CHAPTER VI

DEGREES OF TESTABILITY

THEORIES may be more, or less, severely testable; that is to say,
more, ot less, easily falsifiable. The degree of their testability is of
significance for the selection of theories.

In this chapter, I shall compare the various degrees of testability

or falsifiability of theories through comparing the classes of ‘their—,

potential falsifiers. This investigation is quite independent of the

" question WIEther i fiot it is possible to distinguish in an absolute sense
between falsifiable and non-falsifiable theories. Indeed one might say of
the present chapter that it ‘relativizes’ the requirement of falsifiability
by showing falsifiability to be a matter of degree.

‘

31. A Programme and an Dlustration. :

A theory is falsifiable, as we saw in section 23, if there exists at
least_ one non-empty class of homotypic basic statements which are
forbicliden by it; that is, if the class of its potential falsifiers is not empty.
If, as In section 23, we represent the class of all possible basic statements
by a circular area, and the possible events by the radii of the circle,
then we can say: At least ope radins—or perhaps better, one narrow
sector whose width may represent the fact that the event is to be
obsf‘:rvablc’—-must be incompatible with the theory and ruled out
by it. One might then represent the potential falsifiers of various
theories by sectors of various widths, And according to the greater
an.d lesser width of the sectors ruled out by them, theories might then be
sal‘d ‘to have more, or fewer, potential falsifiers. {The question whether
this ‘more’ or fewer’ could be made at all precise will be left open for
che-moment.) It might then be said, further, that if the class of potential
falsifiers of one theory is ‘larger’ than that of another, there will be
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jore opportunities for the first theory to be refuted by experience;

‘thus compared with the second theory, the first theory may be
‘aid to be ‘Blsifiable in a higher degree’. This also means that the
“first theory saps more about the world of experience than the second
theory, for it rules out a larger class of basic statements. Although
the class of permitted statements will thereby become smaller, this

does not affect our argument; for we have seen that the theory does
not assert anything about this class, Thus it can be said that the amount
of empirical information conveyed by a theory, or its empirical content,
increases with its degree of falsifiability.

Let us now imagine that we are given a theory, and that the
sector representing the basic statements which it forbids becomes
wider and wider. Ultimately the basic statements not forbidden by
the theory will be represented by a narrow remaining sector. {
the theory is to be consistent, then some such sector must remain.)
A theory like this would obviously be very easy to falsify, since it
allows the empirical world only a narrow range of possibilities;
for it rules out almost all conceivable, i.e. logically possible, events. It
asserts so much about the world of experience, its empirical content
is so great, that there is, as it were, little chance for it to escape
falsification.

Now theoretical science aims, precisely, at obtaining theories
which are easily falsifiable in this sense. It aims at restricting the range
of permitted events to a2 minimum; and, if this can be done at all, o
such a degree that any further restriction would lead to an actual
empirical falsification of the theory. If we could be successful in
obtaining a theory such as this, then this theory would describe
‘our particular world’ as precisely as a theory can; for it would single
out the world of ‘our experience’ from the class of all logically
possible worlds of experience with the greatest precision attainable
by theoretical science, All the events or classes of occurrences which
we actually encounter and observe, and only these, would be charac-
terized as “permitted’. ¥t

32. How are Classes of Potential Falsifiers to be Compared ?
The classes of potential falsifiers arc infinite classes. The intuitive

# Vor further remarks concerning the aims of science, see appendix x, and
section #15 of the Postscript, and my paper “The Aim of Science’, Rafie 1, 1957, pp. 24~
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DEGREES OF TESTABILITY

‘more’ and ‘fewer’” which can be applied without special safegnards
to finite classes cannot similarly be applied to infinite classes.

We cannot casily get round this difficulty; not even if, instead
of the forbidden basic statements or occurrences, we consider, for
the purpose of comparison, classes of forbidden events, in order to

ascertain ‘which of them contains ‘more’ forbidden events. For the -

number of events forbidden by an empirical theory is also infinite,
as may be seen from the fact that the conjunction of a forbidden event

with any other event (whether forbidden or not} is again a forbidden .

event.

I shall consider three ways of giving a precise meaning, even in
the case of infinite classes, to the intuitive ‘more’ or.‘fewer,” in order
to find out whether any of them may be used for the purpose of

~comparing classes of forbidden events.

(1) The concept of the cardinality (or power) of a class. This concept
cannot help us to solve our problem, since it can easily be shown
that the classes of potential falsifiers have the same cardinal number
for all theorjes.* o -

(2) The concept of dimension. The vague intuitive idea that a cube in
some way contains more points than, say, a straight line can be clearly
formulated in logically unexceptionable terms by the set-theoretical
concept of dimension. This distinguishes classes or scts of points
according to the' wealth of the ‘neighbourhood relations’ between
their elements: sets of higher difngfision Have mote-abundant neigh-

bourhood relations. The concept of dimension which-allows us

€0 ‘compare classes of ‘higher’ and ‘lower’ dimension, will be vsed

here to tackle the problem of comparing degrees of testability. This.

is possible because basic statements, combined by conjunction with
other basic statements, again yield basic statements which, however,
are ‘more highly composite’ than their components; and this degree
of composition of basic statements may be linked with the concept of
dimension. However, it is not the composition of the forbidden events
but that of the permitted ones which will have to be used. The reason is
that the events forbidden by a theory can be of any degree of com-
position; on the other hand, some of the permitted statements are

1'Tarski has proved that under certain assumptions every class of statemients is
denumerable (¢f. Monatshefte f. Mathem. u. Physik 40, 1933, p. Too, note 10). * The
concept of measure is inapplicable for similat reasons (f.e. because the set of all statements
of 2 language is denumerable).
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permitted mercly because of their form or, more precisely, because
their degree of composition is too low to enable them to contradict
the theory in question; and this fact can be used for comparing
dimensions.*!

(3) The subclass relation. Let all elements of a class & be also elements
of a class B, so that o is a subclass of 8 {in symbols: « € B). Then either
all elements of 8 are in their turn also elements of a—in which case
the two classes are said to have the same extension, or to be identical—
or there are clements of B which do not belong to «. In the latter
case the elements of  which do not belong to « form “the difference
class’ or the complement of & with respect to B, and « is a proper subclass
of B. The subclass relation corresponds very well to the intuitive
‘more’ and ‘fewer’, but it suffers from the disadvantage that this relation
can only be used to compare the two classes if one includes the other,
If therefore two classes of potential falsifiers intersect, without one
beingl included in the other, or if they have no common elements,
* then the degree of falsifiability of the corresponding theories cannot
be compared with the help of the subclass relation: they are non-
comparable with respect to this relation.

33. Degrees of Falsifiability Compared by Means of the Subclass Relation.

The following definitions are introduced provisionally, to be
improved later in the course of our discussion of the dimensions of
theories. !

(1) A statement x is said to be ‘falsifiable in a higher degree’ or
‘better testable’ than a statement y, or in symbols: Fsb(x) > Fsb(y), if
and only if the class of potential falsifiers of x includes the class of the
‘potential falsifiers of y as a proper subclass.

(2) If the classes of potential falsifiers of the two statements x
and y are identical, then they have the same degree of falsifiability,
i.e. Fsb(x) = Fsh(y).

*1The German term ‘komplex” has been translated here and in similar passages by
‘composite’ tather than by “complex’. The reason is that it does ot denote, as does the
English ‘complex’, the opposite of ‘simple’, The opposite of Simple’ (einfack’) is
denoted, rather, by the German *kompliziert’. {Cf. the first paragraph of section 41 where
‘komplizier? is transiited by ‘complex’.} In view of the fact that degree of simplicity is
one of the major topics of this book, it would have been misteading to speak here (and
in section 38) of degree of complexity, 1 therefore decided to use the term “degree of
composition’ which seems to fit the context very well.

*1 See section 38, and the appendices i, #vii, and *viii,
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DEGREES OF TESTABILITY

(3} If neither of the classes of potential falsifiers of the two state-
ments includes the other as a proper subclass, then the two statements
have non-comparable degrees of falsifiability (Fsb(x} || Fsh(y)).

If (1) applics, there will always be a non-empty complement class.
In the case of universal statements, this complement class must be
infinite. Tt is not possible, therefore, for the two (strictly universal)
theories to differ in that one of them forbids a finite number of single
occurrences permitted by the other.

The classes of potential falsifiers of all tautological and meta-
physical statements are empty. In accordance with (2) they are, there-
fore, identical. (For empty classes are subclasses of all classes, and
hence also of empty classes, so that all empty classes are identical;
which may be expressed by saying that there exists only one empty
class.) I we denote an empirical statement by ‘¢’, and a tautology or a
metaphysical statement {e.g. a purely existential statement) by ‘¢

or ‘m’ tespectively, then we may ascribe to tautologial and meta-
physical statements a zero degree of falsifiability and we can write:
Fsh(f) = Fsb{m) = o, and Fsb(e) > o.

A self-contradictory statement {which we may denote by ¢’}
may be said to have the class of all logically possible basic statements
as its class of potential falsifiers. This means that any statement
whatsoever is comparable with a self-contradictory statement as

to its degree of falsifiability. We have Fsb(c) > Fsb(e) > o*?* If we -

atbitrarily put Fsb(c) = 1, ie. arbitrarily assign the number 1 to
the degree of falsifiability of a self-contradictory statement, then
we may even define an empirical statement ¢ by the condition
1> Fsb(e) > 0. In accordance with this formula, Fsb(e) always
flls within the interval between o and 1, excluding these limits, ie.
within the ‘open interval’ bounded by these numbers. By excluding
contradiction and tautology (as well as metaphysical statements) the

formula expresses at the same time both the requirement of consistency

and that of falsifiability.

34. The Structure -of the Subclass Relation. Logical Probability.
We have defined the comparison of the degree of falsifiability

of two statements with the help of the subclass relation; it therefore -

*2 See however now appendix #vil,
116,

34. LOGICAL PROBABILITY

- shares all the structural properties of the latter. The question of com-

parability can be eclucidated with the help of a diagram (fig, 1}, in

- which certain subclass relations are depicted on the lefi, and the
- corresponding testability relations on the right. The Arabic numerals

! (c)

(£
Figure 1
on the right correspond to the Roman numerals on the left in
such a way that a given Roman numeral denotes the class of
the potential falsifiers of that statement which is denoted by
the corresponding Arabic numeral. The arrows in the diagram
showing the degrees of testability run from the better testable or
better falsifiable statements to those which are not so well
testable. (They therefore correspond fairly precisely to derivability-
arrows;_see section 35.)
It will be seen from the diagram that various sequences of sub-
classes can be distinguished and traced, for example the sequence
-1y or 1-m-v, and that these could be made more ‘dense’ by
introducing new intermediate classes. All these sequences begin in
this particular case with 1 and end with the empty class, since the
latter is included in every class. (The empty class cannot be depicted
in our diagram on the left, just because it is a subclass of evefy class
and would therefore have to appear, so to speak, everywhere.) If we
choose to identify class X with the class of all possible basic statements,

- then 1 becomes the contradiction {c); and o (corresponding to the

empty class) may then denote the tautology (). It is possible to pass
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DEGREES OF TESTABILITY i 35. EMPIRICAL CONTENT

from 1 to the empty class, or from (c) to (£} by various paths; some orm. This probability T call** ‘logical probability’* it must not be
of these, as can be seen from the right hand diagram, may cross one onfused with that numerical probability which is employed in the
another. We may therefore say that the structure of the relation is. eory of games of chance, and in statistics. The logical probability of a
that of a lattice (a ‘lattice of sequences’ ordered by the arrow, or the atement is complementary to its degree of falsifiability: it increases with
subclass relation). There are nodal points (e.g. statements 4 and 5) in ecreasing degree of falsifiability. The logical probability 1 corresponds
which the lattice is partially connected. The relation is totally con- o the degree o of falsifiability, and vice versa. The better testable state-
nected only in the universal class and in the empty class, corresponding ent, f.e. the one with the higher degree of falsifiability, is the one
to the contradiction ¢ and tautology ¢ - hich is logically less probable; and the statement which is less well
Is it possible to arrange the degrees of fakifiability of various estable is the one which is logically more probable.
statements on one scale, i.e. to correlate, with the various statements, . As will be shown in section 72, numerical probability can be linked
numbers which order them according to their falsifiability? Clearly,. with logical probability, and thus with degree of falsifiability. It is
we cannot possibly order all statements in this way;™ for if we ossible to interpret numerical probability as applying to a sub-
did, we should be arbitrarily making the non~-comparable statements ¢quence (picked out from the logical probability rclation) for which a
comparable. There is, however, nothing to prevent s frosi picking pstern of measurement can be defined, on the basis of frequency
“6iit one of the sequences from the lattice, and indicating the order stimates. o
of its statements by numbers. Ini so doing we should have to procged - These observations on the comparison of degrees of falsifiability
imsuchia way that a'stitement which lies nearer to the contradiction . o net hold only for universal statements, or for systems of theories;
¢ is always given a higher number than one which lies nearer to the - they can be extended so as to apply to singular statements. Thus
tautology f. Since we have already assigned the numbers o and 1 to they hold, for example, for theories in conjunction with initial con-
tautology and contradiction respectively, we should have to tions. In this case the class of potential falsifiers must not be mistaken
assign proper fractions to the empirical statements of the selected or a class of events—for a class of homotypic basic statements—
sequence. . since it is a class of occurrences, (This remark has some bearing on the
I do not really intend, however, to single out one of the sequences. onnection between logical and numerical probability which will be
Also, the assignment of numbers to the statements of the sequence: analysed in section 72.)
would be entirely arbitrary. Nevertheless, the fact that it is possible
to assign such fractions is of great interest, especially because of the :
light it throws upon the connection between degree of falsifiability. 5. Empirical Content, Entailment, and Degrees of Falsifiability.
and the idea of probability. Whenever we can compare the degrees.” It was sald in section 31 that what I call the empirical content of a
of falsifiability of two statements, we can say that the one which is - tatement increases with its degree of falsifiability: the more a state-
the less falsifiable is also the more probable, by virtue of its logical ment forbids, the more it says about the world of experience. (Cf.
. *¥1now (since 1938; of. appendix #ii) use the term ‘absolute logical probability’
ather than ‘logical probability” in order to distinguish it from ‘relative logical proba-
ility” (or ‘conditional logical probability’), See also appendices #iv, and #vil to *ix.
: 1 To this idea of logical probability (inverted testability) corresponds Bolzano’s
dea of wvalidity, especially when he applies it to the comparison of statements. For
ample, he describes the major propositions in a derivability relation as the statements
f lesser validity, the consequents as those of greater validity {Wissenschafislehre, 1837,

.:'ol. II,. §157, No. 1). Th:_: relation of his concept of validity to that of probability
‘explained by Bolzano in op. cit. §147. Cf. also Keynes, A Treatise on Probability,

921, p. 224. The examples there given show that my comparison of logical proba-
ilities is identical with Keynes's ‘comparison of the probability which we ascribe

prioti to a generalization', See also notes 1 to section 36 and 1 to section 83,

#17 still believe that the attempt to make all statements comparable by introducing
a metric must contain an arbitrary, extralogical element, This is quite obvious in the
case of staternents such as ‘Al adult men are more than two feet high' (or ‘All adul
men are less than nine feet high®); that is to say, statements with predicates stating a
meastrable property. For it can be shown that the metric of content or falsifiability
would have to be a function of the metric of the predicate; and the latter must alway:
contain an arbitrary, or at any rate an extra-logical element. Of course, we may
construct artificial languages for which we lay down a metric. But the resulting measure’;
will not be purely logical, however ‘obvious’ the measure may appear as long as only
discrete, qualitative yes-or-no predicates (as opposed to quantitative, measurabl
ones) are admitted. See also appendix #ix, the Second and Third Notes,
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section 6.) What I call ‘empirical content” is closely related to, but
not identical with, the concept ‘content’ as defined, for instance, by.
Carnap For the latter I will use the term ‘logical content’, to dis-:
tinguish it from that of empirical content. -
I define the empirical content of a statement p as the class of ity
potential falsifiers (¢f section 31). The logical content is defined, with
“the help of the concept of derivability, as the class of all non-tauto-;
logical statements which are derivable from the statement m question
(it may be called its ‘consequence class’.) So the logical content of p is
at least equal to (i.e. greater than or equal to) that of a statement ¢, if
g is derivable from p (or, in symbols, if ‘p—~>¢"*). If the derivability is
mutual (in symbols, ‘p <> ") then p and ¢ are said to be of equ
content.? If ¢ is derivable from p, but not p from g, then the con:
sequence class of ¢ must be a proper sub-set of the consequence class
of p; and p then possesses the larger consequence class, and thereby
the greater logical content (or logical force*®). _
It is a consequence of my definition of empirical content that the
compatison of the logical and of the empirical contents of two
statements p and ¢ leads to the same result if the statements compared
contain no metaphysical elements. We shall therefore require t
following: (1) two statements of equal logical content must also have
cqual empirical content; (b) a statement p whose logical content is
greater than that of a statement ¢ must also have greater empirical
content, or at least equal empirical content; and finally, (c) if the
empirical content of a statement p is greater than that of a statement
g, then the logical content must be greater or else non-comparable:
The qualification in {b) “or at least equal empirical content’ had to be
added because p might be, for example, a conjunction of ¢ with some
purely existential statement, or with some other kind of metaphysical
statement to which we must ascribe a certain logical content; for in

1 Carnap, Erkenninis 2, 1932, p. 458, =

*1% 5 4" means, according to this explanation, that the conditional statement with
the antecedent p and the consequent q is fautological, or logically true. (At the time &
writing the text, I was not clear on this point; nor did I understand the significance o
the fact that an assertion about deducibility was 2 meta-linguistic one, See also note #
to section 18, above.) Thus ‘p—> ¢’ may be read here: ‘p entails 4. :

3 Camnap, op. cit., says:. ‘The metalogical term “equal in content” is defined -as
“mutually derivable™.” Carnap’s Logische Syntax der Sprache, 1934, and his Die Avfygab
der Wissenschafislogik, 1034, were published too late to be considered here. -

#3If the logical content of p exceeds that of g, then we say also that p is logicall
stronger than g, or that its lagiral force exceeds that of g,
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this case the empirical content of p will not be greater than that of
¢. Corresponding considerations make it necessary to add to (c) the
qualification ‘or else non-comparable’ *8

In comparing degrees of testability or of empirical content we
shall therefore as 2 rule—i.e. in the case of purely empirical statements
—arrive at the same results as in comparing logical content, or
derivability-relations. Thus it will be possible to base the com-
patison of degrees of falsifiability to a large extent upon derivability
relations. Both relations show the form of lattices which are totally
connected in the self-contradiction and in the tautology (¢f. section 34).
This may be expressed by saying that a self~contradiction entails
every statement and that a tautology is entailed by every statement.
Moreover, empirical statements, as we have seen, can be characterized
as those whose degree of falsifiability falls into the open interval
which is bounded by the degrees of falsifiability of self-contradictions
on the one side, and of tautologiés on the other. Similarly, synthetic
statements in general (including those which are non-empirical) are
placed, by the entailment relation, in the open interval between
sclf-contradiction and tautology.

To the positivist thesis that all non-empirical (metaphysical)
statements are ‘meaningless’ there would thus correspond the thesis
that my distinction between empirical and synthetic statements,. or

between empirical and logical content, is superfluous; for all synthetic

statements would have to be empirical—all that are genuine, that is,and
not mere pseudo-statements. But this way of using words, though feas-
ible, seems to me more likely to confuse the issue than to clarify it.
Thus I regard the comparison of the empirical content of two
statements as equivalent to the comparison of their degrees of fal-
sifiability. This makes our methodological rule that those theories
should be given prcfc;encerwlrﬁch can. be most severely tested (cf. the
anti-conventionalist rules in section 20) equivalent to a rule favouring
theories with the highest possible empirical content. .

36. Levels of Universality and Degrees of Precision.

There are other methodological demands which may be reduced
to the demand for the highest possible empirical content. Two of
these are outstanding: the demand for the highest attainable level

*3 See, again, appendix #vii,
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DEGRBES OF TESTABILITY

(or degree) of universality, and the demand for the highest attainable
degree of precision. . .
'With this in mind we may examine the following conceivable

natural laws:

p: All heavenly bodies which move in closed
orbits move in circles: or more briefly: All orbifs
of heavenly bodies are circles.

q: All orbits of planets arc circles.
r+ All orbits of heavenly bodies are ellipses.
s: Al orbits of planets are ellipses.

The deducibility relations holding between. these four statements
are shown by the arrows in our diagram. From p all the others follow;
from g follows s, which also follows from r; so that s follows from all
e I\c/)ltc})l:;:g from p to q the degree of universality decreases; and %
says less than p because the orbits of planets form a proper.subcla?s o
the orbits of heavenly bodies. Consequently p is more easily falsified
than g: if ¢ is falsified, so is p, but not vice versa. Moving from p to 1,
the degree of precision (of the predicate) decreases: mrcles. are.a proper
subclass of ellipses; and if r is falsified, so is p, but not vice versd. Cor-
responding remarks apply to the other moves: moving from p to s,
the degree of both universality and precision decreases; from ¢ to s
precision decreases; and from 7 to s, . gree
of universality or precision corresponds a greater (logical or) empirica
content, and thus a higher degree of testability. . .

Both universal and singular statements can be written in ic,forrp
of a “universal conditional statement’ (or a ‘general implication” as it

is often called). If we put our four laws in this form, then we can
perhaps sce more casily and accurately how the degrees of universality

and the degrees of precision of two statements may be compared.
A universal conditional statement (¢f. note 6 to section I4) may

be written in the form: ‘(x) (px —»fx)" or in worclls: ‘All values of x
which satisfy the statement fimction ¢x also sat_lsfy the statement.
function fx.” The statement s from our dia‘gram )r.lclds, thc.followmg-.
example: ‘(x) (i is an orbit of a planet —-x is an ellipse)’ which means: |
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“Whatever x may be,if % is an orbit of a planet then x is an ellipsc.’ Let p
and g be two statements written in this ‘normal’ form; then we can say
that p is of greater universality than g if the antecedent statement
function of p (which may be denoted by ‘p,x’) is tautologically
implied by (or logically deducible from), but not equivalent to, the
cocresponding statement function of ¢ (which may be denoted by
‘pg%’); or in other words, if “(x) (ox — @,%)" is tautological (or logically
true). Similarly we shall say that p has greater precision than ¢ if
‘() (fyre—>f%)’is tautological, that is if the predicate (or the conscquent
statement function) of p is narrower than that of ¢, which means that
the predicate of p entails that of ¢. %

This definition may be extended to statement functions with more
than one variable. Elementary logical transformations lead from it to the
derivability relations which we have asserted, and which may be
expressed by the following rule:! If of two statements both their
universality and their precision are comparable, then the less universal or
less precise is derivable from the more universal or more precise; unless,
of course, the one is more universal and the other more precise
{as in the case of g and r in my diagram).2 '

We could now say that our methodological decision—sometimes
metaphysically interpreted as the principle of,causality—is to leave
nothing unexplained, ie. always to try to deduce statements from
“others of higher universality. This decision is derived from the demand
for the highest attainable degree of universality and precision, and it
can be reduced to the demand, or rule, that preference should be given
‘to those theories which can be most severely tested.*2

*11t will be seen that in the present section (in contrast to sections 18 and 35), the

row is used to express a conditional rather than the entailment relation; ¢f. also note s1
section 18.
L We can write: [{d400 3> dp) {[px—> )] [(8px- fpx) > (e fy%)] or for short:
[{8g > #p) * (fp—>fg)] > (P> 4). ¥The elementary character of this formula, asserted
‘in the text, becomes clear if we write: ‘[{a—8)-(c-> )] [(B> &) > (a> )", We
then put, in accordance with the text, ‘p’ for ‘b—>¢ and ‘¢’ for ‘4>, etc.

2 What T call higher universality in a statement corresponds roughly to what
Tassical logic might call the greater ‘extension of the subject’; and what I call greater
precision corresponds to the smaller extension, or the ‘restriction of the predicate’,
e rule concerning the derivability relation, which we have just discussed, can be
garded as clarifying and combining the classical ‘dletumt de omni et nuile’ and the
gta-notae’ principle, the ‘fundamental principle of mediate predication’. Cf. Bolzano,
issenschafislehre H, 1837, §263, Nos. 1 and 4; Kiflpe, Vorlesungen itber Logik (edited
¥ Selz, 1923), §34, 5, and 7.

*2 See now also section *15 and chapter #iv of my Postseript, especially section #76,
Xt to note §.
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sense*® Two physical ‘points'—a mark, say, on the measuring-rod,
and another on a body to be measured—can at best be brought into

it is of a higher level of universality or precision, then the class of the close ].?roxlnvnty't];1 _they CaILHOt' c}?m];xd:e, that ﬁs, coalesce into one point.
basic statements permitted by p is a proper subclass of the c_:lass of Fhe HOWEVGI trite this r;mar ‘might be in another conft;ext, itis Hn'Pc:;];tam
basic statements permitted by ¢. The subclass-relationship holdl-ng' for the question théliiﬂs};l,ondm %ezsgremﬂlmté Hor it remin \Xl;s
between classes of permitted staternents is the opposite of that holding - thaé Ezaslicmenf s Of " eb Zscri & bm e fo c;)\n];mgb terms, We
between classes of forbidden statements (potential falsifiers): the two ﬁnada_ t the pOmI: o 1:: ody to be (rineasure t}c;s e}iween'two
relationships may be said to be inverse {or perhaps complementary): .g;‘ tions or marks on f; e lx‘neabsairmg-rsw or, s;yt;i at ihpom:ler
The class of basic statements permitted by a statement may be called of our meﬁsurmghappara u; f e weeg wo grada 0111: on the scale.
its ‘range’.L The ‘range’ which a statement allows to reality is, as 1t -Wc. Ca? 1't en elf‘_? er regard t esedgra ations or l-inar 5 as ou; two
were, the amount of ‘free play’ (or the degree of freedm:‘a) which it optimal limits ;ﬂ;tﬁgt,.or PI':ICCCE ;o csutgat_c the po;mon (])3 (say)
allows. to reality. Range and empirical content {ef- section 35) are : the pointer wi 9 comtcrv Od t c‘bgra }Emin:, an sobo tain a
converse (or complementary) concepts. Accordingly, the ranges qf __ more accz]iate thlfcs t. One n;;tybcscn ¢ this latter casc by Zay{ng
two statements are related to each other in the same way as are thei thatk:VCT; ¢ the Pomaacr to le ac;‘a:wef:n two 111:;agma]§y gra at;oz;‘
logical probabilities (¢f- sections 34 and 72). : marks. 10us an Intery: t’hj range, aiw;ys remains. It is the custox']r;h o
I have introduced the concept of range because it helps us to le’SlCl_StS t;)/l ﬂi?}tilmati S.l_mc? ot cirerythmczlxsuremcnt. 51 us
handle certain questions connected with degree of precision in easure~ fo 0}:"’1“;5 an t eydg_ne,l or example, the ¢ cinentary < ;E-E)e
ment. Assume that the consequences of two theorics differ so little _ é dﬁn e :h cctr}?n, measu}e‘ in electrostatic units, as _81—; z%774ﬂ-ﬁ10 7
in all ficlds of application that the very small differences between: a Ei at %;hnge 1 mﬁprecmon is f:_I: o.lc>o§ »107 .} But S]_‘alst;:
the calculated observable events cannot be detected, owing to th‘e.- a pro 61;1- \ at can be tae p};lrpose ob rep ;:m% a}s1 it were, :lnc mﬁr
fact that the degree of precision attainable in our measurements is. ?ﬂ a S‘}::l eftg tw:“—rtl Wlt,dst t}el two t;un s of ¢ :h interv —-v; e
not sufficiently high. Tt will then be impossible to decide by exper _Olf1 eac Oh h‘es“l‘ ? otn f‘cre lim;s aggsm afl‘n}slc‘ esar:f: question:
ment between the two theories, without first improving our technique w aé are ¢ fh nglts od acr%‘u;acy or t ale. t'):lun 1o t fmterir : .
of measurement,¥* This shows that the prevailing technique (')f measure- : g;m_g € bounds t? t ﬁ; lgter‘{ hls gar y use ;SS unless these tu{o
ment determines a certain range—a region within which discrepancies QUL djnm t}'-llm can eh ed with af egﬁ"ee of PlieClSlon greac]f
between the observations are permitted by the theory. : :?XCGE hg what ‘:}f Call;L hope to attamlsorft. ¢ origina mi_m;lr?fc:f{i
"Thus the rule that theories should have the highest attainable éegre; Irxed, that 1:,11 within their own intervals of imprecision which sho
of testability (and thus allow only the narrowest range) entails the _&us Eﬁ smal Cr,fby ls;everail ordff:r;1 of J{ne}g:lltude, than the ;rl:cer;al
demand that the degree of precision in measurement should be raised ey determine for the value of the original measurement. In other
- ble. ords, the _bounds of the interval are not sharl? bouz.lds but are really
* muf:h P Poss%d that all ment consists in the determination ery small intervals, the bounds of which are in their tarn still much
I i c')ftcn said that n};easllrc h determination can only be smaller intervals, and so on. In this way we arrive at the idea of what may
of COHICld_ﬁﬂFCS 'Of' B nce arc oy oot idences of points in a strict be called the ‘unsharp bounds’ or ‘condensation bounds’ of the interval.
correat within limits. There are no comcidene P . These considerations do not presuppose the mathematical theory
1 The concept of range (Spielraum) was introduced by von Kres (1886); similar 1593_ of errors, nor the‘ theory‘of probability. ‘It is‘ rather the other way
are found in Bolzano, Waismann (Erkennttiis 1, 1930, pP- 228 {F) attexnpts to combin round; by anaiysmg the idea of 2 measuring interval they farnish a

i ; 1 % Keynes gives (Treatise : 3 mg
thesgeggd?i: :ngimﬁt;}oﬁliff ffég}fzﬁf‘wﬁﬁﬂh:fﬁéﬁr;fimge’ ;Y]]:e o wses (p-224 ackground without which the statistical theory of errors makes very
| : X  IOT 1. A
*scope’ for what in my view amounts to precisely the same thang. .
o This is a point which, I believe, was wrongly interpreted by Dubem. See hi
Airt and Structure of Physical Theory, pp. 137 f-
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37. Logical Ranges. Notes on the Theory of Measurement.
If 2 statement p is more easy to faksify than a statement 4, because |

. % Naote that T am speaking here of measuring, not of counting. (The difference
between these two is closely related to that between teal numbers and rational numbers.)
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little sense. If we measure a magnitude many times, we obtain values
which are distributed with different densities over an interval—the
interval of precision depending upon the prevailing measuring
technique. Only if we know what we are secking—namely the
condensation bounds of this interval—can we apply to these values
the theory of errors, and determine the bounds of the interval
Nowr all this sheds some light, I think, on the superiority of methods
that employ measurements over purely qualitative methods. It is true

that even in the case of qualitative estimates, such as an estimate of

.. the pitch of a musical sound, it may sometimes be possible to give

“an interval of accuracy for the estimates; but in the absence of

measurements, any such interval can be only very vague, since in such
cases the concept of condensation bounds cannot be applied. This

concept is applicable only where we can speak of orders of magnitude, -
and therefore only where methods of measurement are defmed. I.
shall make further use of the concept of condensation bounds of
intervals of precision in section 68, in connection with the theory of

probability.

38. Degrees of Testability Compared by Reference fo Dimensions.

Till now we have discussed the comparison of theories .wiz}_x-;
respect to their degrees of testability only in so far as they can be

compared with the help of the subclass-relation. In some cases thi
method is quite successful in guiding our choice between theories
Thus we may now say that Pauli’s exclusion principle, mentioned b
way of example in section 20, indeed turns out to be highly satis
factory as an auxiliaty hypothesis. For it greatly increases the degre
of precision and, with it, the degree of testability, of the olde:

quantum theory (like the corresponding statement of the new quantum
theory which asserts that anti-symmetrical states are realized by electrons
and symmetrical ones by uncharged, and by certain multiply charged

particles).
For many purposes, however, comparison by means of the su
class relation does not suffice. Thus Frank, for example, has pointe

# These considerations are closely connected with, and supported by, some of

the results discussed under points 8 ff. of my “Third Note’, reprinted in appendix #

See also section #15 of the Postscript for the significance of measurement for the “depth

of theories,
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out that statements of a high level of universality—such as the principle
of the conservation of energy in Planck’s formulation—are apt to
become tautological, and to lose their empirical content, unless the
initial conditions can be determined ‘... by few measurements, ...
i.e. by means of a small number of magnitudes characteristic of the
state of the system’.! The question of the number of parameters
which have to be ascertained, and to be substituted in the formulae,
cannot be elucidated with the help of the sub-class relation, in spite
of the fact that it is evidendy closely connected with the problem
of testability and falsifiability, and their degrees. The fewer the

" magnitudes which are needed for determining the initial conditions,

the less composite* will be the basic statements which suffice for the
falsification of the theory; for a falsifying basic statement consists
of the conjunction of the initial conditions with the negation of the
derived prediction (cf. section 28). Thus it may be possible to compare
theories as to their degree of testability by ascertaining the minimum
degree of composition which a basic statement must have if it is to be
able to contradict the theory; provided always that we can find a way
to compare basic statements in order to ascertain whether they are more
{or less) composite, i.e. compounds of a greater (or 2 smaller) number of
basic statements of a simpler kind. All basic statements, whatever their
content, whose degree of composition does not reach the requisite
minimum, would be permitted by the theory simply because of their
low degree of composition.

But any such programme is faced with difficulties. For generally
it is not easy to tell, merely by inspecting it, whether a statement is
composite, i.e. equivalent to a conjunction of simpler statements.
In all statements there occur universal names, and by analysing these
one can often break down the statement into conjunctive components.
{For example, the statement “There is a glass of water at the place &’
might perhaps be analysed, and broken down into the two statements
‘There is a glass containing a fluid at the place ¥ and “There is water
at the place k) There is no hope of finding any natural end to the
dissection of statements by this method, especially since we can always
introduce new universals defined for the purpose of making a further
dissection possible.

With a view to rendering comparable the degrees of composition

1 Cf. Frank, Das Kausalgesetz und seine Grenzen, 1931, e.g. p. 24.

*1 For the term ‘composite’, see note *1 to section 32,
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certain class of statements as the elementary or afomic ones,? from which

logical operations. If sucoessful, we should have defined in this way
an ‘absolute zero” of composition, and the composition of any statement
could then be expressed, as it were, in absolute degrees of composition *2
But for the reason given above, such a procedure would have to be
regarded as highly unsuitable; for it would impose serious restrictions
upon the free use of scientific language*®

Yet it is still possible to compare the degrees of composition of
basic statements, and thereby also those of other statements. This can be
done by selecting arbitrarily a class of relatively atomic statements,
which we take as a basis for comparison. Such a class of relatively
atomic statements can be defined by means of a_generating schema or

We can then define as relatively atomic, and thus as equi-composite,
the class of all statements obtained from this kind of matrix (or statement
function) by the substitution of definite values. The class of these state-
ments, together with all the conjunctions-which can be formed from
them may be called a ‘field’. A conjunction of # different relatively
atomic statements of a field may be called an ‘n-tuple of the field’

sition §: ‘Propositions are truth-functions of elementary propositions’. ‘Atomic
propositions’ (as opposed to the composite ‘molecular propositions’) in Whitehead and
Russell's Principia Mathematica Vol. L Tntroducrion to 2nd edition, 1925, pp. xv f

translated it as ‘atomic proposition’. The latter term has become more popular.
prop P

absolutely atomic statements (eatlier sketched, for example, by Wittgenstein) has moze
recently been elaborated by Carnap in his Logical Foundations of Probability, 1950,

it in its present form allow the introduction of a temporal or spatial order.)

*3 The words ‘scientific langnage’
interpreted in the technical sense of what is today called 2 ‘language system’, On the
contrary, nty main point was that we should remember the fact that scientists cann
use a ‘language system’ since they have constantly to change their language, with eve
pew step they take. ‘Miatter', or ‘atom’, after Rutherford, and ‘matter’, or ‘energy’

of these concepts is a function of the—constantly changing—theory.
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of all basic statements, it might be suggested that we should choose a |

alt other statements could then be obtained by conjunction and other -

matrix (for example, “There is a measuring apparatus for . . . at the place.
... the pointer of which lics between the gradation marks...and...).

2 ‘Blementary propositions’ in Wittgenstein, Tractatus Logico-Philosophicus, Propo-

C. K. Ogden translated Wittgenstein's term ‘Elementarsatz’ as ‘elementary proposition’;.
{f. Tractatus 4.21), while Bertrand Russell in his Preface to the Tractafus, 1922, p. 13,,

#2 Absolute degrees of composition would determine, of course, absolute degrees of

content, and thus of absolute logical #mprobability, The programme here indicated of
introdacing improbability, and thus probability, by singling out a certain class of

order to construct a theory of induction. See also the remarks on model languages in my.
Preface to the English Edition, 1958, above, where I allude to the fact that the third model:
language (Carnap’s language system) does not admit measurable properties. (Nor does;

were here used quite naively, and should not be:_

after Einstein, meant something different from. what they meant before: the meaning

38. THE DIMENSION OF A THEORY

and we can say that the degree of its composition is cqual to the
number .

If there exists, for a theory 4, a field of singular {but not necessarily
basic) statements such that, for some number 4, the theory ¢ cannot
be falsified by any d-taple of the field, although it can be falsified
by certain d-+1-tuples, then we call d the characteristic number of
the theory with respect to that field. All statements of the field whose
degree of composition is less than d, or equal to d, are then compatible
with the theory, and permitted by it, irrespective of their content.

Now it is possible to base the comparison of the degree of testa-
bility of theories upon this characteristic number 4. But in order to
avoid inconsistencies which might arise through the use of different
fields, it is necessary to use a somewhat narrower concept than that
of a field, namely that of a field of application. If a theory ¢ is given,
we say that a field is a field of application of the theory t if there exists
a characteristic number d of the theory ¢ with respect to this ficld,
and if, in addition, it satisfies certain further conditions {which are
explined in appendix 1).

The characteristic number d of a theory ¢, with respect to a field
of application, T call the dimension of ¢ with respect to this field of
application. The expression ‘dimension” suggests itself because we can
think of all possible s-tuples of the field as spatially arranged (in a
configuration space of infinite dimensions), If, for example, d = 3, then
those statements which are admissible because their composition is too

low--form a threc-dimensional sub-space of this configuration.
. Transition from d= 3 to d= 2 corresponds to the transition from a
solid to a surface. The smaller the dimension d, the more scverely
restricted is the class of those permitted statements which, regardless
“of their content, cannot contradict the theory owing to their low
 degree of composition; and the higher will be the degree of falsifi-
ability of the theory. R

The concept of the field of application has not been restricted to

basic statements, but singular statements of all kinds have been allowed
to be statements belonging to a field of application. But by comparing
their dimensions with the help of the field, we can estimate the degree of
- composition of the basic statements. (We assume that to highly com-
- posite singular statements there correspond highly composite basic
 statements.) It thus can be assumed that to a theory of higher dimension,
there corresponds a class of basic statements of higher dimension,
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i
such that all statements of this class are permitted by the theory, - in section 36 that g is more easily falsifiable than s: since all circles |
irrespective of what they assert. : are ellipses, it 'was possible to base the comparison on the subclass

This answers the question of how the two methods of comparing relation. But the use of dimensions enables us to compare theories
degrees of testability are related—the one by means of the dimension which previously we were unable to compare. For example, we can
of a theory, and the other by means of the subclass relation, There now cempare a circle-hypothesis ‘with a parabola-hypothesis (which
will be cases in which neither, or only one, of the two methods 5 - is four dimensional). Bach of the words ‘circle’, ‘ellipse’, ‘parabola’
applicable. In such cases there is of course no room for conflict between denotes a class or set of curves; and each of these sets has the dimension
the two methods. But if in a particular casc both methods are applic- 4 if d points are necessary and sufficient to single out, or characterize,
able, then it may conceivably happen that two theories of equal ~one particular curve of the set. In algebraic representation, the
dimensions may yet have different degrees of falsifiability if assessed dimension of the set of curves depends upon the number of parameters
by the method based upon the subclass relation. In such cases, the whose values we may freely choose. We can therefore say that the
verdict of the latter method should be accepted, since it would prove number of freely determinable parameters of a set of curves by which
to be the more sensitive method. In all other cases in which both - atheory is represented is characteristic for the degree of falsifiability (or
methods are applicable, they must lead to the same result; for it ‘can testability) of that theory.
be shown, with the help of a simple theorem of the theory of ' In connection with the statements g and s in my example I should
dimension, that the dimension of a class must be greater than, or . like to make some methodological comments on Kepler’s discovery

equal to, that of its subclasses.® - of his laws*
I do not wish to suggest that the belief in perfection—the heuristic

principle that guided Kepler to his discovery—was inspired, con-
39. The Dimension of a Set of Curves. - sciously or unconsciously, by methodological considerations regarding

Sometimes we can identify what I have called the ‘field of ~ degrees of falsifiability. But I do believe that Kepler owed his success
aPP]ication, of a theory quite sunply with the ﬁgld of its grgphic . : ,'glr_part to the fact that the CiI’C].C"hYPOthCSiS with WththSt??f@d’“’
representation, i.e. the area of a graph-paper on which we represent -  was relatively easy to fakify. Had Kepler started with a hypothesis
the theory by graphs: each point of this field of graphic representation - - which owing to its logical form. was not so easily testable as the
can be taken to correspond to one relatively atomic statement. The circle hypothesis, he might well have got no result at all, considering
dimension of the theory with respect to this fild (defined in the difficulties of calculations whose very basis was ‘in the air™— adrift
appendix 1) is then identical with the dimension of the set of curves - in the skies, as it were, and moving in a way unknown. The un-
corresponding to the theory. I shall discuss these relations with the cquivocal negative result which Kepler reached by the faksification of
help of the two statements q and 5 Of section 36 (Our Comparison : h.iS CilfC].C Hfrp??thesxs was 111 fact hiS ﬁ]’.’St rcal success. His methodh’ad‘
of dimensions applies to statements with different predicates.) The been vindicated sufficiently for him to proceed further; especially
hypothesis g—that all planetary orbits are circles—is three-dimensional: since even this first attempt had already yielded certain approximations.
for its falsification at least four singular statements of the field are No doubt, Kepler's laws might have been found in another way.
necessary, corresponding to four points of its graphic representation. But I think it was no mere accident that this-was the way which led
The hypothesis s, that all planetary orbits are ellipses, is five-  to success. It corresponds to the method of elimination which is applicable™
dimensional, since for its falsification at least six singular statements otily if the theory is sufficiently easy to falsify—sufficiently precise to be
are necessary, corresponding to six points of the graph. We saw capable of clashing with observational experience.

*1 The views here developed were accepted, with acknowledgments, by W. C
!{neale, Probability and Induction, 1949, p. 230, 2ud J. G. Kemeny, “The Use of Simplicity
in Induction’, Philos. Review 57, 1053} see his footnote on p. 404,

3 Cf. Menger, Dimensionstheorie, 1928, p. 81. *The conditions under which this
theorem holds can be assamed to be always satisfied by the ‘spaces” with which we
are concerned here, )
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40. Two Ways of Reducing the Number of Dimensions of a Set of Curves.

Quite different sets of curves may have the same dimension. The
set of all circles, for example, is three-dimensional; but the set of all
circles passing through a given pointis a two-dimensional set (like the set
of straight lines). If we demand that the circles should all pass through
two given points, then we get a one-dimensional sct, and so on. Bach
additional demand that all curves of a set should pass through one more
given point reduces the dimensions of the set by one.

zero
dimensional

classest

one
dimensional
classes

two
dimensional

classes

three
dimensional

classes

four
dimensional

classes

straight line

circle

parabola

straight line
through one
given point

circle
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given point
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through one
given point

conic
through one.
given point

straight line
through two

given points

circle
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given points
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through two
given points

conic
through two
given points

circle
through
three

given points

parabola
through
three

given points

conic
through -
three

given points

The number of dimensions can also be reduced by methods other

than that of increasing the number of given points. Tor example the

set of ellipses with given ratio of the axes is four-dimensional (a_s is
that of parabolas), and so is the set of ellipses with given numerical

eccentricity. The transition from the ellipse to the circle, of course, -

is equivalent to specifying an eccentricity (the eccentricity o) or a

particular ratio of the axes (unity).
As we are interested in assessing

1\We could also, of course, begin with the empty {over-determined) minus-one-
dimensional class.
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degrees of falsifiability of theories’
we will now ask whether the various methods of reducing the
sumber of dimensions are equivalent for our purposes, or whether we

40. REDUCING THE DIMENSIONS

should examine more closely their relative merits. Now the stipula-
tion that a curve should pass through a certain singular point {or small

- region) will often be linked up with, or correspond to, the acceptance

of a certain singular statement, i.e. of an initial condition. On the other
hand, the transition from, say, an ellipse-hypothesis to a circle-
hypothesis, will obviously correspond to a reduction of the dimension
of the theory itself. But how are these two methods of reducing the
dimensions to be kept apart? We may give the name ‘material

- reductio’ to that method of reducing dimensions which does not

operate with stipulations as to the ‘form” or ‘shape’ of the curve; that
is, to reductions through specifying one or more points, for example,
or by some equivalent specification. The other method, in which
the form or shape of the curve becomes more narrowly specified as,
for example, when we pass from ellipse to circle, or from circle to
straight line, efc., T will call the method of ‘formal reduction’ of the
number of dimensions.

It is not very easy, however, to get this distinction sharp. This
may be seen as follows. Reducing the dimensions of a theory means,

~in algebraic terms, replacing a parameter by a constant. Now it is

not quite clear how we can distinguish between different methods of
replacing a parameter by a constant. The formal reduction, by passing
from the general equation of an ellipse to the equation of a circle,
can be described as equating one parameter to zero, and a second
parameter to one. But if another parameter (the absolute term)
is equated to zero, then this would mean a material reduction, namely
the specification of a point of the ellipse. I think, however, that it is
possible to make the distinction clear, if we sec its connection with
the problem of universal names. For material reduction introduces
an individual name, formal reduction a universal name, into the
definition of the relevant sct of curves. _

Let us imagine that we are given a certain individual plane,
perhaps by ‘ostensive definition”. The set of all -ellipses in this plane
can be defined by means of the general equation of the ellipse; the
set of circles, by the general equation of the circle. These definitions
ate independent of where, in the plane, we draw the (Cartesian) co-ordinates
to which they relate; consequently they are independent of the choice
of the origin, and the orientation, of the co-ordinates, A specific
system. of co-ordinates can be determined only by individual names;
say, by ostensively specifying its origin and orientation. Since the
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definition of the set of ellipses (or circles) is the same for all Cartesian
co-ordinates, it is independent of the specification of these individual
names: it is invariant with respect to all co-ordinate transformations
of the Buclidean group {displacements and similarity transformations).
If, on the other hand, one wishes to define a set of cilipses {or
circles) which have a specific, an individual point of the plane in
common, then we must operate with an equation which is not
invariant with respect to the transformations of the Euclidean group,
but relates to a singular, f.e. an individually or ostensively specified,
co-ordinate system. Thus it is connected with individual names.?
The transformations can be arranged in 2 hierarchy. A definition
which is invariant with respect to a more general group of trans-
formations is also invariant with respect to more special ones. For
cach definition of a set of curves, there s one—the most general—
transformation group which is characteristic of it. Now we can say:
The definition Dy of a set of curves is called ‘equally general’ to
{or more general than) a definition Dy of a set of curves if it is

invariant with respect to the same transformation group as is Da .

(or a more general one). A reduction of the dimension of a set
of curves may now be called formal if the reduction does not
diminish the generality of the definition; otherwise it may be
called material.

If we compare the degree of falsifiability of two theories by
considering their dimensions, we shall clearly have to take into

account their generality, i.e. their invariance with respect to co-ordinate |

transformations, along with their dimensions.

The procedure will, of course, have to be different according to
whether the theory, like Kepler's theory, in fact makes geometrical
statements about the world or whether it is ‘geometrical’ only in
that it may be represented by a graph—such as, for example, the
graph which represents the dependence of pressure upon tempera-
ture. Tt would be inappropriate to require of this latter kind of theory,
or of the corresponding set of curves, that its definition should be
invariant with respect to, say, rotations of the co-ordinate system;

for in these cases, the different co-ordinates may represent entirely -

different things (the one pressure and the other temperature).

2 On the relations between transformation groups and “individualization’ of. Weyls:
Philosophie der Mathematik . Natursissenschaft, 1927, p- 59, English cdition pp. 73 S
where reference is made to Klein's Erlanger Programm. :
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This concludes my exposition of the methods whereby degrees o

falsifiability are to be compared. I believe that these n);ethgds carf
h'clp us to elucidate epistemological questions, such as the problem of
sszhcrty which will be our next concern. But there are other problems
Wlnlch are placed in a new light by our examination of degrees of
falsﬁab%l{ty, as we shall see; especially the problem of the so-called
probability of hypotheses” or of corroboration.

135




41. PRAGMATIC SIMPLICITY

4x. Elimination of the Aesthetic and the Pragmatic Concepts of Simplicity.
The word ‘simplicity’ is used in very many different senses.
Schrédinger’s theory, for instance, is of great simplicity in a methodo-
logical sense, but in another sense it might well be called ‘complex’.
We can say of a problem thit its solution is not simple but difficult,
or of a presentation or an exposition that it is not simple but intricate,
CHAPTER VII To begin with, T shall exclude from our discussion the application
: _ of the term “simplicity” to anythmg like 2 presentation or an exposition.
SIMPLICITY ‘ It is sometimes said of two expositions of one and the same mathe-
matical proof that the one is simpler or more elegant than the other.
This is a distinction which has little interest from the point of view
THERE scems to be little agreement as to the importance of the of the theory of knowledge; it does not fall within the province of
so-called ‘problem of simplicity’. Weyl said, not long ago, that- ~ logic, but merely indicates a preference of an aesthetic or pragmatic
‘the problem of simplicity is of central importance for the- character. The situation is similar when people say that one task may be
epistemology of the natural sciences’r Yet it seems that interest ‘carried out by simpler means’ than another, meaning that it can be
in the problem has lately declined; perhaps because, especially after: ~ done more easily or that, in order to do it, less training or less know-
Weyl's penetrating analysis, there seemed to be so little chance of ledge is needed. In all such cases the word ‘simple’ can be easily
solving it. . _ eliminated; its use is extra-Jogical.
Until quite recently the idea of simplicity has been used- : |
uncritically, as though it were quite obvious what simplicity is, and"
~ why it should be valuable. Not a few philosophers of science have’ - 42. The Methodological Problem of Simplicity.
given the concept of simplicity a place of crucial importance in their : What, ifanything, remains after we have eliminated the aestheticand
theories, without even noticing the difficulties to which it gives:  thepragmaticideas ofmmphc:lty?Isthercaconcept of simplicity which is
tise, For example, the followers of Mach, Kirchhoff, and Avenarius. ~ of importance for the logician? Is it possible to distinguish theories that
have tried to replace the idea of a causal explanation by that of the- ~ are logically not equivalent according to their degrees of simplicity ?
‘simplest description’. Without the adjective ‘simplest’ or a similar : The answer to this question may well seem doubtful, seeing how
word this doctrine would say nothing. As it is supposed to explain ~ lietle successful have been most attempts to define this concept.
why we prefer a description of the world with the help of theories to: Schlick, for one, gives a negative answer. He says: ‘Simplicity is . . .
one with the help of singular statements, it seems to presuppose that a concept indicative of preferences which are partly practical, partly
theories are simpler than singular statements. Yet few have ever. * aesthetic in character.,”® And it i» notable that he gives this answer
attempted to explain why they should be sitnpler, or what is meant, | ~ when writing of the concept which interests us here, and which I
more precisely, by simplicity. ' shall call the en-temological concept of simplicity; for he continues: ‘Even
If, moreover, we assume that theories are to be used for the sake if we are unable to explain what is really meant by “simplicity” here,
of simplicity then, clearly, we should use the simplest theories, This: . we must yet recognize the fact that any scientist who has succeeded
is how Poincaré, for whom the choice of theories is a matter of © in representing a series of observations by means of a very simple
convention, comes to formulate his principle for the selection of formula (e.g. by a linear, quadratic, or exponential function) is
theories: he chooses the simplest of the possible conventions. But which: immediately convinced that he has discovered a law.”

i i ? ;
are the smp. lest : : 1 Schlick, Nuaturwissenschafien 19, 1031, p. 148, * [ have translated Schlick’s term
1Cf. Weyl, op. cit., pp. 115 f.; English edition p. 155. See also section 42 below, ‘pragmatischer’ freely.
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Schlick discusses the possibility of defining the concept of law-
like regularity, and especially the distinction between ‘law’ and
‘chance’, with the help of the concept of simplicity. He finally dismisses
it with the remark that ‘simplicity is obviously a wholly relative and
vague concept; no strict definition of causality can be obtained with
its help; nor can law and chance be precisely distinguished’.* From
this passage it becomes clear what the concept of simplicity is actually!
expected to achieve: it is to provide a2 measure of the degree of law-
likeness or regularity of events, A similar view is voiced by Feigl
when he speaks of the ‘idea of defining the degree of regularity or of
law-likeness with the heélp of the concept of simplicity’.?

The epistemological idea of simplicity plays a special part in
theories of inductive logic, for example in connection with the
problem of the “simplest curve’. Believers in inductive logic assume
that we arrive at natural laws by generalization from particular
observations. If we think of the various results in a series of observa-
tions as points plotted in a co-ordinate system, then the graphic
representation of the law will be a curve passing through all these
points. But through a finite number of points we can always draw
an unlimited number of curves of the most diverse form. Since
therefore the law is not uniquely determined by the observations,
inductive logic s confronted with the problem of deciding which curve,
among all these possible curves, is to be chosen.

“The wsual answer is, ‘choose the simplest curve’, Wittgenstein,
for example, says: “The process of induction consists in assuming the
sitmplest law that can be made to harmonize with our experience.’
In choosing the simplest law, it is usually tacitly assumed that a lincar
function, say, is simpler than a quadratic one, a circle simpler than
an ellipse, etc. But no reasons are given either for choosing this par-
ticular hierarchy of simplicities in p..ference to any other, or for believ-
ing that “simple’ laws have advantages over the less simple—apart
from aesthetic and practical ones.® Schlick and Fe’~! mention® an
unpublished paper of Natkin who, according to Schlick’s account,

2 Schlick, ibid.

3 Feigl, Theorie und Erfahrang in der Physik, 1031, p. 25.

& ‘Wittgenstein, op. cit., Proposition 6.363. i

¥ Wittgenstein's remark on the simplicity of logic (op. cit., Proposition $.4541)
which sets “the standard of simplicity’ gives no clue, Reichenbach's “principle of the
simplest curve’ (Mathematische Zeitschrift 34, 1932, p. 616) rests on his Axiom of

Indaction (which I believe to be untenable), and also affords no help.
9 In the places referred to,

42. METHODOLOGICAL SIMPLICITY

~ proposes to call one curve simpler than another if its average curva-
ture is smaller; or, according to Feigl's account, if it deviates less from
 a straight line. (The two accounts are not equivalent.) This definition
 seems to agree pretty well with our intuitions; but it sornehow misses
the crucial point; it would, for example, make certain parts (the
asymptotic parts) of a hyperbola much simpler than a circle, etc. And
really, I do not think that the question can be settled by such ‘artifices’
{as Schlick calls them). Moreover, it would remain a2 mystery why we
should give preference to simplicity if defined in this particular way.

Weyl discusses and rejects a very interesting attempt to base
simplicity on probability. ‘Assume, for example, that twenty co-
ordinated pairs of values (¥, y) of the same function, y = f{x) lie
{within the expected accuracy) on a straight line, when plotted on
square graph paper. We shall then conjecture that we are faced here
with a rigorous natural law, and that y depends linearly upon x.
And we shall conjecture this because of the simplicity of the straight
line, or because it would be so extremely improbable that just these
twenty pairs of arbitrarily chosen observations should lie very nearly
on a straight line, had the law in question been a different one. If
now we use the straight line for interpolation and extrapolation, we
obtain predictions which go beyond what the observations tell us.
However, this analysis is open to criticism. It will always be possible
to define all kinds of mathematical functions which ... will be
satisfied by the twenty observations; and some of these functions will
deviate considerably from the straight line. And for every single one
of these we may claim that it would be extremely improbable that the
twenty observations should lie just on this curve, unless it represented
the true law. It is thus essential, after all, that the function, or rather
the class of functions, should be offered to us, a priori, by mathematics
because of its mathematical simplicity. It should be noted that this
class of functions must not depend upon as many parameters as the
number of observations to be satisfied.”” Weyl's remark that ‘the class
of functions should be offered to us a priori, by mathematics, because
of its mathematical simplicity’, and his reference to the number of

T Weyl, op. cit,, p. 116; English edition, p. 156. * When writing my book I did not
know (and Weyl, no doubt, did not know when writing his) that Harold Jeffreys and
Dorothy Wrinch had suggested, six years before Weyl, that we should measure the
simplicity of a function by the paucity of its freely adjustable parameters. (See their joint
paper in Phil, Mag. 42, 1921, pp. 369 f) I wish to take this opportunity to make full
acknowledgement to these authors.
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Weyl does not say what ‘mathematical simplicity” is; and above all,
he does not say what logical or epistemological advantages the simpler
law is supposed to possess, compared with one that is more complex.®

The various passages so far quoted are very important, because of
their bearing upon our present aim—the analysis of the epistemological
concept of simplicity. For this concept is not yet precisely detet-
mined. It is therefore possible to reject any attempt (such as mine) to
make this concept precise by saying that the concept of simplicity in
which epistemologists are interested is really quite a different one. To
such objections I could answer that I do not attach the slightest impor~
tance to the word ‘simplicity’. The term was not introduced by me, and
I am aware of its disadvantages. All I do assert is that the concept of
simplicity which I am going to clarify helps to answer those very
questions which, as my quotations show, have so often been raised by
philosophers of science in connection with their ‘problem of simplicity’.

43. Simplicity and Degree of Falsifiability.

The epistemological questions which arise in connection with the
concept of simplicity can all be answered if we equate this concept with
degree of falsifiability. This assertion is likely to meet with opposition;*!
and so I shall try, first, to make it intuitively more acceptable.

® Weyl's further comments on the connection between simplicity and corroboration
are also relevant in this connection; they are largely in agreement with my own views
expressed in section 82, although my line of approach and my arguments are quite
different; ¢f. note 1 to section 82, % and thenew note here following {note *1 to section 43).

*1 Tt was gratifying to find that this theory of simplicity {(including the ideas of
section 40} has been accepted at least by one epistemologist—by William Kneale, who
writes in his book Probability and Induction, 1940, pp. 220 f:*. .. it is easy to see that the
hypothesis which is simplest in this sense is also that which we can hope to eliminate most
quickly if it is false. .. . In shorr, the policy of assuming always the simplest hypothesis
which accords with the known facts is that which will enable us to get rid of false
hypotheses most quickly.’ Kneale adds a footnote in which he refers to p. 116 of Weyl's
book, and also to mine. But [ cannot detect on this page—of which I quoted the relevant
portions in the text—or anywhere else in Weyl's great book {or in any other) even a
trace of the view that the simplicity of a theory is connected with its falsifiability, i.e.
with the ease of its elimination. Nor would I have written (as I did near the end of the
preceding section) that Weyl “does not say what logical or epistemalogical advantages the

simpler law is supposed to possess’ had Weyl (or anybody else known to me) anticipated .

my theory.
The facts are these. In his profound discussion of the problem (here guoted in section
42, text to note 7) Weyl mentions first the intuitive view that a simple curve—say,

a straight line-—has 1 advantage over a more complex curve because it sight be considered -

@ highly improbable accident if ali the observations wonld fit such a simple curve. But instead of
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patameters agree with my view (to be developed in section 43). But .

43, SIMPLICITY AND PALSIFIABILITY B

I have already shown that theories of a lower dimension are more

- casily falsifiable than those of a higher dimension. A law having the
- form of a function of the first degree, for instance, is more easily
- falsifiable than one expressible by means of a function of the second

degree. But the latter still belongs to the best falsifiable ones among
the laws whose mathematical form is that of an algebraic function.
This agrees well with Schlick’s remark conéerning simplicity: “We
should certainly be inclined to regard a function of the first degree
as simpler than one of the second degree, though the latter also
doubtless represents a perfectly good law. . . .2

The degree of universality and of precision of a theory increases
with its degree of falsifiability, as we have seen. Thus we may perhaps
identify the degree of strictness of a theory—the degree, as it were, to
which a theory imposes the rigour of law upon nature—with its
degree of falsifiability; which shows that the latter does just what
Schlick and Feigl expected the concept of simplicity to do. I may
add that the distinction which Schlick hoped to make between law
and chance can also be clarified with the help of the idea of degrees
of falsifiability : probability statements about sequences having chance-
like characteristics turn out to be of infinite dimension (¢f. section 65);

“pot simple but complex (¢f section 58 and latter part of s9); and

falsifiable only under special safeguards (section 68).
The comparison of degrees of testability has been discussed at
length in sections 31 to 40. Some of the examples and other details
1 Schiick, Naturwissenschafter 19, 1931, p. 148 {¢f. note 1 to the preceding section).

following up this intuitive view (which I think would have led him to see that the
simpler theory is the better testable one), Weyl refects it as not standing up to rational
criticism: he points out that the same could be said of any given curve, however complex.
(This argument is correct, but it does no longer hold if we consider the potential falsifiers
—and their degree of composition—rather than the verifying instances.) Weyl then
proceeds to discuss the paucity of the parameters as a criterion of simplicity, without
commecting this in any way either with the intnitive view just rejected by him, or with
anything which, like testability, or content, might explain our epistemological preference
for the simpler theory.

‘Weyl’s characterization of the simplicity of a curve by the paucity of its parameters
was anticipated in 1921 by Harold Jeffreys and Dorothy Wrinch (Phil. Mag. 42, 369 ff.).
Byt if Weyl merely failed to see what is now ‘easy to see’ {according to Kneale),
Jeffreys actually saw—and still sees—the very opposite: he attributes to the simpler law
the greater prior probability instead of the greater prior improbability. (Thus Jeffreys’s
and Kneale’s views together may illustrate Schopenhauer’s remark that the solution of a
problem often first looks like a paradox and later like a truism.) I wish to add here that [
have further developed nty views on simplicity, and that in doing so I have tried hard
and, I hope, not quite without success, to Jearn something from Kneale, Cf, appendix #x
and section #15 of my Postscript. :
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given there can be casily transferred to the problem of simplicity,
This holds especially for the degree of universality of a theory: a
more universal statement can tahe the place of many less universal

ones, and for that reason has often been called ‘simpler’. The concept

of the dimension of a theory may be said to give precision to Weyl’s
idea of using the number of parameters to determine the concept of
simplicity.** And by means of our distinction between a formal and a
material reduction of the dimension of a theory (¢f. section 40),
certain possible objections to Weyl’s theory can be met. One of these
is the objection that the sct of ellipses whose axes stand in a given
ratio, and whose numerical eccentricity is give:i has exactly as many
parameters as the set of circles, although it is obwously less “simple’.
Above all, our theory explains why simplicity is so highly desirable,
To understand this there is no need for us to assume a ‘principle of
economy of thought’ or anything of the kind. Simple statements, if
knowledge is our object, are to be prized more highly than less simple
ones because they tell us more; because their empirical content is greater;
and because they are better testable.

44. Geometrical Shape and Functional Form,

Our view of the concept of simplicity enables us to resolve a
number of contradictions which up to now have made it doubtful .

whether this concept was of any use.

Few would regard the geometrical shape of, say, a logarithmic
curve as particularly sxmple but a law which can be represented by
a logarithmic function is usually regarded as a simple one. Similarly

*2 As mentioned in notes 7 to section 42 and #1 to the present secton, it was Harold -

{,ef&cys and Dorothy Wrinch who first proposed to measure the simplicity of a function

¥ the paucity of its freely adjustable parameters. But they also proposed to attach to the -
simpler hypothesis a greater prior probability. Thus their views can be presented by the

schema
simplicity = paucity of parameters = high prior probability.

It so happens that I approached the matter from an entirely different angle. I was

interested in assessing degrees of testability, and I found first that testability can be -
measured by ‘logical’ improbability (which corresponds exaetly to Jeffreys” ‘prior” -
improbability). Then I found that testability, and thus prior improbability, can be

equated with pancity of parameters; and only at the end, I equated high testability with
high simplicity, Thus my view can be presented by the schema: tesiability =

high prior improbability = pancity of parameters = simplicity.

It will be seen that these two schemata coincide in part; but on the decisive point— '

probability vs, improbability—they stand in direct opposition. See also appendix #viii.
142

45, EUCLIDEAN GEOMETRY

a sine function is commonly said to be simple, even though the geo-
metrical shape of the sine curve is perhaps not so very simple,

Difficulties like this can be cleared up if we remember the con-
nection between the number of parameters and the degree of falsi-
fiability, and if we distinguish between the formal and the material
reduction of dimensions. (We must also remember the réle of
invariance with respect to transformations of the co-ordinate systems.)
If we speak of the geometrical form or shape of a curve, then what we
demand is invariance with respect to all transformations belonging
to the group of displacements, and we may demand invariance with
respect to similarity transformations; for we do not think of a
geometrical figure or shape as being tied to a definite position. Conse-
quently, if we think of the shape of a onc-parametric logarithmic
curve (y = log,x) as lying anywhere in a plane, then it would have five
parameters (if we allow for similarity transformations), It would
thus be by no means a particularly simple curve. If, on the other hand,
a theory or law is represented by a logarithmic curve, then co-ordinate
transformations of the kind described are irrelevant. In such cases,
there is no point in either rotations or parallel displacements or
similarity transformations. For a logarithmic curve as a rule is a
graphic representation in which the co-ordinates cannot be inter-
changed. (For example, the x-axis might represent atmospheric
pressure, and the y-axis height above sea-level.) For this reason,
similarity transformations are equally without any significance here.
Analogous considerations hold for sine oscillations along a particular
axis, for example, the time axis; and for many other cases.

45. The Simplicity of Euclidean Geometry.

One of the issues which played a major rle in most of the dis-
cussions of the theory of relativity was the simplicity of Euclidean
geometry. Nobody ever doubted that Euclidean geometry as such
was simpler than any non-Buclidean geometry- with given constant

“curvature—not to mention non-Euchdcan geometries With curvatures
varying from place to place. =

At first siglit the kind ‘of simplicity here involved seems to have
little to do with degrees of falsifiability. But if the statements at issue
are formulated as empirical hypotheses, then we find that the two
concepts, simplicity and falsifiability, coincide in this case also.
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Let us consider what experiments may help us to test the hypo-
thesis, 'In our world, we have to employ a certain metrical geometry
with such and such a radius of curvature.” A test will be possible only
if we identify certain geomctmcs,l cntities. Wlth certain physn:sl objects
——for mtancc st

or per ps an-ostensive definition; g" section Iﬂ 15 adopted,
can be shown that the hypothesis of the validity of an Euclidean
light-ray-geometry is falsifiable to a higher degree than any of the
competing hypotheses which assert the validity of some non-Euclidean
geometry, For if we measure the sum of the angles of a light-ray
triangle, then any significant deviation from 180 degrees will falsify the
Euclidean hypothesis. The hypothesis of a Bolyai-Lobatschewski geo-
metry with given curvature, on the other hand, would be compatible
with any particular measurement not exceeding 180 degrees. Moreover,
to falsify this hypotlesisitwould be necessary t0 measure not only the
sum of the angles, but also the (absolute) size of the triangle; and this
means that in addition to angles, a further unit of measurement, such
as a mnit of area, would have to be defined. Thus we see that more

measurements are necded for a falsification; that the hypothesis is com= -

patible with greater variations in the results of measurements; and that
it is therefore more difficult to falsify: it is falsifiable to a lesser degree.
To put itin another way, Euclidean geometry is the only metric geo-
metry with a defmite curvature in which similarity transformations are
possible. In consequence, Euclidean geometrical figures can be invari-

ant with respect to more transformations; that is, they can be of lower -

dimension: they can be simpler.

46. Conventionalism and the Concept of Simplicity.

also his starting point, that no theory is unambiguously determined

by experience; a point with which I agree. He believes that he must
therefore choose the ‘simplest’ theory. But since the conventionalist -

does not treat his theories as falsifiable systems but rather as con-
ventional stipulations, he obvionsly means by ‘simplicity’ something
different from degree of falsifiability.

The conventionalist concept of simplicity turns out to be indeed
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What the conventionalist calls “simplicity’ does nof correspond to -
what I call ‘simplicity’. It is the central idea of the conventionalist, and

46. CONVENTIONALISM AND SIMPLICITY

partly aesthetic and partly practical. Thus the following comment
by Schlick (¢f section 42) applies to the conventionalist concept of
simplicity, but not to mine: ‘It is certain that one can only define the
concept of simplicity by a convention which must always be arbi-
trary.” It is curious that conventionalists themselves have overlooked
the conventional character of their own fundamental concept—that
of simplicity. That they must have overlooked it is clear, for otherwise
they would have noticed that their appeal to simplicity could never
save them from arbitrariness, once they had chosen the way of
arbitrary convention.

From my point of view, a system must be described as complex
in the highest degree if, in accordance with conventionalist practice,
one holds fast to it as a system established forever which one is
determined to rescue, whenever it is in danger, by the introduction
of auxiliary hypotheses. For the degree of falsifiability of a-system
thus protected is equal to zero. Thus we are led back, by our concept
of simplicity, to the methodological rules of section 20; and especlally
also to that rule or principle which restrains us from indulgence in
ad hoc hypotheses and auxiliary hypotheses: to the principle of
parsimony in the use of hypotheses.

1Schiick, ibid.,, p. 148.




