goal is just classification, the denominator can be ignored

ˆ̀ = argmax
`∈L

p(` | x)

= argmax
`∈L

exp
(∑d

i=1 wi fi(`,x)
)

∑
`′∈L exp

(∑d
i=1 wi fi(`

′,x)
)

= argmax
`∈L

exp
(∑d

i=1 wi fi(`, x)
)

ˆ̀ = argmax
`∈L

∑d
i=1 wi fi(`, x)

I Thus we have a linear combination of features for decision making.

24/36

Two-class Classification with Linear Models

I Big idea: “map” a document x into a d-dimensional (feature) vector Φ(x), and learn a
hyperplane defined by vector w = [w1,w2, . . . ,wd].

I Linear decision rule:
I Decide on class 1 if w ·Φ(x) > 0
I Decide on class 2 if w ·Φ(x) ≤ 0

I Parameters are w ∈ Rd. They determine the separation hyperplane.

25/36

Two-class Classification with Linear Models

I There may be more than one separation hyperplane.

26/36

Two-class Classification with Linear Models
I There may not be a separation hyperplane. The data is not linearly separable!

27/36

Two-class Classification with Linear Models

I Some features may not be actually relevant.

28/36

The Perceptron Learning Algorithm for Two Classes

I A very simple algorithm guaranteed to eventually find a linear separator hyperplane
(determine w), if one exists.

I If one doesn’t, the perceptron will oscillate!
I Assume our classifier is

classify(x) =
{ 1 if w ·Φ(x) > 0

0 if w ·Φ(x) ≤ 0

I Start with w = 0
I for t = 1, . . . ,T

I i = t mod N
I w← w + α

(
`i − classify(xi)

)
Φ(xi)

I Return w
I α is the learning rate – determined by experimentation.

29/36

Linear Models for Classification

I Big idea: “map” a document x into a d-dimensional (feature) vector Φ(x, `), and learn
a hyperplane defined by vector w = [w1,w2, . . . ,wd].

I Linear decision rule

classify(x) = ˆ̀= argmax
`∈L

w ·Φ(x, `)

where Φ : V+ × L → Rd

I Parameters are w ∈ Rd.

30/36

A Geometric View of Linear Classifiers

I Suppose we have an instance of w and L = {y1, y2, y3, y4}.
I We have two simple binary features φ1, and φ2
I Φ(x, `) are as follows:

31/36

A Geometric View of Linear Classifiers

I Suppose we an instance w and L = {y1, y2, y3, y4}.
I We have two simple binary features φ1, and φ2
I Suppose w is such that w ·Φ = w1φ1 + w2φ2

32/36

A Geometric View of Linear Classifiers
I Suppose we an instance w and L = {y1, y2, y3, y4}.
I We have two simple binary features φ1, and φ2
I Suppose w is such that w ·Φ = w1φ1 + w2φ2

distance(w ·Φ,Φ0) =
|w ·Φ0|
‖w‖2

∝ |w ·Φ0|

I So w ·Φ(x, y1) > w ·Φ(x, y3) > w ·Φ(x, y4) > w ·Φ(x, y2) ≥ 0

33/36

A Geometric View of Linear Classifiers

I Suppose we an instance w and L = {y1, y2, y3, y4}.
I We have two simple binary features φ1, and φ2
I Suppose w is such that w ·Φ = w1φ1 + w2φ2

I So w ·Φ(x, y3) > w ·Φ(x, y1) > w ·Φ(x, y2) > w ·Φ(x, y4)

34/36

Where do we get w? The Perceptron Learner

I Start with w = 0
I Go over the training samples and adjust w to minimize the deviation from correct

labels.

min
w

n∑
i=1

(
max
`′∈L

w ·Φ(xi, `
′)
)
− w ·Φ(xi, `i)

I The perceptron learning algorithm is a stochastic subgradient descent algorithm on
above.

I For t ∈ {1, . . . ,T}
I Pick it uniformly at random from {1, . . . , n}
I ˆ̀it ← argmax

`∈L
w ·Φ(xit , `)

I w← w− α
(
Φ(xit , ˆ̀it)−Φ(xit , `it)

)
I Return w

35/36

Gradient Descent

36/36

More Sophisticated Classification

I Take into account error costs if all mistakes are not equally bad. (false positives vs.
false negatives in spam detection)

I Use maximum margin techniques (e.g., Support Vector Machines) try to find the best
separating hyperplane that’s far from the training examples.

I Use kernel methods map vectors to get much higher-dimensional spaces, almost for
free, where they may be lineraly separable.

I Use Feature selection to find the most important features and throw out the rest.
I Take the machine learning class if you are interested on these

1/41

11-411
Natural Language Processing

Part-of-Speech Tagging

Kemal Oflazer

Carnegie Mellon University in Qatar

2/41

Motivation

I My cat, which lives dangerously, no longer has nine lives.
I The first lives is a present tense verb.
I The second lives is a plural noun.
I They are pronounced differently.

I How we pronounce the word depends on us knowing which is which.
I The two lives above are pronounced differently.
I “The minute issue took one minute to resolve.”
I They can be stressed differently. SUSpect (noun) vs. susPECT (verb)

I He can can the can.
I The first can is a modal.
I The second can is a(n untensed) verb.
I The third can is a singular noun.
I In fact, can has one more possible interpretation as a present tense verb as in “We can

tomatotes every summer.”

3/41

What are Part-of-Speech Tags?

I A limited number of tags to denote words “classes”.
I Words in the same class

I Occur more or less in the same contexts
I Have more or less the same functions
I Morphologically, they (usually) take the same suffixes or prefixes.

I Part-of-Speech tags are not about meaning!
I Part-of-Speech tags are not necessarily about any grammatical function.

4/41

English Nouns

I Can be subjects and objects
I This book is about geography.
I I read a good book.

I Can be plural or singular (books, book)
I Can have determiners (the book)
I Can be modified by adjectives (blue book)
I Can have possessors (my book, John’s book)

5/41

Why have Part-of-Speech Tags?

I It is an “abstraction” mechanism.
I There are too many words.

I You would need a lot of data to train models.
I Your model would be very specific.

I POS Tags allow for generalization and allow for useful reduction in model sizes.
I There are many different tagsets: You want the right one for your task

6/41

How do we know the class?

I Substitution test
I The ADJ cat sat on the mat.
I The blue NOUN sits on the NOUN.
I The blue cat VERB on the mat.
I The blue cat sat PP the mat.

7/41

What are the Classes?

I Nouns, Verbs, Adjectives, . . .
I Lots of different values (open class)

I Determiners
I The, a, this, that, some, . . .

I Prepositions
I By, at, from, as, against, below, . . .

I Conjunctions
I And, or, neither, but, . . .

I Modals
I Will, may, could, can, . . .

I Some classes are well defined and closed, some are open.

8/41

Broad Classes

I Open Classes: nouns, verbs, adjectives, adverbs, numbers
I Closed Classes: prepositions, determiners, pronouns, conjunctions, auxiliary verbs,

particles, punctuation

9/41

Finer-grained Classes

I Nouns: Singular, Plural, Proper, Count, Mass
I Verbs: Untensed, Present 3rd Person, Present Non-3rd Person, Past , Past Participle
I Adjectives: Normal, Comparative, Superlative
I Adverbs: Comparative, Superlative, Directional, Temporal, Manner,
I Numbers: Cardinal, Ordinal

10/41

Hard Cases

I I will call up my friend.
I I will call my friend up.
I I will call my friend up in the treehouse.
I Gerunds

I I like walking.
I I like apples.
I His walking daily kept him fit.
I His apples kept him fit.
I Eating apples kept him fit.

11/41

Other Classes

I Interjections (Wow!, Oops, Hey)
I Politeness markers (Your Highness . . .)
I Greetings (Dear . . .
I Existential there (there is . . .)
I Symbols, Money, Emoticons, URLs, Hashtags

12/41

Penn Treebank Tagset for English

13/41

Others Tagsets for English and for Other Languages

I The International Corpus of English (ICE) Tagset: 205 Tags
I London-Lund Corpus (LLC) Tagset: 211 Tags
I Arabic: Several tens of (composite tags)

I (Buckwalter: wsyktbwnhA “And they will write it”) is tagged as
CONJ + FUTURE PARTICLE + IMPERFECT VERB PREFIX + IMPERFECT VERB +

IMPERFECT VERB SUFFIX MASCULINE PLURAL 3RD PERSON +
OBJECT PRONOUN FEMININE SINGULAR

I Czech: Several hundred (composite) tags
I Vaclav is tagged as k1gMnSc1, indicating it is a noun, gender is male animate, number is

singular, and case is nominative
I Turkish: Potentially infinite set of (composite) tags.

I elmasında is tagged as elma+Noun+A3sg+P3sg+Loc indicating root is elma and the
word is singular noun belonging to a third singular person in locative case.

14/41

Some Tagged Text from The Penn Treebank Corpus

In/IN an/DT Oct./NNP 19/CD review/NN of/IN ‘‘/‘‘ The/DT Misanthrope/NN
’’/’’ at/IN Chicago/NNP ’s/POS Goodman/NNP Theatre/NNP ‘‘/‘‘
Revitalized/VBN Classics/NNS Take/VBP the/DT Stage/NN in/IN Windy/NNP
City/NNP ,/, ’’/’’ Leisure/NN &/CC Arts/NNS ,/, the/DT role/NN of/IN
Celimene/NNP ,/, played/VBN by/IN Kim/NNP Cattrall/NNP , , was/VBD
mistakenly/RB attributed/VBN to/TO Christina/NNP Haag/NNP ./.
Ms./NNP Haag/NNP plays/VBZ Elianti/NNP ./.
Rolls-Royce/NNP Motor/NNP Cars/NNPS Inc./NNP said/VBD it/PRP
expects/VBZ its/PRP$ U.S./NNP sales/NNS to/TO remain/VB steady/JJ
at/IN about/IN 1,200/CD cars/NNS in/IN 1990/CD ./.
The/DT luxury/NN auto/NN maker/NN last/JJ year/NN sold/VBD 1,214/CD
cars/NNS in/IN the/DT U.S./NNP

15/41

How Bad is Ambiguity?

Tags Token
7 down
6 that
6 set
6 put
6 open
6 hurt
6 cut
6 bet
6 back
5 vs,
5 the
5 spread
5 split
5 say
5 ’s

Tags Token
5 run
5 repurchase
5 read
5 present
5 out
5 many
5 less
5 left

Count POS/Token
317 RB/down
200 RP/down
138 IN/down
10 JJ/down
1 VBP/down
1 RBR/down
1 NN/down

16/41

Some Tags for “down”

One/CD hundred/CD and/CC ninety/CD two/CD former/JJ greats/NNS ,/, near/JJ
greats/NNS ,/, hardly/RB knowns/NNS and/CC unknowns/NNS begin/VBP a/DT 72-game/JJ
,/, three-month/JJ season/NN in/IN spring-training/NN stadiums/NNS up/RB and/CC
down/RB Florida/NNP ...
He/PRP will/MD keep/VB the/DT ball/NN down/RP ,/, move/VB it/PRP around/RB ...
As/IN the/DT judge/NN marched/VBD down/IN the/DT center/JJ aisle/NN in/IN his/PRP$
flowing/VBG black/JJ robe/NN ,/, he/PRP was/VBD heralded/VBN by/IN a/DT trumpet/NN
fanfare/NN ...
Other/JJ Senators/NNP want/VBP to/TO lower/VB the/DT down/JJ payments/NNS
required/VBN on/IN FHA-insured/JJ loans/NNS ...
Texas/NNP Instruments/NNP ,/, which/WDT had/VBD reported/VBN Friday/NNP that/IN
third-quarter/JJ earnings/NNS fell/VBD more/RBR than/IN 30/CD %/NN from/IN the/DT
year-ago/JJ level/NN ,/, went/VBD down/RBR 2/CD 1/8/CD to/TO 33/CD on/IN 1.1/CD
million/CD shares/NNS
Because/IN hurricanes/NNS can/MD change/VB course/NN rapidly/RB ,/, the/DT
company/NN sends/VBZ employees/NNS home/NN and/CC shuts/NNS down/VBP
operations/NNS in/IN stages/NNS : /: the/DT closer/RBR a/DT storm/NN gets/VBZ ,/,
the/DT more/RBR complete/JJ the/DT shutdown/NN ...

Jaguar/NNP ’s/POS American/JJ depositary/NN receipts/NNS were/VBD up/IN 3/8/CS

yesterday/NN in/IN a/DT down/NN market/NN ,/, closing/VBG at/IN 10/CD ...

17/41

Some Tags for “Japanese

Meanwhile/RB ,/, Japanese/JJ bankers/NNS said/VBD they/PRP were/VBD still/RB
hesitant/JJ about/IN accepting/VBG Citicorp/NNP ’s/POS latest/JJS proposal/NN ...
And/CC the/DT Japanese/NNPS are/VBP likely/JJ to/TO keep/VB close/RB on/IN
Conner/NNP ’s/POS heels/NNS ...
The/DT issue/NN is/VBZ further/RB complicated/VBN because/IN although/IN the/DT
organizations/NNS represent/VBP Korean/JJ residents/NNS ,/, those/DT residents/NNS
were/VBD largely/RB born/VBN and/CC raised/VBN in/IN Japan/NNP and/CC many/JJ
speak/VBP only/RB Japanese/NNP ...
And/CC the/DT Japanese/NNP make/VBP far/RB more/JJR suggestions/NNS :/: 2,472/CS
per/IN 100/CD eligible/JJ employees/NNS vs./CC only/RB 13/CD per/IN 100/CD
employees/NNS in/IN the/DT ...
The/DT Japanese/NNS are/VBP in/IN the/DT early/JJ stage/NN right/RB now/RB ,/,
said/VBD Thomas/NNP Kenney/NNP ,/, a/DT onetime/JJ media/NN adviser/NN for/IN
First/NNP Boston/NNP Corp./NNP who/WP was/VBD recently/RB appointed/VBN
president/NN of/IN Reader/NNP ’s/POS Digest/NNP Association/NNP ’s/POS new/JJ
Magazine/NNP Publishing/NNP Group/NNP ...

In/IN 1991/CD ,/, the/DT Soviets/NNS will/MD take/VB a/DT Japanese/JJ into/NN

space/NN ,/, the/DT first/JJ Japanese/NN to/TO go/VB into/IN orbit/NN ...

18/41

How we do POS Tagging?

I Pick the most frequent tag for each type
I Gives about 92.34% accuracy (on a standard test set)

I Look at the context
I Preceeding (and succeeding) words
I Preceeding (and succeeding) tags
I the . . .
I to . . .
I John’s blue . . .

19/41

Markov Models for POS Tagging

I We use an already annotated training data to statistically model POS tagging.
I Again the problem can be cast as a noisy channel problem:

I “I have a sequence of tags of a proper sentence in my mind, t = 〈t1, t2, . . . , tn〉”
I “By the time, the tags are communicated, they are turned into actual words,

w = 〈w1,w2, . . . ,wn〉, which are observed.”
I “What is the most likely tag sequence t̂ that gives rise to the observation w? ”

I The basic equation for tagging is then

t̂ = argmax
t

p(t | w)

where t̂ is the tag sequence that maximizes the argument of the argmax .

20/41

Basic Equation and Assumptions for POS Tagging

t̂ = argmax
t

p(t | w) = argmax
t

p(w | t)p(t)
p(w)︸ ︷︷ ︸

Bayes Expansion

= argmax
t

Channel Model︷ ︸︸ ︷
p(w | t)

Source Model︷︸︸︷
p(t)︸ ︷︷ ︸

Ignoring Denominator

I The independence assumption: Probability of a word appearing depends only on its
own tag and is independent of neighboring words and tags:

p(w | t) = p(w1:n | t1:n) ≈
n∏

i=1
p(wi | ti)

I The bigram assumption: that probability of a tag is dependent only on the previous
tag.

p(t) = p(t1:n) ≈
n∏

i=1
p(ti | ti−1)

21/41

Basic Approximation Model for Tagging

t̂1:n = argmax
t1:n

p(t1:n | w1:n) ≈ argmax
t1:n

n∏
i=1

p(wi | ti)︸ ︷︷ ︸
emission

p(ti | tt−1)︸ ︷︷ ︸
transition

22/41

Bird’s Eye View of p(ti | ti−1)

23/41

Bird’s Eye View of p(wi | ti)

24/41

Estimating Probabilities

I We can estimate these probabilities from a tagged training using maximum likelihood
estimation.

I Transition Probabilities: p(ti | ti−1) =
c(ti−1, ti)

c(ti−1)

I Emission Probabilities: p(wi | ti) =
c(ti,wi)

c(ti)

I It is also possible to use a trigram approximation (with appropriate smoothing).

p(t1:n) ≈
n∏

i=1
p(ti | ti−2ti−1)

I You need to square the number of states!

25/41

The Setting

I We have n words in w = 〈w1w2, . . . ,wn〉.
I We have total N tags which are the labels of the Markov Model states (excluding start

(0) and end (F) states).
I qi is the label of the state after i words have been observed.
I We will also denote all the parameters of our HMM by λ = (A,B), the transition (A)

and emission (B) probabilities.
I In the next several slides

I i will range over word positions.
I j will range over states/tags
I k will range over states/tags.

26/41

The Forward Algorithm

I An efficient dynamic programming algorithm for finding the total probability of
observing w = 〈w1,w2, . . . ,wn〉, given the (Hidden) Markov Model λ.

I Creates expanded directed acyclic graph that is a specialized version of the model
graph to the specific sentence called a trellis.

27/41

The Forward Algorithm

I Computes αi(j) = p(w1,w2, . . . ,wi, qi = j | λ)
I The total probability of observing w1,w2, . . . ,wi and landing in state j after emitting i words.

I Let’s define some short-cuts:
I αi−1(k): the previous forward probability from the previous stage (word)
I akj = p(tj | tk)
I bj(wi) = p(wi | tj)

I αi(j) =
N∑

k=1
αi−1(k) · akj · bj(wi)

I αn(F) = p(w1,w2, . . . ,wn, qn = F | λ) is the total probability of observing
w1,w2, . . . ,wn.

I We really do not need αs. We just wanted to motivate the trellis.
I We are actually interested in the most likely sequence of states (tags) that we go

through while “emitting” w1,w2, . . . ,wi These would be the most likely tags!.

28/41

Viterbi Decoding

I Computes vi(j) = max
q0,q1,...qi−1

p(q0, q1, . . . qi−1,w1,w2, . . . ,wi, qi = j | λ)

I vi(j) is the maximum probability of observing w1,w2, . . . ,wi after emitting i words
while going through some sequence of states (tags) q0, q1, . . . qi−1 before landing in
state qi = j.

I We can recursively define

vi(j) = max
k=1...N

vi−1(k) · akj · bk(wi)

I Let’s also define a backtrace pointer as

bti(j) = argmax
k=1...N

vi−1(k) · akj · bk(wi)

I These backtrace pointers will give us the tag sequence q0 = START, q1, q2, . . . , qn
which is the most likely tag sequence for 〈w1,w2, . . . ,wn〉.

29/41

Viterbi Algorithm

I Initialization:
v1(j) = a0j · bj(w1) 1 ≤ j ≤ N

bt1(j) = 0

I Recursion:

vi(j) = max
k=1...N

vi−1(k) · akj · bj(wi) 1 ≤ j ≤ N, 1 < i ≤ n

bt1(j) = argmax
k=1...N

vi−1(k) · akj · bj(wi) 1 ≤ j ≤ N, 1 < i ≤ n

I Termination:

p∗ = vn(qF) = max
k=1...N

vn(k) · ajF The best score

qn∗ = btn(qF) = argmax
k=1...N

vn(k) · ajF The start of the backtrace

30/41

Viterbi Decoding

31/41

Viterbi Decoding

32/41

Viterbi Decoding

33/41

Viterbi Decoding

34/41

Viterbi Decoding

35/41

Viterbi Decoding

36/41

Viterbi Decoding

I Once you are at i = n, you have to land in the END state (F), then use the backtrace
to find the previous state you came from and recursively trace backwards to find t̂1:n.

37/41

Viterbi Decoding Example

38/41

Viterbi Decoding Example

39/41

Viterbi Decoding Example

40/41

Unknown Words
I They are unlikely to be closed class words.
I They are most likely to be nouns or proper nouns, less likely, verbs.
I Exploit capitalization – most likely proper nouns.
I Exploit any morphological hints: -ed most likely past tense verb, -s, most likely plural

noun or present tense verb for 3rd person singular.
I Build a separate models of the sort

p(tj | ln−i+1 . . . ln) and p(ln−i+1 . . . ln)

where ln−i+1 . . . ln are the last i letters of a word.
I Then

p(ln−i+1 . . . ln | tj) =
p(tj | ln−i+1 . . . ln) · p(ln−i+1 . . . ln)

p(tj)

I Hence can be used in place of p(wi | ti) in the Viterbi algorithm.
I Only use low frequency words in these models.

41/41

Closing Remarks
I Viterbi decoding takes O(n · N2) work. (Why?)
I HMM parameters (transition probabilities A and emissions probabilities B) can

actually be estimated from an unannotated corpus.
I Given an unannotated corpus and the state labels, the forward-backward or Welch

Welch algorithm, a special case of the Expectation-Maximization (EM) algorithm
trains both the transition probabilities A and the emission probabilities B of the HMM.

I EM is an iterative algorithm. It works by computing an initial estimate for the
probabilities, then using those estimates to computing a better estimate, and so on,
iteratively improving the probabilities that it learns.

I There are many other more recent and usually better performing approaches to POS
tagging:

I Maximum Entropy Models (discriminative, uses features, computes t̂ = argmax
t

p(t | w))
I Conditional Random Fields (discriminative, uses features, but features functions can

also depend on the previous tag.)
I Perceptrons (discriminative, uses features, trained with the perceptron algorithm)

I Accuracy for English is in the 97% to 98% range.
I In every hundred words, you have 2 errors on the average and you do not know what they

are!

1/12

11-411
Natural Language Processing

Overview of (Mostly English) Syntax

Kemal Oflazer

Carnegie Mellon University in Qatar

2/12

Syntax

I The ordering of words and how they group into phrases
I [[the old man] [is yawning]]
I [[the old] [man the boats]]

I Syntax vs. Meaning
I “Colorless green ideas sleep furiously.”
I You can tell that the words are in the right order.
I and that “colorless” and “green” modify “ideas”
I and that ideas sleep
I that the sleeping is done furiously
I that it sounds like an English sentence
I if you can’t imagine what it means
I and you know that it is better than “Sleep green furiously ideas colorless”

3/12

Syntax vs. Morphology

I Syntax is not morphology
I Morphology deals with the internal structure of words.
I Syntax deals with combinations of words – phrases and sentences.

I Syntax is mostly made up of general rules that apply across-the-board, with very little
irregularities.

4/12

Syntax vs. Semantics

I Syntax is not semantics.
I Semantics is about meaning; syntax is about structure alone.
I A sentence can be syntactically well-formed but semantically ill-formed. (e.g., “Colorless

green ideas sleep furiously.”)
I Some well-known linguistic theories attempt to “read” semantic representations off of

syntactic representations in a compositional fashion.
I We’ll talk about these in a later lecture

5/12

Two Approaches to Syntactic Structure

I Constituent Structure or Phrase Structure Grammar
I Syntactic structure is represented by trees generated by a context-free grammar.
I An important construct is the constituent (complete sub-tree).

I Dependency Grammar:
I The basic unit of syntactic structure is a binary relation between words called a

dependency.

6/12

Constituents

I One way of viewing the structure of a sentence is as a collection of nested
constituents:

I Constituent: a group of words that “go together” (or relate more closely to one another
than to other words in the sentence)

I Constituents larger than a word are called phrases.
I Phrases can contain other phrases.

7/12

Constituents

I Linguists characterize constituents in a number of ways, including:
I where they occur (e.g., “NPs can occur before verbs”)
I where they can move in variations of a sentence

I On September 17th, I’d like to fly from Atlanta to Denver.
I I’d like to fly on September 17th from Atlanta to Denver.
I I’d like to fly from Atlanta to Denver on September 17th.

I what parts can move and what parts can’t
I *On September I’d like to fly 17th from Atlanta to Denver.

I what they can be conjoined with
I I’d like to fly from Atlanta to Denver on September 17th and in the morning.

8/12

Noun Phrases

I The elephant arrived.
I It arrived.
I Elephants arrived.
I The big ugly elephant arrived.
I The elephant I love to hate arrived.

9/12

Prepositional Phrases

I Every prepositional phrase contains a preposition followed by a noun phrase.

I I arrived on Tuesday.
I I arrived in March.
I I arrived under the leaking roof.
I I arrived with the elephant I love to hate.

10/12

Sentences/Clauses

I John likes Mary.
I John likes the woman he thinks is Mary.

I John likes the woman (whom) he thinks (the woman) is Mary.
I Sometimes, John thinks he is Mary.

I Sometimes, John thinks (that) he/John is Mary.
I It is absolutely false that sometimes John thinks he is Mary.

11/12

Recursion and Constituents,

I This is the house.
I This is the house that Jack built.
I This is the cat that lives in the house that Jack built.
I This is the dog that chased the cat that lives in the house that Jack built.
I This is the flea that bit the dog that chased the cat that lives in the house the Jack

built.
I This is the virus that infected the flea that bit the dog that chased the cat that lives in

the house that Jack built.

I Non-constituents
I If on a Winter’s Night a Traveler
I Nuclear and Radiochemistry
I The Fire Next Time
I A Tad Overweight, but Violet Eyes to Die For
I Sometimes a Great Notion
I [how can we know the] Dancer from the Dance

12/12

Describing Phrase Structure / Constituency Grammars

I Regular expressions were a convenient formalism for describing morphological
structure of words.

I Context-free grammars are a convenient formalism for describing context-free
languages.

I Context-free languages are a reasonable approximation for natural languages, while
regular languages are much less so!

I Although these depend on what the goal is.
I There is some linguistic evidence that natural languages are NOT context-free, but in

fact are mildly context-sensitive.
I This has not been a serious impediment.

I Other formalisms have been constructed over the years to deal with natural
languages.

I Unification-based grammars
I Tree-adjoining grammars
I Categorial grammars

1/53

11-411
Natural Language Processing
Formal Languages and Chomsky Hierarchy

Kemal Oflazer

Carnegie Mellon University in Qatar

2/53

Brief Overview of Formal Language Concepts

3/53

Strings

I An alphabet is any finite set of distinct symbols
I {0, 1}, {0,1,2,. . . ,9}, {a,b,c}
I We denote a generic alphabet by Σ

I A string is any finite-length sequence of elements of Σ.
I e.g., if Σ = {a, b} then a, aba, aaaa,, abababbaab are some strings over the

alphabet Σ

4/53

Strings

I The set of all possible strings over Σ is denoted by Σ∗.
I We define Σ0 = {ε} and Σn = Σn−1 · Σ

I with some abuse of the concatenation notation applying to sets of strings now

I So Σn = {ω|ω = xy and x ∈ Σn−1 and y ∈ Σ}

I Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · ·Σn ∪ · · · =
∞⋃
0

Σi

I Alternatively, Σ∗ = {x1, . . . , xn|n ≥ 0 and xi ∈ Σ for all i}
I Φ denotes the empty set of strings Φ = {},

I but Φ∗ = {ε}

5/53

Sets of Languages

I The power set of Σ∗, the set of all its subsets, is denoted as 2Σ∗

6/53

Describing Languages

I Interesting languages are infinite
I We need finite descriptions of infinite sets

I L = {anbn : n ≥ 0} is fine but not terribly useful!
I We need to be able to use these descriptions in mechanizable procedures

7/53

Describing Languages

I Regular Expressions/Finite State Recognizers⇒ Regular Languages
I Context-free Grammars/Push-down Automata⇒ Context-free Languages

8/53

Identifying Nonregular Languages

I Given language L how can we check if it is not a regular language ?
I The answer is not obvious.
I Not being able to design a DFA does not constitute a proof!

9/53

The Pigeonhole Principle

I If there are n pigeons and m holes and n > m, then at least one hole has > 1 pigeons.

I What do pigeons have to do with regular languages?

10/53

The Pigeonhole Principle

I Consider the DFA

I With strings a, aa or aab, no state is repeated
I With strings aabb, bbaa, abbabb or abbbabbabb, a state is repeated
I In fact, for any ω where |ω| ≥ 4, some state has to repeat? Why?

11/53

The Pigeonhole Principle

I When traversing the DFA with the string ω, if the number of transitions ≥ number of
states, some state q has to repeat!

I Transitions are pigeons, states are holes.

12/53

Pumping a String

I Consider a string ω = xyz

I |y| ≥ 1
I |xy| ≤ m (m the number of states)

I If ω = xyz ∈ L that so are xyiz for all i ≥ 0
I The substring y can be pumped.
I So if a DFA accepts a sufficiently long string, then it accepts an infinite number of

strings!

13/53

There are Nonregular Languages

I Consider the language L = {anbn|n ≥ 0}
I Suppose L is regular and a DFA with p states accepts L
I Consider δ∗(q0, a

i) for i = 0, 1, 2, . . .
I δ∗(q,w) is the extended state transition function: what state do I land in starting in state q

and stepping through the stmbols in w.
I Since there are infinite i’s, but a finite number states, the Pigeonhole Principle tells us

that there is some state q such that
I δ∗(q0, an) = q and δ∗(q0, am) = q, but n 6= m
I Thus if M accepts anbn it must also accept ambn, since in state q is does not “remember” if

there were n or m a’s.
I Thus M can not exist and L is not regular.

14/53

Is English Regular?

I The cat likes tuna fish.
I The cat the dog chased likes tuna fish.
I The cat the dog the rat bit chased likes tuna fish.
I The cat the dog the rat the elephant admired bit chased likes tuna fish.
I L1 = (the cat | the dog | the mouse| . . .)* (chased | bit | ate |)* likes tuna fish
I L2 = English

I L1 ∩ L2 = (the cat | the dog | the mouse| . . .)n (chased | bit | ate |)n−1 likes tuna
fish.

I Closure fact: If L1 and L2 are regular⇒ L1 ∩ L2 is regular.
I L1 is regular, L1 ∩ L2 is NOT regular, hence L2 (English) can NOT be regular.

15/53

Grammars

I Grammars provide the generative mechanism to generate all strings in a language.
I A grammar is essentially a collection of substitution rules, called productions
I Each production rule has a left-hand-side and a right-hand-side.

16/53

Grammars - An Example

I Consider once again L = {anbn | n ≥ 0}
I Basis: ε is in the language

I Production: S→ ε

I Recursion: If w is in the language, then so is the string awb.
I Production: S→ aSb

I S is called a variable or a nonterminal symbol
I a, b etc., are called terminal symbols
I One variable is designated as the start variable or start symbol.

17/53

How does a grammar work?

I Consider the set of rules R = {S→ ε, S→ aSb}
I Start with the start variable S
I Apply the following until all remaining symbols are terminal.

I Choose a production in R whose left-hand sides matches one of the variables.
I Replace the variable with the rule’s right hand side.

I S⇒ aSb⇒ aaSbb⇒ aaaSbbb⇒ aaaaSbbbb⇒ aaaabbbb
I The string aaaabbbb is in the language L
I The sequence of rule applications above is called a derivation.

18/53

Types of Grammars

I Regular Grammars describe regular languages.
I Context-free Grammars: describe context-free languages.
I Context-sensitive Grammars: describe context-sensitive languages.
I General Grammars: describe arbitrary Turing-recognizable languages.

19/53

Formal Definition of a Grammar

I A Grammar is a 4-tuple G = (V,Σ,R, S) where
I V is a finite set of variables
I Σ is a finite set of terminals, disjoint from V.
I R is a set of rules of the X → Y
I S ∈ V is the start variable

I In general X ∈ (V ∪ Σ)+ and Y ∈ (V ∪ Σ)∗

I The type of a grammar (and hence the class of the languages described) depends on
the type of the left- and right-hand sides.

I The right hand side of the rules can be any combination of variables and terminals,
including ε (hence Y ∈ (V ∪ Σ)∗).

20/53

Types of Grammars

I Regular Grammars
I Left-linear: All rules are either like X → Ya or like X → a with X, Y ∈ V and a ∈ Σ∗

I Right-linear: All rules are either like X → aY or like X → a with X, Y ∈ V and a ∈ Σ∗

I Context-free Grammars
I All rules are like X → Y with X ∈ V and Y ∈ (Σ ∪ V)∗

I Context-sensitive Grammars
I All rules are like LXR→ Y with X ∈ V and R, Y, L ∈ (Σ ∪ V)∗

I General Grammars
I All rules are like X → Y with X, Y ∈ (Σ ∪ V)∗

21/53

Chomsky Normal Form

I CFGs in certain standard forms are quite useful for some computational problems.

Chomsky Normal Form
A context-free grammar is in Chomsky normal form(CNF) if every
rule is either of the form

A→ BC or A→ a

where a is a terminal and A,B,C are variables – except B and C may
not be the start variable. In addition, we allow the rule S→ ε if
necessary.

I Any CFG can be converted to a CFG in Chomsky Normal Form. They accept the
same language but assign possibly different tree structures to the same string.

22/53

Chomsky Hierarchy

23/53

Parse Trees

S

a S

a S

a S

a S

ε

b

b

b

b

The terminals concatenated from left

to right give us the string.

I Derivations can also be represented
with a parse tree.

I The leaves constitute the yield of the
tree.

I Terminal symbols can occur only at
the leaves.

I Variables can occur only at the
internal nodes.

24/53

A Grammar for a Fragment of English

S → NP VP
NP → CN | CN PP
VP → CV | CV PP
PP → P NP
CN → DT N
CV → V | V NP
DT → a | the

N → boy | girl | flower |
telescope

V → touches | likes |
sees | gives

P → with | to

Nomenclature:
I S: Sentence
I NP: Noun Phrase
I CN: Complex Noun
I PP: Prepositional Phrase
I VP: Verb Phrase
I CV: Complex Verb
I P: Preposition
I DT: Determiner
I N: Noun
I V: Verb

25/53

A Grammar for a Fragment of English

S → NP VP
NP → CN | CN PP
VP → CV | CV PP
PP → P NP
CN → DT N
CV → V | V NP
DT → a | the

N → boy | girl | flower |
telescope

V → touches | likes |
sees | gives

P → with | to

S ⇒ NP VP
⇒ CN PP VP
⇒ DT N PP VP
⇒ a N PP VP
⇒ · · ·
⇒ a boy with a flower VP
⇒ a boy with a flower CV PP
⇒ · · ·
⇒ a boy with a flower sees a girl

with a telescope

26/53

English Parse Tree

S

NP

CN

DT

a

N

boy

PP

P

with

NP

CN

DT

a

N

flower

VP

CV

V

sees

NP

CN

DT

a

N

girl

PP

P

with

NP

CN

DT

a

N

telescope

I This structure is for the interpretation where the boy is seeing with the telescope!

27/53

English Parse Tree
Alternate Structure

S

NP

CN

DT

a

N

boy

PP

P

with

NP

CN

DT

a

N

flower

VP

CV

V

sees

NP

CN

DT

a

N

girl

PP

P

with

NP

CN

DT

a

N

telescopeI This is for the interpretation where the girl is carrying a telescope.

28/53

Structural Ambiguity

I A set of rules can assign multiple structures to the same string.
I Which rule one chooses determines the eventual structure.

I VP→ CV | CV PP
I CV→ V | V NP
I NP→ CN | CN PP
I · · · [VP [CV sees [NP a girl] [PP with a telescope]].
I · · · [VP [CV sees] [NP [CN a girl] [PP with a telescope]].

I (Not all brackets are shown!)

29/53

Some NLP Considerations - Linguistic Grammaticality

I We need to address a wide-range of grammaticality.
I I’ll write the company.
I I’ll write to the company.
I It needs to be washed.
I It needs washed.
I They met Friday to discuss it.
I They met on Friday to discuss it.

30/53

Some NLP Considerations – Getting it Right

I CFGs provide you with a tool set for creating grammars
I Grammars that work well (for a given application)
I Grammars that work poorly (for a given application)

I There is nothing about the theory of CFGs that tells you, a priori, what a “correct”
grammar for a given application looks like

I A good grammar is generally one that:
I Doesn’t over-generate very much (high precision)

I A grammar over-generates when it accepts strings not in the language.
I Doesn’t under-generate very much (high recall)

I A grammar under-generates when it does not accept strings in the language.

31/53

Some NLP Considerations – Why are we Building Grammars?

I Consider:
I Oswald shot Kennedy.
I Oswald, who had visited Russia recently, shot Kennedy.
I Oswald assassinated Kennedy

I Who shot Kennedy?
I Consider

I Oswald shot Kennedy.
I Kennedy was shot by Oswald.
I Oswald was shot by Ruby.

I Who shot Oswald?
I Active/Passive

I Oswald shot Kennedy.
I Kennedy was shot by Oswald.

I Relative clauses
I Oswald who shot Kennedy was shot by Ruby.
I Kennedy whom Oswald shot didn’t shoot anybody.

32/53

Language Myths: Subject

I Myth I: the subject is the first noun phrase in a sentence
I Myth II: the subject is the actor in a sentence
I Myth III: the subject is what the sentence is about
I All of these are often true, but none of them is always true, or tells you what a subject

really is (or how to use it in NLP).

33/53

Subject and Object

I Syntactic (not semantic)
I The batter hit the ball. [subject is semantic agent]
I The ball was hit by the batter. [subject is semantic patient]
I The ball was given a whack by the batter. [subject is semantic recipient]
I George, the key, the wind opened the door.

I Subject 6= topic (the most important information in the sentence)
I I just married the most beautiful woman in the world.
I Now beans, I like.
I As for democracy, I think it’s the best form of government.

I English subjects
I agree with the verb
I when pronouns, are in nominative case (I/she/he vs. me/her/him)

I English objects
I when pronouns, in accusative case (me, her, him)
I become subjects in passive sentences

34/53

Looking Forward

I CFGs may not be entirely adequate for capturing the syntax of natural languages
I They are almost adequate.
I They are computationally well-behaved (in that you can build relatively efficient parsers for

them, etc.)
I But they are not very convenient as a means for handcrafting a grammar.
I They are not probabilistic. But we will add probabilities to them soon.

35/53

Parsing Context-free Languages

I The Cocke-Younger-Kasami (CYK) algorithm:
I Grammar in Chomsky Normal Form (may not necessarily be linguistically meaningful)
I All trees sanctioned by the grammar can be computed.
I For an input of n words, requires O(n3) work (with a large constant factor dependent on the

grammar size), using a bottom-up dynamic programming approach.
I Earley Algorithm:

I Can handle arbitrary Context-free Grammars
I Parsing is top-down.
I Later.

36/53

The Cocke-Younger-Kasami (CYK) algorithm

I The CYK parsing algorithm determines if w ∈ L(G) for a grammar G in Chomsky
Normal Form

I with some extensions, it can also determine possible structures.
I Assume w 6= ε (if so, check if the grammar has the rule S→ ε)

37/53

The CYK Algorithm

I Consider w = a1a2 · · · an, ai ∈ Σ

I Suppose we could cut up the string into two parts u = a1a2..ai and
v = ai+1ai+2 · · · an

I Now suppose A ∗⇒ u and B ∗⇒ v and that S→ AB is a rule.

S

A

a1 ai

B

ai+1 an
← u → ← v →

38/53

The CYK Algorithm

S

A

a1 ai

B

ai+1 an
← u → ← v →

I Now we apply the same idea to A and B recursively.

S

A

C

a1 aj

D

aj+1 ai

B

E

ai+1 ak

F

ak+1 an
← u1 → ← v1 → ← u2 → ← v2 →

39/53

The CYK Algorithm

S

A

C

a1 aj

D

aj+1 ai

B

E

ai+1 ak

F

ak+1 an
← u1 → ← v1 → ← u2 → ← v2 →

I What is the problem here?
I We do not know what i, j and k are!
I No Problem! We can try all possible i’s, j’s and k′s.
I Dynamic programming to the rescue.

40/53

DIGRESSION - Dynamic Programming

I An algorithmic paradigm
I Essentially like divide-and-conquer but subproblems overlap!
I Results of subproblem solutions are reusable.
I Subproblem results are computed once and then memoized
I Used in solutions to many problems

I Length of longest common subsequence
I Knapsack
I Optimal matrix chain multiplication
I Shortest paths in graphs with negative weights (Bellman-Ford Alg.)

41/53

(Back to) The CYK Algorithm

I Let w = a1a2 · · · an.
I We define

I wi, j = ai · · · aj (substring between positions i and j)
I Vi, j = {A ∈ V | A ∗⇒ wi, j}(j ≥ i) (all variables which derive wi, j)

I w ∈ L(G) iff S ∈ V1,n
I How do we compute Vi, j(j ≥ i)?

42/53

The CYK Algorithm

I How do we compute Vi, j?
I Observe that A ∈ Vi,i if A→ ai is a rule.

I So Vi, i can easily be computed for 1 ≤ i ≤ n by an inspection of w and the grammar.

I A ∗⇒ wi,j if
I There is a production A→ BC, and
I B ∗⇒ wi,k and C ∗⇒ wk+1,j for some k, i ≤ k < j.

I So
Vi, j =

⋃
i≤k<j

{A :| A→ BC and B ∈ Vi,k and C ∈ Vk+1,j}

43/53

The CYK Algorithm

Vi, j =
⋃

i≤k<j
{A : A→ BC and B ∈ Vi,k and C ∈ Vk+1,j}

I Compute in the following order:
→

↓ V1,1 V2,2 V3,3 · · · · · · · · · Vn,n

V1,2 V2,3 V3,4 · · · · · · Vn−1,n

V1,3 V2,4 V3,5 · · · Vn−2,n

· · ·
V1,n−1 V2,n

V1,n

I For example to compute V2,4 one needs V2,2 and V3,4, and then V2,3 and V4,4 all of
which are computed earlier!

44/53

The CYK Algorithm

1) for i=1 to n do // Initialization
2) Vi,i = {A | A→ a is a rule and wi,i = a]
3) for j=2 to n do
4) for i=1 to n-j+1 do
5) begin
6) Vi, j = {}; // Set Vi, j to empty set
7) for k=i to j-1 do
8) Vi, j = Vi, j ∪ {A | A→ BC is a rule and

B ∈ Vi,k and C ∈ Vk+1,j}
I This algorithm has 3 nested loops with the bound for each being O(n). So the overall time/work

is O(n3).
I The size of the grammar factors in as a constant factor as it is independent of n – the length of

the string.
I Certain special CFGs have subcubic recognition algorithms.

45/53

The CYK Algorithm in Action

I Consider the following grammar in CNF
S → AB
A → BB | a
B → AB | b

I The input string is w = aabbb

I i→ 1 2 3 4 5
a a b b b
{A} {A} {B} {B} {B}
{} {S,B} {A} {A}
{S,B} {A} {S,B}
{A} {S,B}
{S,B}

I Since S ∈ V1,5, this string is in L(G).

46/53

The CYK Algorithm in Action

I Consider the following grammar in CNF
S → AB
A → BB | a
B → AB | b

I Let us see how we compute V2,4

I We need to look at V2,2 and V3,4
I We need to look at V2,3 and V4,4

i→ 1 2 3 4 5
a a b b b
{A} {A} {B} {B} {B}
{} {S,B} {A} {A}
{S,B} {A} {S,B}
{A} {S,B}
{S,B}

47/53

A CNF Grammar for a Fragment of English

S → NP VP
NP → CN | CN PP
VP → CV | CV PP
PP → P NP
CN → DT N
CV → V | V NP
DT → a | the

N → boy | girl | flower |
telescope

V → touches | likes |
sees | gives

P → with | to

Grammar in Chomsky Normal
Form

S → NP VP
NP → CN PP
NP → DT N
VP → CV PP
VP → V NP
VP → touches | likes | sees | gives
PP → P NP
CN → DT N
CV → V NP
CV → touches | likes | sees | gives
DT → a | the

N → boy | girl | flower | telescope
V → touches | likes | sees | gives
P → with | to

48/53

English Parsing Example with CYK

S → NP VP
NP → CN PP
NP → DT N
VP → CV PP
VP → V NP
VP → touches | likes | sees | gives
PP → P NP
CN → DT N
CV → V NP
CV → touches | likes | sees | gives
DT → a | the

N → boy | girl | flower | telescope
V → touches | likes | sees | gives
P → with | to

i→ 1 2 3 4 5
the boy sees a girl
{DT} {N} {V,CV,VP} {DT} {N}
{CN,NP} {} {} {CN,NP}
{S} {} {CV,VP}
{} {}
{S}X

49/53

Some Languages are NOT Context-free

I L = {anbncn | n ≥ 0} is not a context-free language.
I This can be shown with the Pumping Lemma for Context-free Languages.
I It is however a context-sensitive language.

I Cross-serial Dependencies1

I L = {anbmcndm | n,m ≥ 0} is not a context-free language but is considered mildly
context sensitive.

I So is L = {xanybmzcnwdmu | n,m ≥ 0}

1Graphics by Christian Nassif-Haynes from commons.wikimedia.org/w/index.php?curid=28274222

commons.wikimedia.org/w/index.php?curid=28274222

50/53

Are CFGs enough to model natural languages?

I Swiss German has the following construct:
dative-NPp accusative-NPq dative-taking-Vp accusative-taking-Vq

I Jan säit das mer em Hans es huus hälfed aastriiche.
I Jan says that we Hans the house helped paint.
I “Jan says that we helped Hans paint the house.”

I Jan säit das mer d’chind em Hans es huus haend wele laa hälfe aastriiche.
I Jan says that we the children Hans the house have wanted to let help paint.
I “Jan says that we have wanted to let the children help Hans paint the house.”

51/53

Is Swiss German Context-free?

I L1 = { Jan säit das mer (d’chind)∗ (em Hans)∗ es huus haend wele (laa)∗ (hälfe)∗
aastriiche.}

I L2 = { Swiss German }
I L1 ∩ L2 = { Jan säit das mer (d’chind)n (em Hans)m es huus haend wele (laa)n

(hälfe)m aastriiche.} ≡ L = {xanybmzcnwdmu | n ≥ 0}

52/53

English “Respectively” Construct

I Alice, Bob and Carol will have a juice, a tea and a coffee, respectively.
I Again mildly context-sensitive!

53/53

Closing Remarks

I Natural languages are mildly context sensitive.
I But CFGs might be enough
I But RGs might be enough

I If you have very big grammars and,
I don’t really care about parsing.

1/34

11-411
Natural Language Processing

Treebanks and
Probabilistic Parsing

Kemal Oflazer

Carnegie Mellon University in Qatar

2/34

Probabilistic Parsing with CFGs

I The basic CYK Algorithm is not probabilistic: It builds a table from which all
(potentially exponential number of) parse trees can be extracted.

I Note that while computing the table needs O(n3) work, computing all trees could require
exponential work!

I Computing all trees is not necessarily useful either. How do you know which one is the
correct or best tree?

I We need to incorporate probabilities in some way.
I But where do we get them?

3/34

Probabilistic Context-free Grammars

I A probabilistic CFG (PCFG) is a CFG
I A set of nonterminal symbols V
I A set of terminal symbols Σ
I A set R of rules of the sort X → Y where X ∈ V and Y ∈ (V ∪ Σ)∗.
I If you need to use CKY, Chomsky Normal Form is a special case with rules only like

I X → YZ
I X → a

where X, Y, Z ∈ V and a ∈ Σ

with a probability distribution over the rules:
I For each X ∈ V , there is a probability distribution over the rules inR, where X is the

left-hand side p(X → Y)
I For every X ∑

X→Y∈R
p(X → Y) = 1

4/34

PCFG Example

S

Write down the start Symbol S

Score:

5/34

PCFG Example

S

Aux NP VP

Choose a rule from the S distribution. Here S→ Aux NP VP

Score:
p(Aux NP VP | S)

6/34

PCFG Example

S

Aux

does

NP VP

Choose a rule from the Aux distribution. Here Aux→ does

Score:
p(Aux NP VP | S) · p(does | Aux)

7/34

PCFG Example

S

Aux

does

NP

Det N

VP

Choose a rule from the NP distribution. Here NP→ Det Noun

Score:
p(Aux NP VP | S) · p(does | Aux) · p(Det N | NP)

8/34

PCFG Example

S

Aux

does

NP

Det

this

N

VP

Choose a rule from the Det distribution. Here Det→ this

Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det N | NP) · p(this | Det)

9/34

PCFG Example

S

Aux

does

NP

Det

this

N

flight

VP

Choose a rule from the Det distribution. Here Det→ this

Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det N | NP) · p(this | Det)·

p(flight | N)

10/34

PCFG Example

S

Aux

does

NP

Det

this

N

flight

VP

Verb NP

Choose a rule from the VP distribution. Here VP→ Verb NP

Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det N | NP) · p(this | Det)·

p(flight | N) · p(Verb NP | VP)

11/34

PCFG Example

S

Aux

does

NP

Det

this

N

flight

VP

Verb

include

NP

Choose a rule from the Verb distribution. Here Verb→ include

Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det N | NP) · p(this | Det)·

p(flight | N) · p(Verb NP | VP) · p(include | V)

12/34

PCFG Example

S

Aux

does

NP

Det

this

N

flight

VP

Verb

include

NP

Det N

Choose a rule from the NP distribution. Here NP→ Det NP

Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det N | NP) · p(this | Det)·

p(flight | N) · p(Verb NP | VP) · p(include | V) · p(Det N | NP)

13/34

PCFG Example
S

Aux

does

NP

Det

this

N

flight

VP

Verb

include

NP

Det

a

N

Choose a rule from the Det distribution. Here Det→ a

Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det N | NP) · p(this | Det)·

p(flight | N) · p(Verb NP | VP) · p(include | V) · p(Det N | NP) · p(a | Det)

14/34

PCFG Example
S

Aux

does

NP

Det

this

N

flight

VP

Verb

include

NP

Det

a

N

meal

Choose a rule from the N distribution. Here N→ meal

Score:

p(Aux NP VP | S) · p(does | Aux) · p(Det N | NP) · p(this | Det) · p(flight | N)

p(Verb NP | VP) · p(include | V) · p(Det N | NP) · p(a | Det) · p(meal | N)

15/34

Noisy Channel Model of Parsing

Source →

T → Vocal Tract/Typing →
(A boy with a flower sees . . .)

X

I “I have a tree of the sentence I want to utter in my mind; by the time I utter it only the
words come our.”

I The PCFG defines the source model.
I The channel is deterministic: it erases everything except the leaves!
I If I observe a sequence of words comprising a sentence, what is the best tree

structure it corresponds to?
I Find tree t̂ = argmax

Trees t
with yield x

p(t | x)

I How do we set the probabilities p(right hand side | left hand side)?
I How do we decode/parse?

16/34

Probabilistic CYK

I Input
I a PCFG (V, S,Σ,R, p(∗ | ∗)) in Chomsky Normal Form.
I a sentence x of length n words.

I Output
I t̂ = arg max

t∈Tx

p(t | x) (if x is in the language of the grammar.)

I Tx: all trees with yield x.

17/34

Probabilistic CYK

I We define si:j(V) as the maximum probability for deriving the fragment
. . . xi, . . . , xj . . . from the nonterminal V ∈ V .

I We use CYK dynamic programming to compute the best score s1:n(S).
I Base case: for i ∈ {1, . . . , n} and for each V ∈ V :

si:i(V) = p(xi | V)

I Inductive case: For each i, j, 1 ≤ i < j ≤ n and V ∈ V .

si:j(V) = max
L,R∈V, i≤k<j

p(L R | V) · si:k(L) · s(k+1):j(R)

I Solution:
s1:n(S) = max

t∈Tx
p(t)

18/34

Parse Chart

i→ 1 2 3 4 5
the boy sees a girl

s1:1(∗) s2:2(∗) s3:3(∗) s4:4(∗) s5:5(∗)
s1:2(∗) s2:3(∗) s3:4(∗) s4:5(∗)
s1:3(∗) s2:4(∗) s3:5(∗)
s1:4(∗) s2:5(∗)
s1:5(∗)

I Again, each entry is a table, mapping each nonterminal V to si:j(V), the maximum
probability for deriving the fragment . . . xi, . . . , xj . . . from the nonterminal V .

19/34

Remarks

I Work and Space requirements? O(|R|n3) work, O(|V|n2) space.
I Recovering the best tree? Use backpointers.

I Note that there may be an exponential number of possible trees, if you want to enumerate
some/all trees.

I Probabilistic Earley’s Algorithm does NOT require a Chomsky Normal Form grammar.

20/34

More Refined Models

Starting Point

21/34

More Refined Models
Parent Annotation

I Increase the “vertical” Markov Order

p(children | parent, grandparent)

22/34

More Refined Models
Headedness

I Suggests “horizontal” Markovization:

p(children | parent) = p(head | parent)·
∏

i
p(ith sibling | head,parent)

23/34

More Refined Models
Lexicalization

I Each node shares a lexical head with its head child.

24/34

Where do the Probabilities Come from?

I Building a CFG for a natural language by hand is really hard.
I One needs lots of categories to make sure all and only grammatical sentences are

included.
I Categories tend to start exploding combinatorially.
I Alternative grammar formalisms are typically used for manual grammar construction;

these are often based on constraints and a powerful algorithmic tool called unification.
I Standard approach today is to build a large-scale treebank, a database manually

constructed parse-trees of real-world sentences.
I Extract rules from the treebank.
I Estimate probabilities from the treebank.

25/34

Penn Treebank

I Large database of hand-annotated parse trees of English.
I Mostly Wall Street Journal news text.
I About 42,500 sentences: typically about 40,000 used for statistical modeling and

training and 2500 for testing
I WSJ section has about ≈1M words, ≈ 1M non-lexical rules boiling down to 17,500

distinct rules.
I https://en.wikipedia.org/wiki/Treebank lists tens of treebanks built for

many different languages over the last two decades.
I http://universaldependencies.org/ lists tens of treebanks built using the

Universal Dependencies framework.

https://en.wikipedia.org/wiki/Treebank
http://universaldependencies.org/

26/34

Example Sentence from Penn Treebank

27/34

Example Sentence Encoding from Penn Treebank

28/34

More PTB Trees

29/34

More PTB Trees

30/34

Treebanks as Grammars

I You can now compute rule
probabilities from the counts
of these rules e.g.,

I p(VBN PP | VP), or
I p(light | NN).

31/34

Interesting PTB Rules

I VP→ VBP PP PP PP PP PP ADVP PP
I This mostly happens because we go from football in the fall to lifting in the winter to

football again in the spring.
I NP→ DT JJ JJ VBG NN NNP NNP FW NNP

I The state-owned industrial holding company Instituto Nacional de Industria . . .

32/34

Some Penn Treebank Rules with Counts

33/34

Parser Evaluation
I Represent a parse tree as a collection of tuples
{(`1, i1, j1), (`2, i2, j2),. . . , (`m, im, jm)} where

I `k is the nonterminal labeling kth phrase.
I ik is the index of the first word in the kth phrase.
I jk is the index of the last word in the kth phrase.

S

Aux

does

NP

Det

this

N

flight

VP

Verb

include

NP

Det

a

N

meal

→ {(S, 1, 6), (NP, 2, 3), (VP, 4, 6), . . . ,

(Aux, 1, 1), . . . , (Noun, 6, 6)}

I Convert gold-standard tree and system hypothesized tree into this representation,
then estimate precision, recall, and F1.

34/34

Tree Comparison Example

I In both trees: {(NP, 1, 1), (S, 1, 7), (VP, 2, 7), (PP, 5, 7), (NP, 6, 7), (Nominal, 4, 4)}
I In the left (hypothesized) tree: {(NP, 3, 7), (Nominal, 4, 7)}
I In the right (gold) tree: {(VP, 2, 4), (NP, 3, 4)}
I P = 6/8, R = 6/8

1/29

11-411
Natural Language Processing

Earley Parsing

Kemal Oflazer

Carnegie Mellon University in Qatar

2/29

Earley Parsing

I Remember that CKY parsing works only for grammar in Chomsky Normal Form
(CNF)

I Need to convert grammar to CNF.
I The structure may not necessarily be “natural”.
I CKY is bottom-up – may be doing unnecessary work.

I Earley algorithm allows arbitrary CFGs.
I So no need to convert your grammar.

I Earley algorithm is a top-down algorithm.

3/29

Earley Parsing
I The Earley parser fills a table (sometimes called a chart) in a single sweep over the

input.
I For an n word sentence, the table is of size n + 1.
I Table entries represent

I In-progress constituents
I Predicted constituents.
I Completed constituents and their locations in the sentence

4/29

Table Entries

I Table entries are called states and are represented with dotted-rules.

I S→ •VP a VP is predicted

NP→ Det • Nominal an NP is in progress

VP→ V NP• a VP has been found

5/29

States and Locations

S→ •VP[0, 0] a VP is predicted at the start of the sentence

NP→ Det • Nominal[1, 2] an NP is in progress; Det goes from 1 to 2

VP→ V NP • [0, 3] a VP has been found starting at 0 and ending at 3

6/29

The Early Table Layout

Column 0 Column 1 . . . Column n
States and Locations States and Locations States and Locations States and Locations
for for for
column 0 column 1 column n

I Words are positioned between columns.
I w1 is positioned between columns 0 and 1
I wn is positioned between columns n− 1 and n.

7/29

Earley – High-level Aspects

I As with most dynamic programming approaches, the answer is found by looking in the
table in the right place.

I In this case, there should be an S state in the final column that spans from 0 to n and
is complete. That is,

I S→ α • [0, n]

I If that is the case, you are done!
I So sweep through the table from 0 to n

I New predicted states are created by starting top-down from S
I New incomplete states are created by advancing existing states as new constituents are

discovered.
I New complete states are created in the same way.

8/29

Earley – High-level Aspects

1. Predict all the states you can upfront
2. Read a word

2.1 Extend states based on matches
2.2 Generate new predictions
2.3 Go to step 2

3. When you are out of words, look at the chart to see if you have a winner.

9/29

Earley – Main Functions: Predictor

I If you have a state spanning [i, j]
I and is looking for a constituent B,
I then enqueue new states that will search for a B, starting at position j.

10/29

Earley– Prediction

I Given A→ α • Bβ [i, j] (for example ROOT→ •S [0, 0])
I and the rule B→ γ (for example S→ VP)
I create B→ •γ [j, j] (for example, S→ •VP [0, 0])

ROOT→ •S[0, 0]
S→ •NP VP[0, 0]
S→ •VP[0, 0]
. . .
VP→ •V NP[0, 0]
. . .
NP→ •DT N[0, 0]

11/29

Earley – Main Functions: Scanner

Red circled indices should be j + 1
I If you have a state spanning [i, j]
I and is looking for a word with Part-of-Speech B,
I and one of the parts-of-speech the next word at position j is B
I then enqueue a state of the sort B→ word[j + 1] • [j, j + 1] in chart position j + 1

12/29

Earley– Scanning

I Given A→ α • Bβ [i, j] (for example VP→ •V NP [0, 0])
I and the rule B→ wj+1 (for example V→ book)

I create B→ wj+1 • [j, j + 1] (for example, V→ book • [0, 1])

ROOT→ •S[0, 0] V→ book • [0, 1]
S→ •NP VP[0, 0]
S→ •VP[0, 0]
. . .
VP→ •V NP[0, 0]
. . .
NP→ •DT N[0, 0]

13/29

Earley – Main Functions: Completer

I If you have a completed state spanning [j, k] with B as the left hand side.
I then, for each state in chart position j (with some span [i, j], that is immediately

looking for a B),
I move the dot to after B,
I extend the span to [i, k]
I then enqueue the updated state in chart position k.

14/29

Earley– Completion

I Given A→ α • Bβ [i, j] (for example VP→ •V NP [0, 0])
I and B→ γ • [j, k] (for example V→ book • [0, 1])
I create V→ αB • β [i, k] (for example, VP→ V • NP [0, 1])

ROOT→ •S[0, 0] V→ book • [0, 1]
S→ •NP VP[0, 0] VP→ V • NP [0, 1]
S→ •VP[0, 0]
. . .
VP→ •V NP[0, 0]
. . .
NP→ •DT N[0, 0]

15/29

Earley – Main Functions: Enqueue

I Just enter the given state to the chart-entry if it is not already there.

16/29

The Earley Parser

17/29

Extended Earley Example

I 0 Book 1 that 2 flight 3
I We should find a completed state at chart position 3
I with left hand side S and is spanning [0, 3]

18/29

Extended Earley Example Grammar

19/29

Extended Earley Example

20/29

Extended Earley Example

21/29

Extended Earley Example

22/29

Extended Earley Example

23/29

Extended Earley Example

S37 is due to S11 and S33!

24/29

Final Earley Parse

25/29

Comments

I Work is O(n3) – analysis is a bit trickier than CKY.

I Space is O(n2)
I Big grammar-related constant
I Backpointers can help recover trees.

26/29

Probabilistic Earley Parser

I So far we had no mention of any probabilities or choosing the best parse.
I Rule probabilities can be estimated from treebanks as usual.
I There are algorithms that resemble the Viterbi algorithm for HMMs for computing the

best parse incrementally from left to right it the chart.
I Stolcke, Andreas, “An efficient probabilistic context-free parsing algorithm that computes

prefix probabilities”, Computational Linguistics, Volume 21, No:2, 1995
I Beyond our scope!

27/29

General Chart Parsing

I CKY and Earley each statically determine order of events, in code
I CKY fills out triangle table starting with words on the diagonal
I Earley marches through instances of grammar rules

I Chart parsing puts edges on an agenda, allowing an arbitrary ordering policy,
separate from the code.

I Generalizes CKY, Earley, and others

28/29

Implementing Parsing as Search

Agenda = {state0}
while (Agenda not empty)

s = pop a state from Agenda
if s a success-state return s // we have a parse
else if s is not a failure-state:

generate new states from s
push new states on Agenda

return nil // no parser

I Fundamental Rule of Chart Parsing: if you can combine two contiguous edges to
make a bigger one, do it.

I Akin to the Completer function in Earley.
I How you interact with the agenda is called a strategy.

29/29

Is Ambiguity Solved?

I Time flies like an arrow.
I Fruit flies like a banana.

I Time/N flies/V like an arrow.
I Time/V flies/N like (you time) an arrow.
I Time/V flies/N like an arrow (times flies).
I Time/V flies/N (that are) like an arrow.
I [Time/N flies/N] like/V an arrow!
I . . .

1/47

11-411
Natural Language Processing

Dependency Parsing

Kemal Oflazer

Carnegie Mellon University in Qatar

2/47

Dependencies

Informally, you can think of dependency structures as a transformation of
phrase-structures that

I maintains the word-to-word relationships induced by lexicalization,
I adds labels to these relationships, and
I eliminates the phrase categories

There are linguistic theories build on dependencies, as well as treebanks based on
dependencies:

I Czech Treebank
I Turkish Treebank

3/47

Dependency Tree: Definition

Let x = [x1, . . . , xn] be a sentence. We add a special ROOT symbol as “x0”.

A dependency tree consists of a set of tuples [p, c, `] where

I p ∈ {0, . . . , n} is the index of a parent.
I c ∈ {1, . . . , n} is the index of a child.
I ` ∈ L is a label.

Different annotation schemes define different label sets L, and different constraints on the
set of tuples. Most commonly:

I The tuple is represented as a directed edge from xp to xc with label `.
I The directed edges form an directed tree with x0 as the root (sometimes denoted as

ROOT).

4/47

Example

S

VP

NP

Noun

cats

Determiner

our

Verb

wash

NP

Pronoun

we

Phrase-structure tree

5/47

Example

S

VP

NP

Noun

cats

Determiner

our

Verb

wash

NP

Pronoun

we

Phrase-structure tree with phrase-heads

6/47

Example

Swash

VPwash

NPcats

Nouncats

cats

Determinerour

our

Verbwash

wash

NPwe

Pronounwe

we

Phrase-structure tree with phrase-heads, lexicalized

7/47

Example

we wash our cats

ROOT

“Bare bones” dependency tree.

8/47

Example

we wash our cats who stink

ROOT

9/47

Example

we vigorously wash our cats who stink

ROOT

10/47

Labels

kids saw birds with fish

ROOT

SUBJ DOBJ

POBJ

PREP

Key dependency relations captured in the labels include:
I Subject
I Direct Object
I Indirect Object
I Preposition Object
I Adjectival Modifier
I Adverbial Modifier

11/47

Problem: Coordination Structures

we vigorously wash our cats and dogs who stink

ROOT

Most likely the most important problem with dependency syntax.

12/47

Coordination Structures: Proposal 1

we vigorously wash our cats and dogs who stink

ROOT

Make the first conjunct head?

13/47

Coordination Structures: Proposal 2

we vigorously wash our cats and dogs who stink

ROOT

Make the coordinating conjunction the head?

14/47

Coordination Structures: Proposal 3

we vigorously wash our cats and dogs who stink

ROOT

Make the second conjunct the head?

15/47

Dependency Trees

we vigorously wash our cats and dogs who stink

ROOT

we vigorously wash our cats and dogs who stink

ROOT

we vigorously wash our cats and dogs who stink

ROOT

What is a common property among these trees?

16/47

Discontinuous Constituents / Crossing Arcs

A hearing is scheduled on this issue today

ROOT

17/47

Dependencies and Grammar

I Context-free grammars can be used to encode dependency structures.
I For every head word and group of its dependent children:

Nhead → Nleftmost−sibling . . .Nhead . . .Nrightmost−sibling

I And for every c ∈ V : Nv → v and S→ Nv
I Such a grammar can produce only projective trees, which are (informally) trees in

which the arcs don’t cross.

18/47

Three Approaches to Dependency Parsing

1. Dynamic Programming with bilexical dependency grammars
2. Transition-based parsing with a stack
3. Chu-Liu-Edmonds algorithm for the maximum spanning tree

19/47

Transition-based Parsing
I Process x once, from left to right, making a sequence of greedy parsing decisions.
I Formally, the parser is a state machine (not a finite-state machine) whose state is

represented by a stack S and a buffer B.
I Initialize the buffer to contain x and the stack to contain the ROOT symbol.

Stack S

ROOT

Buffer B

we
vigorously
wash
our
cats
who
stink

I We can take one of three actions:
I SHIFT the word at the front of the buffer B onto the stack S.
I RIGHT-ARC: u = pop(S); v = pop(S);push(S, v→ u).
I LEFT-ARC: u = pop(S); v = pop(S);push(S, v← u).

(for labeled parsing, add labels to the LEFT-ARC and RIGHT-ARC transitions.
I During parsing, apply a classifier to decide which transition to take next, greedily. No

backtracking!

20/47

Transition-based Parsing Example

Stack S

ROOT

Buffer B

we
vigorously
wash
our
cats
who
stink

Actions:

21/47

Transition-based Parsing Example

Stack S

we
ROOT

Buffer B

vigorously
wash
our
cats
who
stink

Actions: SHIFT

22/47

Transition-based Parsing Example

Stack S

vigorously
we
ROOT

Buffer B

wash
our
cats
who
stink

Actions: SHIFT SHIFT

23/47

Transition-based Parsing Example

Stack S

wash
vigorously
we
ROOT

Buffer B

our
cats
who
stink

Actions: SHIFT SHIFT SHIFT

24/47

Transition-based Parsing Example

Stack S

vigorously wash

we
ROOT

Buffer B

our
cats
who
stink

Actions: SHIFT SHIFT SHIFT LEFT-ARC

25/47

Transition-based Parsing Example

Stack S

we vigorously wash

ROOT

Buffer B

our
cats
who
stink

Actions: SHIFT SHIFT SHIFT LEFT-ARC LEFT-ARC

26/47

Transition-based Parsing Example

Stack S

our

we vigorously wash

ROOT

Buffer B

cats
who
stink

Actions: SHIFT SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT

27/47

Transition-based Parsing Example

Stack S

cats
our

we vigorously wash

ROOT

Buffer B

who
stink

Actions: SHIFT SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT

28/47

Transition-based Parsing Example

Stack S

our cats

we vigorously wash

ROOT

Buffer B

who
stink

Actions: SHIFT SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT LEFT-ARC

29/47

Transition-based Parsing Example

Stack S

who

our cats

we vigorously wash

ROOT

Buffer B

stink

Actions: SHIFT SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT LEFT-ARC SHIFT

30/47

Transition-based Parsing Example
Stack S

stink
who

our cats

we vigorously wash

ROOT

Buffer B

Actions: SHIFT SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT LEFT-ARC SHIFT SHIFT

31/47

Transition-based Parsing Example
Stack S

who stink

our cats

we vigorously wash

ROOT

Buffer B

Actions: SHIFT SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT LEFT-ARC SHIFT SHIFT
RIGHT-ARC

32/47

Transition-based Parsing Example

Stack S

our cats who stink

we vigorously wash

ROOT

Buffer B

Actions: SHIFT SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT LEFT-ARC SHIFT SHIFT
RIGHT-ARC RIGHT-ARC

33/47

Transition-based Parsing Example

Stack S

we vigorously wash our cats who stink

ROOT

Buffer B

Actions: SHIFT SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT LEFT-ARC SHIFT SHIFT
RIGHT-ARC RIGHT-ARC

34/47

Transition-based Parsing Example

Stack S

we vigorously wash our cats who stink

ROOT

Buffer B

Actions: SHIFT SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT LEFT-ARC SHIFT SHIFT
RIGHT-ARC RIGHT-ARC RIGHT-ARC

35/47

The Core of Transition-based Parsing

I At each iteration, choose among {SHIFT, RIGHT-ARC, LEFT-ARC}.
I Actually, among all L-labeled variants of RIGHT- and LEFT-ARC.

I Features can come from S, B, and the history of past actions – usually there is no
decomposition into local structures.

I Training data: Dependency treebank trees converted into “oracle” transition
sequence.

I These transition sequences gives the right tree,
I 2 · n pairs: 〈state, correcttransition〉.
I Each word gets SHIFTed once and participates as a child in one ARC.

36/47

Transition-based Parsing: Remarks

I Can also be applied to phrase-structure parsing. Keyword: “shift-reduce” parsing.
I The algorithm for making decisions doesn’t need to be greedy; can maintain multiple

hypotheses.
I e.g., beam search

I Potential flaw: the classifier is typically trained under the assumption that previous
classification decisions were all correct. As yet, no principled solution to this problem,
but there are approximations based on “dynamic oracles”.

37/47

Dependency Parsing Evauation

I Unlabeled attachment score: Did you identify the head and the dependent
correctly?

I Labeled attachment score: Did you identify the head and the dependent AND the
label correctly?

38/47

Dependency Examples from Other Languages

39/47

Dependency Examples from Other Languages

Subj

Det Mod

Poss

Mod

Mod

Loc Adj

Bu okul+da +ki ö renci+ler+in en akıl +lı +sı ura+da küçük kız +dır

This school-at+that-is student-s-' most intelligence+with+of there stand+ing little girl+is

The most intelligent of the students in this school is the little girl standing there.

dur +an

 bu

+Det

 okul

+Noun

+A3sg

+Pnon

+Loc

+Adj

ö renci

+Noun

+A3pl

+Pnon

+Gen

 en

+Adv
 akıl

+Noun

+A3sg

+Pnon

+Nom

+Adj

+With

+Noun

+Zero

+A3sg

+P3sg

+Nom

ura

+Noun

+A3sg

+Pnon

+Loc

 dur

+Verb

+Pos

+Adj

+Prespart

küçük

+Adj

 kız

+Noun

+A3sg

+Pnon

+Nom

+Verb

+Zero

+Pres

+Cop

+A3sg

Mod

40/47

Dependency Examples from Other Languages
<S>
<W IX=1 LEM="bu" MORPH="bu" IG=[(1, "bu+Det")] REL=[(3,1,(DETERMINER)]>
Bu </W>
<W IX=2 LEM="eski"’ MORPH="eski" IG=[(1, "eski+Adj")]
REL=[3,1,(MODIFIER)]> eski> </W>
<W IX=3 LEM="bahçe" MORPH="bahçe+DA+ki" IG=[(1, "bahçe+A3sg+Pnon+Loc")
(2, "+Adj+Rel")] REL=[4,1,(MODIFIER)]> bahçedeki </W>
<W IX=4 LEM="gül" MORPH="gül+nHn" IG=[(1,"gül+Noun+A3sg+Pnon+Gen")]
REL=[6,1,(SUBJECT)]> gülün </W>
<W IX=5 LEM="böyle" MORPH="böyle" IG=[(1,"böyle+Adv")]
REL=[6,1,(MODIFIER)]> böyle </W>
<W IX=6 LEM="büyü" MORPH="büyü+mA+sH" IG=[(1,"büyü+Verb+Pos") (2,
"+Noun+Inf+A3sg+P3sg+Nom")] REL=[9,1,(SUBJECT)]> büyümesi </W>
<W IX=7 LEM="herkes" MORPH="herkes+yH"
IG=[(1,"herkes+Pron+A3sg+Pnon+Acc")] REL=[9,1,(OBJECT)]> herkesi </W>
<W IX=8 LEM="çok" MORPH="çok" IG=[(1,"çok+Adv’’)] REL=[9,1,(MODIFIER)]>
çok </W>
<W IX=9 LEM="etkile" MORPH="etkile+DH" IG=[(1,
"etkile+Verb+Pos+Past+A3sg")] REL=[]> etkiledi </W>
</S>

41/47

Universal Dependencies
I A very recent project that aims to use a small set of “universal” labels and annotation

guidelines (universaldependencies.org).

universaldependencies.org

42/47

Universal Dependencies
I A very recent project that aims to use a small set of “universal” labels and annotation

guidelines (universaldependencies.org).

universaldependencies.org

43/47

Universal Dependencies

I A very recent project that aims to use a small set of “universal” labels and annotation
guidelines (universaldependencies.org).

universaldependencies.org

44/47

State-of-the-art Dependency Parsers

I Stanford Parser
I Detailed Information at
https://nlp.stanford.edu/software/lex-parser.shtml

I Demo at http://nlp.stanford.edu:8080/parser/
I MaltParser is the original transition-based dependency parser by Nivre.

I “MaltParser is a system for data-driven dependency parsing, which can be used to induce
a parsing model from treebank data and to parse new data using an induced model.”

I Available at http://maltparser.org/

https://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu:8080/parser/
http://maltparser.org/

45/47

State-of-the-art Dependency Parser Performance
CONLL Shared Task Results

46/47

State-of-the-art Dependency Parser Performance
CONLL Shared Task Results

47/47

State-of-the-art Dependency Parser Performance
CONLL Shared Task Results

1/47

11-411
Natural Language Processing

Lexical Semantics

Kemal Oflazer

Carnegie Mellon University in Qatar

2/47

Lexical Semantics

The study of meanings of words:
I Decompositional

I Words have component meanings
I Total meanings are composed of these component meanings

I Ontological
I The meanings of words can be defined in relation to other words.
I Paradigmatic – Thesaurus-based

I Distributional
I The meanings of words can be defined in relation to their contexts among other words.
I Syntagmatic – meaning defined by syntactic context

3/47

Decompositional Lexical Semantics

I Assume that woman has (semantic) components [female], [human], and [adult].
I Man might have the componets [male], [human], and [adult].
I Such “semantic features” can be combined to form more complicated meanings.
I Although this looks appealing, there is a little bit of a chickens-and-eggs situation.
I Scholars and language scientists have not yet developed a consensus about a

common set of “semantic primitives.”
I Such as representation probably has to involve more structure than just a flat set of

features per word.

4/47

Ontological Semantics

Relations between words/senses
I Synonymy
I Antonymy
I Hyponymy/Hypernymy
I Meronymy/Holonymy

Key resource: Wordnet

5/47

Terminology: Lemma and Wordform

I A lemma or citation form
I Common stem, part of speech, rough semantics

I A wordform
I The (inflected) word as it appears in text

Wordform Lemma
banks bank
sung sing
sang sing
went go
goes go

6/47

Lemmas have Senses

I One lemma “bank” can have many meanings:
I Sense 1: “. . . a bank1 can hold the investments in a custodial account . . . ”
I Sense 2: “. . . as agriculture burgeons on the east bank2 the river will shrink even more.”

I Sense (or word sense)
I A discrete representation of an aspect of a word’s meaning.

I The lemma bank here has two senses.

7/47

Homonymy

I Homonyms: words that share a form but have unrelated, distinct meanings:
I bank1: financial institution, bank2: sloping land
I bat1: club for hitting a ball, bat2: nocturnal flying mammal

I Homographs: Same spelling (bank/bank, bat/bat)
I Homophones: Same pronunciation

I write and right
I piece and peace

8/47

Homonymy causes problems for NLP applications

I Information retrieval
I “bat care”

I Machine Translation
I bat: murciélago (animal) or bate (for baseball)

I Text-to-Speech
I bass (stringed instrument) vs. bass (fish)

9/47

Polysemy

I The bank1 was constructed in 1875 out of local red brick.
I I withdrew the money from the bank2.
I Are those the same sense?

I bank1 : “The building belonging to a financial institution”
I bank2: “A financial institution”

I A polysemous word has multiple related meanings.
I Most non-rare words have multiple meanings

10/47

Metonymy/Systematic Polysemy

I Lots of types of polysemy are systematic
I school, university, hospital
I All can mean the institution or the building.

I A systematic relation
I Building⇔ Organization

I Other examples of such polysemy
I Author (Jane Austen wrote Emma)⇔Works of Author (I love Jane Austen)
I Tree (Plums have beautiful blossoms)⇔ Fruit (I ate a preserved plum)

11/47

How do we know when a word has multiple senses?

I The “zeugma”1 test: Two senses of serve?
I Which flights serve breakfast?
I Does Qatar Airways serve Philadelphia?
I ?Does Qatar Airways serve breakfast and Washington?

I Since this conjunction sounds weird, we say that these are two different senses of
“serve”

I “The farmers in the valley grew potatoes, peanuts, and bored.”
I “He lost his coat and his temper.”

1A zeugma is an interesting device that can cause confusion in sentences, while also adding some flavor.

12/47

Synonymy
I Words a and b share an identical sense or have the same meaning in some or all

contexts.
I filbert / hazelnut
I couch / sofa
I big / large
I automobile / car
I vomit / throw up
I water / H2O

I Synonyms can be substituted for each other in all situations.
I True synonymy is relatively rare compared to other lexical relations.

I may not preserve the acceptability based on notions of politeness, slang, register, genre,
etc.

I water / H2O
I big / large
I bravery / courage

I Bravery is the ability to confront pain, danger, or attempts of intimidation without any feeling of
fear.

I Courage, on the other hand, is the ability to undertake an overwhelming difficulty or pain despite
the eminent and unavoidable presence of fear.

13/47

Synonymy

Synonymy is a relation between senses rather than words.
I Consider the words big and large. Are they synonyms?

I How big is that plane?
I Would I be flying on a large or small plane?

I How about here:
I Miss Nelson became a kind of big sister to Benjamin.
I ?Miss Nelson became a kind of large sister to Benjamin.

I Why?
I big has a sense that means being older, or grown up
I large lacks this sense.

14/47

Antonymy

I Lexical items a and b have senses which are “opposite”, with respect to one feature of
meaning

I Otherwise they are similar
I dark/light
I short/long
I fast/slow
I rise/fall
I hot/cold
I up/down
I in/out

I More formally: antonyms can
I define a binary opposition or be at opposite ends of a scale (long/short, fast/slow)
I or be reversives (rise/fall, up/down)

I Antonymy is much more common than true synonymy.
I Antonymy is not always well defined, especially for nouns (but for other words as well).

15/47

Hyponymy/Hypernymy

I The “is-a” relations.
I Lexical item a is a hyponym of lexical item b if a is a kind of b (if a sense of b refers to

a superset of the referent of a sense of a).
I screwdriver is a hyponym of tool.
I screwdriver is also a hyponym of drink.
I car is a hyponym of vehicle
I mango is a hyponym of fruit
I Hypernymy is the converse of hyponymy.
I tool and drink are hypernyms of screwdriver.
I vehicle is a hypernym of car

16/47

Hyponymy more formally

I Extensional
I The class denoted by the superordinate (e.g., vehicle) extensionally includes the class

denoted by the hyponym (e.g. car).
I Entailment

I A sense A is a hyponym of sense B if being an A entails being a B (e.g. if it is car, it is a
vehicle)

I Hyponymy is usually transitive
I If A is a hyponym of B and B is a hyponym of C⇒ A is a hyponym of C.

I Another name is the IS-A hierarchy
I A IS-A B
I B subsumes A

17/47

Hyponyms and Instances

I An instance is an individual, a proper noun that is a unique entity
I Doha/San Francisco/London are instances of city.

I But city is a class
I city is a hyponym of municipality . . . location . . .

18/47

Meronymy/Holonymy

I The “part-of” relation
I Lexical item a is a meronym of lexical item b if a sense of a is a part of/a member of a

sense of b.
I hand is a meronym of body.
I congressperson is a meronym of congress.
I Holonymy (think: whole) is the converse of meronymy.
I body is a holonym of hand.

19/47

A Lexical Mini-ontology

20/47

WordNet
I A hierarchically organizated database of (English) word senses.
I George A. Miller (1995). WordNet: A Lexical Database for English. Communications

of the ACM Vol. 38, No. 11: 39-41.
I Available at wordnet.princeton.edu
I Provides a set of three lexical databases:

I Nouns
I Verbs
I Adjectives and adverbs.

I Relations are between senses, not lexical items (words).
I Applications Program Interfaces (APIs) are available for many languages and toolkits

including a Python interface via NLTK.
I WordNet 3.0

Category Unique Strings
Noun 117,197
Verb 11,529
Adjective 22,429
Adverb 4,481

wordnet.princeton.edu

21/47

Synsets

I Primitive in WordNet: Synsets (roughly: synonym sets)
I Words that can be given the same gloss or definition.
I Does not require absolute synonymy

I For example: {chump, fool, gull, mark, patsy, fall guy, sucker, soft touch, mug}
I Other lexical relations, like antonymy, hyponymy, and meronymy are between

synsets, not between senses directly.

22/47

Synsets for dog (n)

I S: (n) dog, domestic dog, Canis familiaris (a member of the genus Canis (probably
descended from the common wolf) that has been domesticated by man since
prehistoric times; occurs in many breeds) “the dog barked all night”

I S: (n) frump, dog (a dull unattractive unpleasant girl or woman) “she got a reputation
as a frump”, “she’s a real dog”

I S: (n) dog (informal term for a man) “you lucky dog”
I S: (n) cad, bounder, blackguard, dog, hound, heel (someone who is morally

reprehensible) “you dirty dog”
I S: (n) frank, frankfurter, hotdog, hot dog, dog, wiener, wienerwurst, weenie (a

smooth-textured sausage of minced beef or pork usually smoked; olen served on a
bread roll)

I S: (n) pawl, detent, click, dog (a hinged catch that fits into a notch of a ratchet to
move a wheel forward or prevent it from moving backward)

I S: (n) andiron, firedog, dog, dog-iron (metal supports for logs in a fireplace) “the
andirons were too hot to touch”

23/47

Synsets for bass in WordNet

24/47

Hierarchy for bass3 in WordNet

25/47

The IS-A Hierarchy for fish (n)

I fish (any of various mostly cold-blooded aquatic vertebrates usually having scales and
breathing through gills)

I aquatic vertebrate (animal living wholly or chiefly in or on water)
I vertebrate, craniate (animals having a bony or cartilaginous skeleton with a segmented spinal

column and a large brain enclosed in a skull or cranium)
I chordate (any animal of the phylum Chordata having a notochord or spinal column)
I animal, animate being, beast, brute, creature, fauna (a living organism characterized by

voluntary movement)
I organism, being (a living thing that has (or can develop) the ability to act or function

independently)
I living thing, animate thing (a living (or once living) entity)
I whole, unit (an assemblage of parts that is regarded as a single entity)
I object, physical object (a tangible and visible entity; an entity that can cast a shadow)
I entity (that which is perceived or known or inferred to have its own distinct existence (living or

nonliving))

26/47

WordNet Noun Relations

27/47

WordNet Verb Relations

28/47

Other WordNet Hierarchy Fragment Examples

29/47

Other WordNet Hierarchy Fragment Examples

30/47

Other WordNet Hierarchy Fragment Examples

31/47

WordNet as as Graph

32/47

Supersenses in WordNet

Super senses are top-level hypernyms in the hierarchy.

33/47

WordNets for Other Languages

I globalwordnet.org/wordnets-in-the-world/ lists WordNets for tens of
languages.

I Many of these WordNets are linked through ILI – Interlingual Index numbers.

globalwordnet.org/wordnets-in-the-world/

34/47

Word Similarity

I Synonymy: a binary relation
I Two words are either synonymous or not

I Similarity (or distance): a looser metric
I Two words are more similar if they share more features of meaning

I Similarity is properly a relation between senses
I The word “bank” is not similar to the word “slope”
I bank1 is similar to fund3
I bank2 is similar to slope5

I But we will compute similarity over both words and senses.

35/47

Why Word Similarity?

I A practical component in lots of NLP tasks
I Question answering
I Natural language generation
I Automatic essay grading
I Plagiarism detection

I A theoretical component in many linguistic and cognitive tasks
I Historical semantics
I Models of human word learning
I Morphology and grammar induction

36/47

Similarity and Relatedness

I We often distinguish word similarity from word relatedness
I Similar words: near-synonyms
I Related words: can be related in any way
I car, bicycle: similar
I car, gasoline: related, not similar

37/47

Two Classes of Similarity Algorithms

I WordNet/Thesaurus-based algorithms
I Are words “nearby” in hypernym hierarchy?
I Do words have similar glosses (definitions)?

I Distributional algorithms
I Do words have similar distributional contexts?
I Distributional (Vector) semantics.

38/47

Path-based Similarity

I Two concepts (senses/synsets) are similar if they are near each other in the hierarchy
I They have a short path between them
I Synsets have path 1 to themselves.

39/47

Refinements

I pathlen(c1, c2) = 1+number of edges in the shortest path in the hypernym graph
between sense nodes c1 and c2

I simpath(c1, c2) =
1

pathlen(c1, c2)
(Ranges between 0 and 1)

I wordsim(w1,w2) = max
c1∈senses(w1),c2∈senses(w2)

simpath(c1, c2)

40/47

Example for Path-based Similarity

I simpath(nickel, coin) = 1/2 = .5
I simpath(fund, budget) = 1/2 = .5
I simpath(nickel, currency) = 1/4 = .25
I simpath(nickel,money) = 1/6 = .17
I simpath(coinage,Richterscale) = 1/6 = .17

41/47

Problem with Basic Path-based Similarity

I Assumes each link represents a uniform distance
I But nickel to money seems to us to be closer than nickel to standard
I Nodes high in the hierarchy are very abstract

I We instead want a metric that
I Represents the cost of each edge independently
I Ranks words connected only through abstract nodes as less similar.

42/47

Information Content Similarity Metrics

I Define p(c) as the probability that a randomly selected word in a corpus is an
instance of concept c.

I Formally: there is a distinct random variable, ranging over words, associated with
each concept in the hierarchy. For a given concept, each observed word/lemma is
either

I a member of that concept with probability p(c)
I not a member of that concept with probability 1− p(c)

I All words are members of the root node (Entity): p(root) = 1
I The lower a node in hierarchy, the lower its probability

43/47

Information Content Similarity Metrics

I Train by counting in a corpus
I Each instance of hill counts toward frequency of

natural elevation, geological-formation, entity, etc.
I Let words(c) be the set of all words that are

descendants of node c
I words(geological-formation) = {hill, ridge, grotto,

coast, cave, shore, natural elevation}
I words(natural elevation) = {hill, ridge}

I For n words in the corpus

p(c) =

∑
w∈words(c) count(w)

N

44/47

Information Content: Definitions

I Information Content: IC(c) = − log p(c)
I Most informative subsumer (lowest common subsumer)

I LCS(c1, c2) = The most informative (lowest) node in the hierarchy subsuming both c1 and
c2.

45/47

The Resnik Method

I The similarity between two words is related to their common information
I The more two words have in common, the more similar they are
I Resnik: measure common information as:

simresnik(c1, c2) = − log p(LCS(c1, c2))

I simresnik(hill, coast) = − log p(LCS(hill, coast)) = − log p(geological-formation) =
6.34

46/47

The Dekang Lin Method

I The similarity between A and B is measured by the ratio between the amount of
information needed to state the commonality of A and B and the information needed
to fully describe what A and B are.

I

simlin(c1, c2) =
2 log p(LCS(c1, c2))
log p(c1) + log p(c2)

I simlin(hill, coast) = 2 log p(geological-formation)
log p(hill)+log p(coast) = 0.59

47/47

Evaluating Similarity

I Extrinsic evaluation (Task-based)
I Question answering
I Essay grading

I Intrinsic evaluation: Correlation between algorithm and human word similarity ratings
I Wordsim353 task: 353 noun pairs rated 0-10. sim(plane,car) = 5.77
I Taking TOEFL multiple-choice vocabulary tests

I Levied is closest in meaning to: imposed, believed, requested, correlated.

1/55

11-411
Natural Language Processing

Distributional/Vector Semantics

Kemal Oflazer

Carnegie Mellon University in Qatar

2/55

The Distributional Hypothesis

I Want to know the meaning of a word? Find what words occur with it.
I Leonard Bloomfield
I Edward Sapir
I Zellig Harris–first formalization

I “oculist and eye-doctor . . . occur in almost the same environments”
I “If A and B have almost identical environments we say that they are synonyms.”

I The best known formulation comes from J.R. Firth:
I “You shall know a word by the company it keeps.”

3/55

Contexts for Beef

I This is called a concordance.

4/55

Contexts for Chicken

5/55

Intuition for Distributional Word Similarity

I Consider
I A bottle of pocarisweat is on the table.
I Everybody likes pocarisweat.
I Pocarisweat makes you feel refreshed.
I They make pocarisweat out of ginger.

I From context words humans can guess pocarisweat means a beverage like coke.
I So the intuition is that two words are similar if they have similar word contexts.

6/55

Why Vector Models of Meaning?

I Computing similarity between words:
I fast is similar to rapid
I tall is similar to height

I Application: Question answering:
I Question: “How tall is Mt. Everest?”
I Candidate A: “The official height of Mount Everest is 29029 feet.”

7/55

Word Similarity for Plagiarism Detection

8/55

Vector Models

I Sparse vector representations:
I Mutual-information weighted word co-occurrence matrices.

I Dense vector representations:
I Singular value decomposition (and Latent Semantic Analysis)
I Neural-network-inspired models (skip-grams, CBOW)
I Brown clusters

9/55

Shared Intuition

I Model the meaning of a word by “embedding” in a vector space.
I The meaning of a word is a vector of numbers:

I Vector models are also called embeddings.
I In contrast, word meaning is represented in many (early) NLP applications by a

vocabulary index (“word number 545”)

10/55

Term-document Matrix

I Each cell is the count of term t in a document d (tft,d).

I Each document is a count vector in NV , a column below.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

11/55

Term-document Matrix

I Two documents are similar of their vectors are similar.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

12/55

Term-document Matrix

I Each word is a count vector in ND – a row below

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

13/55

Term-document Matrix

I Two words are similar if their vectors are similar.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

14/55

Term-context Matrix for Word Similarity

I Two words are similar if their context vectors are similar.

aardvark computer data pinch result sugar . . .
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

15/55

Word–Word or Word–Context Matrix

I Instead of entire documents, use smaller contexts
I Paragraph
I Window of ±4 words

I A word is now defined by a vector over counts of words in context.
I If a word wj occurs in the context of wi, increase countij.

I Assuming we have V words,
I Each vector is now of length V.
I The word-word matrix is V × V.

16/55

Sample Contexts of ±7 Words

aardvark computer data pinch result sugar . . .
...
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0
...

17/55

The Word–Word Matrix

I We showed only a 4× 6 matrix, but the real matrix is 50, 000× 50, 000.
I So it is very sparse: Most values are 0.
I That’s OK, since there are lots of efficient algorithms for sparse matrices.

I The size of windows depends on the goals:
I The smaller the context (±1 − 3) , the more syntactic the representation
I The larger the context (±4 − 10), the more syntactic the representation

18/55

Types of Co-occurence between Two Words

I First-order co-occurrence (syntagmatic association):
I They are typically nearby each other.
I wrote is a first-order associate of book or poem.

I Second-order co-occurrence (paradigmatic association):
I They have similar neighbors.
I wrote is a second-order associate of words like said or remarked.

19/55

Problem with Raw Counts

I Raw word frequency is not a great measure of association between words.
I It is very skewed: “the” and “of” are very frequent, but maybe not the most discriminative.

I We would rather have a measure that asks whether a context word is particularly
informative about the target word.

I Positive Pointwise Mutual Information (PPMI)

20/55

Pointwise Mutual Information

I Pointwise Mutual Information: Do events x and y co-occur more that if they were
independent.

PMI(x, y) = log2
p(x, y)

p(x)p(y)
I PMI between two words: Do target word w and context word c co-occur more that if

they were independent.

PMI(w, c) = log2
p(w, c)

p(w)p(c)

21/55

Positive Pointwise Mutual Information

I PMI ranges from −∞ to +∞
I But the negative values are problematic:

I Things are co-occurring less than we expect by chance
I Unreliable without enormous corpora

I Imagine w − 1 and w2 whose probability is each 10−6.
I Hard to be sure p(w1,w2) is significantly different than 10−12.

I Furthermore it’s not clear people are good at “unrelatedness”.
I So we just replace negative PMI values by 0.

PPMI(w, c) = max
(
log2

p(w, c)
p(w)p(c)

, 0
)

22/55

Computing PPMI on a Term-Context Matrix

I We have matrix F with V rows (words) and C columns (contexts) (in general C = V)
I fij is how many times word wi co-occurs in the context of the word cj.

pij =
fij∑V

i=1(
∑C

j=1 fij)

pi∗ =

∑C
j=1 fij∑V

i=1(
∑C

j=1 fij)
p∗j =

∑V
i=1 fij∑V

i=1(
∑C

j=1 fij)

pmiij = log2
pij

pi∗p∗j
ppmiij = max(pmiij, 0)

23/55

Example
computer data pinch result sugar

apricot 0 0 1 0 1 2
pineapple 0 0 1 0 1 2
digital 2 1 0 1 0 4
information 1 6 0 4 0 11

3 7 2 5 2 19

p(w = information, c = data) =
6

19
= 0.32

p(w = information) =
11
19

= 0.58 p(c = data) =
7
19

= 0.32

p(w, c)
computer data pinch result sugar p(w)

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(c) 0.16 0.37 0.11 0.26 0.11

24/55

Example
p(w, c)

computer data pinch result sugar p(w)
apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(c) 0.16 0.37 0.11 0.26 0.11

pmi(information, data) = log2
0.32

0.37 · 0.57
≈ 0.58

PPMI(w, c)
computer data pinch result sugar

apricot - - 2.25 - 2.25
pineapple - - 2.25 - 2.25
digital 1.66 0.00 - 0.00 -
information 0.00 0.32 - 0.47 -

25/55

Issues with PPMI

I PMI is biased toward infrequent events.
I Very rare words have very high PMI values.
I Two solutions:

I Give rare words slightly higher probabilities
I Use add-one smoothing (which has a similar effect)

26/55

Issues with PPMI

I Raise the context probabilities to α = 0.75:

PPMIα(w, c) = max(log2
p(w, c)

p(w)pα(c)
, 0)

pα(c) =
count(c)α∑
c count(c)α

I This helps because pα(c) > p(c) for rare c.
I Consider two context words p(a) = 0.99 and p(b) = 0.01

I pα(a) = 0.990.75

0.990.75+0.010.75 = 0.97 pα(b) = 0.990.75

0.990.75+0.010.75 = 0.03

27/55

Using Laplace Smoothing

Add-2 Smoothed Count(w, c)
computer data pinch result sugar

apricot 2 2 3 2 3
pineapple 2 2 3 2 3
digital 4 3 2 3 2
information 3 8 2 6 2

p(w, c) Add-2
computer data pinch result sugar p(w)

apricot 0.03 0.03 0.05 0.03 0.05 0.20
pineapple 0.03 0.03 0.05 0.03 0.05 0.20
digital 0.07 0.05 0.03 0.05 0.03 0.24
information 0.05 0.14 0.03 0.10 0.03 0.36

p(c) 0.19 0.25 0.17 0.22 0.17

28/55

PPMI vs. add-2 Smoothed PPMI

PPMI(w, c)
computer data pinch result sugar

apricot - - 2.25 - 2.25
pineapple - - 2.25 - 2.25
digital 1.66 0.00 - 0.00 -
information 0.00 0.32 - 0.47 - -

PPMI(w, c)
computer data pinch result sugar

apricot 0.00 0.00 0.56 0.00 0.56
pineapple 0.00 0.00 0.56 0.00 0.56
digital 0.62 0.00 0.00 0.00 0.00
information 0.00 0.58 0.00 0.37 0.00

29/55

Measuring Similarity

I Given two target words represented with vectors v and w.
I The dot product or inner product is usually used basis for similarity.

v · w =

N∑
i=1

viwi = v1w1 + v2w2 + · · ·+ vNwN = |v||w| cos θ

I v · w is high when two vectors have large values in the same dimensions.
I v · w is low (in fact 0) with zeros in complementary distribution.
I We also do not want the similarity to be sensitive to word-frequency.
I So normalize by vector length and use the cosine as the similarity

cos(v,w) = v·w
|v||w|

30/55

Other Similarity Measures in the Literature

I simcosine(v,w) =
v·w
|v||w|

I simJaccard(v,w) =
∑

i min(vi,wi)∑
i max(vi,wi)

I simDice(v,w) =
2
∑

i min(vi,wi)∑
i(vi+wi)

31/55

Using Syntax to Define Context

I “The meaning of entities, and the meaning of grammatical relations among them, is
related to the restriction of combinations of these entities relative to other entities.”
(Zelig Harris (1968))

I Two words are similar if they appear in similar syntactic contexts.
I duty and responsibility have similar syntactic distribution

I Modified by Adjectives: additional, administrative, assumed, collective, congressional,
constitutional, . . .

I Objects of Verbs: assert, assign, assume, attend to, avoid, become, breach, . . .

32/55

Co-occurence Vectors based on Syntactic Dependencies

I Each context dimension is a context word in one of R grammatical relations.
I Each word vector now has R · V entries.

I Variants have V dimensions with the count being total for R relations.

33/55

Sparse vs. Dense Vectors

I PPMI vectors are
I long (length in 10s of thousands)
I sparse (most elements are 0)

I Alternative: learn vectors which are
I short (length in several hundreds)
I dense (most elements are non-zero)

34/55

Why Dense Vectors?

I Short vectors may be easier to use as features in machine learning (less weights to
tune).

I Dense vectors may generalize better than storing explicit counts.
I They may do better at capturing synonymy:

I car and automobile are synonyms
I But they are represented as distinct dimensions
I This fails to capture similarity between a word with car as a neighbor and a word with

automobile as a neighbor

35/55

Methods for Getting Short Dense Vectors

I Singular Value Decomposition (SVD)
I A special case of this is called LSA - Latent Semantic Analysis

I “Neural Language Model”-inspired predictive models.
I skip-grams and continuous bag-of-words (CBOW)

I Brown clustering

36/55

Dense Vectors via SVD - Intuition

I Approximate an N-dimensional dataset using fewer dimensions
I By rotating the axes into a new space along the dimension with the most variance
I Then repeat with the next dimension captures the next most variance, etc.
I Many such (related) methods:

I PCA - principle components analysis
I Factor Analysis
I SVD

37/55

Dimensionality Reduction

38/55

Singular Value Decomposition

I Any square v× v matrix (of rank v) X equals the product of three matrices.

X W S C
x11 . . . x1v

x21 . . . x2v

...
. . .

...
xv1 . . . xvv

 =

w11 . . . w1m

...
. . .

...
wv1 . . . wvv

×

σ11 . . . 0
...

. . .
...

0 . . . σvv

×

c11 . . . c1c

...
. . .

...
cm1 . . . cvv

v × v v × v v × v v × v

I v columns in W are orthogonal to each other and are ordered by the amount of
variance each new dimension accounts for.

I S is a diagonal matrix of eigenvalues expressing the importance of each dimension.
I C has v rows for the singular values and v columns corresponding to the original

contexts.

39/55

Reducing Dimensionality with Truncated SVD

X W S C
x11 . . . x1c

x21 . . . x2c

...
. . .

...
xv1 . . . xvv

 =

w11 . . . w1m

...
. . .

...
wv1 . . . wvv

×

σ11 . . . 0
...

. . .
...

0 . . . σvv

×

c11 . . . c1c

...
. . .

...
cm1 . . . cvv

v × v v × v v × v v × v

⇓

X W S C
x11 . . . x1v

x21 . . . x2v

...
. . .

...
xv1 . . . xvv

 ≈

w11 . . . w1k

...
. . .

...
wv1 . . . wvk

×

σ11 . . . 0
...

. . .
...

0 . . . σkk

×

c11 . . . c1v

...
. . .

...
cm1 . . . ckv

v × c v × k k × k k × v

40/55

Truncated SVD Produces Embeddings

w11 . . . w1k
w21 . . . w2k

...
. . .

...
wv1 . . . wvk

I Each row of W matrix is a k-dimensional representation of each word w.
I k may range from 50 to 1000

41/55

Embeddings vs Sparse Vectors

I Dense SVD embeddings sometimes work better than sparse PPMI matrices at tasks
like word similarity

I Denoising: low-order dimensions may represent unimportant information
I Truncation may help the models generalize better to unseen data.
I Having a smaller number of dimensions may make it easier for classifiers to properly

weight the dimensions for the task.
I Dense models may do better at capturing higher order co-occurrence.

42/55

Embeddings Inspired by Neural Language Models

I Skip-gram and CBOW learn embeddings as part of the process of word prediction.
I Train a neural network to predict neighboring words

I Inspired by neural net language models.
I In so doing, learn dense embeddings for the words in the training corpus.

I Advantages:
I Fast, easy to train (much faster than SVD).
I Available online in the word2vec package.
I Including sets of pretrained embeddings!

43/55

Skip-grams

I From the current word wt, predict other words in a context window of 2C words.
I For example, we are given wt and we are predicting one of the words in

[wt−2,wt−1,wt+1,wt+2]

44/55

Compressing Words

45/55

One-hot Vector Representation

I Each word in the vocabulary is represented with a vector of length |V|.
I 1 for the index target word wt and 0 for other words.

I So if “popsicle” is vocabulary word 5, the one-hot vector is

[0, 0, 0, 0, 1, 0, 0, 0, 0, . . . , 0]

46/55

Neural Network Architecture

47/55

Where are the Word Embeddings?

I The rows of the first matrix actually are the word embeddings.
I Multiplication of the one-hot input vector “selects” the relevant row as the output to

hidden layer.

48/55

Output Probabilities

I The output vector is also a vector (hidden-layer) and matrix multiplication (the C
matrix).

I The value computed for output unit k = ck · wj where wj is the hidden layer vector (for word
j).

I Except, the outputs are not probabilities!
I We use the same scaling idea we used earlier and then use softmax .

p(wk is in the context of wj) =
exp(ck · vj)∑
i exp(ci · vj)

49/55

Training for Embeddings

50/55

Training for Embeddings

I You have a huge network (say you have 1M words and embedding dimension of 300).

I You have 300M entries in each of the matrices.
I Running gradient descent (via backpropagation) is very slow.
I Some innovations used:

I Reduce vocabulary for phrases like “New York”
I Reduce vocabulary and training samples by ignoring infrequent words.
I Instead of computing probabilities through the expensive scaling process, use negative

sampling to only update a small number of the weights each time.
I It turns out these improve the quallity of the vectors also!

51/55

Properties of Embeddings

I Nearest words to some embeddings in the d− dimensional space.

I Relation meanings
I vector(king)− vector(man) + vector(woman) ≈ vector(queen)
I vector(Paris)− vector(France) + vector(Italy) ≈ vector(Rome)

52/55

Brown Clustering

I An agglomerative clustering algorithm that clusters words based on which words
precede or follow them

I These word clusters can be turned into a kind of vector
I We will do a brief outline here.

53/55

Brown Clustering

I Each word is initially assigned to its own cluster.
I We now consider consider merging each pair of clusters. Highest quality merge is

chosen.
I Quality = merges two words that have similar probabilities of preceding and following

words.
I More technically quality = smallest decrease in the likelihood of the corpus according to a

class-based language model
I Clustering proceeds until all words are in one big cluster.

54/55

Brown Clusters as Vectors

I By tracing the order in which clusters are merged, the model builds a binary tree from
bottom to top.

I Each word represented by binary string = path from root to leaf
I Each intermediate node is a cluster
I Chairman represented by 0010, “months” by 01, and verbs by 1.

55/55

Class-based Language Model

I Suppose each word is in some class ci.

p(wi | wi−1) = p(ci | ci−1) p(wi | ci)

1/23

11-411
Natural Language Processing

Word Sense Disambiguation

Kemal Oflazer

Carnegie Mellon University in Qatar

2/23

Homonymy and Polysemy

I As we have seen, multiple words can be spelled the same way (homonymy;
technically homography)

I The same word can also have different, related senses (polysemy)
I Various NLP tasks require resolving the ambiguities produced by homonymy and

polysemy.
I Word sense disambiguation (WSD)

3/23

Versions of the WSD Task

I Lexical sample
I Choose a sample of words.
I Choose a sample of senses for those words.
I Identify the right sense for each word in the sample.

I All-words
I Systems are given the entire text.
I Systems are given a lexicon with senses for every content word in the text.
I Identify the right sense for each content word in the text .

4/23

Supervised WSD

I If we have hand-labelled data, we can do supervised WSD.
I Lexical sample tasks

I Line-hard-serve corpus
I SENSEVAL corpora

I All-word tasks
I Semantic concordance: SemCor – subset of Brown Corpus manually tagged with

WordNet senses.
I SENSEVAL-3

I Can be viewed as a classification task

5/23

Sample SemCor Data
<wf cmd=done pos=PRP$ ot=notag>Your</wf>
<wf cmd=done pos=NN lemma=invitation wnsn=1 lexsn=1:10:00::>invitation</wf>
<wf cmd=ignore pos=TO>to</wf>
<wf cmd=done pos=VB lemma=write_about wnsn=1 lexsn=2:36:00::>write_about</wf>
<wf cmd=done rdf=person pos=NNP lemma=person wnsn=1 lexsn=1:03:00:: pn=person>Serge_Prokofieff</wf>
<wf cmd=ignore pos=TO>to</wf>
<wf cmd=done pos=VB lemma=honor wnsn=1 lexsn=2:41:00::>honor</wf>
<wf cmd=ignore pos=PRP$>his</wf>
<wf cmd=done pos=JJ lemma=70th wnsn=1 lexsn=5:00:00:ordinal:00>70_th</wf>
<wf cmd=done pos=NN lemma=anniversary wnsn=1 lexsn=1:28:00::>Anniversary</wf>
<wf cmd=ignore pos=IN>for</wf>
<wf cmd=ignore pos=DT>the</wf>
<wf cmd=done pos=NN lemma=april wnsn=1 lexsn=1:28:00::>April</wf>
<wf cmd=done pos=NN lemma=issue wnsn=2 lexsn=1:10:00::>issue</wf>
<wf cmd=ignore pos=IN>of</wf>
<wf cmd=done pos=NNP pn=other ot=notag>Sovietskaya_Muzyka</wf>
<wf cmd=done pos=VBZ ot=notag>is</wf>
<wf cmd=done pos=VB lemma=accept wnsn=6 lexsn=2:40:01::>accepted</wf>
<wf cmd=ignore pos=IN>with</wf>
<wf cmd=done pos=NN lemma=pleasure wnsn=1 lexsn=1:12:00::>pleasure</wf>

6/23

What Features Should One Use?

I Warren Weaver commented in 1955
If one examines the words in a book, one at a time as through an opaque mask
with a hole in it one word wide, then it is obviously impossible to determine, one
at a time, the meaning of the words. [. . .] But if one lengthens the slit in the
opaque mask, until one can see not only the central word in question but also say
N words on either side, then if N is large enough one can unambiguously decide
the meaning of the central word. [. . .] The practical question is: “What minimum
value of N will, at least in a tolerable fraction of cases, lead to the correct choice
of meaning for the central word?”

I What information is available in that window of length N that allows us to do WSD?

7/23

What Features Should One Use?

I Collocation features
I Encode information about specific positions located to the left or right of the target word
I For example [wi−2,POSi−2,wi−1,POSi−2,wi+1,POSi+1,wi+2,POSi+2]
I For bass, e.g., [guitar,NN, and,CC, player,NN, stand,VB]

I Bag-of-words features
I Unordered set of words occurring in window
I Relative sequence is ignored
I Words are lemmatized
I Stop/Function words typically ignored.
I Used to capture domain

8/23

Naive Bayes for WSD

I Choose the most probable sense given the feature vector f which can be formulated
into

ŝ = argmax
s∈S

p(s)
n∏

j=1
p(fj | s)

I Naive Bayes assumes features in f are independent (often not true)
I But usually Naive Bayes Classifiers perform well in practice.

9/23

Semisupervised WSD–Decision List Classifiers

I The decisions handed down by naive Bayes classifiers (and other similar ML
algorithms) are difficult to interpret.

I It is not always clear why, for example, a particular classification was made.
I For reasons like this, some researchers have looked to decision list classifiers, a highly

interpretable approach to WSD .
I We have a list of conditional statements.

I Item being classified falls through the cascade until a statement is true.
I The associated sense is then returned.
I Otherwise, a default sense is returned.

I Where does the list come from?

10/23

Decision List Features for WSD – Collocational Features

I Word immediately to the left or right of target:
I I have my bank1 statement.
I The river bank2 is muddy.

I Pair of words to immediate left or right of target:
I The world’s richest bank1 is here in New York.
I The river bank2 is muddy.

I Words found within k positions to left or right of target, where k is often 10-50 :
I My credit is just horrible because my bank1 has made several mistakes with my account

and the balance is very low.

11/23

Learning a Decision List Classifier

I Each individual feature-value is a test.
I Features exists in a small context around the word.
I How discriminative is a feature among the senses?
I For a given ambiguous word compute

weight(si, fj) = log
p(si | fj)

p(¬si | fj)

where ¬si all other senses of the word except si.
I Order in descending order ignoring values ≤ 0.
I When testing the first test that matches gives the sense.

12/23

Example

I Given 2,000 instances of “bank”, 1,500 for bank/1 (financial sense) and 500 for
bank/2 (river sense)

I p(s1) = 1, 500/2, 000 = .75
I p(s2) = 500/2, 000 = .25

I Given “credit” occurs 200 times with bank/1 and 4 times with bank/2.
I p(credit) = 204/2, 000 = .102
I p(credit | s1) = 200/1, 500 = .133
I p(credit | s2) = 4/500 = .008

I From Bayes Rule
I p(s1 | credit) = .133 ∗ .75/.102 = .978
I p(s2 | credit) = .008 ∗ .25/.102 = .020

I Weights
I weight(s1, credit) = log 49.8 = 3.89
I weight(s2, credit) = log 1

49.8 = −3.89

13/23

Using the Decision List

14/23

Evaluation of WSD

I Extrinsic Evaluation
I Also called task-based, end-to-end, and in vivo evaluation.
I Measures the contribution of a WSD (or other) component to a larger pipeline.
I Requires a large investment and hard to generalize to other tasks,

I Intrinsic Evaluation
I Also called in vitro evaluation
I Measures the performance of the WSD (or other) component in isolation
I Does not necessarily tell you how well the component contributes to a real test – which is

in general what you are interested in.

15/23

Baselines

I Most frequent sense
I Senses in WordNet are typically ordered from most to least frequent
I For each word, simply pick the most frequent
I Surprisingly accurate

I Lesk algorithm
I Really, a family of algorithms
I Measures overlap in words between gloss/examples and context

16/23

Simplified Lesk Algorithm
I The bank can guarantee deposits

will eventually cover future tuition
costs because it invests in
adjustable-rate mortgage securities.

I Sense bank1 has two
non-stopwords overlapping with
the context above,

I Sense bank2 has no overlaps.

17/23

Bootstrapping Algorithms
I There are bootstrapping techniques that can be used to obtain reasonable WSD

results with minimal amounts of labelled data.

18/23

Bootstrapping Algorithms

I Yarowsky’s Algorithm (1995), builds a classifier for each ambiguous word.
I The algorithm is given a small seed set Λ0 of labeled instances of each sense and a much

larger unlabeled corpus V0.
I Trains an initial classifier and labels V0 along with confidence
I Add high-confidence labeled examples to the training set giving Λ1
I Trains an new classifier and labels V1 along with confidence.
I Add high-confidence labeled examples to the training set giving Λ2
I . . .
I Until no new examples can be added or a sufficiently accurate labeling is reached.

I Assumptions/Observations:
I One sense per collocation: Nearby words provide strong and consistent clues as to the

sense of a target word
I One sense per discourse: The sense of a target word is highly consistent within a single

document

19/23

Bootstrapping Example

20/23

State-of-the-art Results in WSD (2017)

21/23

State-of-the-art Results in WSD (2017)

22/23

Other Approaches – Ensembles

I Classifier error has two components: Bias and Variance
I The bias is error from erroneous assumptions in the learning algorithm. High bias can

cause an algorithm to miss the relevant relations between features and target outputs
(underfitting).

I The variance is error from sensitivity to small fluctuations in the training set. High variance
can cause an algorithm to model the random noise in the training data, rather than the
intended outputs (overfitting).

I Some algorithms (e.g., decision trees) try and build a representation of the training
data - Low Bias/High Variance

I Others (e.g., Naive Bayes) assume a parametric form and don’t necessarily represent
the training data - High Bias/Low Variance

I Combining classifiers with different bias variance characteristics can lead to improved
overall accuracy.

23/23

Unsupervised Methods for Word Sense Discrimination/Induction

I Unsupervised learning identifies patterns in a large sample of data, without the
benefit of any manually labeled examples or external knowledge sources.

I These patterns are used to divide the data into clusters, where each member of a
cluster has more in common with the other members of its own cluster than any other.

I Important: If you remove manual labels from supervised data and cluster, you may
not discover the same classes as in supervised learning:

I Supervised Classification identifies features that trigger a sense tag
I Unsupervised Clustering finds similarity between contexts

I Recent approaches to this use embeddings.

1/41

11-411
Natural Language Processing

Semantic Roles
Semantic Parsing

Kemal Oflazer

Carnegie Mellon University in Qatar

2/41

Semantics vs Syntax

I Syntactic theories and representations focus on the question of which strings in V+
are in the language.

I Semantics is about “understanding” what a string in V+ means.
I Sidestepping a lengthy and philosophical discussion of what “meaning” is, we will

consider two meaning representations:
I Predicate-argument structures, also known as event frames.
I Truth conditions represented in first-order logic.

3/41

Motivating Example: Who did What to Whom?

I Warren bought the stock.
I They sold the stock to Warren.
I The stock was bought by Warren.
I The purchase of the stock by Warren surprised no one.
I Warren’s stock purchase surprised no one.

4/41

Motivating Example: Who did What to Whom”

I Warren bought the stock.
I They sold the stock to Warren.
I The stock was bought by Warren.
I The purchase of the stock by Warren surprised no one.
I Warren’s stock purchase surprised no one.

5/41

Motivating Example: Who did What to Whom?

I Warren bought the stock.
I They sold the stock to Warren.
I The stock was bought by Warren.
I The purchase of the stock by Warren surprised no one.
I Warren’s stock purchase surprised no one.

6/41

Motivating Example: Who did What to Whom”

I Warren bought the stock.
I They sold the stock to Warren.
I The stock was bought by .

The purchase of the stock by Warren surprised no one.

II Warren’s stock purchase surprised no one.

7/41

Motivating Example: Who did What to Whom?

I Warren bought the stock.
I They sold the stock to Warren.
I The stock was bought by Warren.
I The purchase of the stock by Warren surprised no one.
I Warren’s stock purchase surprised no one.

I In this buying/purchasing event/situation, Warren played the role of the buyer, and
there was some stock that played the role of the thing purchased.

I Also, there was presumably a seller, only mentioned in one example.
I In some examples, a separate “event” involving surprise did not occur.

8/41

Semantic Roles: Breaking

I Ali broke the window.
I The window broke.
I Ali is always breaking things.
I The broken window testified to Ali’s malfeasance.

9/41

Semantic Roles: Breaking

I Ali broke the window.
I The window broke. (?)
I Ali is always breaking things.
I The broken window testified to Ali’s malfeasance.

I A breaking event has a BREAKER and a BREAKEE.

10/41

Semantic Roles: Eating

I Eat!
I We ate dinner.
I We already ate.
I The pies were eaten up quickly.
I Our gluttony was complete.

11/41

Semantic Roles: Eating

I Eat!(you, listener) ?
I We ate dinner.
I We already ate.
I The pies were eaten up quickly.
I Our gluttony was complete.

I A eating event has a EATER and a FOOD, neither of which needs to be mentioned
explicitly.

12/41

Abstraction

BREAKER
?
= EATER

Both are actors that have some causal responsibility for changes in the world around them.

BREAKEE
?
= FOOD

Both are greatly affected by the event, which “happened to” them.

13/41

Thematic Roles

AGENT The waiter spilled the soup.
EXPERIENCER Ali has a headache.
FORCE The wind blows debris into our garden
THEME Ali broke the window.
RESULT The city built a basketball court.
CONTENT Omar asked, “You saw Ali playing soccer?”
INSTRUMENT He broke the window with a hammer.
BENEFICIARY Jane made reservations for me.
SOURCE I flew in from New York.
GOAL I drove to Boston.

14/41

Verb Alternation Examples: Breaking and Giving

I Breaking:
I AGENT/subject; THEME/object; INSTRUMENT/PPwith
I INSTRUMENT/subject; THEME/object
I THEME/subject

I Giving:
I AGENT/subject; GOAL/object; THEME/second-object
I AGENT/subject; THEME/object; GOAL/PPto

I English verbs have been codified into classes that share patterns (e.g., verbs of
throwing: throw/kick/pass)

15/41

Semantic Role Labeling

I Input: a sentence x
I Output: A collection of predicates, each consisting of

I a label sometimes called the frame
I a span
I a set of arguments, each consisting of

I a label usually called the role
I a span

16/41

The Importance of Lexicons

I Like syntax, any annotated dataset is the product of extensive development of
conventions.

I Many conventions are specific to particular words, and this information is codified in
structured objects called lexicons.

I You should think of every semantically annotated dataset as both the data and the
lexicon.

I We consider two examples.

17/41

PropBank

I Frames are verb senses (with some extensions)
I Lexicon maps verb-sense-specific roles onto a small set of abstract roles (e.g., ARG0,

ARG1, etc.)
I Annotated on top of the Penn Treebank, so that arguments are always constituents.

18/41

fall.01 (move downward)

I ARG1: logical subject, patient, thing falling
I ARG2: extent, amount fallen
I ARG3: starting point
I ARG4: ending point
I ARGM-LOC: medium

I Sales fell to $251.2 million from $278.8 million.
I The average junk bond fell by 4.2%.
I The meteor fell through the atmosphere, crashing into Palo Alto.

19/41

fall.01 (move downward)

I ARG1: logical subject, patient, thing falling
I ARG2: extent, amount fallen
I ARG3: starting point
I ARG4: ending point
I ARGM-LOC: medium

I Sales fell to $251.2 million from $278.8 million.
I The average junk bond fell by 4.2%.
I The meteor fell through the atmosphere, crashing into Palo Alto.

20/41

fall.01 (move downward)

I ARG1: logical subject, patient, thing falling
I ARG2: extent, amount fallen
I ARG3: starting point
I ARG4: ending point
I ARGM-LOC: medium

I Sales fell to $251.2 million from $278.8 million.
I The average junk bond fell by 4.2%.
I The meteor fell through the atmosphere, crashing into Palo Alto.

21/41

fall.01 (move downward)

I ARG1: logical subject, patient, thing falling
I ARG2: extent, amount fallen
I ARG3: starting point
I ARG4: ending point
I ARGM-LOC: medium

I Sales fell to $251.2 million from $278.8 million.
I The average junk bond fell by 4.2%.
I The meteor fell through the atmosphere, crashing into Palo Alto.

22/41

fall.08 (fall back, rely on in emergency)

I ARG0: thing falling back
I ARG1: thing fallen on

I World Bank president Paul Wolfowitz has fallen back on his last resort.

23/41

fall.08 (fall back, rely on in emergency)

I ARG0: thing falling back
I ARG1: thing fallen on

I World Bank president Paul Wolfowitz has fallen back on his last resort.

24/41

fall.08 (fall back, rely on in emergency)

I ARG0: thing falling back
I ARG1: thing fallen on

I World Bank president Paul Wolfowitz has fallen back on his last resort.

25/41

fall.10 (fall for a trick; be fooled by)

I ARG0: the fool
I ARG1: the trick

I Many people keep falling for the idea that lowering taxes on the rich benefits
everyone.

26/41

fall.10 (fall for a trick; be fooled by)

I ARG0: the fool
I ARG1: the trick

I Many people keep falling for the idea that lowering taxes on the rich benefits
everyone.

27/41

fall.10 (fall for a trick; be fooled by)

I ARG0: the fool
I ARG1: the trick

I Many people keep falling for the idea that lowering taxes on the rich benefits
everyone.

28/41

FrameNet

I Frames can be any content word (verb, noun, adjective, adverb)
I About 1,000 frames, each with its own roles
I Both frames and roles are hierarchically organized
I Annotated without syntax, so that arguments can be anything
I Different philosophy:

I Micro roles defined according to frame
I Verb is in the background and frame is in the foreground.
I When a verb is “in” a frame it is allowed to use the associated roles.

29/41

change position on a scale

I ITEM: entity that has a position on the scale
I ATTRIBUTE: scalar property that the ITEM possesses
I DIFFERENCE: distance by which an ITEM changes its position
I FINAL STATE: ITEM’s state after the change
I FINAL VALUE: position on the scale where ITEM ends up
I INITIAL STATE: ITEM’s state before the change
I INITIAL VALUE: position on the scale from which the ITEM moves
I VALUE RANGE: portion of the scale along which values of ATTRIBUTE fluctuate
I DURATION: length of time over which the change occurs
I SPEED: rate of change of the value

30/41

FrameNet Example

Attacks on civilians︸ ︷︷ ︸
ITEM

decreased︸ ︷︷ ︸
change position. . .

over the last four months︸ ︷︷ ︸
DURATION

I The ATTRIBUTE is left unfilled but is understood from context (e.g., “number” or
“frequency”).

31/41

change position on a scale

I Verbs: advance, climb, decline, decrease, diminish, dip, double, drop, dwindle, edge,
explode, fall, fluctuate, gain, grow, increase, jump, move, mushroom, plummet, reach,
rise, rocket, shift, skyrocket, slide, soar, swell, swing, triple, tumble

I Nouns: decline, decrease, escalation, explosion, fall, fluctuation, gain, growth, hike,
increase, rise, shift, tumble

I Adverb: increasingly
I Frame hierarchy

event

. . .change position on a scale

proliferating in numberchange of temperature

. . .

32/41

The Semantic Role Labeling Task

I Given a syntactic parse, identify the appropriate role for each noun phrase (according
to the scheme that you are using, e.g., PropBank, FrameNet or something else)

I Why is this useful?
I Why is it useful for some tasks that you cannot perform with just dependency parsing?
I What kind of semantic representation could you obtain if you had SRL?

I Why is this hard?
I Why is it harder that dependency parsing?

33/41

Semantic Role Labeling Methods

I Boils down to labeling spans with frames and role names.
I It is mostly about features.
I Some features for SRL

I The governing predicate (often the main verb)
I The phrase type of the constituent (NP, NP-SUBJ, etc)
I The headword of the constituent
I The part of speech of the headword
I The path from the constituent to the predicate
I The voice of the clause (active, passive, etc.)
I The binary linear position of the constituent with respect to the predicate (before or after)
I The subcategorization of the predicate
I Others: named entity tags, more complex path features, when particular nodes appear in

the path, rightmost and leftmost words in the constituent, etc.

34/41

Example: Path Features

S

VP

PP-TMP

NP-TMP

NN

yesterday

NN

noon

IN

around

NP

NN

edition

JJ

special

DT

a

VBD

issued

NP-SBJ

NNP

Examiner

NNP

Francisco

NNP

San

DT

The

Path from “The San Francisco Examiner” to “issued”: NP↑S↓VP↓VBD
Path from “a special edition” to “issued”: NP↑VP↓VBD

35/41

Sketch of an SRL Algorithm

36/41

Additional Steps for Efficiency

I Pruning
I Only a small number of constituents should ultimately be labeled
I Use heuristics to eliminate some constituents from consideration

I Preliminary Identification:
I Label each node as ARG or NONE with a binary classifier

I Classification
I Only then, perform 1-of-N classification to label the remaining ARG nodes with roles

37/41

Additional Information

I See framenet/icsi.berkeley.edu/fndrupal/ for additional information about
the FrameNet Project.

I Semantic Parsing Demos at
I http://demo.ark.cs.cmu.edu/parse
I http://nlp.cs.lth.se/demonstrations/

framenet/icsi.berkeley.edu/fndrupal/
http://demo.ark.cs.cmu.edu/parse
http://nlp.cs.lth.se/demonstrations/

38/41

Methods: Beyond Features

I The span-labeling decisions interact a lot!
I Presence of a frame increases the expectation of certain roles
I Roles for the same predicate should not overlap
I Some roles are mutually exclusive or require each other (e.g., “resemble”)
I Using syntax as a scaffold allows efficient prediction; you are essentially labeling the

parse tree.
I Other methods include: discrete optimization, greedy and joint syntactic and semantic

dependencies.

39/41

Related Problems in “Relational” Semantics

I Coreference resolution: which mentions (within or across texts) refer to the same
entity or event?

I Entity linking: ground such mentions in a structured knowledge base (e.g.,
Wikipedia)

I Relation extraction: characterize the relation among specific mentions

40/41

General Remarks

I Semantic roles are just “syntax++” since they don’t allow much in the way of
reasoning (e.g., question answering).

I Lexicon building is slow and requires expensive expertise. Can we do this for every
(sub)language?

41/41

Snapshot

I We have had a taste of two branches of semantics:
I Lexical semantics (e.g., supersense tagging, WSD)
I Relational semantics (e.g., semantic role labeling)

I Coming up:
I Compositional Semantics

1/34

11-411
Natural Language Processing

Compositional Semantics

Kemal Oflazer

Carnegie Mellon University in Qatar

2/34

Semantics Road Map

I Lexical semantics
I Vector semantics
I Semantic roles, semantic parsing
I Meaning representation languages and Compositional semantics
I Discourse and pragmatics

3/34

Bridging the Gap between Language and the World

I Meaning representation is the interface between the language and the world.
I Answering essay question on an exam.
I Deciding what to order at a restaurant.
I Recognizing a joke.
I Executing a command.
I Responding to a request.

4/34

Desirable Qualities of Meaning Representation Languages (MRL)

I Represent the state of the world, i.e., be a knowledge base
I Query the knowledge base to verify that a statement is true, or answers a question.

I “Does Bukhara serve vegetarian food?”
I Is serves(Bukhara, vegetarian food) in our knowledge base?

I Handle ambiguity, vagueness, and non-canonical forms
I “I want to eat someplace that’s close to the campus.”
I “something not too spicy”

I Support inference and reasoning.
I “Can vegetarians eat at Bukhara?”

5/34

Desirable Qualities of Meaning Representation Languages (MRL)

I Inputs that mean the same thing should have the same meaning representation.
I “Bukhara has vegetarian dishes.”
I “They have vegetarian food at Bukhara.”
I “Vegetarian dishes are served at Bukhara.”
I “Bukhara serves vegetarian fare.”

6/34

Variables and Expressiveness

I “ I would like to find a restaurant where I can get vegetarian food.”
I serves(x, vegetarian food)

I It should be possible to express all the relevant details
I “Qatar Airways flies Boeing 777s and Airbus 350s from Doha to the US”

7/34

Limitation

I We will focus on the basic requirements of meaning representation.
I These requirements do not include correctly interpreting statements like

I “Ford was hemorrhaging money.”
I “I could eat a horse.”

8/34

What do we Represent?

I Objects: people (John, Ali, Omar), cuisines (Thai, Indian), restaurants (Bukhara,
Chef’s Garden), . . .

I John, Ali, Omar, Thai, Indian, Chinese, Bukhara, Chefs Garden, . . .
I Properties of Objects: Ali is picky, Bukhara is noisy, Bukhara is cheap, Indian is

spicy, John, Ali and Omar are humans, Bukhara has long wait . . .
I picky={Ali}, noisy={Bukhara}, spicy={Indian}, human={Ali, John, Omar}. . .

I Relations between objects: Bukhara serves Indian, NY Steakhouse serves steak.
Omar likes Chinese.

I serves(Bukhara, Indian), serves(NY Steakhouse, steak), likes(Omar, Chinese) . . .
I Simple questions are easy:

I Is Bukhara noisy?
I Does Bukhara serve Chinese?

9/34

MRL: First-order Logic – A Quick Tour

I Term: any constant (e.g., Bukhara) or a variable
I Formula: defined inductively . . .

I if R is an n-ary relation and t1, . . . , tn are terms, then R(t1, . . . , tn) is a formula.
I if φ is a formula, then its negation, ¬φ is a formula.
I if φ and ψ are formulas, then binary logical connectives can be used to create formulas:

I φ ∧ ψ
I φ ∨ ψ
I φ⇒ ψ
I φ⊕ ψ

I If φ is a formula and v is a variable, then quantifiers can be used to create formulas:
I Existential quantifier: ∃v : φ
I Universal quantifier: ∀v : φ

10/34

First-order Logic: Meta Theory

I Well-defined set-theoretic semantics
I Sound: You can’t prove false things.
I Complete: You can prove everything that logically follows from a set of axioms (e.g.

with a “resolution theorem prover.”)
I Well-behaved, well-understood.
I But there are issues:

I “Meanings” of sentences are truth values.
I Only first-order (no quantifying over predicates).
I Not very good for “fluents” (time-varying things, real-valued quantities, etc.)
I Brittle: anything follows from any contradiction (!)
I Gödel Incompleteness: “This statement has no proof.”

I Finite axiom sets are incomplete with respect to the real world.

I Most systems use its descriptive apparatus (with extensions) but not its inference
mechanisms.

11/34

Translating between First-order Logic and Natural Language

I Bukhara is not loud. ¬noisy(Bukhara)
I Some humans like Chinese. ∃x, human(x) ∧ likes(x, chinese)
I If a person likes Thai, then they are not friends with Ali.

∀x, human(x) ∧ likes(x,Thai) ⇒ ¬friends(x,Ali)
I ∀x, restaurant(x) ⇒ (longwait(x) ∨ ¬likes(Ali, x))

Every restaurant has a long wait or is disliked by Ali.
I ∀x,∃y,¬likes(x, y) Everybody has something they don’t like.
I ∃y, ∀x,¬likes(x, y) There is something that nobody likes.

12/34

Logical Semantics (Montague Semantics)

I The denotation of a natural language sentence is the set of conditions that must hold
in the (model) world for the sentence to be true.

I “Every restaurant has a long wait or is disliked by Ali.”
is true if an only if

∀x, restaurant(x) ⇒ (longwait(x) ∨ ¬likes(Ali, x))

is true.
I This is sometimes called the logical form of the NL sentence.

13/34

The Principle of Compositionality

I The meaning of a natural language phrase is determined by the meanings of its
sub-phrases.

I There are obvious exceptions: e.g., hot dog, New York, etc.
I Semantics is derived from syntax.
I We need a way to express semantics of phrases, and compose them together!
I Little pieces of semantics are introduced by words, from the lexicon.
I Grammar rules include semantic attachments that describe how the semantics of

the children are combined to produce the semantics of the parent, bottom-up.

14/34

Lexicon Entries

I In real systems that do detailed semantics, lexicon entries contain
I Semantic attachments
I Morphological info
I Grammatical info (POS, etc.)
I Phonetic info, if speech system
I Additional comments, etc.

15/34

λ-Calculus

I λ-abstraction is device way to give “scope” to variables.
I If φ is a formula and v is a variable, then λv.φ is a λ-term: an unnamed function from

values (of v) to formulas (usually involving v)
I application of such functions: if we have λv.φ and ψ, then [λv.φ](ψ) is a formula.

I It can be reduced by substituting ψ for every instance of v in φ
I [λx.likes(x,Bukhara)](Ali) reduces to likes(Ali,Bukhara).
I [λx.λy.friends(x, y)](b) reduces to λy.friends(b, y)
I [[λx.λy.friends(x, y)](b)](a) reduces to [λy.friends(b, y)](a) which reduces to friends(b, a)

16/34

Semantic Attachments to CFGs

I NNP → Ali {Ali}
I VBZ → likes {λf .λy.∀x f (x) ⇒ likes(y, x)}
I JJ → expensive {λx.expensive(x)}
I NNS → restaurants {λx.restaurant(x)}
I NP → NNP {NNP.sem}
I NP → JJ NNS {λx.JJ.sem(x)∧ NNS.sem(x)}
I VP → VBZ NP {VBZ.sem(NP.sem)}
I S → NP VP {VP.sem(NP.sem)}

17/34

Example

S

VP

NP

NNS

restaurants

JJ

expensive

VBZ

likes

NP

NNP

Ali

18/34

Example

S : VP.sem(NP.sem)

VP : VBZ.sem(NP.sem)

NP : λv. JJ.sem(v)∧NNS.sem(v)

NNS : λw.restaurant(w)

restaurants

JJ : λz.expensive(z)

expensive

VBZ : λf .λy.∀ x, f (x) ⇒ likes(y, x)

likes

NP : NNP.sem

NNP : Ali

Ali

19/34

Example

S : VP.sem(NP.sem)

VP : VBZ.sem(NP.sem)

NP : λv.expensive(v) ∧ restaurant(v)

NNS : λw.restaurant(w)

restaurants

JJ : λz.expensive(z)

expensive

VBZ : λ f .λ y.∀ x f (x) ⇒ likes(y, x)

likes

NP : NNP.sem

NNP : Ali

Ali

λv.

λz.expensive(z)︸ ︷︷ ︸
JJ.sem

 (v) ∧

λw.restaurant(w)︸ ︷︷ ︸
NNS.sem

 (v)

20/34

Example

...

VP : VBZ.sem(NP.sem)

NP : λ v.expensive(v) ∧ restaurant(v)

expensive restaurants

VBZ : λ f .λ y.∀ x f (x) ⇒ likes(y, x)

likes

21/34

Example
...

VP : λy.∀x, expensive(x) ∧ restaurant(x) ⇒ likes(y, x)

NP : λv.expensive(v) ∧ restaurant(v)

expensive restaurants

VBZ : λf .λy.∀x f (x) ⇒ likes(y, x)

likesλf .λy.∀x f (x) ⇒ likes(y, x)︸ ︷︷ ︸
VBZ.sem

(λv.expensive(v) ∧ restaurant(v)︸ ︷︷ ︸
NP.sem

)

λy.∀x [λv.expensive(v) ∧ restaurant(v)](x) ⇒ likes(y, x)

λy.∀x, expensive(x) ∧ restaurant(x) ⇒ likes(y, x)

22/34

Example

S : VP.sem(NP.sem)

VP : λy.∀x, expensive(x) ∧ restaurant(x) ⇒ likes(y, x)

likes expensive restaurants

NP : NNP.sem

NNP : Ali

Ali

23/34

Example

S : ∀x expensive(x) ∧ restaurant(x) ⇒ likes(Ali, x)

VP : λy.∀x, expensive(x) ∧ restaurant(x) ⇒ likes(y, x)

likes expensive restaurants

NP : Ali

NNP : Ali

Aliλy.∀x expensive(x) ∧ restaurant(x) ⇒ likes(y, x)︸ ︷︷ ︸
VP.sem

(Ali︸︷︷︸
NP.sem

)

∀x expensive(x) ∧ restaurant(x) ⇒ likes(Ali, x)

24/34

Quantifier Scope Ambiguity
I NNP → Ali {Ali}
I VBZ → likes {λf .λy.∀x f (x) ⇒ likes(y, x)}
I JJ → expensive {λx.expensive(x)}
I NNS → restaurants {λx.restaurant(x)}
I NP → NNP {NNP.sem}
I NP → JJ NNS {λx.JJ.sem(x)∧ NNS.sem(x)}
I VP → VBZ NP {VBZ.sem(NP.sem)}
I S → NP VP {VP.sem(NP.sem)}
I NP → Det NN {Det.sem(NN.sem)}
I Det → every {λf .λg.∀u f (u) ⇒ g(u)}
I Det → a {λm.λn.∃x m(x) ⇒ n(x)}
I NN → man {λv.man(v)}
I NN → woman {λv.woman(v)}
I VBZ → loves {λf .λy.∀x f (x) ⇒ loves(y, x)}

S

VP

NP

NN

woman

Det

a

VBZ

loves

NP

NN

man

Det

Every

∀u man(u) ⇒ ∃x woman(x)∧loves(u, x)

25/34

This is not Quite Right!

I “Every man loves a woman.” really is ambiguous.
I ∀u (man(u) ⇒ ∃x woman(x) ∧ loves(u, x))
I ∃x (woman(x) ∧ ∀u man(u) ⇒ loves(u, x))

I We get only one of the two meanings.
I Extra ambiguity on top of syntactic ambiguity.

I One approach is to delay the quantifier processing until the end, then permit any
ordering.

26/34

Other Meaning Representations: Abstract Meaning Representation

I “The boy wants to visit New York City.”
I Designed mainly for annotation-ability and eventual use in machine translation.

27/34

Combinatory Categorial Grammar

I CCG is a grammatical formalism that is well-suited for tying together syntax and
semantics.

I Formally, it is more powerful than CFG – it can represent some of the
context-sensitive languages.

I Instead of the set of non-terminals of CFGs, CCGs can have an infinitely large set of
structured categories (called types).

28/34

CCG Types and Combinators

I Primitive types: typically S, NP, N, and maybe more.
I Complex types: built with “slashes,” for example:

I S/NP is “an S, except it lacks an NP to the right”
I S\NP is “an S, except it lacks an NP to the left”
I (S\NP)/NP is “an S, except that it lacks an NP to its right and to its left”

I You can think of complex types as functions:
I S/NP maps NPs to Ss.

I CCG Combinators: Instead of the production rules of CFGs, CCGs have a very
small set of generic combinators that tell us how we can put types together.

I Convention writes the rule differently from CFG: XY ⇒ Z means that X and Y
combine to form a Z (the “parent” in the tree).

29/34

Application Combinator

I Forward Combination: X/Y Y ⇒ X
I Backward Combination: Y X\Y ⇒ X

S

S\NP

NP

John

(S\NP)/NP

bit

NP

N

dog

NP/N

the

30/34

Conjunction Combinator

I X and X ⇒ X

S

S\NP

S\NP

NP

Coke

(S\NP)/NP

drank

andS\NP

NP

anchovies

(S\NP)/NP

ate

NP

John

31/34

Composition Combinator

I Forward (X/Y Y/Z ⇒ X/Z)
I Backward (Y\Z X\Y ⇒ X\Z)

S

S\NP

NP

olives

(S\NP)/NP

(S\NP)/NP

prefer

(S\NP)/(S\NP)

would

NP

I

32/34

Type-raising Combinator
I Forward (X ⇒ Y/(Y\X))
I Backward (X ⇒ Y\(Y/X))

S

NP

chocolate

S/NP

S/NP

(S\NP)/NP

hates

S/(S\NP)

NP

Karen

andS/NP

(S\NP)/NP

love

S/(S\NP)

NP

I

33/34

Back to Semantics

I Each combinator also tells us what to do with the semantic attachments.
I Forward application: X/Y : f Y : g ⇒ X f (g)
I Forward composition: X/Y : f Y/Z : g ⇒ X/Z λx.f (g(x))
I Forward type-raising: X : g ⇒ Y/(Y\X) : λf .f (g)

34/34

CCG Lexicon

I Most of the work is done in the lexicon.
I Syntactic and semantic information is much more formal here.
I Slash categories define where all the syntactic arguments are expected to be
I λ-expressions define how the expected arguments get “used” to build up a FOL

expression.

1/61

11-411
Natural Language Processing

Discourse and Pragmatics

Kemal Oflazer

Carnegie Mellon University in Qatar

2/61

What is Discourse?

I Discourse is the coherent structure of language above the level of sentences or
clauses.

I A discourse is a coherent structured group of sentences.
I What makes a passage coherent?

I A practical answer: It has meaningful connections between its utterances.

3/61

Applications of Computational Discourse

I Automatic essay grading
I Automatic summarization
I Meeting understanding
I Dialogue systems

4/61

Kinds of Discourse Analysis

I Monologue
I Human-human dialogue (conversation)
I Human-computer dialogue (conversational agents)
I “Longer-range” analysis (discourse) vs. “deeper” analysis (real semantics):

I John bought a car from Bill.
I Bill sold a car to John.
I They were both happy with the transaction.

5/61

Discourse in NLP

6/61

Coherence

I Coherence relations: EXPLANATION, CAUSE
I John hid Bill’s car keys. He was drunk.
I John hid Bill’s car keys. He likes spinach.

I Consider:
I John went to the store to buy a piano.
I He had gone to the store for many years.
I He was excited that he could finally afford a piano.
I He arrived just as the store was closing for the day.

I Now consider this:
I John went to the store to buy a piano.
I It was a store he had gone to for many years.
I He was excited that he could finally afford a piano.
I It was closing for the day just as John arrived.

I First is “intuitively” more coherent than the second.
I Entity-based coherence (centering).

7/61

Discourse Segmentation
I Many genres of text have particular conventional structures:

I Academic articles: Abstract, Introduction, Methodology, Results, Conclusion, etc.
I Newspaper stories:

I Spoken patient reports by doctors (SOAP): Subjective, Objective, Assesment, Plan.

8/61

Discourse Segmentation

I Given raw text, separate a document into a linear sequence of subtopics.

⇒

1–3 Intro: The search for life in space

4–5 The moon’s chemical composition

6–8 How early earth-moon proximity
shaped the moon

9–12 How the moon helped life evolve on
earth

13 Improbability of the earth-moon system

14–16 Binary/trinary star systems make life
unlikely

17–18 The low probability of nonbinary/trinary
systems

19–20 Properties of earth’s sun that facilitate
life

21 Summary

9/61

Applications of Discourse Segmentation

I Summarization: Summarize each segment independently.
I News Transcription: Separate a steady stream of transcribed news to separate

stories.
I Information Extraction: First identify the relevant segment and then extract.

10/61

Cohesion

I To remind: Coherence refers to the “meaning” relation between two units. A
coherence relation explains how the meaning in different textual units can combine to
a meaningful discourse.

I On the other hand, cohesion is the use of linguistic devices to link or tie together
textual units. A cohesive relation is like a “glue” grouping two units into one.

I Common words used are cues for cohesion.
I Before winter, I built a chimney and shingled the sides of my house.
I I have thus a tight shingled and plastered house.

I Synonymy/hypernymy relations are cues for lexical cohesion.
I Peel, core and slice the pears and the apples.
I Add the fruit to the skillet.

I Use of anaphora are cues for lexical cohesion
I The Woodhouses were first in consequence there.
I All looked up to them.

11/61

Discourse Segmentation

I Intuition: If we can “measure” the cohesion between every neighboring pair of
sentences, we may expect a “dip” in cohesion at subtopic boundaries.

I The TextTiling algorithm uses lexical cohesion.

12/61

The TextTiling Algorithm

I Tokenization
I lowercase, remove stop words, morphologically stem inflected words
I stemmed words are (dynamically) grouped into pseudo-sentences of length 20 (equal

length and not real sentences!)
I Lexical score determination
I Boundary identification

13/61

TextTiling – Determining Lexical Cohesion Scores

I Remember:
I Count-based similarity vectors
I Cosine-similarity

simcosine(a, b) =
a · b
|a| |b|

I Consider a gap position i between any two words.
I Consider k = 10 words before the gap (a) and 10 words after the gap (b), and

compute their similarity yi.
I So yi’s are the lexical cohesion scores between the 10 words before the gap and 10

words after the gap.

14/61

TextTiling – Determining Boundaries
I A gap position i is a valley if yi < yi−1 and yi < yi+1.
I If i is a valley, find the depth score – distance from the peaks on both sides

= (yi−1 − yi) + (yi+1 − yi).
I Any valley with depth at s− σs or lower, that is, deeper than one standard deviation

from average valley depth, is selected as a boundary.

15/61

TextTiling – Determining Boundaries

16/61

TextTiling – Determining Boundaries

17/61

Supervised Discourse Segmentation

I Spoken news transcription segmentation task.
I Data sets with hand-labeled boundaries exist.

I Paragraph segmentation task of monologues (lectures/speeches).
I Plenty of data on the web with <p> markers.

I Treat the task as a binary decision classification problem.
I Use classifiers such as decision trees, Support Vector Machines to classify

boundaries.
I Use sequence models such as Hidden Markov Models or Conditional Random Fields

to incorporate sequential constraints.
I Additional features that could be used are discourse markers or cue words which

are typically domain dependent.
I Good Evening I am PERSON
I Joining us with the details is PERSON
I Coming up

18/61

Evaluating Discourse Segmentation
I We could do precision, recall and F-measure, but . . .
I These will not be sensitive to near misses!
I A commonly-used metric is WindowDiff.
I Slide a window of length k across the (correct) references and the hypothesized

segmentation.

I Count the number of segmentation boundaries in each.
I Compute the average difference in the number of boundaries in the sliding window.
I Assigns partial credit.
I Another metric is pk(ref , hyp) – the probability that a randomly chosen pair of words a

distance k words apart are inconsistently classified.

19/61

Coherence

I Cohesion does not necessarily imply coherence.
I We need a more detailed definition of coherence.
I We need computational mechanisms for determining coherence.

20/61

Coherence Relations
I Let S0 and S1 represent the “meanings” of two sentences being related.
I Result: Infer that state or event asserted by S0 causes or could cause the state or

event asserted by S1.
I The Tin Woodman was caught in the rain. His joints rusted.

I Explanation: Infer that state or event asserted by S1 causes or could cause the state
or event asserted by S0.

I John hid the car’s keys. He was drunk.
I Parallel: Infer p(a1, a2, . . .) from the assertion of S0 and p(b1, b2, . . .) from the

assertion of S1, where ai and bi are similar for all i.
I The Scarecrow wanted some brains. The Tin Woodman wanted a heart.

I Elaboration: Infer the same proposition from the assertions S0 and S1.
I Dorothy was from Kansas. She lived in the midst of the great Kansas prairies.

I Occasion:
I A change of state can be inferred from the assertion S0 whose final state can be inferred

from S1, or
I A change of state can be inferred from the assertion S1 whose initial state can be inferred

from S0.
I Dorothy picked up the oil can. She oiled the Tin Woodman’s joints.

21/61

Coherence Relations
I Consider

I S1: John went to the bank to deposit his paycheck.
I S2: He then took a bus to Bill’s car dealership.
I S3: He needed to buy a car.
I S4: The company he works for now isn’t near a bus line.
I S5: He also wanted to talk with Bill about their soccer league.

Occasion(e1, e2)

Explanation(e2)

Parallel(e3; e5)

S5(e5)Explanation(e3)

S4(e4)S3(e3)

S2(e2)

S1(e1)

22/61

Rhetorical Structure Theory – RST
I Based on 23 rhetorical relations between two spans of text in a discourse.

I a nucleus – central to the write’s purpose and interpretable independently
I a satellite – less central and generally only interpretable with respect to the nucleus

I Evidence relation: Kevin must be here.︸ ︷︷ ︸
nucleus

His car is parked outsize.︸ ︷︷ ︸
satellite

I An RST relation is defined by a set of constraints.

Relation name: Evidence

Constraints on Nucleus Reader might not believe Nucleus to a degree
satisfactory to Writer

Constraints on Satellite Reader believes Satellite or will find it credible.

Constraints on Nucleus+Satellite Reader’s comprehending Satellite increases
Reader’s belief of Nucleus

Effects Reader’s belief on Nucleus is increased.

23/61

RST – Other Common Relations

I Elaboration: Satelite gives more information about the nucleus
I [N The company wouldn’t elaborate,] [S citing competitive reasons.]

I Attribution: The satellite gives the source of attribution for the information in nucleus.
I [S Analysts estimated,] [N that sales at US stores declined in the quarter.]

I Contrast: Two of more nuclei contrast along some dimension.
I [N The man was in a bad temper,] [N but his dog was quite happy.]

I List: A series of nuclei are given without contrast or explicit comparison.
I [N John was the goalie;] [N Bob, he was the center forward.]

I Background: The satellite gives context for interpreting the nucleus.
I [S T is a pointer to the root of a binary tree.] [N Initialize T.]

24/61

RST Coherence Relations

25/61

Automatic Coherence Assignment

I Given a sequence of sentences or clauses, we want to automatically:
I determine coherence relations between them (coherence relation assignment)
I extract a tree or graph representing an entire discourse (discourse parsing)

26/61

Automatic Coherence Assignment

I Very difficult!
I One existing approach is to use cue phrases.

I John hid Bill’s car keys because he was drunk.
I The scarecrow came to ask for a brain. Similarly, the tin man wants a heart.

1. Identify cue phrases in the text.
2. Segment the text into discourse segments.

I Use cue phrases/discourse markers
I although, but, because, yet, with, and, . . .
I but often implicit, as in car key example

3. Classify the relationship between each consecutive discourse segment.

27/61

Reference Resolution

I To interpret the sentence in any discourse we need to who or what entity is being
talked about.

I Victoria Chen, CFO of Megabucks Banking Corp since 2004, saw her pay jump 20%,
to $1.3 million, as the 37-year-old also became the Denver-based company’s
president. It has been ten years since she came to Megabucks from rival Lotsaloot.

I Coreference chains:
I {Victoria Chen, CFO of Megabucks Banking Corp since 2004, her, the 37-year-old, the

Denver-based company’s president, she}
I {Megabucks Banking Corp, the Denver-based company, Megabucks}
I {her pay}
I {Lotsaloot}

28/61

Some Terminology

Victoria Chen, CFO of Megabucks Banking Corp since 2004, saw her pay jump 20%, to
$1.3 million, as the 37-year-old also became the Denver-based company’s president. It
has been ten years since she came to Megabucks from rival Lotsaloot.

I Referring expression
I Victoria Chen, the 37-year-old and she are referring expressions.

I Referent
I Victoria Chen is the referent.

I Two referring expressions referring to the same entity are said to corefer.
I A referring expression licenses the use of a subsequent expression.

I Victoria Chen allows Victoria Chen to be referred to as she.
I Victoria Chen is the antecedent of she.

I Reference to an earlier introduced entity is called anaphora.
I Such a reference is called anaphoric.

I the 37-year-old, her and she are anaphoric.

29/61

References and Context

I Suppose your friend has a car, a 1961 Ford Falcon.
I You can refer to it in many ways: it, this, that, this car, the car, the Ford, the Falcon,

my friend’s car, . . .
I However you are not free to use any of these in any context!

I For example, you can not refer to it as it, or as the Falcon, if the hearer has no prior
knowledge of the car, or it has not been mentioned, etc.

I Coreference chains are part of cohesion.

30/61

Other Kinds of Referents

I You do not always refer to entities. Consider:
I According to Doug, Sue just bought the Ford Falcon.

I But that turned out to be a lie.
I But that was false.
I That struck me as a funny way to describe the situation.
I That caused a financial problem for Sue.

31/61

Types of Referring Expressions

I Indefinite Noun Phrases
I Definite Noun Phrases
I Pronouns
I Demonstratives
I Names

32/61

Indefinite Noun Phrases

I Introduce new entities to the discourse
I Usually with a, an, some, and even this.

I Mrs. Martin was so kind as to send Mrs. Goddard a beautiful goose.
I I brought him some good news.
I I saw this beautiful Ford Falcon today.

I Specific vs. non-specific ambiguity.
I The goose above is specific – it is the one Mrs. Martin sent.
I The goose in “I am going to the butcher to buy a goose.” is non-specific.

33/61

Definite Noun Phrases

I Refer to entities identifiable to the hearer.
I Entities are either previously mentioned:

I It concerns a while stallion which I have sold to another officer. But the pedigree of the
while stallion was not fully established.

I Or, they are part of the hearer’s beliefs about the world.
I I read it in the New York Times

34/61

Pronouns

I Pronouns usually refer to entities that were introduced no further that one or two
sentences back.

I John went to Bob’s party and parked next to a classic Ford Falcon.
I He went inside and talked to Bob for more than a hour. (He = John)
I Bob told him that he recently got engaged. (him = John, he = Bob)
I He also said he bought it yesterday (He = Bob, it = ???)
I He also said he bought the Falcon yesterday (He = Bob)

I Pronouns can also participate in cataphora.
I Even before she saw it, Dorothy had been thinking about the statue.

I Pronouns also appear in quantified contexts, bound to the quantifier.
I Every dancer brought her left arm forward.

35/61

Demonstratives

I This, that, these, those
I Can be both pronouns or determiners

I That came earlier.
I This car was parked on the left.

I Proximal demonstrative – this
I Distal demonstrative – that
I Note that this NP is ambiguous: can be both indefinite or definite.

36/61

Names

I Names can be used to refer to new or old entities in the discourse.
I These mostly refer to named-entities: people, organizations, locations, geographical

objects, products, nationalities, physical facilities, geopolitical entities, dates,
monetary instruments, plants, animals,

I They are not necessarily unique:
I Do you mean the Ali in the sophomore class or the Ali in the senior class?

37/61

Reference Resolution

I Goal: Detemine what entities are referred to by which linguistic expressions.
I The discourse model contains our eligible set of referents.

I Coreference resolution
I Pronomial anaphora resolution

38/61

Pronouns Reference Resolution: Filters

I Number, person, gender agreement constraints.
I it can not refer to books
I she can not refer to John

I Binding theory constraints:
I John bought himself a new Ford. (himself=John)
I John bought him a new Ford. (him 6= John)
I John said that Bill bought him a new Ford. [him 6= Bill]
I John said that Bill bought himself a new Ford. (himself =Bill)
I He said that he bought John a new Ford. (both he 6= John)

39/61

Pronouns Reference Resolution: Preferences

I Recency: preference for most recent referent
I Grammatical Role: subj>obj>others

I Billy went to the bar with Jim. He ordered rum.
I Repeated mention:

I Billy had been drinking for days. He went to the bar again today. Jim went with him. He
ordered rum.

I Parallelism:
I John went with Jim to one bar. Bill went with him to another.

I Verb semantics:
I John phoned/criticized Bill. He lost the laptop.

I Selectional restrictions:
I John parked his car in the garage after driving it around for hours.

40/61

Pronoun Reference Resolution: The Hobbs Algorithm

I Algorithm for walking through parses of current and preceding sentences.
I Simple, often used as baseline.
I Requires parser, morphological gender and number

I Uses rules to identify heads of NPs
I Uses WordNet for humanness and gender

I Is person a hypernym of an NP head?
I Is female a hypernym of an NP head?

I Implements binding theory, recency, and grammatical role preferences.

41/61

Pronoun Reference Resolution: Centering Theory

I Claim: A single entity is “centered” in each sentence.
I That entity is to be distinguished from all other entities that have been evoked.
I Also used in entity-based coherence.
I Let Un and Un+1 be two adjacent utterances.
I The backward-looking center Un, denoted Cb(Un), is the entity focused in the

discourse after Un is interpreted.
I The forward-looking centers of Un, denoted Cf (Un), is an ordered list of the

entities mentioned in Un of of which could serve as the Cb of Un+1.
I Cb(Un+1) in the highest ranked element of Cf (Un), also mentioned in Un+1.

I Entities in Cf (Un)) are ordered: subject > existential predicate nominal > object>
indirect object. . .

I Cp is the preferred center, the first element of Cf (Un).

42/61

Sentence Transitions

I Rule 1: If any element of Cf (Un) is realized as a pronoun in Un+1, the Cb(Un+1
must be realized as a pronoun.

I Rule 2:Transition states are ordered: Continue > Retain> Smooth-shift >
Rough-shift

I Algorithm:
I Generate possible Cb– Cf combinations for each possible set of reference assignments.
I Filter by constraints: agreements, selectional restrictions, centering rules and constraints
I Rank by transition orderings
I The most preferred relation defines the pronomial referents.

43/61

Pronoun Reference Resolution: Log-Linear Models

I Supervised: hand-labeled coreference corpus
I Rule-based filtering of non-referential pronouns:

I It was a dark and stormy night.
I It is raining.

I Needs positive and negative examples:
I Positive examples in the corpus.
I Negative examples are created by pairing pronouns with other noun phrases.

I Features are extracted for each training example.
I Classifier learns to predict 1 or 0.
I During testing:

I Classifier extracts all potential antecedents by parsing the current and previous sentences.
I Each NP is considered a potential antecedent for each following pronoun.
I Each pronoun – potential antecedent pair is then presented (through their features) to the

classifier.
I Classifier predicts 1 or 0.

44/61

Pronoun Reference Resolution: Log-Linear Models

I Example
I U1: John saw a Ford at the dealership.
I U2: He showed it to Bob.
I U3: He bought it.

I Features for He in U3

45/61

General Reference Resolution

I Victoria Chen, CFO of Megabucks Banking Corp since 2004, saw her pay jump 20%,
to $1.3 million, as the 37-year-old also became the Denver-based company’s
president. It has been ten years since she came to Megabucks from rival Lotsaloot.

I Coreference chains:
I {Victoria Chen, CFO of Megabucks Banking Corp since 2004, her, the 37-year-old, the

Denver-based company’s president, she}
I {Megabucks Banking Corp, the Denver-based company, Megabucks}
I {her pay}
I {Lotsaloot}

46/61

High-level Recipe for Coreference Resolution

I Parse the text and identify NPs; then
I For every pair of NPs, carry out binary classification: coreferential or not?
I Collect the results into coreference chains
I What do we need?

I A choice of classifier.
I Lots of labeled data.
I Features

47/61

High-level Recipe for Coreference Resolution

I Word-level edit distance between the two NPs
I Are the two NPs the same NER type?
I Appositive syntax

I “Alan Shepherd, the first American astronaut, . . . ”
I Proper/definite/indefinite/pronoun
I Gender
I Number
I Distance in sentences
I Number of NPs between
I Grammatical roles
I Any other relevant features,.e.g embeddings?

48/61

Pragmatics

I Pragmatics is a branch of linguistics dealing with language use in context.
I When a diplomat says yes, he means ‘perhaps’;
I When he says perhaps, he means ‘no’;
I When he says no, he is not a diplomat.
I (Variously attributed to Voltaire, H. L. Mencken, and Carl Jung)

49/61

In Context?

I Social context
I Social identities, relationships, and setting

I Physical context
I Where? What objects are present? What actions?

I Linguistic context
I Conversation history

I Other forms of context
I Shared knowledge, etc.

50/61

Language as Action: Speech Acts

I The Mood of a sentence indicates relation between speaker and the concept
(proposition) defined by the LF

I There can be operators that represent these direct relations:
I ASSERT: the proposition is proposed as a fact
I YN-QUERY: the truth of the proposition is queried
I COMMAND: the proposition describes a requested action
I WH-QUERY: the proposition describes an object to be identified

I There are also indirect speech acts.
I Can you pass the salt?
I It is warm here.

51/61

”How to do things with words.” Jane Austin1

I In addition to just saying things, sentences perform actions.
I When these sentences are uttered, the important thing is not their truth value, but the

felicitousness of the action (e.g., do you have the authority to do it):
I I name this ship the Titanic.
I I take this man to be my husband.
I I bequeath this watch to my brother.
I I declare war.

1http://en.wikipedia.org/wiki/J._L._Austin

http://en.wikipedia.org/wiki/J._L._Austin

52/61

Performative Sentences

I When uttered by the proper authority, such sentences have the effect of changing the
state of the world, just as any other action that can change the state of the world.

I These involve verbs like, name, second, declare, etc.
I “I name this ship the Titanic.” also causes the ship to be named Titanic.
I You can tell whether sentences are performative by adding “hereby”:

I I hereby name this ship the Queen Elizabeth.
I Non-performative sentences do not sound good with hereby:

I Birds hereby sing.
I There is hereby fighting in Syria.

53/61

Speech Acts Continued

I Locutionary Act: The utterance of a sentence with a particular meaning.
I Illocutionary Act: The act of asking, answering, promising, etc. in uttering a

sentence.
I I promise you that I will fix the problem.
I You can’t do that (protesting)
I By the way, I have a CD of Debussy; would you like to borrow it? (offering)

I Perlocutionary Act: The – often intentional – production of certain effects on the
addressee.

I You can’t do that. (stopping or annoying the addressee)
I By the way, I have a CD of Debussy; would you like to borrow it? (impressing the

addressee)

54/61

Searle’s Speech Acts

I Assertives = speech acts that commit a speaker to the truth of the expressed
proposition

I Directives = speech acts that are to cause the hearer to take a particular action, e.g.
requests, commands and advice

I Can you pass the salt?
I Has the form of a question but the effect of a directive

I Commissives = speech acts that commit a speaker to some future action, e.g.
promises and oaths

I Expressives = speech acts that express the speaker’s attitudes and emotions
towards the proposition, e.g. congratulations, excuses

I Declarations = speech acts that change the reality in accord with the proposition of
the declaration, e.g. pronouncing someone guilty or pronouncing someone husband
and wife

55/61

Speech Acts in NLP

I Speech acts (inventories) are mainly used in developing (task-oriented) dialog
systems.

I Speech acts are used as annotation guidelines for corpus annotation.
I An annotated corpus is then used for machine learning of dialog tasks.
I Such corpora are highly developed and checked for intercoder agreement.

I Annotation still takes a long time to learn.

56/61

Task-oriented Dialogues

I Making travel reservations (flight, hotel room, etc.)
I Scheduling a meeting.
I Finding out when the next bus is.
I Making a payment over the phone.

57/61

Ways of Asking for a Room

I I’d like to make a reservation
I I’m calling to make a reservation
I Do you have a vacancy on . . .
I Can I reserve a room?
I Is it possible to reserve a room?

58/61

Examples of Task-oriented Speech Acts

I Identify self:
I This is David
I My name is David
I I’m David
I David here

I Sound check: Can you hear me?
I Meta dialogue act: There is a problem.
I Greet: Hello.
I Request-information:

I Where are you going.
I Tell me where you are going.

59/61

Examples of Task-oriented Speech Acts

I Backchannel – Sounds you make to indicate that you are still listening
I ok, m-hm

I Apologize/reply to apology
I Thank/reply to thanks
I Request verification/Verify

I So that’s 2:00? Yes. 2:00.
I Resume topic

I Back to the accommodations . . .
I Answer a yes/no question: yes, no.

60/61

Task-oriented Speech Acts in Negotiation

I Suggest
I I recommend this hotel

I Offer
I I can send some brochures.
I How about if I send some brochures.

I Accept
I Sure. That sounds fine.

I Reject
I No. I don’t like that one.

61/61

Negotiation

(Mostly	Statistical)
Machine	Translation

11-411
Fall	2017

2

The	Rosetta	Stone

• Decree	from	Ptolemy	V	
on	repealing	taxes	and	
erecting	some	statues	
(196	BC)

• Written	in	three	
languages
– Hieroglyphic
– Demotic
– Classical	Greek

3

Overview

• History	of	Machine	Translation
• Early	Rule-based	Approaches
• Introduction	to	Statistical	Machine	Translation	
(SMT)

• Advanced	Topics	in	SMT
• Evaluation	of	(S)MT	output

4

Machine	Translation

• Transform	text	(speech)	in	one	language	
(source)		to	text	(speech)	in	a	different	
language	(target)	such	that
– The	“meaning”	in	the	source	language	input	is	
(mostly)	preserved,	and

– The	target	language	output	is	grammatical.

• Holy	grail	application	in	AI/NLP	since	middle	of	
20th century.

5

Translation

• Process
– Read	the	text	in	the	source	language
– Understand it
– Write it	down	in	the	target	language

• These	are	hard	tasks	for	computers
– The	human	process	is	invisible,	intangible

6

Machine	Translation

7

Many	possible	legitimate	translations!

Machine	Translation
Rolls-Royce	Merlin	Engine	

(from	German	Wikipedia)
• Der	Rolls-Royce	Merlin	ist	ein	12-Zylinder-

Flugmotor	von	Rolls-Royce	in	V-Bauweise,	
der	vielen	wichtigen	britischen	und	US-
amerikanischen	Flugzeugmustern	des	
ZweitenWeltkriegs	als	Antrieb	diente.	Ab	
1941	wurde	der	Motor	in	Lizenz	von	der	
Packard	Motor	Car	Company	in	den	USA	als	
Packard	V-1650	gebaut.

• Nach	dem	Krieg	wurden	diverse	Passagier-
und	Frachtflugzeuge	mit	diesem	Motor	
ausgestattet,	so	z.	B.	Avro	Lancastrian,	Avro	
Tudor	und	Avro	York,	später	noch	einmal	die	
Canadair	C-4	(umgebaute	Douglas	C-54).	Der	
zivile	Einsatz	des	Merlin	hielt	sich	jedoch	in	
Grenzen,	da	er	als	robust,	aber	zu	laut	galt.

• Die	Bezeichnung	des	Motors	ist	gemäß	
damaliger	Rolls-Royce	Tradition	von	einer	
Vogelart,	dem	Merlinfalken,	übernommen	
und	nicht,	wie	oft	vermutet,	von	dem	
Zauberer	Merlin.

English	Translation
(via	Google	Translate)

• The	Rolls-Royce	Merlin	is	a	12-cylinder	
aircraft	engine	from	Rolls-Royce	V-type,	
which	served	many	important	British	and	
American	aircraft	designs	of	World	War	II	as	
a	drive. From	1941	the	engine	was	built	
under	license	by	the	Packard	Motor	Car	
Company	in	the	U.S.	as	a	Packard	V-1650th.

• After	the	war,	several	passenger	and	cargo	
aircraft	have	been	equipped	with	this	engine,	
such	as	Avro	Lancastrian,	Avro	Tudor	Avro	
York	and,	later,	the	Canadair	C-4	(converted	
Douglas	C-54). The	civilian	use	of	the	Merlin	
was,	however,	limited	as	it	remains	robust,	
however,	was	too	loud.

• The	name	of	the	motor	is	taken	under	the	
then	Rolls-Royce	tradition	of	one	species,	the	
Merlin	falcon,	and	not,	as	often	assumed,	by	
the	wizard	Merlin.

8

Machine	Translation
Rolls-Royce	Merlin	Engine	

(from	German	Wikipedia)
• Der	Rolls-Royce	Merlin	ist	ein	12-Zylinder-

Flugmotor	von	Rolls-Royce	in	V-Bauweise,	
der	vielen	wichtigen	britischen	und	US-
amerikanischen	Flugzeugmustern	des
Zweitenweltkriegs als	Antrieb	diente.	Ab	
1941	wurde	der	Motor	in	Lizenz	von	der	
Packard	Motor	Car	Company	in	den	USA	als	
Packard	V-1650	gebaut.

• Nach	dem	Krieg	wurden	diverse	Passagier-
und	Frachtflugzeuge	mit	diesem	Motor	
ausgestattet,	so	z.	B.	Avro	Lancastrian,	Avro	
Tudor	und	Avro	York,	später	noch	einmal	die	
Canadair	C-4	(umgebaute	Douglas	C-54).	Der	
zivile	Einsatz	des	Merlin	hielt	sich	jedoch	in	
Grenzen,	da	er	als	robust,	aber	zu	laut	galt.

• Die	Bezeichnung	des	Motors	ist	gemäß	
damaliger	Rolls-Royce	Tradition	von	einer	
Vogelart,	dem	Merlinfalken,	übernommen	
und	nicht,	wie	oft	vermutet,	von	dem	
Zauberer	Merlin.

English	Translation
(via	Google	Translate)

• The	Rolls-Royce	Merlin	is	a	12-cylinder	
aircraft	engine	from	Rolls-Royce	V-type,	
which	served	many	important	British	and	
American	aircraft	designs	of	World	War	II	as	
a	drive. From	1941	the	engine	was	built	
under	license	by	the	Packard	Motor	Car	
Company	in	the	U.S.	as	a	Packard	V-1650th.

• After	the	war,	several	passenger	and	cargo	
aircraft	have	been	equipped	with	this	engine,	
such	as	Avro	Lancastrian,	Avro	Tudor	Avro	
York	and,	later,	the	Canadair	C-4	(converted	
Douglas	C-54). The	civilian	use	of	the	Merlin	
was,	however,	limited	as	it	remains	robust,	
however,	was	too	loud.

• The	name	of	the	motor	is	taken	under	the	
then	Rolls-Royce	tradition	of	one	species,	the	
Merlin	falcon,	and	not,	as	often	assumed,	by	
the	wizard	Merlin.

9

Machine	Translation
Rolls-Royce	Merlin	Engine	

(from	German	Wikipedia)
• Der	Rolls-Royce	Merlin	ist	ein	12-Zylinder-

Flugmotor	von	Rolls-Royce	in	V-Bauweise,	
der	vielen	wichtigen	britischen	und	US-
amerikanischen	Flugzeugmustern	des	
ZweitenWeltkriegs	als	Antrieb	diente.	Ab	
1941	wurde	der	Motor	in	Lizenz	von	der	
Packard	Motor	Car	Company	in	den	USA	als	
Packard	V-1650	gebaut.

• Nach	dem	Krieg	wurden	diverse	Passagier-
und	Frachtflugzeuge	mit	diesem	Motor	
ausgestattet,	so	z.	B.	Avro	Lancastrian,	Avro	
Tudor	und	Avro	York,	später	noch	einmal	die	
Canadair	C-4	(umgebaute	Douglas	C-54).	Der	
zivile	Einsatz	des	Merlin	hielt	sich	jedoch	in	
Grenzen,	da	er	als	robust,	aber	zu	laut	galt.

• Die	Bezeichnung	des	Motors	ist	gemäß	
damaliger	Rolls-Royce	Tradition	von	einer	
Vogelart,	dem	Merlinfalken,	übernommen	
und	nicht,	wie	oft	vermutet,	von	dem	
Zauberer	Merlin.

Turkish	Translation
(via	Google	Translate)

• Rolls-Royce	Merlin	12-den	silindirli	Rolls-
Royce	uçak	motoru	V	tipi,	bir	sürücü	olarak	
Dünya	Savaşı'nın	birçok	önemli	İngiliz	ve	
Amerikan	uçak	tasarımları	devam	eder. 1.941	
motor	lisansı	altında	Packard	Motor	Car	
Company	tarafından	ABD'de	Packard	V	olarak	
yaptırılmıştır	Gönderen-1650

• Savaştan	sonra,	birkaç	yolcu	ve	kargo	uçakları	
ile	Avro	Lancastrian,	Avro	Avro	York	ve	Tudor	
gibi	bu	motor,	daha	sonra,	Canadair	C-4	
(Douglas	C-54)	dönüştürülür	
donatılmıştır. Olarak,	ancak,	çok	yüksek	oldu	
sağlam	kalır	Merlin	sivil	kullanıma	Ancak	
sınırlıydı.

• Motor	adı	daha	sonra	Rolls	altında	bir	türün,	
Merlin	şahin,	ve	değil-Royce	geleneği,	sıklıkta	
kabul,	Merlin	sihirbaz	tarafından	alınır.

10

Machine	Translation
Rolls-Royce	Merlin	Engine	

(from	German	Wikipedia)
• Der	Rolls-Royce	Merlin	ist	ein	12-Zylinder-

Flugmotor	von	Rolls-Royce	in	V-Bauweise,	
der	vielen	wichtigen	britischen	und	US-
amerikanischen	Flugzeugmustern	des	
ZweitenWeltkriegs	als	Antrieb	diente.	Ab	
1941	wurde	der	Motor	in	Lizenz	von	der	
Packard	Motor	Car	Company	in	den	USA	als	
Packard	V-1650	gebaut.

• Nach	dem	Krieg	wurden	diverse	Passagier-
und	Frachtflugzeuge	mit	diesem	Motor	
ausgestattet,	so	z.	B.	Avro	Lancastrian,	Avro	
Tudor	und	Avro	York,	später	noch	einmal	die	
Canadair	C-4	(umgebaute	Douglas	C-54).	Der	
zivile	Einsatz	des	Merlin	hielt	sich	jedoch	in	
Grenzen,	da	er	als	robust,	aber	zu	laut	galt.

• Die	Bezeichnung	des	Motors	ist	gemäß	
damaliger	Rolls-Royce	Tradition	von	einer	
Vogelart,	dem	Merlinfalken,	übernommen	
und	nicht,	wie	oft	vermutet,	von	dem	
Zauberer	Merlin.

Arabic	Translation
(via	Google	Translate	-- 2009

11

Machine	Translation
Rolls-Royce	Merlin	Engine	

(from	German	Wikipedia)
• Der	Rolls-Royce	Merlin	ist	ein	12-Zylinder-

Flugmotor	von	Rolls-Royce	in	V-Bauweise,	
der	vielen	wichtigen	britischen	und	US-
amerikanischen	Flugzeugmustern	des	
ZweitenWeltkriegs	als	Antrieb	diente.	Ab	
1941	wurde	der	Motor	in	Lizenz	von	der	
Packard	Motor	Car	Company	in	den	USA	als	
Packard	V-1650	gebaut.

• Nach	dem	Krieg	wurden	diverse	Passagier-
und	Frachtflugzeuge	mit	diesem	Motor	
ausgestattet,	so	z.	B.	Avro	Lancastrian,	Avro	
Tudor	und	Avro	York,	später	noch	einmal	die	
Canadair	C-4	(umgebaute	Douglas	C-54).	Der	
zivile	Einsatz	des	Merlin	hielt	sich	jedoch	in	
Grenzen,	da	er	als	robust,	aber	zu	laut	galt.

• Die	Bezeichnung	des	Motors	ist	gemäß	
damaliger	Rolls-Royce	Tradition	von	einer	
Vogelart,	dem	Merlinfalken,	übernommen	
und	nicht,	wie	oft	vermutet,	von	dem	
Zauberer	Merlin.

Arabic	Translation
(via	Google	Translate	– 2017)

12

Machine	Translation

• (Real-time	speech-to-speech)	Translation	is	a	
very	demanding	task
– Simultaneous	translators	(in	UN,	or	EU	Parliament)	
last	about	30	minutes

– Time	pressure
– Divergences	between	languages

• German:		Subject	Verb
• English:				Subject		Verb	……………………….
• Arabic:	Verb	Subject

13

Brief	History
• 1950’s:	Intensive	research	activity	in	MT

– Translate	Russian	into	English
• 1960’s:	Direct	word-for-word	replacement
• 1966	(ALPAC):	NRC	Report	on	MT

– Conclusion:	MT	no	longer	worthy	of	serious	scientific	
investigation.

• 1966-1975:	`Recovery	period’
• 1975-1985:	Resurgence	(Europe,	Japan)
• 1985-present:	Resurgence	(US)

– Mostly	Statistical	Machine	Translation	since	1990s
– Recently	Neural	Network/Deep	Learning		based	machine	

translation

14

Early	Rule-based	Approaches	

• Expert	system-like	rewrite	systems	
• Interlingua	methods	(analyze	and	generate)
• Information	used	for	translation	are	compiled	
by	humans
– Dictionaries
– Rules

15

Vauquois	Triangle

16

Statistical	Approaches

• Word-to-word	translation
• Phrase-based	translation
• Syntax-based	translation	(tree-to-tree,	tree-to-
string)	
– Trained	on	parallel	corpora
– Mostly	noisy-channel	(at	least	in	spirit)

17

Early	Hints	on	the	Noisy	Channel	
Intuition

• “One	naturally	wonders	if	the	problem	of	
translation	could	conceivably	be	treated	as	a	
problem	in	cryptography.	When	I	look	at	an	
article	in	Russian,	I	say:	‘This	is	really	written	
in	English,	but	it	has	been	coded	in	some	
strange	symbols.	I	will	now	proceed	to	
decode.’	”

Warren	Weaver	
• (1955:18,	quoting	a	letter	he	wrote	in	1947)

18

Divergences	between	Languages

• Languages	differ	along	many	dimensions
– Concept	– Lexicon	alignment	– Lexical	Divergence
– Syntax	– Structure	Divergence

• Word-order	differences
– English	is	Subject-Verb-Object
– Arabic	is	Verb-Subject-Object
– Turkish	is	Subject-Object-Verb

• Phrase	order	differences
• Structure-Semantics	Divergences

19

Lexical	Divergences

• English:	wall
– German:	Wand	for	walls	inside,	Mauer	for	walls	
outside

• English:	runway
– Dutch:	Landingbaan	for	when	you	are	landing;	
startbaan	for	when	you	are	taking	off

• English:	aunt
– Turkish:	hala	(father’s	sister),	teyze(mother’s	sister)

• Turkish:	o
– English:		she,	he,	it

20

Lexical	Divergences
How	conceptual	space	is	cut	up

21

Lexical	Gaps

• One	language	may	not	have	a	word	for	a	
concept	in	another	language
– Japanese:	oyakoko

• Best	English	approximation:	“filial	piety”

– Turkish:	gurbet
• Where	you	are	when	you	are	not	“home”

– English:	condiments
• Turkish:	???	(things	like	mustard,	mayo	and	ketchup)

22

Local	Phrasal	Structure	Divergences

• English:		a blue	house
– French:	une	maison	bleu

• German:	die	ins	Haus	gehende	Frau
– English:	the	lady	walking	into	the	house

23

Structural	Divergences

• English:		I	have	a	book.
– Turkish:	Benim	kitabim	var.	(Lit:	My	book	exists)

• French:		Je	m’appelle	Jean	(Lit:	I	call	myself	
Jean)
– English:	My	name		is	Jean.

• English:		I	like	swimming.
– German:	Ich	schwimme	gerne.	(Lit:	I	swim	
“likingly”.)

24

Major	Rule-based	MT	
Systems/Projects

• Systran	
– Major	human	effort	to	construct	large	translation	
dictionaires	+	limited	word-reordering	rules

• Eurotra
– Major	EU-funded	project	(1970s-1994)	to	translate	
among	(then)	12	EC	languages.

• Bold	technological	framework
– Structural	Interlingua

• Management	failure
• Never	delivered	a	working	MT	system
• Helped	create	critical	mass	of	researchers

25

Major	Rule-based	MT	
Systems/Projects

• METEO
– Successful	system	for	French-English	translation	of	
Canadian	weather	reports	(1975-1977)

• PANGLOSS
– Large-scale	MT	project	by	CMU/USC-ISI/NMSU
– Interlingua-based	Japanese-Spanish-English	
translation

– Manually	developed	semantic	lexicons

26

Rule-based	MT

• Manually	develop	rules	to	analyze	the	source	
language	sentence	(e.g.,	a	parser)
– =>	some	source	structure	representation

• Map	source	structure	to	a	target	structure
• Generate	target	sentence	from	the	transferred	
structure

27

Rule-based	MT

28

Swap

Syntactic	Transfer
Þ

Je lire

livres scientifiques

Sentence

Verb	Phrase

Verb Noun	Phrase

Noun
Adj.

Noun	Phrase

PronounI read

scientific books

SentenceNoun	Phrase
Verb	Phrase

Verb
Noun	PhrasePronoun

NounAdj.

Source	language	analysis
Target	language	generation

Rules

• Rules	to	analyze	the	source	sentences
– (Usually)	Context-free	grammar	rules	coupled	with	
linguistic	features

• Sentence	=>	Subject-NP		Verb-Phrase
• Verb-Phrase		=>	Verb	Object	…..

29

Rules

• Lexical	transfer	rules
– English:	book	(N)	=>	French:	livre	(N,	masculine)
– English:	pound	(N,	monetary	sense)=>	French:	
livre	(N,	feminine)

– English:	book	(V)	=>	French:	réserver	(V)

• Quite	tricky	for

30

Rules

• Structure	Transfer	Rules
– English:	S	=>	NP	VP	è

French:	TR(S)	=>	TR(NP)	TR(VP)
– English:	NP	=>	Adj	Noun	è

French:	TR(NP)	=>	Tr(Noun)	Tr(Adj)
but	there	are	exceptions	for
Adj=grand,	petit,	….

31

Rules

32

Much	more	complex	to	deal	with	“real	world”	sentences.

Example-based	MT	(EBMT)

• Characterized	by	its	use	of	a	bilingual	corpus	
with	parallel	texts	as	its	main	knowledge	base,	
at	run-time.	

• Essentially	translation	by	analogy	and	can	be	
viewed	as	an	implementation	of	case-based	
reasoning approach	of	machine	learning.

• Find	how	(parts	of)	input	are	translated	in	the	
examples
– Cut	and	paste	to	generate	novel	translations

33

Example-based	MT	(EBMT)

• Translation	Memory
– Store	many	translations,	

• source	– target	sentence	pairs

– For	new	sentences,	find	closes	match	
• use	edit	distance,	POS	match,	other	similarity	techniques

– Do	corrections,	
• map	insertions,	deletions,	substitutions	onto	target	sentence

– Useful	only	when	you	expect	same	or	similar	sentence	to	
show	up	again,	but	then	high	quality

34

Example-based	MT	(EBMT)

English
• How	much	is	that	red	

umbrella?
• How	much	is	that	small	

camera?

• How	much	is	that	X?

Japanese
• Ano	akai	kasa	wa	ikura	desu	

ka?
• Ano	chiisai	kamera	wa	ikura	

desu	ka?

• Ano	X wa	ikura	desu	ka?

35

Hybrid	Machine	Translation

• Use	multiple	techniques	(rule-based/	
EBMT/Interlingua)

• Combine	the	outputs	of	different	systems	to	
improve	final	translations

36

How	do	we	evaluate	MT	output?

• Adequacy:	Is	the	meaning	of	the	source	
sentence	conveyed	by	the	target	sentence?

• Fluency:	Is	the	sentence	grammatical	in	the	
target	language?

• These	are	rated	on	a	scale	of	1	to	5

37

How	do	we	evaluate	MT	output?

38

Je	suis	fatigué.

Tired is I.

Cookies taste good!

I am tired.

Adequacy Fluency

5

1

5

2

5

5

How	do	we	evaluate	MT	output?

• This	in	general	is	very	labor	intensive
– Read	each	source	sentence
– Evaluate	target	sentence	for	adequacy	and	fluency

• Not	easy	to	do	if	you	improve	your	MT	system	
10	times	a	day,	and	need	to	evaluate!
– Could	this	be	mechanized?

• Later

39

Knowledge
Acquisition
Strategy

Knowledge
Representation
Strategy

All manual

Deep/ Complex

Shallow/ Simple

Fully automated

Learn from un-
annotated data

Phrase tables

Word-based
only

Learn from
annotated data

Example-
based MT Statistical MT

Typical transfer
system

Classic
interlingual
system

Original direct
approach

Syntactic
Constituent
Structure

Interlingua

New Research
Goes Here!

Semantic
analysis

Hand-built by
non-experts

Hand-built by
experts

Electronic
dictionaries

MT Strategies (1954-2004)

Slide	by
Laurie	Gerber

40

Statistical	Machine	Translation

• How	does	statistics	and	probabilities	come	
into	play?
– Often	statistical	and	rule-based	MT	are	seen	as	
alternatives,	even	opposing	approaches		– wrong	
!!!

– Goal:	structurally	rich	probabilistic	models

41

No Probabilities Probabilities

Flat Structure EBMT SMT

Deep Structure Transfer
Interlingua

Holy Grail

Rule-based	MT	vs	SMT

If « … » then …
If « … » then …
……
……
Else ….

Manually coded rules

+

Expert System
Experts

S: Mais où sont les neiges d’antan?

P(but | mais)=0.7
P(however | mais)=0.3
P(where | où)=1.0

……

Statistical rules

T: But where are the snows
of ?

Expert system output

Statistical system output
T1: But where are the snows
of yesteryear? P = 0.41
T2: However, where are
yesterday’s snows? P = 0.33
T3: Hey - where did the old
snow go? P = 0.18
…

Bilingual parallel corpus

+

S T

Machine
Learning

Statistical System

42

Data-Driven	Machine	Translation

Hmm,	every	time	he	sees	
“banco”,	he	either	types	
“bank”	or	“bench”	…	but	if	
he	sees	“banco	de…”,
he	always	types	“bank”,	
never	“bench”…

Man,	this	is	so	boring.

Translated	documents

Slide	by	Kevin	Knight43

Statistical	Machine	Translation

• The	idea	is	to	use	lots	of	parallel	texts	to	
model	how	translations	are	done.
– Observe	how	words	or	groups	of	words	are	
translated

– Observe	how	translated	words	are	moved	around	
to	make	fluent	sentences	in	the	target	sentences

44

Parallel	Texts

45

1a. Garcia and associates .
1b. Garcia y asociados .

7a. the clients and the associates are enemies .
7b. los clients y los asociados son enemigos .

2a. Carlos Garcia has three associates .
2b. Carlos Garcia tiene tres asociados .

8a. the company has three groups .
8b. la empresa tiene tres grupos .

3a. his associates are not strong .
3b. sus asociados no son fuertes .

9a. its groups are in Europe .
9b. sus grupos estan en Europa .

4a. Garcia has a company also .
4b. Garcia tambien tiene una empresa .

10a. the modern groups sell strong pharmaceuticals .
10b. los grupos modernos venden medicinas fuertes .

5a. its clients are angry .
5b. sus clientes estan enfadados .

11a. the groups do not sell zenzanine .
11b. los grupos no venden zanzanina .

6a. the associates are also angry .
6b. los asociados tambien estan enfadados .

12a. the small groups are not modern .
12b. los grupos pequenos no son modernos .

Parallel	Texts

46

1a. Garcia and associates .
1b. Garcia y asociados .

7a. the clients and the associates are enemies .
7b. los clients y los asociados son enemigos .

2a. Carlos Garcia has three associates .
2b. Carlos Garcia tiene tres asociados .

8a. the company has three groups .
8b. la empresa tiene tres grupos .

3a. his associates are not strong .
3b. sus asociados no son fuertes .

9a. its groups are in Europe .
9b. sus grupos estan en Europa .

4a. Garcia has a company also .
4b. Garcia tambien tiene una empresa .

10a. the modern groups sell strong pharmaceuticals .
10b. los grupos modernos venden medicinas fuertes .

5a. its clients are angry .
5b. sus clientes estan enfadados .

11a. the groups do not sell zenzanine .
11b. los grupos no venden zanzanina .

6a. the associates are also angry .
6b. los asociados tambien estan enfadados .

12a. the small groups are not modern .
12b. los grupos pequenos no son modernos .

Clients	do	not	sell	pharmaceuticals	in	Europe	
Clientes	no	venden	medicinas	en	Europa

Parallel	Texts

1. employment rates are very low ,
especially for women .

2. the overall employment rate in 2001 was
46. 8% .

3. the system covers insured employees
who lose their jobs .

4. the resulting loss of income is covered
in proportion to the premiums paid .

5. there has been no development in the
field of disabled people .

6. overall assessment
7. no social dialogue exists in most private

enterprises .
8. it should be reviewed together with all the

social partners .
9. much remains to be done in the field of

social protection .

1. istihdam oranları , özellikle kadınlar için
çok düşüktür .

2. 2001 yılında genel istihdam oranı % 46,8'
dir .

3. sistem , işini kaybeden sigortalı işsizleri
kapsamaktadır .

4. ortaya çıkan gelir kaybı , ödenmiş
primlerle orantılı olarak karşılanmaktadır .

5. engelli kişiler konusunda bir gelişme
kaydedilmemiştir .

6. genel değerlendirme
7. özel işletmelerin çoğunda sosyal diyalog

yoktur .
8. konseyin yapısı , sosyal taraflar ile birlikte

yeniden gözden geçirilmelidir .
9. sosyal koruma alanında yapılması gereken

çok şey vardır .

47

Available	Parallel	Data	(2004)

(Data	stripped	of	formatting,	in	sentence-pair	format,	available
from	the	Linguistic	Data	Consortium	at	UPenn).

Millions	of
words
(English	side)

+	1m-20m	words	for
many language	pairs

48

Available	Parallel	Data	(2008)
• Europarl:	30	million	words	in	11	languages
• Acquis	Communitaire:	8-50	million	words	in	20	EU	
languages

• Canadian	Hansards:	20	million	words	from	Canadian	
Parlimentary	Proceedings

• Chinese/Arabic	- English:	over	100	million	words	from	
LDC

• Lots	more	French/English,	Spanish/French/English	from	
LDC

• Smaller	corpora	for	many	other	language	pairs
– Usually		English	– Some	other	language.

49

Available	Parallel	Data	(2017)

+	1m-20m	words	for
many language	pairs

50

Available	Parallel	Text

• A	book	has	a	few	100,000s	words
• An	educated	person	may	read	10,000	words	a	
day	
– 3.5	million	words	a	year	
– 300	million	words	a	lifetime	

• Soon	computers	will	have	access	to	more	
translated	text	than	humans	read	in	a	lifetime

51

More	data	is	better!

• Language	Weaver	Arabic	to	English	Translation

52

v.2.0	– October	2003 v.2.4	– October	2004

Sample	Learning	Curves

Swedish/English
French/English
German/English
Finnish/English

#	of	sentence	pairs	used	in	training

BLEU
score

Experiments	by
Philipp	Koehn

53

Preparing	Data

• Sentence	Alignment
• Tokenization/Segmentation

54

Sentence	Alignment

The	old	man	is	happy.		
He	has	fished	many	
times.		His	wife	talks	
to	him.		The	fish	are	
jumping.		The	sharks	
await.

El	viejo	está feliz	
porque	ha	pescado	
muchos	veces.		Su	
mujer	habla	con	él.		
Los	tiburones	
esperan.

55

Sentence	Alignment

1. The	old	man	is	
happy.		

2. He	has	fished	many	
times.		

3. His	wife	talks	to	
him.		

4. The	fish	are	
jumping.		

5. The	sharks	await.

1. El	viejo	está feliz	
porque	ha	pescado	
muchos	veces.		

2. Su	mujer	habla	con	
él.		

3. Los	tiburones	
esperan.

56

Sentence	Alignment

• 1-1	Alignment
– 1	sentence	in	one	side	aligns	to	1	sentence	in	the	
other	side	

• 0-n,	n-0	Alignment
– A	sentence	in	one	side	aligns	to	no	sentences	on	the	
other	side

• n-m	Alignment	(n,m>0	but	typically	very	small)
– n	sentences	on	one	side	align	to	m	sentences	on	the	
other	side

57

Sentence	Alignment

• Sentence	alignments	are	typically	done		by	
dynamic	programming	algorithms
– Almost	always,	the	alignments	are	monotonic.
– The	lengths	of	sentences	and	their	translations	
(mostly)	correlate.

– Tokens	like	numbers,	dates,	proper	names,	
cognates	help	anchor	sentences..

58

Sentence	Alignment

1. The	old	man	is	
happy.		

2. He	has	fished	many	
times.		

3. His	wife	talks	to	
him.		

4. The	fish	are	
jumping.		

5. The	sharks	await.

1. El	viejo	está feliz	
porque	ha	pescado	
muchos	veces.		

2. Su	mujer	habla	con	
él.		

3. Los	tiburones	
esperan.

59

Sentence	Alignment

1. The	old	man	is	
happy.	He	has	
fished	many	times.		

2. His	wife	talks	to	
him.		

3. The	sharks	await.

1. El	viejo	está feliz	
porque	ha	pescado	
muchos	veces.		

2. Su	mujer	habla	con	
él.		

3. Los	tiburones	
esperan.

Unaligned	sentences	are	thrown	out,	and
sentences	are	merged	in	n-to-m	alignments	(n,	m	>	0).

60

Tokenization	(or	Segmentation)

• English
– Input	(some	byte	stream):	

"There," said Bob.
– Output	(7	“tokens”	or	“words”):

" There , " said Bob .

• Chinese
– Input	(byte	stream):

– Output:

美国关岛国际机场及其办公室均接获
一名自称沙地阿拉伯富商拉登等发出
的电子邮件。

美国 关岛国 际机 场 及其 办公
室均接获 一名 自称 沙地 阿拉 伯
富 商拉登 等发 出 的 电子邮件。

61

The	Basic	Formulation	of	SMT

• Given	a	source	language	sentence	s,	what	is	the	
target	language	text	t,	that	maximizes

• So,	any	target	language	sentence	t is	a	“potential”	
translation	of	the	source	sentence	s
– But	probabilities	differ
– We	need	that	t with	the	highest	probability	of	being	a	
translation.

62

𝑝 𝑡	 	𝑠)

The	Basic	Formulation	of	SMT

• Given	a	source	language	sentence	s,	what	is	
the	target	language	text	t,	that	maximizes

• We	denote	this	computation	as	a	search

63

𝑝 𝑡	 	𝑠)

𝑡∗ = 𝑎𝑟𝑔𝑚𝑎𝑥-	𝑝 𝑡	 	𝑠)

The	Basic	Formulation	of	SMT

• We	need	to	compute

• Using	Bayes’	Rule	we	can	“factorize”	this	into	two	
separate	problems

– Search	over	all	possible	target	sentences	t
• For	a	given	s,	p(s) is	constant,	so	no	need	to	consider	it	in	the	
maximization

64

𝑡∗ = 𝑎𝑟𝑔𝑚𝑎𝑥-	𝑝 𝑡	 	𝑠)

𝑇𝑡∗ = 𝑎𝑟𝑔𝑚𝑎𝑥- 	
𝑝 𝑠 𝑡 𝑝(𝑡)
𝑝(𝑠)

= 𝑎𝑟𝑔𝑚𝑎𝑥-	𝑝 𝑠 𝑡 𝑝(𝑡)

The	Noisy	Channel	Model

Noisy	Channel

(Target)	Dün	Ali’yi	
gördüm.

(Source)	I	saw	Ali	
yesterday

T S

What	was	
target	

sentence	he	
used?

What	are	likely	
sentences	he	could	
have	said	in	the	
target	language?
How	could	the	
channel	have	

“corrupted”	target	
to	source	
language?

P(T)

P(S|T)
Models
Decoding

65

Where	do	the	probabilities	come	
from?

Source Broken
Target

Target

Source(s)/Target(t)
Bilingual	Text

Target
Text

Statistical	Analysis Statistical	Analysis

Source	Sentence Target	Sentence

Translation
Model	P(S|T)

Language
Model	P(T)

Decoding	algorithm
argmax	P(T)	*	P(S|T)

T 66

The	Statistical	Models

• Translation	model			p(S|T)
– Essentially	models	Adequacy	without	having	to	
worry	about	Fluency.

• P(S|T)	is	high	for	sentences	S,	if	words	in	S	are	in	
general	translations	of	words	in	T.

• Target	Language	Model	p(T)
– Essentially	models	Fluency	without	having	to	
worry	about	Adequacy

• P(T)	is	high	if	a	sentence	T	is	a	fluent	sentence	in	the	
target	language

67

How	do	the	models	interact?

• Maximizing	p(S	|	T)	P(T)
– p(T)models	“good”	target	sentences (Target	Language	Model)
– p(S|T)models	whether	words	in	source	sentence	are	“good”	

translation	of	words	in	the	target	sentence (Translation	Model)

68

I	saw	Ali	yesterday Good	Target?		P(T)	 Good	match	to	Source	?	
P(S|T)

Overall

Bugün Ali’ye gittim

Okulda kalmışlar

Var gelmek ben

Dün Ali’yi gördüm

Gördüm ben dün Ali’yi

Dün Ali’ye gördüm

Three	Problems	for	Statistical	MT
• Language	model

– Given	a	target	sentence	T,	assigns	p(T)
• good	target	sentence ->	high	p(T)
• word	salad ->	low	p(T)

• Translation	model
– Given	a	pair	of	strings	<S,T>,	assigns	p(S	|	T)

• <S,T>	look	like	translations	 ->	high	p(S	|	T)
• <S,T>	don’t	look	like	translations	 ->	low	p(S	|	T)

• Decoding	algorithm
– Given	a	language	model,	a	translation	model,	and	a	new	
sentence	S	…	find	translation	T	maximizing	p(T)	*	p(S|T)

69

The	Classic	Language	Model:
Word	n-grams

• Helps	us	choose	among	sentences
– He	is	on	the	soccer	field
– He	is	in	the	soccer	field

– Is	table	the	on	cup	the
– The	cup	is	on	the	table

– Rice	shrine
– American	shrine
– Rice	company
– American	company

70

The	Classic	Language	Model
• What	is	a	“good”	target	sentence?	(HLT	Workshop	3)
• T	=	t1 t2 t3 …	tn;
• We	want	P(T)	to	be	“high”
• A	good	approximation	is	by	short	n-grams

– P(T)	@ P(t1|START)•P(t2|START,t1)	•P(t3|t1,t2)•…•P(ti|ti-2,ti-1)•	…•P(tn|tn-2,tn-1)

– Estimate	from	large	amounts	of	text
• Maximum-likelihood	estimation
• Smoothing	for	unseen	data

– You	can	never	see	all	of	language
• There	is	no	data	like	more	data	(e.g.,	10^9	words	would	be	nice)

71

The	Classic	Language	Model

• If	the	target	language		is	English.	using	2-grams
P(I	saw	water	on	the	table)	@

P(I	|	START)	*
P(saw	|	I)	*
P(water	|	saw)	*
P(on	|	water)	*
P(the	|	on)	*
P(table	|	the)	*
P(END	|	table)

72

The	Classic	Language	Model

• If	the	target	language		is	English,	using	3-grams
P(I	saw	water	on	the	table)	@

P(I	|	START,	START)	*
P(saw	|	START,	I)	*
P(water	|	I,	saw)	*
P(on	|	saw,		water)	*
P(the	|	water,	on)	*
P(table	|	on,	the)	*
P(END	|	the,	table)

73

Translation	Model?

Mary did not slap the green witch

Maria no dió una botefada a la bruja verde

Source-language	morphological	structure

Source	parse	tree

Semantic	representation

Target	structure

Generative	approach:

74

Morphological	Analysis

Parsing

Semantic	Analysis

Generation

What	are	all
the	possible
moves	and
their	associated
probability
tables?

The	Classic	Translation	Model
Word	Substitution/Permutation	[IBM	Model	3,	Brown	et	al.,	1993]

Mary		did		not		slap	the	green	witch

Mary not slap slap slap the green witch

Maria no dió una botefada a la bruja verde

Mary not slap slap slap NULL the green witch

Maria no dió una botefada a la verde bruja

Generative	approach:

75

Predict	count	of	target	words

Predict		target	words	from	NULL

Translate	source	to	target	words

Reorder	target	words

The	Classic	Translation	Model
Word	Substitution/Permutation	[IBM	Model	3,	Brown	et	al.,	1993]

Mary		did		not		slap	the	green	witch

Mary not slap slap slap the green witch

Maria no dió una botefada a la bruja verde

Mary not slap slap slap NULL the green witch

Maria no dió una botefada a la verde bruja

Generative	approach:

76

Predict	count	of	target	words

Predict		target	words	from	NULL

Translate	source	to	target	words

Reorder	target	words

Selected	as	the	most	likely	by	P(T)

Basic	Translation	Model	(IBM	M-1)

• Model	p(t	|	s,	m)
– t	=	<t1,	t2,	…,	tm>,	s	=	<s1,	s2,	…,	sn>

• Lexical	translation	makes	the	following	
assumptions
– Each	word	ti in	t is	generated	from	exactly	one	word	in	
s.

– Thus,	we	have	a	latent	alignment	ai that	indicates	
which	word	ti “came	from.”	Specifically	it	came	from	
tai.	

– Given	the	alignments	a,	translation	decisions	are	
conditionally	independent	of	each	other	and	depend	
only	on	the	aligned	source	word	t

77

Basic	Translation	Model	(IBM	M-1)

78

𝑝 𝑡 𝑠,𝑚 = 	 1 𝑝 𝑎	 𝑠,𝑚)	×	3𝑝 𝑡𝑖	 𝑠𝑎𝑖)
5

678

�

:	∈ <,= 5

p(alignment) p(translation	|	alignment)

Parameters	of	the	IBM	3	Model
• Fertility:	How	many	words	does	a	source	word	get	
translated	to?
– n(k	|	s):	the	probability	that	the	source	word	s gets	
translated	as	k target	words

– Fertility	depends	solely	on	the	source	words	in	question	
and	not	other	source	words	in	the	sentence,	or	their	
fertilities.

• Null	Probability:	What	is	the	probability	of	a	word	
magically	appearing	in	the	target	at	some	position,	
without	being	the	translation	of	any	source	word?
– P-null

79

Parameters	of	the	IBM	3	Model

• Translation:	How	do	source	words	translate?
– tr(t|s):	the	probability	that	the	source	word	s gets	
translated	as	the	target	word	t

– Once	we	fix	n(k	|	s) we	generate	k	target	words
• Reordering:	How	do	words	move	around	in	the	
target	sentence?
– d(j	|	i):	distortion	probability	– the	probability	of	word	
at	position	i in	a	source	sentence	being	translated	as	
the	word	at	position	j in	target	sentence.

• Very	dubious!!

80

81

How	IBM	Model	3	works

1. For	each	source	word	si indexed	by	i	=	1,	2,	
...,	m,	choose	fertility	phii with	probability	
n(phii |	si).

2. Choose	the	number	phi0 of	“spurious”	target	
words	to	be	generated	from	s0 =	NULL

82

How	IBM	Model	3	works

3. Let	q be	the	sum	of	fertilities	for	all	words,	
including	NULL.

4. For	each	i	=	0,	1,	2,	...,	m,	and	each	k	=	1,	2,	
...,	phii,	choose	a	target	word	tik with	
probability	tr(tik |	si).

5. For	each	i	=	1,	2,	...,	l,	and	each	k	=	1,	2,	...,	
phii,	choose	target	position	piik with	
probability	d(piik |	i,l,m).

83

How	IBM	Model	3	works

6. For	each	k	=	1,	2,	...,	phi0,	choose	a	position	
pi0k from	the	remaining	vacant	positions	in	1,	
2,	...	q,	for	a	total	probability	of	1/phi0.

7. Output	the	target	sentence	with	words	tik in	
positions	piik (0	<=	i	<=	m,	1	<=	k	<=	phii).

84

Example

• n-parameters
• n(0,b)=0,	n(1,b)=2/2=1
• n(0,c)=1/1=1,	n(1,c)=0
• n(0,d)=0,n(1,d)=1/2=	
0.5,	n(2,d)=1/2=0.5

b c d b d
+-+			
x y z x y

85

Example

• t-parameters
• t(x|b)=1.0
• t(y|d)=2/3
• t(z|d)=1/3

b c d b d
+-+			
x y z x y

86

Example

• d-parameters
• d(1|1,3,3)=1.0
• d(1|1,2,2)=1.0
• d(2|2,3,3)=0.0
• d(3|3,3,3)=1.0
• d(2|2,2,2)=1.0

b c d b d
+-+			
x y z x y

87

Example

• p1
• No	target	words	are	
generated	by	NULL	so	
p1	=	0.0

b c d b d
+-+			
x y z x y

The	Classic	Translation	Model
Word	Substitution/Permutation	[IBM	Model	3,	Brown	et	al.,	1993]

Mary		did		not		slap	the	green	witch

Mary not slap slap slap the green witch

Maria no dió una botefada a la bruja verde

Mary not slap slap slap NULL the green witch

Maria no dió una botefada a la verde bruja

Generative	approach:

88

n(3|slap)

P-Null

tr(la	|	the)

d(j	|	i)

Selected	as	the	most	likely	by	P(T)

How	do	we	get	these	parameters?

• Remember	we	had	aligned	parallel	sentences

• Now	we	need	to	figure	out	how	words	align	
with		other	words.
– Word	alignment

89

Word	Alignments
• One	source	word	can	map	

to	0	or	more	target	words
– But	not	vice	versa

• technical	reasons

• Some	words	in	the	target	
can	magically	be	
generated	from	an	
invisible	NULL	word

• A	target	word	can	only	be	
generated	from	one	
source	word
– technical	reasons

90

Word	Alignments

• Count	over	all	aligned	
sentences

• worked	
– fonctionné(30),	travaillé(20),	

marché(27),	oeuvré	(13)
– tr(oeuvre|worked)=0.13

• Similarly,	n(3,	many)	can	
be	computed.

91

𝑡𝑟 𝑜𝑒𝑢𝑣𝑟𝑒	 𝑤𝑜𝑟𝑘𝑒𝑑)	=		
𝑐 𝑜𝑒𝑢𝑣𝑟𝑒	 𝑤𝑜𝑟𝑘𝑒𝑑)

𝑐(𝑤𝑜𝑟𝑘𝑒𝑑)

How	do	we	get	these	alignments?

• We	only	have	aligned	sentences	and	the	
constraints:
– One	source	word	can	map	to	0	or	more	target	words

• But	not	vice	versa
– Some	words	in	the	target	can	magically	be	generated	
from	an	invisible	NULL	word

– A	target	word	can	only	be	generated	from	one	source	
word

• Estimation	– Maximization	Algorithm
– Mathematics	is	rather	complicated	

92

How	do	we	get	these	alignments?

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

All	word	alignments	equally	likely

All	p(french-word	|	english-word) equally	likely

93

How	do	we	get	these	alignments?

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

“la”	and	“the”	observed	to	co-occur	frequently,
so	p(la	|	the)	is	increased.

94

How	do	we	get	these	alignments?

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

“house”	co-occurs	with	both	“la”	and	“maison”,	but
p(maison	|	house)	can	be	raised	without	limit,		to	1.0,
while	p(la	|	house)	is	limited	because	of	“the”

(pigeonhole	principle)
95

How	do	we	get	these	alignments?

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

settling	down	after	another	iteration

96

How	do	we	get	these	alignments?

… la maison … la maison bleue … la fleur …

… the house … the blue house … the flower …

Inherent	hidden	structure	revealed	by	EM	training!
For	further	details,	see:

• “A	Statistical	MT	Tutorial	Workbook”	(Knight,	1999).
• “The	Mathematics	of	Statistical	Machine	Translation”	(Brown	et	al,	1993)
• Software:		GIZA++

97

Decoding	for	“Classic”	Models	

• Of	all	conceivable	English	word	strings,	find	the	one	
maximizing	p(t)	* p(t	|	s)

• Decoding	is	an	NP-complete	challenge	
– Reduction	to	Traveling	Salesman	problem	(Knight,	1999)

• Several	search	strategies	are	available

• Each	potential	target	output	is	called	a	hypothesis.	

98

Dynamic	Programming	Beam	Search
1st target
word

2nd target
word

3rd target
word

4th target
word

start end

Each	partial	translation	hypothesis	contains:	
- Last	English	word	chosen	+	source	words	covered	by	it
- Next-to-last	English	word	chosen
- Entire	coverage	vector	(so	far)	of	source	sentence
- Language	model	and	translation	model	scores	(so	far)

all	source
words
covered

[Jelinek,	1969;	
Brown	et	al,	1996	US	Patent;
(Och,	Ueffing,	and	Ney,	2001]99

Dynamic	Programming	Beam	Search
1st target
word

2nd target
word

3rd target
word

4th target
word

start end

Each	partial	translation	hypothesis	contains:	
- Last	English	word	chosen	+	source	words	covered	by	it
- Next-to-last	English	word	chosen
- Entire	coverage	vector	(so	far)	of	source	sentence
- Language	model	and	translation	model	scores	(so	far)

all	source
words
covered

[Jelinek,	1969;	
Brown	et	al,	1996	US	Patent;
(Och,	Ueffing,	and	Ney,	2001]100

The	Classic	Results
• la	politique	de	la	haine	.	 (Original	Source)
• politics	of	hate	.	 (Reference	Translation)
• the	policy	of	the	hatred	.	 (IBM4+N-grams+Stack)

• nous	avons	signé	le	protocole	.	 (Original	Source)
• we	did	sign	the	memorandum	of	agreement	.	 (Reference	Translation)
• we	have	signed	the	protocol	.	 (IBM4+N-grams+Stack)

• où	était	le	plan	solide	?	 (Original	Source)
• but	where	was	the	solid	plan	?	 (Reference	Translation)
• where	was	the	economic	base	?	 (IBM4+N-grams+Stack)

the Ministry of Foreign Trade and Economic Cooperation, including foreign
direct investment 40.007 billion US dollars today provide data include
that year to November china actually using foreign 46.959 billion US dollars and 101

Flaws	of	Word-Based	MT

• Multiple	source	words	for	one	target	word
– IBM	models	can	do	one-to-many	(fertility)	but	not	many-
to-one

• Phrasal	Translation
– “real	estate”,	“note	that”,	“interest	in”

• Syntactic	Transformations
– Verb	at	the	beginning	in	Arabic
– Translation	model	penalizes	any	proposed	re-ordering
– Language	model	not	strong	enough	to	force	the	verb	to	
move	to	the	right	place

102

Phrase-Based	Statistical	MT

• Source	input	segmented	in	to	phrases
– “phrase”	is	any	sequence	of	words

• Each	phrase	is	probabilistically	translated	into	target
– P(to	the	conference	|	zur	Konferenz)
– P(into	the	meeting	|	zur	Konferenz)

• Phrases	are	probabilistically	re-ordered

Morgen fliege ich nach	Kanada zur	Konferenz

Tomorrow I will	fly to	the	conference In	Canada

103

Advantages	of	Phrase-Based	SMT

• Many-to-many	mappings	can	handle	non-
compositional	phrases

• Local	context	is	very	useful	for	disambiguating
– “Interest	rate”	à …
– “Interest	in”	à …

• The	more	data,	the	longer	the	learned	phrases
– Sometimes	whole	sentences

104

How	to	Learn	the	Phrase	Translation	Table?

• One	method:	“alignment	templates”	
• Start	with	word	alignment,	build	phrases	from	that.

Mary

did

not

slap

the

green

witch

Maria no dió una bofetada a la bruja verde

This	word-to-word
alignment	is	a	
by-product	of	
training	a	
translation	model
like	IBM-Model-3.

This	is	the	best
(or	“Viterbi”)	
alignment.

105

How	to	Learn	the	Phrase	Translation	Table?

• One	method:	“alignment	templates”	(Och	et	al,	1999)
• Start	with	word	alignment,	build	phrases	from	that.

Mary

did

not

slap

the

green

witch

Maria no dió una bofetada a la bruja verde

This	word-to-word
alignment	is	a	
by-product	of	
training	a	
translation	model
like	IBM-Model-3.

This	is	the	best
(or	“Viterbi”)	
alignment.

106

IBM	Models	are	1-to-Many

• Run	IBM-style	aligner	both	directions,	then	
merge:

TàS best
alignment

Union or Intersection

MERGE

SàT best
alignment

107

How	to	Learn	the	Phrase	Translation	Table?

• Collect	all	phrase	pairs	that	are	consistent	with	the	
word	alignment

Mary

did

not

slap

the

green

witch

Maria no dió una bofetada a la bruja verde

one
example
phrase
pair

108

Word	Alignment	Consistent	Phrases

Phrase alignment must contain all alignment points for all
the words in both phrases!

x
x

Mary

did

not

slap

Maria no dió

Mary

did

not

slap

Maria no dió

Mary

did

not

slap

Maria no dió

consistent inconsistent inconsistent

109

Mary

did

not

slap

the

green

witch

Maria no dió una bofetada a la bruja verde

Word	Alignment	Induced	Phrases

(Maria,	Mary)	(no,	did	not)	(slap,	dió una	bofetada)	(la,	the)	(bruja,	witch)	(verde,	green)

110

Mary

did

not

slap

the

green

witch

Maria no dió una bofetada a la bruja verde

Word	Alignment	Induced	Phrases

(Maria,	Mary)	(no,	did	not)	(slap,	dió una	bofetada)	(la,	the)	(bruja,	witch)	(verde,	green)
)

111

Mary

did

not

slap

the

green

witch

Maria no dió una bofetada a la bruja verde

Word	Alignment	Induced	Phrases

(Maria,	Mary)	(no,	did	not)	(slap,	dió una	bofetada)	(la,	the)	(bruja,	witch)	(verde,	green)	
(a	la,	the)	(dió	una	bofetada	a,	slap	the)
(Maria	no,	Mary	did	not)	(no	dió una	bofetada,	did	not	slap),	(dió una	bofetada	a	la,	slap	the)	
(bruja	verde,	green	witch)

112

Mary

did

not

slap

the

green

witch

Maria no dió una bofetada a la bruja verde

Word	Alignment	Induced	Phrases

(Maria,	Mary)	(no,	did	not)	(slap,	dió una	bofetada)	(la,	the)	(bruja,	witch)	(verde,	green)	
(a	la,	the)	(dió	una	bofetada	a,	slap	the)
(Maria	no,	Mary	did	not)	(no	dió una	bofetada,	did	not	slap),	(dió una	bofetada	a	la,	slap	the)	
(bruja	verde,	green	witch) (Maria	no	dió una	bofetada,	Mary	did	not	slap)	
(a	la	bruja	verde,	the	green	witch)

113

Mary

did

not

slap

the

green

witch

Maria no dió una bofetada a la bruja verde

Word	Alignment	Induced	Phrases

(Maria,	Mary)	(no,	did	not)	(slap,	dió una	bofetada)	(la,	the)	(bruja,	witch)	(verde,	green)	
(a	la,	the)	(dió	una	bofetada	a,	slap	the)
(Maria	no,	Mary	did	not)	(no	dió una	bofetada,	did	not	slap),	(dió una	bofetada	a	la,	slap	the)	
(bruja	verde,	green	witch) (Maria	no	dió una	bofetada,	Mary	did	not	slap)	
(a	la	bruja	verde,	the	green	witch) (Maria	no	dió una	bofetada	a	la,	Mary	did	not	slap	the)
(no	dió una	bofetada	a	la,	did	not	slap	the) (dió una	bofetada	a	la	bruja	verde,	slap	the	green	witch)	

114

Mary

did

not

slap

the

green

witch

Maria no dió una bofetada a la bruja verde

Word	Alignment	Induced	Phrases

(Maria,	Mary)	(no,	did	not)	(slap,	dió una	bofetada)	(la,	the)	(bruja,	witch)	(verde,	green)	
(a	la,	the)	(dió	una	bofetada	a,	slap	the)
(Maria	no,	Mary	did	not)	(no	dió una	bofetada,	did	not	slap),	(dió una	bofetada	a	la,	slap	the)	
(bruja	verde,	green	witch) (Maria	no	dió una	bofetada,	Mary	did	not	slap)	
(a	la	bruja	verde,	the	green	witch) (Maria	no	dió una	bofetada	a	la,	Mary	did	not	slap	the)
(no	dió una	bofetada	a	la,	did	not	slap	the) (dió una	bofetada	a	la	bruja	verde,	slap	the	green	witch)
(Maria	no	dió una	bofetada	a	la	bruja	verde,	Mary	did	not	slap	the	green	witch)

115

Phrase	Pair	Probabilities

• A	certain	phrase	pair	(s-s-s,	t-t-t)	may	appear	many	
times	across	the	bilingual	corpus.

– We	hope	so!

• So,	now	we	have	a	vast	list	of	phrase	pairs	and	their	
frequencies	– how	to	assign	probabilities?

116

Phrase-based	SMT

• After	doing	this	to	millions	of	sentences
– For	each	phrase	pair	(t,	s)

• Count	how	many	times	s occurs
• Count	how	many	times	s is	translated	to	t
• Estimate	p(t	|	s)

117

Decoding

• During	decoding	
– a	sentence	is	segmented	into	“phrases”	in	all	possible	ways	
– each	such	phrase	is	then	“translated”	to	the	target	phrases	
in	all	possible	ways

– Translations	are	also	moved	around
– Resulting	target	sentences	are	scored	with	the	target	
language	model

• The	decoder	actually	does	NOT	actually	enumerate	all	
possible	translations	or	all	possible	target	sentences
– Pruning

118

Decoding

119

Basic	Model,	Revisited

argmax		P(t	|	s)		=	
t

argmax		P(t)	x P(s	|	t)	/	P(s)			=
t

argmax		P(t)	x P(t	|	s)
t

120

Basic	Model,	Revisited

argmax		P(t	|	s)		=	
t

argmax		P(t)	x P(s	|	t)	/	P(s)			=
t

argmax		P(t)2.4 x P(t	|	s)			seems	to	work	better
t

121

Basic	Model,	Revisited

argmax		P(t	|	s)		=	
t

argmax		P(t)	x P(s	|	t)	/	P(s)			=
t

argmax		P(t)2.4 x P(t	|	s)	*	length(t)1.1

t

122

Rewards	longer	hypotheses,	since	
these	are	unfairly	punished	by	p(t)

Basic	Model,	Revisited

argmax		P(t)2.4 x P(s	|	t)	x length(t)1.1 x KS 3.7 …	
e

Lots	of	knowledge	sources	vote	on	any	given	hypothesis.

“Knowledge	source”	=	“feature	function”	=	“score	component”.

Feature	function	simply	scores	a	hypothesis	with	a	real	value.

(May	be	binary,	as	in	“e	has	a	verb”).

Problem:		How	to	set	the	exponent	weights?

123

Maximum	BLEU	Training

Translation	
System
(Automatic,
Trainable)

Translation	
Quality
Evaluator
(Automatic)

Source Target
MT	Output

Target
Reference	Translations
(sample	“right	answers”)

BLEU
score

Language
Model	#1

Translation
Model

Language
Model	#2

Length	
Model

Other
Features

Learning	Algorithm	for	Directly	Reducing	Translation	Error
Yields	big	improvements	in	quality.

124

Automatic	Machine	Translation	
Evaluation

• Objective	
• Inspired	by	the	Word	Error	Rate	metric	used	by	ASR	research
• Measuring	the	“closeness”	between	the	MT	hypothesis	and	

human	reference	translations
– Precision:	n-gram	precision
– Recall:	

• Against	the	best	matched	reference
• Approximated	by	brevity	penalty

• Cheap,	fast
• Highly	correlated	with	human	evaluations
• MT	research	has	greatly	benefited	from	automatic	evaluations
• Typical	metrics:	BLEU,	NIST,	F-Score,	Meteor,	TER

125

BLEU	Evaluation

126

Reference	(human)	translation:
The	US	island	of	Guam	is
maintaining	a	high	state	of	alert
after	the Guam	airport	and	its
offices	both	received	an	e-mail
from	someone	calling	himself	
Osama	Bin	Laden	and	threatening	a
biological/chemical	attack	against
the	airport.

Machine	translation:

The	American	[?]	International	airport	and	its
the	office	a	[?]	receives	one	calls	self	the	sand	
Arab	rich	business	[?]	and	so	on	electronic	mail,	
which	sends	out;	The	threat	will	be	able	after	
the maintenance	at	the	airport.

N-gram	precision	(score	between	0	&	1)
• what	%	of	machine	n-grams	(a	sequence	of	

words)	can	be	found	in	the	reference	
translation?

Brevity	Penalty
• Can’t	just	type	out	single	word	“the’’	

(precision	1.0!)

Extremely	hard	to	trick	the	system,	
i.e.	find	a	way	to	change	MT	output	so	that
BLEU	score	increases,	but	quality	doesn’t.

More	Reference	Translations	are	Better

127

Reference translation 1:
The US island of Guam is maintaining a high
state of alert after the Guam airport and its
offices both received an e-mail from someone
calling himself Osama Bin Laden and
threatening a biological/ chemical attack against
the airport.

Machine translation:

The American [?] International airport and its
the office a [?] receives one calls self the sand
Arab rich business [?] and so on electronic mail
, which sends out; The threat will be able after
the maintenance at the airport to start the
biochemistry attack.

Reference translation 2:
Guam International Airport and its offices are
maintaining a high state of alert after receiving
an e-mail that was from a person claiming to be
the rich Saudi Arabian businessman Osama Bin
Laden and that threatened to launch a biological
and chemical attack on the airport.

Reference translation 3:
The US International Airport of Guam and its
office has received an email from a self-
claimed Arabian millionaire named Laden ,
which threatens to launch a biochemical
attack on airport. Guam authority has been on
alert.

Reference translation 4:
US Guam International Airport and its offices
received an email from Mr. Bin Laden and
other rich businessmen from Saudi Arabia.
They said there would be biochemistry air raid
to Guam Airport. Guam needs to be in high
precaution about this matter.

BLEU	in	Action

128

• Reference	Translation:	The	gunman	was	shot	to	death	by	the	police .

• The	gunman	was	shot kill .
• Wounded police jaya	of
• The	gunman	was	shot dead by	the	police .
• The	gunman arrested by	police kill .
• The gunmen were	killed .
• The	gunman	was	shot	to	death	by	the	police .
• The ringer	is	killed by	the	police .
• Police killed the	gunman .

• Green =	4-gram	match	(good!)			Red =	unmatched	word	(bad!)

BLEU	Formulation

129

𝐵𝐿𝐸𝑈 = min	(1,
𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑙𝑒𝑛𝑔𝑡ℎ

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑙𝑒𝑛𝑔𝑡ℎ
) 3𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

S

678

8
S

precisioni:	i-gram	precision	over	the	whole	corpus

Correlation	with	Human	Judgment

130

What	About	Morphology?

• Issue	for	handling	morphologically	complex	
languages	like	Turkish,	Hungarian,	Finnish,	
Arabic,	etc.
– A	word	contains	much	more	information	than	just	
the	root	word

• Arabic:	wsyktbunha	(wa+sa+ya+ktub+ūn+ha	“and	they	
will	write	her”)

– What	are	the	alignments?
• Turkish:	gelebilecekmissin	(gel+ebil+ecek+mis+sin	(I	
heard)	you	would	be	coming))

– What	are	the	alignments?

131

Morphology	&	SMT
• Finlandiyalılaştıramadıklarımızdanmışsınızcasına

• Finlandiya+lı+laş+tır+ama+dık+lar+ımız+dan+mış+sını
z+casına

• (behaving)	as	if	you	have	been one	of	those whom
we could not convert into a Finn(ish	
citizen)/someone	from	Finland

132

Morphology	&	SMT
• yapabileceksek

– yap+abil+ecek+se+k
– if we will be	able	to	do (something)

• yaptırtabildiğimizde
– yap+tır+t+tığ+ımız+da
– when/at	the	time	we had (someone)	have (someone	else)	do (something)

• görüntülenebilir
– görüntüle+n+ebil+ir
– it	can	be	visualize+d

• sakarlıklarından
– sakar+lık+ları+ndan
– of/from/due-to their clumsi+ness

133

Most	of	the	time,	the	morpheme
order is	“reverse”	of	the	corresponding
English	word	order

Morphology	and	Alignment

• Remember	the	alignment	needs	to	count	co-
occuring	words
– If	one	side	of	the	parallel	text	has	little	
morphology	(e.g.	English)

– The	other	side	has	lots	of	morphology

• Lots	of	words	on	the	English	side	either	don’t	
align	or	align	randomly

134

Morphology	&	SMT

• If	we	ignore	
morphology
– Large	vocabulary	size	on	
the	Turkish	side

– Potentially	noisy	
alignments

– The	link	activity-faaliyet	
is	very	“loose”

135

Word Form Count Gloss

faaliyet 3 activity

faaliyete 1 to the activity

faaliyetinde 1 in its activity

faaliyetler 3 activities

faaliyetlere 6 to the activities

faaliyetleri 7 their activities

faaliyetlerin 7 of the activities

faaliyetlerinde 1 in their activities

faaliyetlerine 5 to their activities

faaliyetlerini 1 their activities (accusative)

faaliyetlerinin 2 of their activities

faaliyetleriyle 1 with their activities

faaliyette 2 in (the) activity

faaliyetteki 1 that is in activity

TOTAL 41

An	Example	E	– T	Translation

136

we are going to your hotel in Taksim by taxi

we are go+ing to your hotel in Taksim by taxi

An	Example	E	– T	Translation

137

we are going to your hotel in Taksim by taxi

we are go+ing to your hotel in Taksim by taxi

+uztaksi gid +iyor+e+inizsiz+in otel+de +kiTaksimBiz +yle

An	Example	E	– T	Translation

138

we are going to your hotel in Taksim by taxi

we are go+ing to your hotel in Taksim by taxi

+uztaksi gid +iyor+e+inizsiz+in otel+de +kiTaksimBiz +yle

An	Example	E	– T	Translation

139

we are going to your hotel in Taksim by taxi

we are go+ing to your hotel in Taksim by taxi

+uztaksi gid +iyor+e+inizsiz+in otel+de +kiTaksimBiz +yle

An	Example	E	– T	Translation

140

we are going to your hotel in Taksim by taxi

we are go+ing to your hotel in Taksim by taxi

+uztaksi gid +iyor+e+inizsiz+in otel+de +kiTaksimBiz +yle

Morphology	and	Parallel	Texts

• Use	
– Morphological	analyzers	(HLT	Workshop	2)
– Tagger/Disambiguators	(HLT	Workshop	3)

• to	split	both	sides	of	the	parallel	corpus	into	
moprhemes

141

Morphology	and	Parallel	Texts

• A	typical	sentence	pair	in	this	corpus	looks	like	
the	following:

• Turkish:
– kat	+hl	+ma	ortaklık	+sh	+nhn	uygula	+hn	+ma	+sh	
,	ortaklık	anlaşma	+sh	çerçeve	+sh	+nda	izle	+hn	
+yacak	+dhr	.

• English:
– the	implementation	of	the	accession	partnership	
will	be	monitor	+ed	in	the	framework	of	the	
association	agreement	

142

Results	

• Using	morphology	in	Phrase-based	SMT	
certainly	improves	results	compared	to	just	
using	words

• But
– Sentences	get	much	longer	and	this	hurts	
alignment

– We	now	have	an	additional	problem:	getting	the	
morpheme	order	on	each	word	right

143

Syntax	and	Morphology	Interaction

• A	completely	different	approach
– Instead		of	dividing	up	Turkish	side	into	morpheme
– Collect	“stuff”	on	the	English	side	to	make-up	
“words”.

– What	is	the	motivation?

144

Syntax	and	Morphology	Interaction

145

we are going to your hotel in Taksim by taxi

we are go+ing to your hotel in Taksim by taxi

+uztaksi gid +iyor+e+inizsiz+in otel+de +kiTaksimBiz +yle

Suppose	we	can	do	some	syntactic	analysis	on	the	English	side

Syntax	and	Morphology	Interaction

• to	your	hotel
– to	is	the	preposition	related	to	hotel
– your	is	the	possessor	of	hotel

• to	your	hotel	=>			hotel					+your+to
otel								+iniz+e

– separate	content	from	local	syntax

146

we are go+ing to your hotel in Taksim by taxi

Syntax	and	Morphology	Interaction

• we	are	go+ing
– we is	the	subject	of	go
– are	is	the	auxiliary	of	go
– ing	is	the	present	tense	marker	for	go			

• we	are	go+ing		=>		go				+ing+are+we
gid				+iyor+uz

– separate	content	from	local	syntax

147

we are go+ing to your hotel in Taksim by taxi

Syntax	and	Morphology	Interaction

148

we are go+ing to your hotel in Taksim by taxi

go+ing+are+we hotel +your+to Taksim+in taxi+by

siz+inBiz Taksim+de+ki otel+iniz+e taksi+yle gid+iyor+uz

Now	align	only	based	on	root	words	– the	syntax	alignments	just	follow	that

Syntax	and	Morphology	Interaction

149

Syntax	and	Morphology	Interaction

• Transformations	on	the	English	side	reduce	
sentence	length

• This	helps	alignment
– Morphemes	and	most	function	words	never	get	
involved	in	alignment

• We	can	use	factored	phrase-based	translation
– Phrased-based	framework	with	morphology	
support

150

Syntax	and	Morphology	Interaction

151

15.00

16.00

17.00

18.00

19.00

20.00

21.00

22.00

23.00

24.00

25.00

800000

850000

900000

950000

1000000

1050000

1100000

1150000

1200000

1250000

1300000

Ba
se
lin
e-
Fa
ct
or
ed Ad
v

Ve
rb

Ve
rb
+A

dv

N
ou

n+
Ad

j

N
ou

n+
Ad

j+
Ve

rb
+A

dv

N
ou

n+
Ad

j+
Ve

rb

N
ou

n+
Ad

j+
Ve

rb
+P

os
tP
C

N
ou

n+
Ad

j+
Ve

rb
+A

dv
+P

os
tP
C

BL
EU

	S
co
re
s

N
um

be
r	o

f	T
ok

en
s

Experiments

English Turkish BLEU	Score

Syntax	and	Morphology	Interaction

• She	is	reading.
– She	is	the	subject	of	read
– is	is	the	auxiliary	of read

• She	is	read+ing	=>	read					+ing+is+she
taQrAA																			QrAA				+*ta

152

Knowledge
Acquisition
Strategy

Knowledge
Representation
Strategy

All manual

Deep/ Complex

Shallow/ Simple

Fully automated

Learn from un-
annotated data

Phrase tables

Word-based
only

Learn from
annotated data

Example-
based MT

Statistical MT

Typical transfer
system

Classic
interlingual
system

Original direct
approach

Syntactic
Constituent
Structure

Interlingua

New Research
Goes Here!

Semantic
analysis

Hand-built by
non-experts

Hand-built by
experts

Electronic
dictionaries

MT Strategies (1954-2004)

Slide	by
Laurie	Gerber

153

Syntax	in	SMT

• Early	approaches	relied	on	high-performance	
parsers	for	one	or	both	languages
– Good	applicability	when	English	is	the	source	
language

• Tree-to-tree	or	tree-to-string	transductions

• Recent	approaches	induce	synchronous	
grammars during	training
– Grammar	that	describe	two	languages	at	the	same	
time

• NP	=>	ADJe1 NPe2 :		NPf2 ADJf1

154

Tree-to-String	Transformation

Reorder

VB

PRP VB2 VB1

TO VB

MN TO

he adores

listening

music to

Insert

desu

VB

PRP VB2 VB1

TO VB

MN TO

he ha

music to

ga
adores

listening no

Translate

Kare ha ongaku wo kiku no ga daisuki desu

Take Leaves

desu

VB

PRP VB2 VB1

TO VB

MN TO

kare ha

ongaku wo

ga
daisuki

kiku no

VB

PRP VB1

he adores

listening

VB2

VB TO

MNTO

musicto

Parse Tree(E)

Sentence(J)

Tree-to-String	Transformation

• Each	step	is	described	by	a	statistical	model
– Reorder	children	on	a	node	probabilistically
– R-table
– English	– Japanese	table

156

Original Order Reordering P(reorder|original)

PRP VB1 VB2 PRP VB1 VB2
PRP VB2 VB1
VB1 PRP VB2
VB1 VB2 PRP
VB2 PRP VB1
VB2 VB1 PRP

 0.074
 0.723
 0.061
 0.037
 0.083
 0.021

VB TO VB TO
TO VB

 0.107
 0.893

TO NN TO NN
NN TO

 0.251
 0.749

Tree-to-String	Transformation

• Each	step	is	described	by	a	statistical	model
– Insert	new	sibling	to	the	left	or	right	of	a	node	
probabilitically

– Translate	source	nodes	probabilistically

157

Hierarchical	phrase	models

• Combines	phrase-based	models	and	tree	
strutures

• Extract	synchronous	grammars	from	parallel	
text

• Uses	a	statistical	chart-parsing	algorithm	
during	decoding
– Parse	and	generate	concurrently

158

For	more	info

• Proceedings	of	the	Third	Workshop	on	Syntax	and	
Structure	in	Statistical	Translation	(SSST-3)	at	NAACL	
HLT	2009
– http://aclweb.org/anthology-new/W/W09/#2300

• Proceedings	of	the	ACL-08:	HLT	Second	Workshop	on	
Syntax	and	Structure	in	Statistical	Translation	(SSST-2)
– http://aclweb.org/anthology-new/W/W08/#0400

159

Acknowledments

• Some	of	the	tutorial	material	is	based	on	
slides	by
– Kevin	Knight	(USC/ISI)
– Philipp	Koehn	(Edinburgh)
– Reyyan	Yeniterzi	(CMU/LTI)

160

Important	References

• Statistical	Machine	Translation	(2010)
– Philipp	Koehn
– Cambridge	University	Press

• SMT	Workbook	(1999)
– Kevin	Knight
– Unpublished	manuscript	at	http://www.isi.edu/~knight/

• http://www.statmt.org
• http://aclweb.org/anthology-new/

– Look	for	“Workshop	on	Statistical	Machine	Translation”

161

1/60

11-411
Natural Language Processing
Neural Networks and Deep Learning in NLP

Kemal Oflazer

Carnegie Mellon University in Qatar

2/60

Big Picture: Natural Language Analyzers

3/60

Big Picture: Natural Language Analyzers

4/60

Big Picture: Natural Language Analyzers

5/60

Linear Models
I y1 = w11x1 + w21x2 + w31x3 + w41x4 + w51x5

6/60

Perceptrons

I Remember Perceptrons?
I A very simple algorithm guaranteed to eventually find a linear separator hyperplane

(determine w), if one exists.
I If one doesn’t, the perceptron will oscillate!
I Assume our classifier is

classify(x) =
{ 1 if w ·Φ(x) > 0

0 if w ·Φ(x) ≤ 0

I Start with w = 0
I for t = 1, . . . ,T

I i = t mod N
I w← w + α

(
`i − classify(xi)

)
Φ(xi)

I Return w
I α is the learning rate – determined by experimentation.

7/60

Perceptrons
I For classification we are basically computing

score(x) = W × f(x)T =
∑

j
wj · fj(x)

I wj are the weights comprising W
I fj(x) are the feature functions.

I We are then deciding based on the value of score(x)
I Such a computation can be viewed as a “network”.

I Feature function values are provided by the nodes on the left.
I Edges have the weights wi. Each feature value is multipleid with the respective edge

weight.
I The node on the right sums up the incoming values and decides.

8/60

Perceptron

I While quite useful, such a model can only classify “linearly separable” classes.
I So it fails for a very simple problem such as the exclusive-or

9/60

Multiple Layers

I We can add an intermediate “hidden” layer.
I each arrow is a weight

I Have we gained anything?
I Not really. We have a linear combination of weights (input to hidden and hidden to output),
I Those two can be combined offline to a single weight matrix.

10/60

Adding Non-linearity

I Instead of computing a linear combination

score(x) =
∑

j
wj · fj(x)

I We use a non-linear function F

score(x) = F
(∑

j
wj · fj(x)

)
I Some popular choices for F

11/60

Deep Learning

I More layers⇒ “deep learning”

I The sigmoid is also called the “logistic function.”

12/60

What Depth Holds

I Each layer is a processing step
I Having multiple processing steps allows complex functions
I Metaphor: NN and computing circuits

I computer = sequence of Boolean gates
I neural computer = sequence of layers

I Deep neural networks can implement more complex functions

13/60

Simple Neural Network

1 1

-5.2

-2.0

4.5
3.7

3.7
2.9

2.9

-1.5
-4.6

I One innovation: bias units (no input, always value 1)

14/60

Sample Input

1.0

0.0

1 1

-5.2

-2.0

4.5
3.7

3.7
2.9

2.9

-1.5
-4.6

I Try out two input values
I Hidden unit computation

sigmoid(1.0× 3.7 + 0.0× 3.7 + 1×−1.5) = sigmoid(2.2) =
1

1 + e−2.2 = 0.90

sigmoid(1.0× 2.9 + 0.0× 2.9 + 1×−4.6) = sigmoid(−1.7) =
1

1 + e1.7 = 0.15

15/60

Computed Hidden Layer Values

1.0 .90

0.0 .15

1 1

-5.2

-2.0

4.5
3.7

3.7
2.9

2.9

-1.5
-4.6

I Try out two input values
I Hidden unit computation

sigmoid(1.0× 3.7 + 0.0× 1.7 + 1×−1.5) = sigmoid(2.2) =
1

1 + e−2.2 = 0.90

sigmoid(1.0× 2.9 + 0.0× 2.9 + 1×−4.5) = sigmoid(−1.7) =
1

1 + e1.7 = 0.15

16/60

Computed Output Value

1.0 .90

0.0 .15

1 1

.78-5.2

-2.0

4.5
3.7

3.7
2.9

2.9

-1.5
-4.6

I Output unit computation

sigmoid(0.90×4.5+0.15×−5.2+1×−2.0) = sigmoid(1.25) =
1

1 + e−1.25 = 0.78

17/60

Output for All Binary Inputs

Input x0 Input x1 Hidden h0 Hidden h1 Output y0
0 0 0.18 0.01 0.23→ 0
0 1 0.90 0.15 0.78→ 1
1 0 0.90 0.15 0.78→ 1
1 1 0.99 0.77 0.18→ 0

I Network implements the XOR
I hidden node h0 is OR
I hidden node h1 is AND
I final layer is (essentially) h0 − (h1)

18/60

The Brain vs. Artificial Neural Networks

I Similarities
I Neurons, connections between neurons
I Learning = change of connections, not change of neurons
I Massive parallel processing

I But artificial neural networks are much simpler
I computation within neuron vastly simplified
I discrete time steps
I typically some form of supervised learning with massive number of stimuli

19/60

Backpropagation Training

I Lather – take an input and run it forward through the network
I Rinse – compare it to the expected output, and adjust weights if they differ
I Repeat – for the next input, until convergence or time-out

20/60

Backpropagation Training

1.0 .90

0.0 .15

1 1

.78-5.2

-2.0

4.5
3.7

3.7
2.9

2.9

-1.5
-4.6

I Computed output is y = 0.78
I Correct output is t(arget) = 1.0
I How do we adjust the weights?

21/60

Key Concepts

I Gradient Descent
I error is a function of the weights
I we want to reduce the error
I gradient descent: move towards the error minimum
I compute gradient→ get direction to the error minimum
I adjust weights towards direction of lower error

I Backpropagation
I first adjust last set of weights
I propagate error back to each previous layer
I adjust their weights

22/60

Gradient Descent

23/60

Gradient Descent

24/60

Derivative of the Sigmoid
I Sigmoid: sigmoid(x) =

1
1 + e−x

I Reminder: quotient rule (
f (x)

g(x)
)′ =

g(x)f ′(x)− f (x)g′(x)

g(x)2

I Derivative
d sigmoid(x)

dx
=

d
dx

1
1 + e−x

=
0× (1− e−x)− (−e−x)

(1 + e−x)2

=
1

1 + e−x (
e−x

1 + e−x)

=
1

1 + e−x (1− 1
1 + e−x)

= sigmoid(x)(1− sigmoid(x))

25/60

Final Layer Update (1)

I We have a linear combination of weights and hidden layer values: s =
∑

k
wkhk

I Then we have the activation function: y = sigmoid(s)

I We have the error function E =
1
2

(t − y)2.

I t is the target ouput.
I Derivative of error with regard to one weight wk (using chain rule)

dE
dwk

=
dE
dy

dy
ds

ds
dwk

I Error is already defined in terms of y, hence

dE
dy

=
d
dy

1
2

(t − y)2 = −(t − y)

26/60

Final Layer Update (2)

I We have a linear combination of weights and hidden layer values: s =
∑

k
wkhk

I Then we have the activation function: y = sigmoid(s)

I We have the error function E =
1
2

(t − y)2.

I Derivative of error with regards to one weight wk (using chain rule)

dE
dwk

=
dE
dy

dy
ds

ds
dwk

I y with respect to s is sigmoid(s)

dy
ds

=
d sigmoid(s)

ds
= sigmoid(s)(1− sigmoid(s)) = y(1− y)

27/60

Final Layer Update (3)

I We have a linear combination of weights and hidden layer values: s =
∑

k
wkhk

I Then we have the activation function: y = sigmoid(s)

I We have the error function E =
1
2

(t − y)2.

I Derivative of error with regards to one weight wk (using chain rule)

dE
dwk

=
dE
dy

dy
ds

ds
dwk

I s is a weighted linear combination of hidden node values hk

ds
dwk

=
d

dwk
(
∑

k
wkhk) = hk

28/60

Putting it All Together

I Derivative of error with regard to one weight wk

dE
dwk

=
dE
dy

dy
ds

ds
dwk

= −(t − y) y(1− y) hk

I error
I derivative of sigmoid: y′

I We adjust the weight as follows

∆wk = µ (t − y) y′ hk

where µ is a fixed learning rate.

29/60

Multiple Output Nodes

I Our example had one ouput node.
I Typically neural networks have multiple output nodes.
I Error is computed over all j output nodes

E =
1
2

∑
j

(tj − yj)
2

I Weight wkj from hidden unit k to output unit j is adjusted according to node j

∆wkj = µ (tj − yj) y′j hk

I We can also rewrite this as
∆wkj = µ δj hk

where δj is the error term for output unit j.

30/60

Hidden Layer Update
I In a hidden layer, we do not have a target output value.
I But we can compute how much each hidden node contributes to the downstream

error E.
I k refers to a hidden node
I j refers to a node in the next/output layer

I Remember the error term
δj = (tj − yj)y′j

I The error term associated with hidden node k is (skipping the multivariate math) is

δk = (
∑

j
wkjδj)h′k

I So if the uik is the weight between input unit xi and hidden unit k then

∆uik = µ δk xi

I Compare with ∆wkj = µ δj hk.

31/60

An Example

1.0 .90

0.0 .15

1 1

.78-5.2

-2.0

4.5
3.7

3.7
2.9

2.9

-1.5
-4.6

i k j

1

2

3

G

For the output unit G
I Computed output = y1 = 0.78
I Correct output = t = 1.0
I Final layer weight updates (with learning rate µ = 10)

I δ1 = (t1 − y1)y′1 = (1− 0.78)× 0.172 = 0.0378
I ∆w11 = µδ1h1 = 10× 0.0378× 0.90 = 0.3402
I ∆w21 = µδ1h2 = 10× 0.0378× 0.15 = 0.0567
I ∆w31 = µδ1h3 = 10× 0.0378× 1 = 0.378

32/60

An Example

1.0 .90

0.0 .15

1 1

.78
-5.1433

-1.622

-5.2+0.0.0567=-5.1433
3.7

3.7
2.9

2.9

-1.5
-4.6

i k j

1

2

3

G

4.8402

4.5+0.3402=4.8402

-2.0+0.378=-1.622

u w yhx

For the output unit G
I Computed output = y1 = 0.78
I Correct output = t = 1.0
I Final layer weight updates (with learning rate µ = 10)

I δ1 = (t1 − y1)y′1 = (1− 0.78)× 0.172 = 0.0378
I ∆w11 = µδ1h1 = 10× 0.0378× 0.90 = 0.3402
I ∆w21 = µδ1h2 = 10× 0.0378× 0.15 = 0.0567
I ∆w31 = µδ1h3 = 10× 0.0378× 1 = 0.378

33/60

Hidden Layer Updates

1.0 .90

0.0 .15

1 1

.78
-5.1433

-1.622

-5.2+0.0.0567=-5.1433
3.7

3.7
2.9

2.9

-1.5
-4.6

i k j

1

2

3

G

4.8402

4.5+0.3402=4.8402

-2.0+0.378=-1.622

u w yhx

For hidden unit h1
I δ1 = (

∑
j w1j δ

G
1)h′1 = 4.5× 0.0378× 0.09 = 0.015

I ∆u11 = µδ1x1 = 10× 0.015× 1.0 = 0.175
I ∆u21 = µδ1x2 = 10× 0.015× 0.0 = 0
I ∆u31 = µδ1x3 = 10× 0.015× 1.0 = 0.175

Repeat for hidden unit h2
I δ2 = (

∑
j w2j δ

G
1)h′2 = −5.2× 0.0378× 0.1275 = −0.025

I ∆u12 = . . .
I ∆u22 = . . .
I ∆u32 = . . .

34/60

Initialization of Weights

I Random initialization e.g., uniformly in the interval

[−0.01, 0.01]

I For shallow networks there are suggestions for

[− 1√
n
,

1√
n

]

I For deep networks there are suggestions for

[−
√

6√
ni + ni+1

,

√
6√

ni + ni+1
]

where ni and ni+1 are sizes of the previous and next layers.

35/60

Neural Networks for Classification

I Predict Class: one output per class
I Training data output is a “one-hot-vector”, e.g., y = [0, 0, 1]T

I Prediction:
I predicted class is output node i with the highest value yi
I obtain posterior probability distribution by softmax

softmax(yi) =
eyi∑

j eyj

36/60

Problems with Gradient Descent Training

37/60

Problems with Gradient Descent Training

38/60

Problems with Gradient Descent Training

39/60

Speed-up: Momentum

I Updates may move a weight slowly in one direction
I We can keep up a memory if prior updates

∆wkj(n− 1)

I and add these to any new updates with a decay factor ρ

∆wkj(n) = µ δj hk + ρ∆wkj(n− 1)

40/60

Dropout

I A general problem of machine learning: overfitting to training data (very good on train,
bad on unseen test)

I Solution: regularization, e.g., keeping weights from having extreme values
I Dropout: randomly remove some hidden units during training

I mask: set of hidden units dropped
I randomly generate, say, 10 – 20 masks
I alternate between the masks during training

41/60

Mini Batches

I Each training example yields a set of weight updates ∆wij
I Batch up several training examples

I Accumulate their updates
I Apply sum to the model – one big step instead of many small steps

I Mostly done for speed reasons

42/60

Matrix Vector Formulation

I Forward computation s = W h
I Activation computation y = sigmoid(s)
I Error Term: δ = (t− y) · sigmoid′(s)
I Propagation of error term: δi = Wδi+1 · sigmoid′(s)
I Weight updates: ∆W = µ δ hT

43/60

Toolkits

I Theano (Python Library)
I Tensorflow (Python Library, Google)
I PyTorch (Python Library, Facebook)
I MXNet (Python Library, Amazon)
I DyNet (Python Library, A consortium of institutions including CMU)

44/60

Neural Network V1.0: Linear Model

45/60

Neural Network v2.0: Representation Learning
I Big idea: induce low-dimensional dense feature representations of high-dimensional

objects

46/60

Neural Network v2.1: Representation Learning

I Big idea: induce low-dimensional dense feature representations of high-dimensional
objects

I Did this really solve the problem?

47/60

Neural Network v3.0: Complex Functions

I Big idea: define complex functions by adding a hidden layer.

I y = W2h1 = a1(W1x1)

48/60

Neural Network v3.0: Complex Functions
I Popular activation/transfer/non-linear functions

49/60

Neural Network v3.5: Deeper Networks

I Add more layers!

I y = W3h2 = W3a2(W2(a1(W1x1))

50/60

Neural Network v3.5: Deeper Networks

51/60

Neural Network v4.0: Recurrent Neural Networks
I Big Idea: Use hidden layers to represent sequential state

52/60

Neural Network v4.0: Recurrent Neural Networks

53/60

Neural Network v4.1: Output Sequences

Many to One Many to Many Many to Many

54/60

Neural Network v4.1: Output Sequences
I Character-level Language Models

55/60

Neural Network v4.2: Long-Short Term Memory
I Regular Recurrent Networks

I LSTMs

56/60

Neural Network v4.2: Long-Short Term Memory

57/60

Neural Network v4.3: Bidirectional RNNs

I Unidirectional RNNs

I Bidirectional RNNs

58/60

Neural Machine Translation

59/60

Neural Part-of-Speech Tagging

I wi is the one-hot representation of the current word.
I f (wi) encodes the case of of wi: all caps, cap initial, lowercase.

60/60

Neural Parsing

	01-intro
	02-applications
	03-Words-and-Morphology
	04-Language-Modelling
	05-classification
	06-POS-Tagging
	07-syntax
	08-chomksy-hierarchy-cyk-parsing
	09-treebanks-probabilistic-cfl-parsing
	10-earley-parsing
	11-dependency-parsing
	12-lexical-semantics
	13-distributional-vector-semantics
	14-word-sense-disambiguation
	15-semantic-roles-semantic-parsing
	16-mrl-compositional-semantics
	17-discourse-pragmatics
	18-machine-translation
	19-neural-networks-and-deep-learning

