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FIGURE 1.i. A model of learning from examples. During the learning process,
the learning machine observes the pairs (z,¥) (the training set). After training,
the machine must on any given z return a vahie #. The goal is to return a valu
7 that is close to the supervisor's response . _ ™

The selection of the desired function is based on a training set of ¢ inde-
pendent and identically distributed {ii.d.) observations drawn accerding to
F(z,y) = F(z)F(ylz):

(m1,y1),...,(:ce,ye). (1.1)7

1.2 THE PROBLEM OF RISK MINIMIZATION

In order to choose the best available approximation to the supervisor’s
response, one measures the loss, or discrepancy, L(y, f (x,)) between the
response ¥ of the supervisor to a given input x and the response f(x, a)
provided by the learning machine. Consider the expected value of the loss,
given by the risk functional

Jewnt

R(a) = f Ly, f(z, 0))dF (=, ). (1.2)

The goal is to find the function f{z, ) that minimizes the risk functional
R(a) (over the class of functions f(z,a), @ € A) in the situation where

the joint probability distribution function F(z,y) is unknown and the only
available information is contained in the training set (1.1),

1.3 THREE MAIN LEARNING PROBLEMS

This formula.tion of the learning problem is rather broad. It encompasses
mazny specific problems. Consider the main ones: the problems of pattern
recognition, regression estimation, and density estimation.

1.8.1 Paltern Recognition = J 1§ ot bt ]/cj e 55 PO
Let the supervisor’s output y take only two values y = {0,1} and let

f(z,a), a € A, be a set of indicator functions (functions w:hich take only
two values: zero and one). Consider the following loss function:

0 ify= flz,a),
s fmep={ } Ry Ao (18)
For this loss function, the functional (1.2) determines the‘ probability. of
different answers given by the supervisor and by t_he il}dlcator function
f(z, a). We call the case of different answers a classzj"ic.atz'on error. .
The problem, therefore, is to find a function that minimizes t%le probabil-
ity of classification error when the probability measure F(z,y) is unknown,
but the data (1.1) are given.

1.3.2 Regression Es-(ématz’on

Let the supervisor’s answer y be a real value, and let f(z,a),a € A, be a
set of real functions that contains the regression function

Fz,00) = [ y dF(y|a).

It is known that the regression function is the one that minimizes the
functional {1.2) with the following loss function:3

L(zp) = Liy f(z,0)) = (y — Flz, )" (1.4)

Thus the problem of regression estimation is the problem. of rr%inimizmg the
risk functional (1.2) with the loss function (1.4) in the situation .where the
probability measure F'(z,y) is unknown but the data (1.1) are given.

y 1= Cfﬁxz—)-éj%‘}c ) 9 - 5‘“!\/\( 7[;(@9; q/}é+‘{3
£J’@JL\(«, 777 (g s baad) 7 ety 10
1.3.3 Density Estimation (Fisher-Wald Setting)

, 7
e [ +®
Finally, consider the problem of density estimation from the set of den51t1esC7 (

p(z, ), € A, For this problem we consider the following loss function:
L(p(z,a)) = —log p(z, ). (1.5)
*If the regression function f{x) does not belong to f(x,a),a € A, then the

function f(x, o) minimizing the functional (1.2) with loss function (1.4) is the
closest to the regression in the metric Ly (F):

P (@), £(@r o)) = \/ [ (6@ - s c0ar(z).

L{wyy=) = (- Jg(«r)).l



It is known that the desired density minimizes the risk functional (1.2)
with the loss function (1.5). Thus, again, to estimate the density from the
data one has to minimize the risk functional under the condition that the
corresponding probability measure F(x) is unknown, but i.i.d. data

I1,...,Fp

are given,

1.4 THE GENERAL SETTING OF THE LEARNING
PROBLEM

The general setting of the learning problem can be deseribed as follows.
Let the probability measure F(z) be defined on the space Z. Consider the
set of functions Q(z, &), € A . The goal is to minimize the risk functional

R(0) = f Qz,0)dF (), ae A, (1.6)

where the probability measure F(z) is unknown, but an i.i.d. sampie

21, % .7

is given.

The learning problems considered above are particular cases of this gen-
eral problem of minimizing the risk Junctional (1.6} on the basis of empirical
data (1.7), where z describes a pair {z,y) and Q(z,a) is the specific loss
function (e.g., one of (1.3), (1.4), or (1.5)). In the following we will de-
scribe the results obtained for the general statement of the problem. To
apply them to specific problems, one has to substitute the corresponding
loss functions in the formulas obtained.

1.5 THE EMPIRICAL RISK MINIMIZATION (ERM)
INDUCTIVE PRINCIPLE

In order to minimize the risk functional (1.6) with an unknown distribution
function F(z), the following inductive principle can be applied:

(i} The risk functional R(c) is replaced by the so-called empirical risk
Sfunctional

£
Remp(a) = % ZQ(Z“C!) (1'8)
=1

constructed on the basis of the training set 1.7).

4U s L 2oul bals U LGarming -1 neory s < 0

{ii) One approximates the function Q(z, og) that minimizes risk (1.6) by
the function Q(z, ceg) minimizing the empirical risk (1.8).

This principle is called the empirical risk minimization inductive principle
(ERM principle).

We say that an inductive principle defines a learning process if for any
given set of observations the learning machine chooses the approximation
using this inductive principle. In learning theory the ERM principle plays
a crucial role.

The ERM principle is quite general. The classical methods for the solu-
tion of a specific learning problem, such as the least-squares method in the
problem of regression estimation or the maximum likelihood (ML) method
in the problem of density estimation, are realizations of the ERM principle
for the specific loss functions considered above.

Indeed, by substituting the specific loss function (1.4) in (1.8) one obtains
the functional to be minimized

£
Remp(a‘) = ']; E(yz - f(mu a))z-:
£
i—1

which forms the least-squares method, while by substituting the specific
loss function (1.5) in (1.8) one obtains the functional to be minimized

£
Rump(a) = =3 3 Inp(zs, ).
=1

Minimizing this functional is equivalent to the ML method (the latter uses
a plus sign on the right-hand side).

1.6 THE FOUR PARTS OF LEARNING THEORY

Learning theory has to address the following four questions:

(i) What are (necessary and sufficient) conditions for consistency of a
learning process based on the ERM principle?

(i) How fast is the rate of convergence of the learning process?

{iii) How can one control the rate of convergence (the generalization abil-
ity) of the learning process?

(iv) How can one construct algorithms that can control the generalization
ability?

The answers to these questions form the four parts of learning theory:



(i) Theory of consistency of learning processes:

(ii) Nonasymptotic theory of the rate of cghﬁéfgehcé of learning pro-
cesses.

(iii) Theory of controlling the generalization ability of learning processes.
(iv) Theory of constructing learning algorithms.

Each of these four parts will be discussed in the following- chapters.

Informal Reasoning and
Comments — 1

The setting of learning problems given in Chapter 1 reflects two major
requirements:

(i) To estimate the desired function from a wide set of functions.

(ii) To estimate the desired function on the basis of a limited number of
examples.

The methods developed in the framework of the classical paradigm {cre-
ated in the 1920s and 1930s) did not take into account these requirements.
Therefore, in the 1960s considerable effort was put into both the general-
ization of classical results for wider sets of functions and the improvement
of existing techniques of statistical inference for small sample sizes. In the
following we will describe some of these efforts.

1.7 THE CLASSICAL PARADIGM OF SOLVING
LEARNING PROBLEMS

In the framework of the classical paradigm all models of function estimation
are based on the maximum likelihood method. It forms an inductive engine
in the classical paradigm.



Chapter 4 :

Controlling the Generalization
Ability of Learning Processes

The theory for controlling the generalization ability of learning machines
is devoted to constructing an inductive principle for minimizing the risk
functional using a small sample of training instances.

The sample size £ is considered to be small if the ratio £/h (ratio of the
number of training patterns to the VC dimension of functions of a learning
machine) is small, say £/h < 20.

To construct small sample size methods we use both the bounds for the
generalization ability of learning machines with sets of totally bounded
nonnegative functions, vl jooal = /- é . ‘

Ay

s (4.1)

R{ag) < Romp(ag) + %‘E (1 +4/1+ X
Y
(>.2.9) blgq ot

" oy
and the bounds for the generalization ability of ?é‘aﬂnf‘ﬁ\ Snba (infﬂzs with sets Py
of unbounded functions, s [1% +0FJ>

R} < —Femp(@2) (4.2)

(1 - a(p)'r\/E)Jr”

a(p) = % (E_—l)p_l,

p—2

( ?~'§0)

where

822——1“N;1n” k(?.‘:z.sj
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if the set of functions Q(z, ), 1,...,N, contains N elements, and
A(ln% 1+ 1) —In(n/4 .
£—4 (nh—i—ﬂ) n(n/4) (3"2{)

if the set of functions Q(z, @), a € A, contains an infinite number of ele-
ments and has a finite VC dimension A. Each bound is valid with probability
at least 1 — 7.

4.1 STRUCTURAL RISK MINIMIZATION (SRM)
INDUCTIVE PRINCIPLE

The ERM principle is intended for dealing with large sample sizes. It can
be justified by considering the inequality (4.1) or the inequality (4.2).

When £/h is large, £ is small. Therefore, the second summand on the

iright-hand side of inequality (4.1) (the second summand in the denominator

of (4.2)) becomes small. The actual risk is then close to the value of the
empirical risk. In this case, a small value of the empirical risk guarantees
a small value of the (expected) risk.

However, if £/h is small, a small BRemp(oy) does not guarantee a small
value of the actual risk. In this case, to minimize the actual risk R{a) one
 has to minimize the right-hand side of inequality (4.1) (or (4.2)) simultane-
l ously over both terms. Note, however, that the first term in inequality (4.1)
depends on a specific function of the set of functions, while the second term
depends on the VC dimension of the whole set of functions. To minimize
the right-hand side of the bound of risk, (4.1) (or (4.2)), simultaneously
over both terms, one has to make the VC dimension a controlling variable.

"The following general principle, which is called the structural risk MEni-
mization (SRM) inductive principle, is intended to minimize the risk func-
tional with respect to both terms, the empirical risk, and the confidence
interval (Vapnik and Chervonenkis, 1974).

Let the set § of functions Q(z,a), o € A, be provided with a structure
consisting of nested subsets of functions §j, = {Q(z, ), @ € A}, such that
(Fig. 4.1)

S1C52C-'-C3n---, (4.3)

where the elements of the structure satisfy the following two properties:
(i) The VC dimension hy, of each set Sy, of functions ig finite.! Therefore,

hi<hy...<hy,....

1However, the VC dimension of the set § can be infinite.
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FIGURE 4.1. A structure on the set of functions is determined by the nested
subsets of functions.

(ii} Any element Sy, of the structure contains either

a get of totally bounded functions,

0< Q(zia) < Bks ac Aka

or a set of functions satisfying the inequality

fQP(z, a)dF(z))% . .
asélfk ( fQ(z, O:)dF(z) S K P> 2} (4 4)

for some pair {p, 7).

We call this structure an admissible structure.

.-

. . :”
For a given set of observations zq,..., 2 the §RM g}gg___!e chooses t‘he‘ &?| /.
function Q(z, af) minimizing the empirical riskin-the subset Sy for which e

the guaranteed risk (determined by the right-hand side of ineq.uality (4.1) or
by the right-hand side of inequality {4.2) depending on the circumstances)

L
s minimal. . "
is ?}111;1?;1\4 principle defines a trade-off between the qua,l:il.ty of.the approgi- éﬁ%k
mation of the given data and the complezity of the appvjo.:mma,ftmg function. !
As the subset index 7 increases, the minima of the empirical risks decrease.
However, the term responsible for the confidence interxfal (the seccnfld sum-
mand in inequality (4.1} or the multiplier in inequality (4.2) (Fig. 42))
increases. The SRM principle takes both factors into account by choosing [

the subset S, for which minimizing the empirical risk yields the best bound %
on the actual risk.




|
} Bound on the risk

Confidence interval

Empirical risk

h

FIGURE 4.2. The bound on the risk is the sum of the empirical risk and the
confidence interval. The empirical risk decreases with the index of the element of
the structure, while the confidence interval! increases. The smallest bound of the
risk is achieved on some appropriate element of the structure,
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4.2 ASYMPTOTIC ANALYSIS OF THE RATE OF
CONVERGENCE

Denote by 8* the set of functions

e Os.
k=1

Suppose that the set of functions S* is everywhere dense? in S (recall
S = {Q(z,a), a € A}) with respect to the metric

Q2 1), Qs 3)) = j Qs 01) — Q(z, a2)ldF(2).

Mot SEI self

For asymptotic analysis of the SRM principle one congiders a law deter-
mining, for any given £, the number

n = n{f) (4.5)

- of the element S,, of the structure (4.3) in which we will minimize the

empirical risk. The following theorem holds true.

Theorem 4:1. The SRM method provides approzimations Q(z, a?(e))

for which the sequence of risks R(a?(g)} converges to the smallest risk

Rico) = int. [ Q(z,0)dF ()

40; boapaaX o AL
with asymptotic rate of convergence’ 4 n

hp ey In j
V(E) = Tn(e) + Tn(ﬂ) ..M M\l " (46)

!i)oqu L kﬁ L _JJ [u—-”_ L S—f—orLﬁJ-}\t (l"—mi
A /2.4

>The set of functions R(z,8), # € B, is everywhere dense in the set
Q(z, @), @ € A, in the metric p(Q, R) if for any ¢ > 0 and for any Q(z,a")
one can find a function R(z, 5*) such that the inequality

p(@Q(z,a"), R(z,87)) < e

holds true.
#We say that the random variables &, £ = 1,2,..., converge to the value £
with asymptotic rate V{(£) if there exists a constant C such that

e e T T,

VDl — &l 2 C.

Ciii]_(m iw\yolxj wk-(ﬁﬁ i {/7["% C

N
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if the law n = n(f) is such that

T2, P Int
R 0in(e}

£—oo

where

(i) To. = By, if one considers a structure with totally bounded functwns
Q(z, ) < B, in subsets S,,, and

(it) Tn = 7 if one considers o structure with elements satisfying the
equality (4.4);

Tnie) 15 the rate of approzimation

o= nf f Q3 0)dF(z) - inf f Qz, 2)dF(2). (4.8)

To provide the best rate of convergence one has to know the rate of

y approzimation v, for the chosen structure. The problem of estimating r,,

} for different structures on sets of functions is the subject of classical function

! i approximation theory. We will discuss this problem in the next section. If

one knows the rate of approximation r,, one can a priori find the law n =

n(£) that provides the best asymptotic rate of convergence by mlmmlzmg
the right-hand side of equality (4.6).

i,

e
‘*—w.'

!

Exlample. Let ({z,a),a € A, be a set of functions satisfying the in-
equality (4.4) for p > 2 with 7, < 7 < 0. Consider a structure for which
n = hy. Let the asymptotic rate of approximation be described by the law

()

(This law describes the main classical results in approximation theory;
see the next section.) Then the asymptotic rate of convergence reaches its
maximum value if

g 2c1+1

where [a} is the integer part of e. The asymptotic rate of convergence is

? Vi) (l’f ) = (4.9)

®
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4.3 THE PROBLEM OF FUNCTION APPROXIMATION
IN LEARNING THEORY *

The attractive properties of the asymptotic theory of the rate of conver-
gence described in Theorem 4.1 are that one can @ priori (before the learn-
ing process begins) find the law n = n(£) that provides the best (asymp-
totic) rate of convergence, and that one can a priori estimate the value of
the asymptotic rate of convergence. The rate depends on the construction
of the admissible structure {on the sequence of pairs (hy, Tp), n=1,2,...)
and also depends on the rate of approximation r,,, n =1,2,... .

On the basis on this information one can evaluate the rate of conver-
gence by minimizing (4.6). Note that in equation (4.6), the second term,
which is responsible for the stochastic behavior of the learning processes, ”’
is determined by nonasymptotic bounds on the risk (see (4.1) and (4.2}). g
The first term (which describes the deterministic component of the learning ¥ i
processes) usually only has an asymptotic bound, however.

m&é
T

Classical approximation theory studies connections between the smooth-
ness properties of functions and the rate of approximation of the function
by the structure with elements S, containing polynomials (algebraic or
trigonometric) of degree n, or expansions in other series with » terms. Usu-
ally, smoothness of an unknown function is characterized by the number s
of existing derivatives. Typical results of the asymptotic rate of approxi-
mation have the form

F]

Ta=n W, {4.10)

. where N is the dimensionality of the input space (Lorentz, 1966). Note that

this implies that a high asymptotic rate of convergence® in high-dimensional
spaces can be guaranteed only for very smooth functions.

In learning theory we would like to find the rate of approximation in the
following case:

(i} Q(z,a), a € A, is a set of high-dimensional functions.

i (ii) The elements Sy, of the structure are not necessarily linear manifolds.
,f {(They can be any set of functions with finite VC dimension. }

Furthermore, we are interested in the cases where the rate of approxi-
mation is high.

Therefore, in learning theory we face the problem of describing the cases
for which a high rate of approximation is possible. This requires describ-
ing different sets of “smooth” functions and structures for these sets that
provide the bound O( =) for ry, (Le., fast rate of convergence).

\“—" best e S—L\

“Note, however, that a high asymptotic rate of convergence does not neces-
sarily reflect a high rate of convergence on a limited sample size.

Let the rate of convergence be considered high if v, < n™'/2,

SRR
e



In 1989 Cybenko proved that using a superposition of sigmoid functions
(neurons) one can approximate any smooth function (Cybenko, 1989).

In 1992-1993 Jones, Barron, and Breiman described a structure on dif-
ferent sets of functions that has a fast rate of approximation (Jones, 1992)
(Barron, 1993), and (Breiman, 1993). ’ ’

They considered the following concept of smooth functions. Tet {f(z)}

be a set of functior?s and let {f(w)} be the set of their Fourier transforms.
Let us characterize the smoothness of the function f(x) by the quantity

[l @)do = Ca) <0, a3z 0.

In terms of this concept the following theorem for the rate of approximation
Ty holds true:

Theorem 4.2. (Jones, Barron, and Breiman) Let the set of functions
f(z) satisfy (4.11). Then the rate of approzimation of the desired functions
by the best function of the elements of the structure is bounded by O(=3=)
if one of the following holds: v

(i) The set of functions {f (@)} is determined by (4-11) with d = 0, and
the elements Sy, of the structure contain the functions

fl@,aw,) =" oysin[(z - w;) + 03], (4.12)
=1

where a; and v; are arbitrary values and w; are arbitrary vectors
(Jones, 1992).

(ii) The set of functions {f (x)} is determined by equation (4.11) with
d =1, and the elements S, of the structure contain the SJunctions

ki1
Hle, 0, w,v) = Zaz-S [(z - w;) + 1], (4.13)
=1
whem_ o apd v; are arbitrary values, w; are arbitrary vectors, and
S(u) is a sigmoid function (a monotonically increasing function such

that lim, ., o S(u} = —1, limy_ . S(u) =1)
(Barron, 1993).

(iii) The set of functions {f(z)} is determined by (4.11} with d = 2, and
the elements S, of the structure contain the functions

flz, o, w,v) = Zﬂfi K;L‘ “wg) + 'U’if-f— 1 |u'+ = ma.x(O, ), (4‘14)

i=1

where o; and v; are arbitrary values and w; are arbitrary vectors
(Breiman, 1993).

(4.11)

In spite of the fact that in this theorem the concept of smoothness is dif-
ferent from the number of bounded derivatives, one can observe a similar
pbenomenon here as in the classical case: To keep a high rate of convergence
for a space with increasing dimensionality, one has to increase the smooth-

ness of the functions simultaneously as the dimensionality of the space is/l

increased. Using constraint (4.11) one attains it automatically. Girosi and
Anzellotti (Girosi and Anzellotti, 1993) observed that the set of functions
satisfying (4.11) with d = 1 and d = 2 can be rewritten as

1 1
flz) = 2T xA(z), flz)= a2 * A(z),

where A(z) is any function whose Fourier transform is integrable, and *
stands for the convolution operator. In these forms it becomes more appar-
ent that due to more rapid fall-off of the terms 1/|z|?~1, functions satisfying
{4.11) become more and more constrained as the dimensionality increases.
The same phenomenon is also clear in the results of Mhaskar {Mhaskar,
1992), who proved that the rate of convergence of approximation of func-
tions with s continuous derivatives by the structure (4.13) is O(n—*/N).

Therefore, if the desired function is not very smooth, one cannot guaranw-ti'

tee a high asymptotic rate of convergence of the functions to the unknown
function.

In Section 4.5 we describe a new model of learning that is based on the
idea of local approximation of the desired function (instead of global, as
considered above). We consider the approximation of the desired function
in some neighborhood of the point of interest, where the radius of the
neighborhood can decrease with increasing number of observations.

The rate of local approximation can be higher than the rate of global
approximation, and this effect provides a better generalization ability of
the learning machine,

4.4 EXAMPLES OF STRUCTURES FOR NEURAL
NETS
The general principle of SRM can be implemented in many different ways.

Here we consider three different examples of structures built for the set of
functions implemented by a neural network, :

1. A structure given by the architecture of the neural network

Consider an ensemble of fully connected feed-forward neural networks
in which the number of units in one of the hidden layers is monotonically
increased. The sets of implementable functions define a structure as the

e e Bl PG O SLTUCLUTES 1o ANeural INets iy .
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FIGURE 4.3. A structure determined by the number of hidden units,

number of hidden units is increased (Fig. 4.3).
2. A structure given by the learning procedure

Consider the set of functions S = {f(z,w), w € W}, implementable by a
neural net of fixed architecture. The parameters {w} are the weights of the
neural network. A structure is introduced through $, = { flz,w), ||lw|| <
Coland Oy < Oy < -+« < C,. Under very general conditions on the set
of loss functions, the minimization of the empirical risk within the element
Sp of the structure is achieved through the minimization of

£
E(w, %) = 3 3 Llws, H(ai,w)) +

i=1

with appropriately chosen Lagrange multipliers v; > 43 > --- > ~,,. The

well-known “weight decay” procedure refers to the minimization of this

functional.

3. A structure given by preprocessing

Consider a neural net with fixed architecture. The input representation is -

modified by a transformation z = K (x, B), where the parameter 8 controls
the degree of degeneracy introduced by this transformation {3 could, for .
instance, be the width of a smoothing kernel).

A structure is introduced in the set of functions .§ = {f(K(z,B),w), we
W} through 8> Cp,and G, > Cy > ... > C,.

To implement the SRM principle using these structures, one has to know
{estimate) the VC dimension of any element Sk of the structure, and has
to be able for any 9% to find the function that minimizes the empirical risk.

47.5.7 Tﬂe Problem of Loca.l Functlon Iésl;iﬁation 103
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- FIGURE 4.4. Examples of vicinity functions: {a) shows a hard-threshold vicinity

function and (b) shows a soft-threshold vicinity fanction.

4.5 THE PROBLEM OF LOCAL FUNCTION
ESTIMATION

Let us congider a model of local risk minimization (in the neighborhood
of a given point xy) on the basis of empirical data. Consider a nonnega-
tive function K(z,x; 8) that embodies the concept of neighborhood. This
function depends on the point zo and a “locality” parameter g & (0, co)
and satisfies two conditions:

OSK(E1$O;6) < ]-7

K{zg,z0;8) = 1. {4.15)
For example, both the “hard threshold” vicinity function (Fig. 4.4(a}))

i Ml — g
Kl(rc,:co;ﬁ)={ Ll = @l < 5, (4.16)

0 otherwise,

and the “soft threshold” vicinity function (Fig. 4.4(b))

T — Tg)?
Ka(z, 0; B) = exp {—(——ﬁ—z‘i} (4.17)

meet these conditions.
Let us define a value

K(zo,8) [ K (2, 20; B)dF (z). (4.18)

For the set of functions f(x, ), & € A, let us consider the set of loss
functions Q{z, o) = L{y, f(x, @)}, o € A. Our goal is to minimize the {ocal
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risk functional
Ria,Bim0) = [ L(y,f(x,a))%ﬁ)@dp(m, W (419) ‘

over bf)th the set of functions f(z,a), a € A, and different vicinities of
the point z (def‘ined by parameter 8) in situations where the probability'
measure F(z,y) is unknown, but we are given the independent identically
distributed examples

| (#1,91), -+, (T, ye).
Note that the problem of local risk minimization on the basis of empirical
data is a generalization of the problem of global risk minimization. (In the

last problem we have to minimize the functional (4.19) with K (z,xzo; g) =

1)
Fo‘r the problem of local risk minimization one can generalize the bound
obtained for the problem of global risk minimization: With probability 1-y

simultaneously for all bounded functions A < Ly, f(z,) £ B, a € A, and

all functions 0 < K(x,20,8) <1, B € (0,00), the inequality

R(G:',ﬁ, 350) _<_. %Ef:l L(y‘iafgmi, Q))K(ﬁz,.’ﬂg,ﬁ) + (B — A)g(f, hz)
(+ 8 Keroif) - £t hg))

£(e,h) = \/h(ln(%’/h t? 1) — Inn/2’
holds true, where hy; is the VC dimension of the set of functions
L(y, f(:I:,O!))K(.T,:EQ;ﬁ), a€A, fe (0300)
and hg is the VC dimension of the set of functions X (%, %o, 8) (Vapnik and
Bottou, 1993).
Now using the SRM principle one can minimize the right-hand side of

tl'le inequality over three parameters: the value of empirical risk, the VC
dimension Ay, and the value of the vicinity 3 (VC dimension hg).

b

‘The local risk minimization approach has an advantage when on the basis
of the given structure on the set of functions it is impossible to approximate
well the desired function using a given number of observations. However, it
may be possible to provide a reasonable local approzimation to the desired
function at any point of interest (Fig. 4.5).

4.6 THE MINIMUM DESCRIPTION LENGTH (MDL)
AND SRM PRINCIPLES

}fﬁ Along witp the SRM inductive principle, which is based on the statisti-
{;{ cal analysis of the rate of convergence of empirical processes, there ex-

FIGURE 4.5. Using linear functions one can estimate an unknown smooth func-
tion in the vicinity of any point of interest.

ists another principle of inductive inference for small sample sizes, the so-
called minimum description length (MDL) principle, which is based on an
information-theoretic analysis of the randomness concept. In this section
we consider the MDL principle and point out the connections between the

"SRM and the MDL principles for the pattern recognition problem.

In 1965 Kolmogorov defined a random string using the concept of algo-
rithmic complexity.

He defined the algorithmic complexity of an object to be the length of
the shortest binary computer program that describes this object, and he
proved that the value of the algorithmic complexity, up to an additive con-
stant, does not depend on the type of computer. Therefore, it is a universal
characteristic of the object.

The main idea of Kolmogorov is this:

Consider the string describing an object to be random if the algorithmic
complexity of the object is high — that is, if the string that describes the
object cannot be compressed significantly.

Ten years after the concept of algorithmic complexity was introduced,
Rissanen suggested using Kolmogorov’s concept as the main tool of in-
ductive inference of learning machines; he suggested the so-called MDL
principle® (Rissanen, 1978]).

5The use of the algorithmic complexity as a general inductive principle
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4.6.1 The MDL Principle

Suppose that we are given a training set of pairs

(wl, ml), ey ({.u'e, :L‘,e)

(pairs drawn randomly and independently according to some unknown

probability measure). Consider two strings: the binary string

Wi, ...,We (4,20)

and the string of vectors

1y .., Tg. (4.21)

The question is,
Given (4.21) is the string ({.20) a random object?

To answer this question lof us analyze the algorithmic complexity of
the string (4.20) in the spirit of Solomonoff-Kolmogorov’s ideas. Since the
W1,...,wp are binary valued, the string (4.20) is described by ¢ bits.

To determine the complexity of this string let us try to compress its
description. Since training pairs were drawn randomly and independently,
the value w; may depend only on vector z; but not on vector Tj, 1 # 7 (of
course, only if the dependency exists).

Consider the following model: Suppose that we are given some fixed
codebook G, with N < 2¢ different tables T}, i = 1,...,N. Any table T}
describes some function” from z to w.

Let us try to find the table 7" in the codebook Cy that describes the

string (4.20) in the best possible way, namely, the tahble that on the given
string (4.21) returns the binary string

Wy w) o (4.22)

for which the Hamming distance between string (4.20) and string (4.22) is
minimal (i.e., the number of errors in decoding string (4.20) by this table
T is minimal).

Suppose we found a perfect table T, for which the Hamming distance

between the generated string (4.22) and string (4.20) is zero. This table
decodes the string (4.20).

was considered by Sclomonoff even before Kolmogorov suggested his model
of randomness. Therefore, the principle of descriptive complexity is called the
Solomonoff-Kolmogorov principle. However, only starting with Rissanen’s work
was this principle considered as a tool for inference in learning theory.
7Forma.lly speakng, to get tables of finite length in codebook, the input vector
z has to be discrete. However, as we will see, the number of levels in quantization
wiil not affect the bounds on generalization ability. Therefore, one can consider
any degree of quantization, even giving tables with an infintte number of entries,

Since the codebook Cj, is fixed, to describe the string (4.20) it is sufficient
to give the number o of table T, in the codebook. The minimal number of
bits to describe the number of any one of the N tables is {lg, N1, Whe_re [A]
is the minimal integer that is not smaller than* A. Therefore, in this case
to describe string (4.20) we need [lg, N'| (rather-than £) bits. Thus_us%ng
a codebook with a perfect decoding table, we can compress the description
length of string {4.20) by a factor

K(T,) = &) (4.23)

Let us call K(T) the coefficient of eompression for the string (4.20)._

Congider now the g‘eneral\case: The codebook ) does not cc!nt;am the
perfect table. Let the smallest Hamming distance between the strings (gen-
erated string (4.22) and desired string {4.20)) be d > 0. Without loss of
generality we can assume that d < £/2. (Otherwise, instead of the sr‘na,llest
distance one could lock for the largest Hamming distance and duru}g de-
coding change one to zero and vice versa. This will cost one extra bit in the
coding scheme). This means that to describe the string one has to make d
corrections to the results given by the chosen table in the codebook.

For fixed d there are C¢ different possible corrections to the‘ string of
length £. To specify one of them (i.e., to specify one of the C¢ variants) one

eds C#] bits.
neThel[(la%ref 10 describe the string (4.20) we need {lg, N bits to define
the number of the table, and [lg, C¢| bits to describe the corrections. We
also need [lg, d] + Ag bits to specify the number of corregtions d, where
Ag < 2lgylgod, d > 2. Altogether, we need [lg, N|+{lg, CF | +[lg, d1+Ag
bits for describing the string (4.20}. This number should be compared to
£, the number of bits needed to describe the arbitrary binary string (4.20).
Therefore, the coefficient of compression is

[lgo N1 + [Ig, 052 + [[lgpd] +Aa (4.24)

If the coeflicient of compression K(T) is small, then according to the
Solomonoff-Kolmogorov idea, the string is not random and somehow de-
pends on the input vectors x. In this case, the decoding table T somehow
approximates the unknown functional relation between z and w.

K{(T) =

4.6.2 Bounds for the MDL Principle
The important question is the following:

Does the compression coefficient K(T) determine the probability of test
error in classification (decoding) vectors x by the table T'?

The answer is yes.
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To prove this, let us compare the result obtained for the MDL principle
to that obtained for the ERM principle in the simplest model (the learning
machine with a finite set of functions).

In the beginning of this section we considered the bound (4.1} for the gen-
eralization ability of a learning machine for the pattern recognition prob

lem. For the particular case where the learning machire has a finite number

N of functions, we obtained that with probability at least 1 7, the in-
equality

N ¥
holds true simultaneously for all N functions in
(for all N tables in the given codebook). Let
side of this inequality usiné he concept of t
the fact that — d

Remp g)\/ Z

Note that for d < £/2 and £ > 6 the inequality

¢ given set of functions
transform the right-hand
compression coefficient, and

RO Gy ezion o o)

i
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%s valid (one can easily check it). Now let us rew;ilr‘f_;t_;ih_éi;ié_l;tr-hé:r:ci side of
Inequality {4.26) in terms of the compression c?efﬁcient (4.24):

i 1 _]{f.}_ 1 Cd .. !,,,, e .
2(1n2rng ] : [lgs CF] + l—gzdlt’+Adﬁl_llkﬂ) SZ(KanglnTn).

Since inequality (4.25) holds true with probability at least 1 — 5 and in-
equality (4.26) holds with probability 1, the inequality

R(T) <2 (K(Cﬂ-}ln2 - %ﬂ) (4.27)

holds with probability at least 1 — .

4.6.3 The SRM and MDL Principles

Now suppose that we are given M codebooks that have the following struc-
ture: Codebook 1 contains a small number of tables, codebook 2 contains
these tables and some more tables, and so on.

- probability at least 1 — 7 one can assert that the probability committing an

I e = e Y

In this case one can use a more sophisticated decoding scheme to describe
string (4.20): First, describe the number m of the codebook (this requires
Mgy m] + Am, Am < 2[lg;lgy m] bits) and then, using this codebook,
describe the string (which as shown above takes [lg, N1+ [lg, C¢]+[lg, d] +
Ay bits).

The total length of the description in this case is not less than [lng N+
[tng C31 + [lgo d] + Ag + [lg, m] + A,,,, and the compression coefficient is

_ [lgs N1+ flng’éi] + [lga d] + Ag + [lgam] +Am'

K(T) :

For this case an inequality analogous to inequality (4.27) holds. Therefore,
the probability of error for the table that was used for compressing the
description of string (4.20) is bounded by inequality (4.27).

Thus, for d < £/2 and £ > 6 we have proved the following theorem:

Theorem 4.3. If on a given structure of codebooks one compresses by
a factor K(T') the description of string (4.20) using o table T, then with

error by the table T is bounded by

RT) <2 (K(T} n2-— an) , 2> 6. (4.28) 1

Note how powerful the concept of the compression coefficient is: To ob-
tain a bound on the probability of error, we actually need only information

-about this coefficient.® We do not need such details as

(i) How many examples we used,

(i) how the structure of the codebooks was organized,
(iii) which codebook was used,
(iv) how many tables were in the codebook,

(v} how many training errors were made using this table.

Nevertheless, the bound (4.28) is not much worse than the bound on the
risk (4.25) obtained on the basis of the theory of uniform convergence.
The latter has a more sophisticated structure and uses information about
the number of functions (tables) in the sets, the number of errors on the
training set, and the number of elements of the training set.

®The second term, —Inn/¢, on the right-hand side is actually foolproof: For
reasonable n and £ it is negligible compared to the first term, but it prevents one
from considering too small  and/or too small £.
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Note also that the bound (4.28) cannot be improved more than by factor

2: It is easy to show that in the case where there exists a perfect table in

the codebook, the equality can be achieved with factor 1.
i This theorem justifies the MDL principle: To minimize the probability
[l of error one has to minimize the coefficient of compression. :

4.6.4 A Weak Point of the MDL Principle

There exists, however, a weak point in the MDIL principle.

Recall that the MDL principle useg a codebook with a finite number of

tables. Therefore, to deal with a set; of functions determined by & continuous
range of parameters, one must make a finite number of tables.
This can be done in many ways. The problem is this:

What is a “smart” codebook for the given set of functions?

In other words, how, for a given set of functions, can one construct a

codebook with a small number of tables, but with good approximation
ability?

A “smart” quantization could significantly reduce the number of tables
it in the codebook. This affects the compression coefficient. Unfortunately,
(gf finding a “smart” quantization is an extremely hard problem. This is the
t" weak point of the MDL principle,

In the next chapter we will consider a normalized set of linear functions
in & very high dimensional space (in our experiments we use linear fanctions
in N ~ 10" dimensional space). We will show that the VC dimension h
of the subset of functions with bounded norm depends on the value of the
bound. It can be a small (in our experiments A ~ 102 to 10%). One can
guarantee that if a function from this set separates a training set of size ¢
without error, then the probability of test error, is proportional to i In £/,

The problem for the MDL approach to this set of indicator functions is
how to construct a codebook with 2 £* tables (but not with = £V tables)
that approximates this set of linear functions well,

{\’f The MDL principle works well when the problem of constructing rea-
M%l sonable codebooks has an obvious solution. But even in this case, it is not
it better than the SRM principle. Recall that the bound for the MDL princi-
\? ple (which cannot be improved using only the concept of the compression
coefficient) was obtained by roughening the bound for the SRM pringciple.

SEEEE

Informal Reasoning and .
Comments — 4

Attempts to improve performance in various areas of computational raath-
ematics and statistics have essentially led to the same idea that we call the
structural risk minimization inductive principle. :

First this idea appeared in the methods for solving ill-posed problems:

(i) Methods of quasi-solutions (Ivanov, 1962),
(i) methods of regularization (Tikhonov, 1963)).
It then appeared in the method for nonparametric density estimation:
(i} Parzen windows (Parzen, 1962),
(ii} projection methods (Chentsov, 1963),

(iif) conditional maximum likelihood method (the method of sieves ( Grenan-
der, 1981)),

(iv) maximum penalized likelihood method (Tapia and Thompson, 1978)},
ete.

The idea then appeared in methods for regression estimation:
(i) Ridge regression (Hoerl and Kennard, 1970),

‘%;; (i) model selection (see rex‘riew in (Miller, 1990)).

\;Fina,lly, it appeared in regularization techniques for both pattern recogni-

tion and regression estimation algorithms {Poggio and ‘Girosi, 1990},
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Of course, there were a number of attempts to justify the idea of searchin
for a solution using a structure on the admissible set of functions. However
in the framework of the classical approach Jjustifications were obtained on}
for specific problems and only for the asymptotic case. g

In the model of risk minimization from empirical data, the SRM principle
provides capacity (VC dimension) control, and it can be justified for a finite
number of observations. '

ii) The solution of (4.29) belongs to some M}:
Qf) € d* < o0.

- Tikhonov suggested finding a sequence of funetions f, minimizing the func-

ionals
@, (f) = &, (Af, F) + Q)

r different . He proved that f, converges to the desired solution as «
nverges to 0. g

Tikhonov also suggested using the regularization technique even in the
case where the right-hand side of the operator equation is given only within
jme S-accuracy:

In 1962 Ivanov suggested an idea for finding a quasi-solution of the lineay

operator equation P (F, F5) < 8.

n this case, in minimizing the functionals
*(f) = pg, (Af, Fs) +~(6)Q(S) (4.32)

oﬂe obtains a sequence fs of solutions converging (in the metric of £1) to
the desired one fo as § — 0 if

Af=F, feM, (4.29)

in order to solve ill-posed problems. (The linear operator A maps elements
of the metric space M C E, with metric pr, to elements of the metri¢
space N C Ejy with metric pg,.) He suggested considering a set of nested
convex compact subsets '

My CMyC-CM,,--, (4.30) lim v(8) = 0,
: §—0

UM =, (4.31) lim 5 — 0

=1 Lo 5—0 ’}‘(6) )

In both methods the formal convergence proofs do not explicitly contain

and for any subset M; to find a function fi € M,; minimizing the distaﬁz
' “‘capacity control.” Essential, however, was the fact that any subset M; in

p = pu(Af,F). [vanov’s scheme and any subset M = {f : Q(f) < ¢} in Tikhonov’s scheme

Ivanov proved that under some general conditions th e compact. That means it has a bounded capacity (a metric s-entropy).
& - @ sequence of SOIUtIO-I;lS - Therefore, both schemes implement an SRM principle: First define a
iy ity structure on the set of admissible functions such that any element of the

structure has a finite capacity, increasing with the number of the element.
hen, on any element of the structure, the function providing the best
approximation of the right-hand side of the equation is found. The sequence
f'the obtained solutions converges to the desired one.

converges to the desired one.

The quasi-solution method ‘was suggested at the same time as Tikhono
proposed his regularization technique; in fact, the two are equivalent. T
the regularization technique, one introduces a, nonnegative semicontinuon,

from below) functional 0 that the fi i ies:
( ) functional §}(f) that possosses the following properties STOCHASTIC ILL-POSED PROBLEMS AND THE
(i) The domain of the functional coincides with M {the domain to whic ROBLEM OF DENSITY ESTIMATION

the solution of (4.29) belongs).

1i 978 we generalized the theory of regularization to stochastic ill-posed
oblems (Vapnik and Stefanyuk, 1978), We considered a problem of solv-
the operator equation (4.23) in the case where the right-hand side is
unknown, but we are given a sequence of approximations Fs possessing the
llowing properties:

(ii) The region for which the inequality

M; ={f:Q(f) <d;}, d; >0,

holds forms a compactum in the metric of space Fj.



(i) Each of these approximations Fs is a random function.®

(it) The sequence of approximations converges in probability (in the met-
ric of the space Fy) to the unknown function as § converges to zero.

'In other words, the sequence of random functions Fs has the property

Plpg, (F,F5) > ¢} P 0, Vex>o.

Using Tikhonov’s regularization technique one can obtain, on the basis of
Ezlgcéc;m functions Fj, a sequence of approximations f5 to the solution of

We proved that for any & > 0 there exists Y0 = Yo(&) such that for any
7(8) < v the functions minimizing functional (4.32) satisfy the inequality

P{PE1 (fa fﬁ) > E} < 2P {p2E2 (F1 Fﬁ) > 7(6)5} . (433)

In other words, we connected the distribution of the random deviation
of the approximations from the exact right-hand side (in the E, metric)
with the distribution of the deviations of the solutions obtained by the
regularization method from the desired one {in the E; metric).

In particular, this theorem gave us an opportunity to find a general
method for constructing various density estimation methods.

‘ As mentioned in Section 1.8, density estimation requires us to solve the
integral equation

T
[ st Fe)
=00
where F'(z) is an unknown probability distribution function, using i.i.d,
data ©1,...,2,. ...

Let us construct the empirical distribution function

1 £
Fe(@) = 3 )0 — ),
d=1

which is a random approximation to F(x), since it was constructed using
random data xy,.. ., z,.

I.n Section 3.9 we found that; the differences sup,, [F'(x) — Fp(x)| are de-
scribed by the Kolmogorov-Smirnov bound. Using this bound we obtain

P {sgp [F(x) — Fy(z)) > s} < 2672

9A random fm'ul:tiﬂn is one that iz defined by a realization of some random
event, For a definition of random functions see any advanced textbook in proba-
bility theory, for example, A.N, Schiryaev, Probability, Springer, New Yorlk,

DR ™ ket

Therefore, if one minimizes the regularized functional

R(p) = 3, ( [ oo, Fe(m)) +10p), (4.34)

(0]

then according to inequality (4.33) one obtains the estimates pe(%), whose
deviation from the desired solution can be described as follows:

Plpe,(p,pe) > e} < 2exp{—2efvy,}.
Therefore, the conditions for consistency of the obtained estimators are
Yo — 0,
=00
byg — 0. " (4.35)
f—00

Thus, minimizing functionals of type {4.34) under the constraint (4.35)
gives consistent estimators. Using various norms Ky and various function-
als $2(p) one can obtain various types of density estimators (including all
classical estimators'?). For our reasoning it is important that all nonpara-
metric density estimators implement the SRM principle. By choosing the
functional £2(p}, one defines a structure on the set of admissible solutions
(the nested set of functions M, = {p : Q(p) < ¢} determined by constant c);
using the law 7, one determines the appropriate element of the structure.

In Chapter 7 using this approach we will construct direct method of the
density, the conditional density, and the conditional probability estimation.

4.9 THE PROBLEM OF POLYNOMIAL
APPROXIMATION OF THE REGRESSION

The problem of constructing a polynomial approximation of regression,
which was very popular in the 1970s, played an important role in under-
standing the problems that arose in small sample size statistics.

9By the way, one can obtain all classical estimators if one approximates an
unknown distribution function F{x) by the the empirical distribution function
Fe(z). The empirical distribution function, however, is not the best approxima-

* tion to the distribution function, since, according to definition, the distribution

function should be an absolutsly continuous one, while the empirical distribu-
tion function is discontinuous. Using absolutely continuous approximations {e.g.,
a polygon in the one-dimensicnal case} one can obtain estimators that in addi-
tion to nice asymptotic properties (shared by the classical estimators) possess
some useful properties from the point of view of limited numbers of observations
{Vapnik, 1988).



Consider for simplicity the problem of estimating a one-dimensional re- the second element contains polynomials of degree two:

gression by polynomials. Let the regression f () be a smooth function,
[iSuppose that we are given a finite number of measurements of this fune-
tion corrupted with additive noise

yz:f(ﬂiz)+§u T::].,...,e,

fo(m,0) = 0p2® + 17 + g, @ = (o, 1, ap) € RY;

and so on.

'To choose the polynomial of the best degree, one can minimize the fol-

lowing functional (the righthand side of bound (3.30)):
¢

3 i (Wi — fon(ms, @)

(in different settings of the problem, different types of information about the

unknown noise are used; in this model of measuring with noise we suppose R(a,m) = , {4.36)
that the value of noise & does not depend on z;, and that the point of (1 - C\/Z;)+
measurement &; is chosen randomly according to an unknown probability 20
distribution F(z)). £ — 4hm(ln %, 1) —Inn/4
The problem is to find the polynomial that is the closest (say in the Ly(F) ¢ £ ’

metric) to the unknown regression function f (). In contrast to the classical
sregression problem described in Section 1.7.3, the set of functions in which
’!0116 has to approximate the regression is now rather wide (polyno_mial of

where hy, is the VC dimension of the set of the loss functions

Q(Z, Od) = (y - f"&(x'n a))za a € A,

and ¢ is a constant determining the “tails of distributions” (see Sections
3.4 and 3.7).
One can show that the VC dimension h of the set of real functions

Qz,0) = Flg{z,0)}), a€A,

where F(u) is any fixed monotonic function, does not exceed eh*, where
€ < 9.34 and h* is the VC dimension of the set of indicators

I(z,a,ﬁ)zﬂ(g(a:,a)*ﬂ), acAh, fe R

lany degree), and the number of observations is fixed.

Solving this problem taught statisticians a lesson in understanding the
nature of the small sample size problem. First the simplified version of this.
problem was considered: The case where the regression itself is a polynomial
(but the degree of the polynomial is unknown) and the model of noise is

* | described by a normal density with zero mean. For this particular problem
the classical asymptotic approach was used: On the basis of the technique of
testing hypotheses, the degree of the regression polynomial was estimated
and then the coefficients of the polynomial were estimated. Experiments,
i | however, showed that for small sample sizes this idea was wrong: Fven if
, | one knows the actual degree of the regression polynomial, one often has to . . .
%‘; , choose a smaller degree for the approximation, depending on the available Therefore, for our loss functions the VC dimension is bounded as follows:
" | number of observations.
Therefore, several ideas for estimating the degree of the approximating
i polynomial were suggested, including (Akaike, 1970), and (Schwartz, 1978)
' (see (Miller, 1990)). These methods, however, were justified only in asymp-
1 totic cases.

b < e(m+1).

To find the best approximating polynomial, one has to choose both the
degree m of the polynomial and the coefficients « minimizing functionaf'
(4.36).

4.10.2 Choosing the Best Sparse Algebraic Polynomial
4.10 THE PROBLEM OF CAPACITY CONTROL

Let us now introduce another structure on the set of algebraic polynomi-
als: Let the first element of the structure contain polynomials Pi(x,a) =
oz, a € R (of arbitrary degree d), with one nonzero term; let the sec-
ond element contain polynomials Po(z, @) = apz® + aga®, a € R2, with

JF\ \M 4.10.1 Choosing the Degree of the Polynomial

Choosing the appropriate degree p of the polynomial in the regression prob-
lem can be considered on the basis of the SRM principle, where the set of
polynomials is provided with the simplest structure: The first element of
the structure contains polynomials of degree one:

""We used this functional (with constant ¢ = 1, and & = [m(nf/m 4- 1) —
Iny}/€, where n = £7'/%) in several benchmark studies for choosing the degree of
the best approximating polynomial. For small sampie sizes the results obtained

Az, o) =mz +ag, a= (1, ) € Rz; were often better than ones based on the classical suggestions.



two nonzero terms; and so on. The problem is to choose the best spars
polynomial P, (x} to approximate a smooth regression function. _

To do this, one has to estimate the VC dimension of the set of log
functions ‘ :

Q(Z, a)= (y - Pm(ZL‘, a))zn

where Pp(z,a), o € R™, is a set of polynomials of arbitrary degree tha
contain m terms. Consider the case of one variable z. _

The VC dimension h for this set of loss functions can be bounded b
2h*, where h* is the VC dimension of the indicators

H{y,z) = 6(y — Pmiz,0) ~ B8), a€R™ geR.

Karpinski and Werther showed that the VC dimension h* of this set of
indicators is bounded as follows:

.10.4 The Problem of Feature Selection

he problem of choosing sparse polynomials plays an extremely important
role in learning theory, since the generalization of this problem is a problem
f feature selection (feature construction) using empirical data.

As was demonstrated in the examples, the above problem of feature selec-
jon (the terms in the sparse polynomials can be considered as t.he featureg)
‘is quite delicate. To avoid the effect encountered for sparse trlgo‘nf_)metnc
_polynomials, one needs to construct a prioré a structure containing ele-
ments with bounded VC dimension and then choose decision rules from the
unctions of this structure,

* Constructing a structure for learning algorithms that select (construct)
“features and control capacity is usually a hard combinatorial problem.

In the 1980s in applied statistics, several attempts were made to find
cliable methods of selecting nonlinear functions that control capacity. In
particular, statisticians started to study the problem of function estimation

1 the following sets of the functions:

3m<h*<4m+3

(Karpinski and Werther, 1989). Therefore, our set of loss functions has VC.;
dimension less than e(4m + 3). This estimate can be used for finding th
spatse algebraic polynomial that minimizes the functional (4.36).

m
Y= EO&J'K(:B, wj) + oy,
i=1

4.10.8 Structures on the Set of Trigonometric Polynomials - where K(z,w) is a symmetric function with respect to vectors z and w,

Consider now structures on the set of trigonometric polynomials. First we: Wi, ...y Wm Te unknown vectors, and oy, ..., Gy, are unknown scalars (Fried-
consider a structure that is determined by the degree of the polynomials.}2: “man and Stuetzle, 1981), (Breiman, Friedman, Olshen, z?.nd .Stqne‘, 1984)
The VC dimension of the set of our loss function with trigonometric poly: “(in contrast to approaches developed in the 1970s for estimating lmear_ ik
nomials of degree m is less than b = 4m - 2. Therefore, to choose the best porameters functions (Miller, 1990)). In these classes of functions choos_mg
trigonometric approximation one can minimize the functional (4.36), For the functions K(z,w;), j = 1,...;m, can be interpreted as feature fselectlor}.
this structure there is no difference between algebraic and trigonometric ~ As we will see in the next chapter, for the sets of functions of this fype, it
polynomials. "is possible to effectively control both factors responsible for generahzatlon

The difference appears when one constructs a structure of sparse trigono- _ability — the value of the empirical risk and the VC dimension.
metric polynomials. In contrast to the sparse algebraic polynomials, where
any element of the structure has finite VC dimension, the VC dimension
of any element of the structure on the sparse trigonometric polynotmials is
infinite.

This follows from the fact that the VC dimension of the set, of indicator
functions '

4.11 THE PROBLEM OF CAPACITY CONTROL AND
' BAYESIAN INFERENCE

“4.11.1 The Bayesian Approach in Learning Theory

 In the classical paradigm of function estimation, an important place belongs

to the Bayesian approach (Berger, 1985).
According to Bayes’s formula two events A and B are connected by the

“equality

flz,a) =8(sinaz), ac R, ze(0,1),
is infinite (see Example 2, Section 3.6).
\

Trigonometric polynomials of degree m have the form
P(B|A)P(4)

PB)
One uses this formula to modify the ML models of function estimation
discussed in the comments on Chapter 1.

fol@) =3 (axsinka + by cos k) + ap. P(A|B) =

k=1



Consider, for simplicity, the problem of regresgion estimation from mea-
surements corrupted by additive noise

¥ = f(z, a0) + &

In order to estimate the regression. by the ML, method, one has to know a

parametric set of functions f(z,a), 0 € A 2", that contain the regression
J(z, ), and one has to know a model of noise P(¢).

In the Bayesian approach, one has to possess additional information:

One has to know the g priors density function P(a) that for any function
from the parametric set of functions f(x,a), a € A, defines the probability

for it tﬁbe the regression. If f (z, ) is the regression function, then the
probability of the training data

Y, X1 = (g1, 21),..., (e, ze)
equals

e
P([Y, Xlag) = HP(?Jz' = flzi, a0)).
i1

Having seen the data, one can ¢ posteriort estimate the probability that
barameter « defines the regression:

Plally, x)) = 2E 0 (.37)

One can use this exp
funetion.

Let us c_onsider the simplest way: We choose the approximation f(z, a*)
such that it yields the maximum conditional probability.)® Finding o* that

1tslllaxi?lizes this probability is equivalent to maximizing the following func-
ional:

ression to choose an approximation to the regression

)
B(o) =Y InP(y; — f(zs,)) +1In P(a). (4.38)
i=1

13 .
Another estimator constructed on the basis of the a posterior: probability

do(x|[Y, X]) = / (&, ) P(af[Y, X])da

Ppossesses the foﬂowing remarkable property: It mi

Sess r nimizes the average quadrati
deviation from the admissible regression functions ged ¢

R®) = [ (7(,0) - dally, X1)*P(Y; Xy Playas (Y, X1 da.

To find this estimator in explicit form one has to co i i

this or in e nduct integration analyticall
{numerical 1nteg_ra_tlon Is Impossible due to the high dimensionality of «@) .ylt,Tnfors—’
tunately, analytic integration of this expression is mostly an unsolvabie problem.

- Let us for simplicity consider the case where the noise is distributed ac-

cording to the normal law

PO = o =0 {3

Then from (4.37) one obtains the functional

¢ 2

O*(a) = %Z('y,; ~ flzs, ) — -2% In P(a), (4.39)

ge=1
which has to be minimized with respect to o in order to find the approxima-
tion function. The first term of this functional is the value of the empirical
risk, and the second term can be interpreted as a regularization term with
the explicit form of the regularization parameter.
Therefore, the Bayesian approach brings us to the same scheme that is
used in SRM or MDL inference,
The goal of these comments is, however, to describe a difference between
the Bayesian approach and SRM or MIDL..

4.11.2 Discussion of the Bayesian Approach and Capacity
Control Methods

he only (but significant) shortcoming of the Bayesian approach is that it
is restricted to the case where the set of functions of the learning machine
oincides with the set of problems that the machine has to solve. Strictly
speaking, it cannot be applied in a situation where the set of admissible
robletns differs from the set of admissible functions of the learning ma-
hine. For example, it cannot be applied to the problem of approximation
of the regression function by polynomials if the regression function is not
olynomial, since the a priori probability P{a) for any function from the
admissible set of polynomials to be the regression is equal to zero. There-
ore, the a posteriori probability (4.37) for any admissible function of the
learning machine is zero. To use the Bayesian approach one must possess
the following strong a prieri information:

p

set of problems to be solved.

(if) The a priori distribution on the set of problems is described by the
given expression P(a).'4

“This part of the a priori information is not as important as the first one.
One can prove that with increasing numbers of observations the influence of an
inaccurate description of P(a) is decreased.

(1) The given set of functions of the learning machine coincides with the

sy



In contrast to the Bayesian method, the capacity (complexity) contro]
methods SRM or MDL use weak (qualitative) a priori information about:
reality: They use a structure on the admissible set of functions (the set of
! functions is ordered according to an idea of usefulness of the functions):
this a priori information does not include any quantitative description
reality. Therefore, using these approaches, one can approximate g set of
functions that is different from the admissible set of functions of the learn |
ing machine.
Thus, inductive inference in the Bayesian approach is based (along wi't.
training data) on given strong {quantitative) a priori information about
‘ reality, while inductive inference in the SRM or MDI, approaches is based'.
(along with training data) on weak (qualitative) & priori information about
reality, but uses capacity (complexity) control. :
In discussions with advocates of the Bayesian formalism, who use this
formalism in the case where the set of problems to be solved and the set of

a,ldmissible tunctions of the machine do not coincide, one hears the following
claim: §

Chapter 5
‘Methods of Pattern Recognition

@ The Bayesian approach also works in general situations.

The fact that the Bayesian formalism sometimes works in general situas -
tions (where the functions implemented by the machine do not necessarily :
Ey_coincifie “.rith those being approximated) has the following explanat-ion. :
.Bayesian inference has an outward form of capacity control. It has two .
%stages: an informal stage, where one chooses a function describing (quan-

To implement the SRM inductive principle in learning algorithms one has
to minimize the risk in a given set of functions by controlling two factors:
the value of the empirical risk and the value of the confidence interval.
Developing such methods is the goal of the theory of constructing learn-
ing algorithms.
In this chapter we describe learning algorithms for pattern recoganition
and consider their generalizations for the regression estimation problem.

titative) a priori information P(a) for the problem at hand, and a formal
Jistage, where one finds the solution by minimizing the functional {4.38). By
fichoosing the disﬂiﬁ@gﬂql} P{a) one controls capacity. "

Therefore, in the general situation the ‘Bayesian formalism realizes a
i human-machine procedure for solving the probiem at hand, where capacity .
‘control is implemented by a. human choice of the regularizer In Pla). i

In contrast to Bayesian inference, SRM and MDL inference are-pure ma-
chine methods for solving problems. For any £ they use the same structure:
on the set of admissible functions and the same formal mechanisms for
capacity control.

5.1 WHY CAN LEARNING MACHINES GENERALIZE?

.The generalization ability of learning machines is based on the factors de-
scribed in the theory for controlling the generalization ability of learning
processes. According to this theory, to guarantee a high level of generaliza-
tion ability of the learning process one has to construct a structure

S CSc-.-C8
on the set of loss functions S = {2, @), € A} and then choose both an
appropriate element Sy of the structure and a function (=, aé“) € S in

this element that minimizes the corresponding bounds, for example, bound
{(4.1}. The bound (4.1) can be rewritten in the simple form

R(ai?) = Remp(aif) + @(%)7 (51)




